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MOMENTS AND REGULARITY FOR A BOLTZMANN

EQUATION VIA WIGNER TRANSFORM

THOMAS CHEN, RYAN DENLINGER, AND NATAŠA PAVLOVIĆ

Abstract. In this paper, we continue our study of the Boltzmann equa-
tion by use of tools originating from the analysis of dispersive equations
in quantum dynamics. Specifically, we focus on properties of solutions
to the Boltzmann equation with collision kernel equal to a constant in
the spatial domain R

d, d ≥ 2, which we use as a model in this pa-
per. Local well-posedness for this equation has been proven using the
Wigner transform when 〈v〉β f0 ∈ L2

vH
α
x for min(α, β) > d−1

2
. We prove

that if α, β are large enough, then it is possible to propagate moments
in x and derivatives in v (for instance, 〈x〉k 〈∇v〉

ℓ
f ∈ L∞

T L2
x,v if f0 is

nice enough). The mechanism is an exchange of regularity in return
for moments of the (inverse) Wigner transform of f . We also prove
a persistence of regularity result for the scale of Sobolev spaces Hα,β;
and, continuity of the solution map in Hα,β. Altogether, these results
allow us to conclude non-negativity of solutions, conservation of energy,
and the H-theorem for sufficiently regular solutions constructed via the
Wigner transform. Non-negativity in particular is proven to hold in
Hα,β for any α, β > d−1

2
, without any additional regularity or decay

assumptions.

1. Introduction

We are interested in the local Cauchy theory for the full Boltzmann equa-
tion:

(∂t + v · ∇x) f(t, x, v) = Q(f, f)(t, x, v). (1)

Here t ≥ 0, x, v ∈ R
d with d ≥ 2, and the collision operator Q(f, f) is

defined as follows:

Q(f, f) =

ˆ

Rd

ˆ

Sd−1

dωdv∗b

(

|v − v∗| , ω ·
v − v∗
|v − v∗|

)

(

f ′f ′
∗ − ff∗

)

. (2)

We have defined f ′ = f(t, x, v′), f ′
∗ = f(t, x, v′∗), f∗ = f(t, x, v∗); the veloc-

ities (v′, v′∗) are defined in terms of (v, v∗) and ω ∈ S
d−1 by the following

relation:
v′ = v + (ω · (v∗ − v))ω

v′∗ = v∗ − (ω · (v∗ − v))ω.
(3)

We will assume throughout this paper that the collision kernel b is a bounded
function or, for some results, identically constant. These restrictive assump-
tions are for technical simplicity; they can certainly be relaxed for most
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(and probably all) of our results. We refer to [10, 30] for background on
Boltzmann’s equation.

Although in this paper we focus on properties of local in time solutions for
Boltzmann’s equation, we recall that there are two known theories of global
solutions for Boltzmann’s equation (apart from small data solutions, which
are closer to the local theory). One is the theory of renormalized solutions,
which applies for arbitrary large data having finite mass, second moments,
and entropy. [14] Very little is known about renormalized solutions; in
particular, it is not known whether they are unique. The other theory of
global solutions concerns solutions near a Maxwellian equilibrium of some
fixed temperature, [1, 15, 18, 19, 28, 29]. The construction of such solutions
is intimately tied to the properties of the linearized collision operator. We
are ultimately motivated by certain applications for which it seems better to
view Boltzmann’s equation as a perturbation of free transport, rather than
a perturbation of the linearized equation. For example, in the derivation
of Boltzmann’s equation from Hamiltonian particle systems [16,21,23], it is
very hard to make use of the structure arising from the linearized collision
operator (but see [6, 7]); the transport structure is still available in this
context and that motivates us to employ it. For now, we do that in the
setting of local in time solutions.

There are a number of theories of local solutions for Boltzmann’s equa-
tion currently available; a local well-posedness (LWP) theory is a theory of
existence and uniqueness which allows data of arbitrary size in some norm,
but which may break down after a short time depending (solely) on the
norm of the data. We refer the reader to [2, 4, 20] for several of the LWP
theories which are currently known for Boltzmann’s equation. A new LWP
theory for Boltzmann’s equation has recently been developed in [11] using
the Wigner transform and tools including the bilinear Strachartz estimate
that are inspired by techniques for the treatment of nonlinear Schrödinger
equations and the Gross-Pitaevskii hierarchy (see e.g. [12]). In the present
paper, we show that the solutions of Boltzmann’s equation constructed1 in
[11] propagate higher regularity and moments if they are available at the
initial time. We give a complete description of this phenomenon when the
collision kernel is identically constant; the reasons for this limitation seem
to be purely technical.

The problem of regularity for Boltzmann’s equation has been studied by
various authors. We refer especially to [8, 26]; both of these works discuss
the persistence of regularity of small solutions near vacuum, as in [20]. It
is also proven in [8] that, for some Boltzmann equations with Grad cut-off,
in the case of small solutions, the solution at positive times propagates the
singularities of the initial data. This shows that, in the Grad cut-off case,

1We emphasize that, contrary to [4], the theory of [11] has not been optimized to take
advantage of the regularizing properties of the Boltzmann “gain” collision term. We
expect such optimizations to be available through the use of more general Xs,b norms
than considered in this paper; such refinements are the subject of ongoing research.
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the Boltzmann flow does not smooth out irregular initial data. For this
reason, in the present work we cannot hope to prove that the solution is
smoother than the data; we can only hope to show that the solution is as
regular as the data and that is what we achieve. More precisely, we obtain a
fairly complete description of the persistence of regularity for local-in-time
solutions using the functional framework of [11], at least when the collision
kernel is constant.

The study of moments for the Boltzmann equation has a long history,
particularly in the space homogeneous case. We refer to [30] for a review of
the classical results, as well as to e.g. [3,5,17,25,27] and references therein.
The rough picture is that, for hard potentials (including hard spheres), the
space homogeneous Boltzmann equation generates higher-order moments in-
stantaneously as soon as the initial energy is finite. For Maxwell molecules
or soft potentials, however, only those moments which are initially finite are
finite at positive times. In particular, in the case of bounded collision kernels
(which is the only case studied in this paper), one does not expect any gen-
eration of moments effect. Instead, one should seek to prove propagation of
moments, which is precisely the type of result we can prove. Our techniques
could be applied in the case of hard potentials with Grad cut-off, but at
present we cannot expect to capture the generation of moments effect in our
estimates. We also remark that we address L2 moments, whereas the space
homogeneous theory is primarily concerned with L1 moments.2

As is typically the case when one proves a propagation result, the proofs
in this paper are based on the following idea: we write an equation for
a desired moment or derivative, and then solve that equation by a fixed
point argument as in [11].3 In all cases we must pay a cost in terms of
regularity/moments in order to propagate regularity/moments in some other
variable. For example, we can propagate moments in x by paying with
moments in v until we run out of currency to exchange; this results in a
natural limit to the number of moments we can propagate. Similarly, for
an identically constant collision kernel, we can propagate derivatives in v by
paying with derivatives in x, until we run out of derivatives to trade. Now it
is a priori possible that solutions which are initially smooth in x with rapid
decay in v lose this property after some short time, only to persist for a
longer time in a less regular space. We can rule this out, to some extent, by
our methods as well. In particular, we prove persistence of regularity results
for the scale of Sobolev spaces which arise naturally from the analysis of
[11]. Effectively, as soon as the solution has enough regularity and decay
to apply the methods of [11], we can prove that more regular data leads to
more regular solutions for as long as the solution exists in the less regular

2There is nothing particularly special about L1 moments; for example, a theorem of Lan-
ford on the derivation of Boltzmann’s equation [23] relies upon exponential L∞ moments.
3Technically one must show that the solution of the new fixed point problem is related to
the solution the original fixed point problem in the expected way; this is formally trivial
but inconvenient to prove rigorously. We shall not address this issue in full detail.
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space. The higher Sobolev norms may grow much more rapidly in time than
the lower Sobolev norms, however.

As an application of our results, we are able to prove that for constant
collision kernels, the solutions constructed in [11] propagate non-negativity
assuming only that the data itself is non-negative. This is true under min-
imal assumptions for which the theory of [11] applies; in particular, we do
not require higher moment or regularity estimates to prove non-negativity.
The reason is that our persistence of regularity results allow us to approxi-
mate low-regularity solutions by higher regularity solutions for a short time
interval; even though the higher Sobolev norms may be very large, they
will at least be finite on a time interval bounded from below uniformly with
respect to the mollification parameter. Once we have enough regularity and
decay, we can apply a theorem of [24] directly (that theorem is based on a
Gronwall type argument to control the negative part of the solution). The
non-negativity is preserved upon passage to the limit.

Organization of the paper. In Section 2, we outline the basic notation
and the main results we prove in this paper. In Section 3, we quote a slightly
refined version of a key proposition from [11] which we require to prove our
main results; we also prove a couple of useful lemmas. Section 4 is dedicated
to proving propagation of moments in x and derivatives in v. In Section 5,
we prove persistence of regularity in the scale of Sobolev spaces Hα,β; this
corresponds to derivatives in x and moments in v. In Section 6, we address
regularity with respect to the time variable. Section 7 contains a proof of
continuity of the solution map. A new bilinear estimate with loss is proven
in Appendix A; this estimate is used in Section 6.
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2. Notation and Main Results

In this section we present the notation, followed by a brief review of the
relevant previous works and the statement of main results of this paper.

2.1. Notation. We will employ the Wigner transform as in [11]. For any
function f(x, v) ∈ L2

x,v, we define γ(x, x′) ∈ L2
x,x′ as follows:

γ(x, x′) =

ˆ

Rd

f

(

x+ x′

2
, v

)

eiv·(x−x′)dv. (4)

The inverse of this formula is the Wigner transform, given by:

f(x, v) =
1

(2π)d

ˆ

Rd

γ
(

x+
y

2
, x−

y

2

)

e−iv·ydy. (5)
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We may write f = W[γ] and γ = W−1[f ]. The map W : L2
x,x′ → L2

x,v is
an isometric linear isomorphism by Plancharel’s theorem. We will assume
throughout this paper that

‖b‖∞ = sup
u∈Rd, ω∈Sd−1

∣

∣

∣

∣

b

(

|u|, ω ·
u

|u|

)∣

∣

∣

∣

< ∞. (6)

For some results, we will need to assume (for technical reasons) that b is
identically constant. We define the Fourier transform of the collision kernel,
namely:

b̂ω(ξ) =

ˆ

Rd

b

(

|u|, ω ·
u

|u|

)

e−iu·ξdu. (7)

The functional setting is the same as that of [11], and it is defined via the
Fourier transform of γ = W−1[f ]:

γ̂(ξ, ξ′) =

ˆ

Rd×Rd

e−ix·ξe−ix′·ξ′γ(x, x′)dxdx′. (8)

For any α, β ≥ 0 we define
∥

∥γ(x, x′)
∥

∥

Hα,β =
∥

∥

∥

〈

ξ + ξ′
〉α 〈

ξ − ξ′
〉β

γ̂(ξ, ξ′)
∥

∥

∥

L2
ξ,ξ′

. (9)

This norm is equivalent to the following norm for f(x, v):
∥

∥

∥
〈2v〉β (1−∆x)

α
2 f(x, v)

∥

∥

∥

L2
x,v

. (10)

2.2. Previous results. If f(t, x, v) is a smooth and rapidly decaying solu-
tion of Boltzmann’s equation (1) with ‖b‖∞ < ∞, it is possible to show that
γ(t) = W−1[f(t)] solves the following equation: (see Appendix A of [11] for
a proof)

(

i∂t +
1

2
(∆x −∆x′)

)

γ(t) = B(γ(t), γ(t)) (11)

B(γ1, γ2) = B+(γ1, γ2)−B−(γ1, γ2) (12)

B−(γ1, γ2)(x, x
′) =

i

22dπd

ˆ

Sd−1

dω

ˆ

Rd

dzb̂ω
(z

2

)

×

× γ1

(

x−
z

4
, x′ +

z

4

)

γ2

(

x+ x′

2
+

z

4
,
x+ x′

2
−

z

4

) (13)

B+(γ1, γ2)(x, x
′) =

i

22dπd

ˆ

Sd−1

dω

ˆ

Rd

dzb̂ω
(z

2

)

×

× γ1

(

x−
1

2
Pω(x− x′)−

Rω(z)

4
, x′ +

1

2
Pω(x− x′) +

Rω(z)

4

)

×

× γ2

(

x+ x′

2
+

1

2
Pω(x− x′) +

Rω(z)

4
,
x+ x′

2
−

1

2
Pω(x− x′)−

Rω(z)

4

)

(14)
Here we have

Pω(x) = (ω · x)ω (15)
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Rω(x) = (I− 2Pω)(x) (16)

and I(x) = x.
We will refer to f as a solution of Boltzmann’s equation if γ = W−1[f ]

solves the Duhamel-type integral formula:

γ(t) = e
1
2
it∆±γ(0)− i

ˆ t

0
e

1
2
i(t−t1)∆±B(γ(t1), γ(t1))dt1 (17)

We may also say in this case that γ solves Boltzmann’s equation. Note that

if b ≡ cst. then b̂ω is a δ-function concentrated at z = 0 (cf. Bobylev’s
formula).

Remark 2.1. We anticipate that some parts of the analysis of Boltzmann’s
equation via bilinear Strichartz estimates can be presented in terms of the
kinetic transport operator

∂t + v · ∇x (18)

Indeed, starting from (18) and taking the Fourier transform in t and x, with
dual variables τ and η respectively, yields the weight

τ + v · η (19)

To see the equivalence, replace v 7→ (ξ − ξ′)/2 and η 7→ ξ + ξ′, and thereby
recover the difference of squares

v · η 7→
1

2

(

|ξ|2 − |ξ′|2
)

(20)

which appears in the spacetime Fourier analysis of the density matrix formu-
lation of Schrödinger’s equation. This observation would be especially helpful
for problems with periodic boundary conditions, where the interpretation of
the Wigner transform is less clear.

Compared to the kinetic formulation of Boltzmann’s equation, the den-
sity matrix formulation has some unique advantages; most importantly, it
facilitates a direct comparison to the substantial literature on Schrödinger’s
equation in density matrix formulation.4 This is particularly evident in the
case of a constant collision kernel b ≡ cst., where the Boltzmann loss oper-
ator becomes (up to a real constant)

B−(γ, γ) = iργ

(

x+ x′

2

)

γ(x, x′) (21)

where ργ(x) = γ(x, x) is the diagonal of a density matrix. Though this is
unfortunately not a commutator, it does look very similar to the bilinear
operator

B(γ, γ) =
(

ργ(x)− ργ(x
′)
)

γ(x, x′) = [ργ , γ] (x, x
′) (22)

4A detailed analysis of the spectral properties of γ (viewed as a linear operator on L2(Rd)),
or the connections to Bobylev’s formula, may also provide interesting avenues for research;
however, we do not explore these directions in this work.
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which defines the density matrix formulation of cubic NLS (see [22]). More-
over, just as (d−1)/2 is L2-based Sobolev regularity threshold for our proof
(in both α and β for a constant collision kernel), the regularity threshold
for the proof of [22] in the cubic NLS case is exactly (d − 1)/2. This is not
surprising because our argument is a translation of the arguments of [22]
to the Boltzmann equation. Note that, in the Boltzmann case, a somewhat
better regularity class has been obtained for some collision kernels with Grad
cut-off using the Strichartz estimates of Castella and Perthame [4,9], but it
was necessary to use the convoluting effects of the Boltzmann gain operator.
We have not made essential use of the special properties of the gain term in
the present work.

The following LWP result was proven in [11]:

Theorem 2.1. Let α, β ∈
(

d−1
2 ,∞

)

and consider the Boltzmann equation

with ‖b‖∞ < ∞. For any γ0 ∈ Hα,β there exists a unique solution γ(t) of
Boltzmann’s equation on a small time interval [0, T ] such that

‖γ‖L∞
T
Hα,β < ∞ (23)

and
‖B(γ, γ)‖L1

T
Hα,β < ∞ (24)

both hold, and γ(0) = γ0. Moreover, if ‖γ0‖Hα,β ≤ M then for all small
enough T depending only on α, β and M , there holds:

T
1
2 ‖γ‖L∞

T
Hα,β + ‖B(γ, γ)‖L1

T
Hα,β ≤ C(M,α, β)T

1
2 ‖γ0‖Hα,β (25)

Remark 2.2. Note carefully that, as a consequence of Theorem 2.1,

‖B(γ, γ)‖L1
T
Hα,β

scales at worst like a power of T , namely T
1
2 , when T is small. We will

make use of this fact repeatedly in this work.

The functional spaces Hα,β automatically guarantee some regularity in
space and decay in velocity variables. Our first result, to be proven in
Section 4, states that it is possible to trade moments in v for moments in x;
and, if b ≡ cst., it is also possible to trade derivatives in x for derivatives
in v. For these results to hold, we must always assume that enough decay
or regularity is available in the initial data. We remind the reader that,
for bounded collision kernels, the Boltzmann equation is not expected to
generate derivatives or moments in any variable at positive times; hence,
any regularity or decay estimate must have been present at the initial time
for it to be available at positive times.

2.3. Main results of this paper. Now we are ready to state main re-
sults of this paper which are formulated in Theorem 2.2, Theorem 2.3 and
Theorem 2.6.
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Theorem 2.2. Let γ(t) be a solution of Boltzmann’s equation with bounded
collision kernel, ‖b‖∞ < ∞, satisfying the following bounds on some time
interval [0, T ]:

‖γ(t)‖L∞
T
Hα,β < ∞ (26)

‖B(γ(t), γ(t))‖L1
T
Hα,β < ∞ (27)

with α, β > d−1
2 . Then we have the following:

(i) Suppose that, for some integer K > 0 with K < β− d−1
2 , for any integer

k with 1 ≤ k ≤ K there holds
〈

x+ x′
〉k

γ(0) ∈ Hα,β−k (28)

Then for all 1 ≤ k ≤ K we have
〈

x+ x′
〉k

γ(t) ∈ L∞
T Hα,β−k (29)

(ii) Assume that b ≡ cst.; then, suppose that, for some integer K > 0 with
2K < α− d−1

2 , for all 1 ≤ k ≤ K there holds
〈

x− x′
〉2k

γ(0) ∈ Hα−2k,β (30)

Then for all 1 ≤ k ≤ K we have
〈

x− x′
〉2k

γ(t) ∈ L∞
T Hα−2k,β (31)

Remark 2.3. Our proof provides quantitative estimates for 〈x+ x′〉k γ(t)

and 〈x− x′〉2k γ(t) in the relevant function spaces. However, these bounds
may grow very rapidly with time and we make no effort to prove optimal
bounds on the growth rate.

In order to apply Theorem 2.2, we generally require solutions γ ∈ Hα,β

for large values of α, β. This naturally leads us to inquire whether a solution
may blow up in Hα,β only to persist longer in some less regular space. This
question is particularly relevant if we want to approximate some irregular
initial data by some other, very regular, data for the purpose of formal com-
putation. Our next result, proven in Section 5, rules out such pathological
behavior within the scale of Sobolev spaces Hα,β with α, β > d−1

2 .

Theorem 2.3. Let γ(t) be a solution of Boltzmann’s equation with ‖b‖∞ <

∞, and suppose γ ∈ L∞
T Hα,β and B(γ, γ) ∈ L1

TH
α,β for some α, β > d−1

2 .
Then we have the following:
(i) If γ(0) ∈ Hα+r,β for some r ∈ N, then γ ∈ L∞

T Hα+r,β and B(γ, γ) ∈

L1
TH

α+r,β.

(ii) If γ(0) ∈ Hα,β+r for some (real) r > 0, then γ ∈ L∞
T Hα,β+r and

B(γ, γ) ∈ L1
TH

α,β+r.

Remark 2.4. As with Theorem 2.2, we can extract quantitative estimates
from the proof of Theorem 2.3, but they may grow very rapidly with time.
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We also prove, in Sections 6 and 7 respectively, results on regularity in
time and also the continuity of the solution map.5 We quote those results
here for the convenience of the reader.

Proposition 2.4. Let γ(t) be a solution of Boltzmann’s equation with ‖b‖∞ <

∞, and suppose γ ∈ L∞
T Hα,β and B(γ, γ) ∈ L1

TH
α,β for some α, β > d−1

2 .

Further suppose that K > 0 is an integer with K < min(α, β)− d
2 . Then for

any integer k with 1 ≤ k ≤ K there holds ∂k
t γ ∈ L∞

T Hα−k,β−k.

Proposition 2.5. Let γj(t) be a solution of Boltzmann’s equation with
‖b‖∞ < ∞, for j = 1, 2, with γj ∈ L∞

T Hα,β and B(γj , γj) ∈ L1
TH

α,β for

j = 1, 2 and some α, β > d−1
2 . Furthermore, suppose that

∥

∥γj
∥

∥

L∞
T
Hα,β ≤ M

for j = 1, 2. Then we have
∥

∥γ1 − γ2
∥

∥

L∞
T
Hα,β ≤ CM,T

∥

∥γ1(0) − γ2(0)
∥

∥

Hα,β (32)

where the constant may depend on α, β.

Remark 2.5. Most likely, the proofs of the preceding theorems can be com-
bined to prove propagation of mixed derivatives and moments; for example,

〈

x+ x′
〉k1
〈

x− x′
〉k2 〈∇x +∇x′〉k3 〈∇x −∇x′〉k4 ∂k5

t γ(t) (33)

We will not address these mixed estimates in detail. For what follows, it will
suffice to notice that by Fourier transforming in time (only), we can always
estimate

〈

x+ x′
〉k 〈

x− x′
〉k

∂k
t .

〈

x+ x′
〉3k

+
〈

x− x′
〉3k

+ ∂3k
t (34)

This is obvious in L2
tL

2
x,x′ but the same estimate holds in L2

tH
α,β as well, at

least for integer values of α and β. In order to apply this estimate in practice,
we must use a smooth compactly supported cut-off in the time variable; to
this end, it is helpful to solve Boltmann’s equation backwards in time on
a short time interval. This allows us to perform estimates on [0, T1] (with
T1 < T ) by choosing a cut-off which is supported on [−∆, T ] for sufficiently
small ∆ > 0. Due to the Grad cut-off condition, there is no difficulty in
solving Boltzmann’s equation backwards for a short time interval.

Using Theorem 2.2 and Proposition 2.4, we can construct solutions γ(t)
which have very strong regularity and decay properties on a short time
interval. For such solutions, we can reverse the steps from Appendix A of
[11] and thereby show that f = W[γ] is a classical solution of Boltzmann’s
equation. In particular, conservation of mass, momentum, and energy follow
by the usual computations. In view of the next result on non-negativity, we
can also prove the H-theorem for solutions having enough regularity and

decay, under the additional assumption that f(0) = W[γ(0)] ≥ ce−c(|x|2+|v|2)

5Note in particular that the proof in Section 6 relies upon the bilinear estimates with

loss proven in Appendix A; we emphasize that those bilinear estimates cannot replace
Proposition 3.1 elsewhere in this paper, regardless of the size of α, β.
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for some c > 0. Obviously we could optimize the spaces in which energy
conservation holds by density arguments; we will not state a precise result
along these lines.

One very important issue which was not addressed in [11] was the non-
negativity of solutions. Only non-negative solutions of Boltzmann’s equation
are considered to have physical meaning. Moreover, the conserved mass
and energy only supply useful control for non-negative solutions; and, the
entropy is only defined for non-negative solutions. Combining all of the
results quoted in this section, we can prove the following:

Theorem 2.6. Let γ(t) be a solution of Boltzmann’s equation, with b ≡ cst.;
furthermore, suppose that γ ∈ L∞

T Hα,β and B(γ, γ) ∈ L1
TH

α,β for some

α, β ∈
(

d−1
2 ,∞

)

. Then if f(0, x, v) = W[γ(0)](x, v) ≥ 0 for almost every

x, v ∈ R
d, then for all t ∈ [0, T ] we have f(t, x, v) = W[γ(t)](x, v) ≥ 0 for

almost every x, v ∈ R
d.

Remark 2.6. Note that in Theorem 2.6 we do not require γ to have any
higher regularity or moment bounds.

We omit a complete proof of Theorem 2.6, but we will state a few remarks
about the proof. The first important point is that γ(t) is actually continuous
in Hα,β, so we can evaluate γ(t) for any t ∈ [0, T ]. Fixing a solution γ ∈
L∞
T Hα,β with B(γ, γ) ∈ L1

TH
α,β , we define

T1 = sup {t1 ∈ [0, T ] : f(t) = W[γ(t)] ≥ 0 ∀t ∈ [0, t1]} (35)

Assume by way of contradiction that T1 < T . Since γ(t) is continuous in
time and non-negativity is preserved under passage to the limit in L2, we
know that f(T1) ≥ 0. Therefore, it suffices to propagate non-negativity
on a small time interval (possibly much smaller than T ). We pick a se-
quence of very regular functions (say, in the Schwartz class) which converge
to γ(T1) in Hα,β; we use these approximate functions as initial data in
Boltzmann’s equation. Note carefully that the approximate solutions may
not exist on the full time interval [T1, T ], but they will have a time of exis-
tence which is bounded uniformly from below due to uniform boundedness
in Hα,β. Since f(T1) ≥ 0, we can arrange for the approximating functions
to be non-negative at time t = T1. We can apply Theorem 2.3, Theorem
2.2, and Proposition 2.4 to conclude that the approximating functions are
smooth and rapidly decaying for as long as they exist in Hα,β; in particular,
inverting the steps from Appendix A of [11], we have a sequence of classi-
cal solutions of Boltzmann’s equation. We can apply the results of [24] to
conclude that the approximating sequence remains non-negative on a short
time interval. Now we can pass to the limit, applying Theorem 2.5, to reach
the desired contradiction.

3. A Proposition and Two Lemmas

Proposition 3.1. Suppose α, β ∈
(

d−1
2 ,∞

)

and and let δ ≥ 0 be chosen
sufficiently small (with smallness depending continuously on α, β, d). Then
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there exists a constant C (depending on d, α, β) such that if ‖b‖∞ < ∞ then

for any γ1, γ2 ∈ Hα,β, both the following estimates hold:
∥

∥

∥B−
(

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

)∥

∥

∥

L2
tH

α,β+δ
≤

≤ C ‖b‖∞ ‖γ1‖Hα,β+δ ‖γ2‖Hα,β

(36)

∥

∥

∥
B+

(

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

)∥

∥

∥

L2
tH

α,β+δ
≤

≤ C ‖b‖∞ ‖γ1‖Hα,β ‖γ2‖Hα,β

(37)

Remark 3.1. Note carefully that the gain term B+ regularizes in the β
index; the loss term, by contrast, exhibits no such regularization.

Proof. (case δ > 0)
The case δ = 0 is proven in [11], or see Appendix B, so we only have to
consider δ > 0. It turns out that the proofs are almost identical to the proof
from [11] so we only sketch the ideas.

For the loss estimate (36), we have (for example) the following commuta-
tivity:

(∇x −∇x′)B−(γ1, γ2) = B− ((∇x −∇x′) γ1, γ2) (38)

and moreover (∇x −∇x′) commutes with the free propagator e
1
2
it(∆x−∆x′).

Hence the result is immediately obtained for δ = 1 once it is known for
δ = 0. The same result can be proven for any 0 < δ < 1 using Fourier
analysis, as in [11]; the required modifications to the proof presented there
are completely trivial.

For the gain estimate (37), we note that all the estimates for the gain term
from [11], or Appendix B, are stable with respect to a small perturbation
of the target regularity index β (keeping the regularities of γ1, γ2 fixed). In
fact, due to the angular averaging effect, the entire argument boils down to
proving the convergence of certain geometric series of the form

∑∞
k=1 2

−bk

for some b > 0; obviously, the series will still converge if we perturb b
slightly. �

Lemma 3.2. Consider the Boltzmann equation with arbitrary bounded col-
lision kernel. Then for any real numbers a, b ≥ 0, there holds

〈

x+ x′
〉a+b

B−(γ1, γ2) = B−
(

〈

x+ x′
〉a

γ1,
〈

x+ x′
〉b

γ2

)

(39)

〈

x+ x′
〉a+b

B+(γ1, γ2) = B+
(

〈

x+ x′
〉a

γ1,
〈

x+ x′
〉b

γ2

)

(40)

In the case that the collision kernel b ≡ cst., we also have for any positive
integer k, and any a, b ≥ 0,

〈

x− x′
〉a

B−(γ1, γ2) = B−
(

〈

x− x′
〉a

γ1,
〈

x− x′
〉b

γ2

)

(41)
(

x− x′
)

B−(γ1, γ2) = B−
(

(x− x′)γ1, γ2
)

(42)
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〈

x− x′
〉2k

B+(γ1, γ2) =

=
∑

j1+j2+j3=k

(

k

j1, j2, j3

)

(−1)j3B+
(

〈

x− x′
〉2j1 γ1,

〈

x− x′
〉2j2 γ2

)

(43)
(

x− x′
)

B+(γ1, γ2) = B+
(

(x− x′)γ1, γ2
)

+B+
(

γ1, (x− x′)γ2
)

(44)

Proof. Only (43) requires some explanation. The difficulty is that the action
of B+ involves the projection Pω(x − x′), which does not disappear when
taking differences of x and x′. This is easily dealt with, however, by using
the following orthogonality property:

〈

x− x′
〉2k

=
(

〈

(I− Pω)(x− x′)
〉2

+
〈

Pω(x− x′)
〉2

− 1
)k

(45)

and expanding terms using the multinomial formula. For (44), we use the
simpler decomposition:

x− x′ = (I− Pω) (x− x′) + Pω(x− x′) (46)

and conclude by linearity of the collision integral. �

Lemma 3.3. Consider the Boltzmann equation with arbitrary bounded col-
lision kernel; then there holds

(∇x +∇x′)B−(γ1, γ2) = B− ((∇x +∇x′) γ1, γ2) +B− (γ1, (∇x +∇x′) γ2)
(47)

(∇x +∇x′)B+(γ1, γ2) = B+ ((∇x +∇x′) γ1, γ2) +B+ (γ1, (∇x +∇x′) γ2)
(48)

Proof. This is an elementary computation. �

4. Moment Bounds for Density Matrices

In this section we treat propagation of moments of γ in x+x′ and moments
in x−x′ in turn. Combining these results allows us to control mixed moments
as well, e.g. if we want to place 〈x〉 〈∇v〉 f in L∞

T L2
x,v we could use

〈

x+ x′
〉 〈

x− x′
〉

.
〈

x+ x′
〉2

+
〈

x− x′
〉2

(49)

More precise results for mixed moments may be available by combining the
proofs given in this section, but we do not pursue this issue in detail.

4.1. Moments in x + x′. In this subsection we propagate moments of γ
in x + x′, which is equivalent to propagating moments of the distribution
f(x, v) in the spatial variable. The idea of the proof is to write an equation
for the kth moment and use the existence of a solution γ(t) in Hα,β for large
enough β.
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Lemma 4.1. Consider a distributional solution γ(t), t ∈ [0, T ], of the Boltz-
mann equation. Then for any k ∈ N, k ≥ 1, there holds
(

i∂t +
1

2
(∆x −∆x′)

)

(

〈

x+ x′
〉k

γ(t)
)

= B
(

〈

x+ x′
〉k

γ(t), γ(t)
)

+

+ k
x+ x′

〈x+ x′〉
· (∇x −∇x′)

(

〈

x+ x′
〉k−1

γ(t)
)

.

(50)
in the sense of distributions.

Proof. This computation follows by using (39) and (40). �

Let us introduce the following convenient notation:

ζ(t) = B (γ(t), γ(t)) (51)

γk,+(t, x, x
′) =

〈

x+ x′
〉k

γ(t, x, x′) (52)

ζk,+(t) = B (γk,+(t), γ(t)) . (53)

Proposition 4.2. Let γ(t) be a solution of Boltzmann’s equation with bounded
collision kernel, ‖b‖∞ < ∞, satisfying the following bounds on some time
interval [0, T ]:

‖γ(t)‖L∞
T
Hα,β < ∞ (54)

‖B(γ(t), γ(t)‖L1
T
Hα,β < ∞ (55)

with α, β > d−1
2 . Further assume that, for some integer K > 0 with K <

β − d−1
2 , for all 1 ≤ k ≤ K there holds

‖γk,+(0)‖Hα,β−k < ∞ (56)

Then for all 1 ≤ k ≤ K we have

‖γk,+(t)‖L∞
T
Hα,β−k < ∞. (57)

Moreover there is an explicit bound on sup
1≤k≤K

‖γk,+(t)‖L∞
T
Hα,β−k that only de-

pends on ‖γ(t)‖L∞
T
Hα,β , ‖B(γ(t), γ(t))‖L1

T
Hα,β , and sup

1≤k≤K

‖γk,+(0)‖Hα,β−k.

Proof. We will prove the result assuming T is small. To prove the general
result, it suffices to split the whole time interval [0, T ] into small sub-intervals
(whose size depends only on the bounds (54) and (55)) and iterate the same
argument as many times as needed.6

6Note in particular that ‖B(γ(t), γ(t))‖
L1

T
Hα,β scales at worst like T

1

2 for T small under

the hypotheses of the proposition, so this norm will certainly be small if T is chosen small.
By a time translation argument the same control holds on any small interval [t0, t0 + T ]

for as long as γ(t) remains bounded in Hα,β.
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Let us denote by ∆
(2)
± =

∑2
i=1

(

∆xi
−∆x′

i

)

the Laplace operator acting

on two particles. Using Lemma 4.1, we easily obtain:
(

i∂t +
1

2
∆

(2)
±

)

(γk,+ ⊗ γ) = γk,+ ⊗B(γ, γ) +B(γk,+, γ)⊗ γ+

+

(

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+

)

⊗ γ

(58)

In integral form, this is:

(γk,+ ⊗ γ) (t) = e
1
2
it∆

(2)
± (γk,+ ⊗ γ) (0)

− i

ˆ t

0
e

1
2
i(t−t1)∆

(2)
± (γk,+ ⊗B(γ, γ)) (t1)dt1

− i

ˆ t

0
e

1
2
i(t−t1)∆

(2)
± (B(γk,+, γ)⊗ γ) (t1)dt1

− i

ˆ t

0
e

1
2
i(t−t1)∆

(2)
±

{(

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+

)

⊗ γ

}

(t1)dt1.

(59)
The key step is to apply the collision integral to each side of (59) to obtain
a (nearly) closed equation for ζk,+; this idea is adapted from [12]. To fully
close the system we need to incorporate the equation for γk,+(t) which comes
directly by re-writing Lemma 4.1 in integral form. Altogether we need to
solve the following system of equations, where ∆± = ∆x −∆x′ :

γk,+(t) = e
1
2
it∆±γk,+(0)− i

ˆ t

0
e

1
2
i(t−t1)∆±ζk,+(t1)dt1

− i

ˆ t

0
e

1
2
i(t−t1)∆±

(

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+(t1)

)

dt1

(60)

ζk,+(t) = B
(

e
1
2
it∆±γk,+(0), e

1
2
it∆±γ(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γk,+(t1), e

1
2
i(t−t1)∆±ζ(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζk,+(t1), e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− i

ˆ t

0
B







e
1
2
i(t−t1)∆±

{

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+(t1)

}

,

e
1
2
i(t−t1)∆±γ(t1)






dt1.

(61)
We can solve (60)-(61) on [0, T ] for sufficiently small T by applying a Picard
iteration using Proposition 3.1; we omit the details. In any case the only
fact to be drawn from the fixed point iteration is that the moments γk,+
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do not instantaneously diverge in Hα,β−k, so the quantitative estimates we
prove next are justified.

First, using the fact that the propagator e
1
2
it∆± preserves the spaces Hα,β,

we easily obtain from (60) the following bound:

‖γk,+‖L∞
T
Hα,β−k ≤

≤ ‖γk,+(0)‖Hα,β−k + ‖ζk,+‖L1
T
Hα,β−k + Cα,βT ‖γk−1,+‖L∞

T
Hα,β−(k−1) .

(62)
For the second estimate, we take the L1

TH
α,β−k norm on both sides of (61).

We obtain:

‖ζk,+(t)‖L1
T
Hα,β−k ≤

∥

∥

∥B
(

e
1
2
it∆±γk,+(0), e

1
2
it∆±γ(0)

)∥

∥

∥

L1
T
Hα,β−k

+

ˆ T

0

ˆ t

0

∥

∥

∥
B
(

e
1
2
i(t−t1)∆±γk,+(t1), e

1
2
i(t−t1)∆±ζ(t1)

)∥

∥

∥

Hα,β−k
dt1dt

+

ˆ T

0

ˆ t

0

∥

∥

∥B
(

e
1
2
i(t−t1)∆±ζk,+(t1), e

1
2
i(t−t1)∆±γ(t1)

)∥

∥

∥

Hα,β−k
dt1dt

+

ˆ T

0

ˆ t

0
dt1dt×

×

∥

∥

∥

∥

∥

∥

∥

B







e
1
2
i(t−t1)∆±

{

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+(t1)

}

,

e
1
2
i(t−t1)∆±γ(t1)







∥

∥

∥

∥

∥

∥

∥

Hα,β−k

.

(63)

Now we bound
´ t

0 dt1(. . . ) by
´ T

0 dt1(. . . ) and apply Fubini.

‖ζk,+(t)‖L1
T
Hα,β−k ≤

∥

∥

∥
B
(

e
1
2
it∆±γk,+(0), e

1
2
it∆±γ(0)

)∥

∥

∥

L1
T
Hα,β−k

+

ˆ T

0

∥

∥

∥B
(

e
1
2
i(t−t1)∆±γk,+(t1), e

1
2
i(t−t1)∆±ζ(t1)

)∥

∥

∥

L1
T
Hα,β−k

dt1

+

ˆ T

0

∥

∥

∥
B
(

e
1
2
i(t−t1)∆±ζk,+(t1), e

1
2
i(t−t1)∆±γ(t1)

)∥

∥

∥

L1
T
Hα,β−k

dt1

+

ˆ T

0
dt1×

×

∥

∥

∥

∥

∥

∥

∥

B







e
1
2
i(t−t1)∆±

{

k
x+ x′

〈x+ x′〉
· (∇x −∇x′) γk−1,+(t1)

}

,

e
1
2
i(t−t1)∆±γ(t1)







∥

∥

∥

∥

∥

∥

∥

L1
T
Hα,β−k

.

(64)
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Finally we apply Cauchy-Schwarz to bound ‖. . . ‖L1
T
by T

1
2 ‖. . . ‖L2

T
; then,

we are able to apply Proposition 3.1 to deduce the following bound:

‖ζk,+‖L1
T
Hα,β−k ≤ CT

1
2 ‖γk,+(0)‖Hα,β−k ‖γ(0)‖Hα,β−k +

+ CT
1
2 ‖γk,+‖L∞

T
Hα,β−k ‖ζ‖L1

T
Hα,β−k + CT

1
2 ‖ζk,+‖L1

T
Hα,β−k ‖γ‖L∞

T
Hα,β−k +

+ Cα,βkT
3
2 ‖γk−1,+‖L∞

T
Hα,β−(k−1) ‖γ‖L∞

T
Hα,β−k .

(65)
Since Hα,β ⊂ Hα,β−k, this implies:

‖ζk,+‖L1
T
Hα,β−k ≤ CT

1
2 ‖γk,+(0)‖Hα,β−k ‖γ(0)‖Hα,β +

+ CT
1
2 ‖γk,+‖L∞

T
Hα,β−k ‖ζ‖L1

T
Hα,β + CT

1
2 ‖ζk,+‖L1

T
Hα,β−k ‖γ‖L∞

T
Hα,β +

+ Cα,βkT
3
2 ‖γk−1,+‖L∞

T
Hα,β−(k−1) ‖γ‖L∞

T
Hα,β .

(66)
Let us define

MT = T
1
2 ‖γk,+‖L∞

T
Hα,β−k + ‖ζk,+‖L1

T
Hα,β . (67)

Then combining (62) and (66), we obtain:

MT ≤ C
(

T
1
2 + T

1
2 ‖γ‖L∞

T
Hα,β + ‖ζ‖L1

T
Hα,β

)

MT+

+ T
1
2 ‖γk,+(0)‖Hα,β−k + T

1
2 ‖γk,+(0)‖Hα,β−k ‖γ(0)‖Hα,β +

+ Cα,βT
3
2 ‖γk−1,+‖L∞

T
Hα,β−(k−1) +

+ Cα,βkT
3
2 ‖γk−1,+‖L∞

T
Hα,β−(k−1) ‖γ‖L∞

T
Hα,β .

(68)

Since ‖ζ‖L1
T
Hα,β is O(T

1
2 ) for small T , we find that the prefactor of MT on

the right-hand side is small if T is small. The smallness of T depends only
on the underlying solution γ(t) of Boltzmann’s equation. �

4.2. Moments in x − x′. In this subsection we propagate moments of γ
in x− x′, which is equivalent to propagating derivatives of the distribution
f(x, v) in the velocity variable. As in the previous subsection, we will write
an equation for the (2k)th moment of γ and use the existence of a solution
γ(t) in Hα,β for large enough α. However, as we will see, the proof is much
more technical both because (43) introduces many new terms and because
we can only close the estimate for moments of even order.
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Lemma 4.3. Consider a distributional solution γ(t), t ∈ [0, T ], of the Boltz-
mann equation. Then for any k ∈ N, k ≥ 1, there holds
(

i∂t +
1

2
(∆x −∆x′)

)

(

〈

x− x′
〉2k

γ(t)
)

=

= B
(

〈

x− x′
〉2k

γ(t), γ(t)
)

+B+
(

γ(t),
〈

x− x′
〉2k

γ(t)
)

+

+
∑

j1+j2+j3=k
j1 6=k
j2 6=k

(

k

j1, j2, j3

)

(−1)j3B+
(

〈

x− x′
〉2j1 γ(t),

〈

x− x′
〉2j2 γ(t)

)

+

+ 2k (∇x +∇x′) ·
(

(x− x′)
〈

x− x′
〉2k−2

γ(t)
)

(69)
Additionally, for any k ∈ N, k ≥ 1, there holds
(

i∂t +
1

2
(∆x −∆x′)

)

(

(x− x′)
〈

x− x′
〉2k−2

γ(t)
)

=

= B
(

(x− x′)
〈

x− x′
〉2k−2

γ(t), γ(t)
)

+

+B+
(

γ(t), (x − x′)
〈

x− x′
〉2k−2

γ(t)
)

+

+
∑

j1+j2+j3=k−1
j1 6=k−1

(

k − 1

j1, j2, j3

)

(−1)j3B+

(

(x− x′)
〈

x− x′
〉2j1 γ(t),
〈

x− x′
〉2j2 γ(t)

)

+

+
∑

j1+j2+j3=k−1
j2 6=k−1

(

k − 1

j1, j2, j3

)

(−1)j3B+

(
〈

x− x′
〉2j1 γ(t),

(x− x′)
〈

x− x′
〉2j2 γ(t)

)

+

+ (∇x +∇x′)
(

〈

x− x′
〉2k−2

γ(t)
)

+

+ (2k − 2)

(

x− x′

〈x− x′〉
· (∇x +∇x′)

)

(

(x− x′)
〈

x− x′
〉2k−3

γ(t)
)

(70)

Proof. This computation follows by using (41)-(44). �

Remark 4.1. Note carefully that (x − x′) 〈x− x′〉2k−2 γ(t) is a complex
vector field.

Let us introduce the following notation:

ζ(t) = B(γ(t), γ(t)) (71)

γk,−(t, x, x
′) =

〈

x− x′
〉k

γ(t, x, x′) (72)

ζk,−(t) = B (γk,−(t), γ(t)) +B+ (γ(t), γk,−(t)) (73)

γ̆k,− = (x− x′)
〈

x− x′
〉k−1

γ(t, x, x′) (74)

ζ̆k,−(t) = B (γ̆k,−(t), γ(t)) +B+ (γ(t), γ̆k,−(t)) (75)
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Proposition 4.4. Let γ(t) be a solution of Boltzmann’s equation with con-

stant collision kernel, b ≡ cst., satisfying the following bounds on some
time interval [0, T ]:

‖γ(t)‖L∞
T
Hα,β < ∞ (76)

‖B(γ(t), γ(t)‖L1
T
Hα,β < ∞ (77)

with α, β > d−1
2 . Further assume that, for some integer K > 0 with 2K <

α− d−1
2 , for all 1 ≤ k ≤ K there holds

‖γ2k,−(0)‖Hα−2k,β < ∞ (78)

Then for all 1 ≤ k ≤ K we have

‖γ2k,−(t)‖L∞
T
Hα−2k,β < ∞. (79)

Moreover there is an explicit bound on sup
1≤k≤K

‖γ2k,−(t)‖L∞
T
Hα−2k,β that only

depends on ‖γ(t)‖L∞
T
Hα,β , ‖B(γ(t), γ(t))‖L1

T
Hα,β , and sup

1≤k≤K

‖γ2k,−(0)‖Hα−2k,β .

Proof. We will prove the result assuming T is small. To prove the general
result, it suffices to split the whole time interval [0, T ] into small sub-intervals
and iterate the argument, as in Proposition 4.2.

Similar to Proposition 4.2, the main idea is to write a closed equation

for the system
{

γ2k,−, ζ2k,−, γ̆2k−1,−, ζ̆2k−1,−

}

. Since the computations are

quite involved, we only write down the main steps. We will assume for the
induction that, if j1, j2 ≤ k − 1 and j1 + j2 ≤ k, then

B+ (γ2j1,−, γ2j2,−) ∈ L1
TH

α−2k,β, (80)

and that if j1 ≤ k − 2 and j1 + j2 ≤ k − 1, then

B+ (γ̆2j1+1,−, γ2j2,−) ∈ L1
TH

α−2k+1,β, (81)

and that if j2 ≤ k − 2 and j1 + j2 ≤ k − 1, then

B+ (γ2j1,−, γ̆2j2+1,−) ∈ L1
TH

α−2k+1,β. (82)

These assumptions will, of course, have to be verified later (the case k = 1
is easily checked using the facts that γ ∈ L∞

T Hα,β and ζ ∈ L1
TH

α,β).
We observe first that (69) is equivalent to the following system of equa-

tions (this system is not closed due to the presence of γ̆2k−1,−, which is not
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given to us by the inductive hypothesis):

γ2k,−(t) = e
1
2
it∆±γ2k,−(0) − i

ˆ t

0
e

1
2
i(t−t1)∆±ζ2k,−(t1)dt1

− i
∑

j1+j2+j3=k
j1 6=k
j2 6=k

(

k

j1, j2, j3

)

(−1)j3
ˆ t

0
e

1
2
i(t−t1)∆±B+ (γ2j1,−(t1), γ2j2,−(t1)) dt1

− 2ki

ˆ t

0
e

1
2
i(t−t1)∆± ((∇x +∇x′) · γ̆2k−1,−(t1)) dt1.

(83)
Also using a Duhamel expression for (γ2k,− ⊗ γ) (t), which can be obtained

in a similar way as (59), we obtain:

ζ2k,−(t) = B
(

e
1
2
it∆±γ2k,−(0), e

1
2
it∆±γ(0)

)

+B+
(

e
1
2
it∆±γ(0), e

1
2
it∆±γ2k,−(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ2k,−(t1), e

1
2
i(t−t1)∆±ζ(t1)

)

dt1

− i

ˆ t

0
B+

(

e
1
2
i(t−t1)∆±ζ(t1), e

1
2
i(t−t1)∆±γ2k,−(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζ2k,−(t1), e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− i

ˆ t

0
B+

(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±ζ2k,−(t1)

)

dt1

− i
∑

j1+j2+j3=k
j1 6=k
j2 6=k

(

k

j1, j2, j3

)

(−1)j3×

×

ˆ t

0
B
(

e
1
2
i(t−t1)∆±B+ (γ2j1,−(t1), γ2j2,−(t1)) , e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− i
∑

j1+j2+j3=k
j1 6=k
j2 6=k

(

k

j1, j2, j3

)

(−1)j3×

×

ˆ t

0
B+

(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±B+ (γ2j1,−(t1), γ2j2,−(t1))

)

dt1

− 2ki

ˆ t

0
B
(

e
1
2
i(t−t1)∆± ((∇x +∇x′) · γ̆2k−1,−(t1)) , e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− 2ki

ˆ t

0
B+

(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆± ((∇x +∇x′) · γ̆2k−1,−(t1))

)

dt.1

(84)
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Arguing as in Proposition 4.2, and applying Proposition 3.1, we deduce the
following estimates:

‖γ2k,−‖L∞
T
Hα−2k,β ≤ ‖γ2k,−(0)‖Hα−2k,β + ‖ζ2k,−‖L1

T
Hα−2k,β +

+ Ck sup
j1+j2≤k
j1 6=k
j2 6=k

∥

∥B+ (γ2j1,−, γ2j2,−)
∥

∥

L1
T
Hα−2k,β +

+ 2kT ‖γ̆2k−1,−‖L∞
T
Hα−(2k−1),β ,

(85)

‖ζ2k,−‖L1
T
Hα−2k,β ≤ CT

1
2 ‖γ2k,−(0)‖Hα−2k,β ‖γ‖L∞

T
Hα,β +

+ CT
1
2 ‖γ2k,−‖L∞

T
Hα−2k,β ‖ζ‖L1

T
Hα,β +

+ CT
1
2 ‖ζ2k,−‖L1

T
Hα−2k,β ‖γ‖L∞

T
Hα,β +

+ CkT
1
2 ‖γ‖L∞

T
Hα,β sup

j1+j2≤k
j1 6=k
j2 6=k

∥

∥B+ (γ2j1,−, γ2j2,−)
∥

∥

L1
T
Hα−2k,β +

+ CkT
3
2 ‖γ‖L∞

T
Hα,β ‖γ̆2k−1,−‖L∞

T
Hα−(2k−1),β .

(86)

Observe that (85)-(86) does not yield a closed estimate in terms of γj,− (with
j ≤ 2k − 2) precisely because of the terms involving γ̆2k−1,−. This is why
we have to solve (70) simultaneously with (69).

Obviously the equation (70) yields a system of equations for the pair
{

γ̆2k−1,−, ζ̆2k−1,−

}

, but this system is very cumbersome to write down. In-

stead, we will simply note the resulting estimates:

‖γ̆2k−1,−‖L∞
T
Hα−(2k−1),β ≤ ‖γ̆2k−1,−(0)‖Hα−(2k−1),β +

+
∥

∥

∥
ζ̆2k−1,−

∥

∥

∥

L1
T
Hα−(2k−1),β

+

+ Ck sup
j1+j2≤k−1
j1 6=k−1

∥

∥B+ (γ̆2j1+1,−, γ2j2,−)
∥

∥

L1
T
Hα−(2k−1),β +

+ Ck sup
j1+j2≤k−1
j2 6=k−1

∥

∥B+ (γ2j1,−, γ̆2j2+1,−)
∥

∥

L1
T
Hα−(2k−1),β +

+ CT ‖γ2k−2,−‖L∞
T
Hα−(2k−2),β +

+ Cα,β(2k − 2)T ‖γ̆2k−2,−‖L∞
T
Hα−(2k−2),β .

(87)
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∥

∥

∥ζ̆2k−1,−

∥

∥

∥

L1
T
Hα−(2k−1),β

≤ CT
1
2 ‖γ̆2k−1,−(0)‖Hα−(2k−1),β ‖γ‖L∞

T
Hα,β +

+ CT
1
2 ‖γ̆2k−1,−‖L∞

T
Hα−(2k−1),β ‖ζ‖L1

T
Hα,β +

+ CT
1
2

∥

∥

∥ζ̆2k−1,−

∥

∥

∥

L1
T
Hα−(2k−1),β

‖γ‖L∞
T
Hα,β +

+ CkT
1
2 ‖γ‖L∞

T
Hα,β sup

j1+j2≤k−1
j1 6=k−1

∥

∥B+ (γ̆2j1+1,−, γ2j2,−)
∥

∥

L1
T
Hα−(2k−1),β +

+ CkT
1
2 ‖γ‖L∞

T
Hα,β sup

j1+j2≤k−1
j2 6=k−1

∥

∥B+ (γ2j1,−, γ̆2j2+1,−)
∥

∥

L1
T
Hα−(2k−1),β +

+ CT
3
2 ‖γ‖L∞

T
Hα,β ‖γ2k−2,−‖L∞

T
Hα−(2k−2),β +

+ Cα,β(2k − 2)T
3
2 ‖γ‖L∞

T
Hα,β ‖γ̆2k−2,−‖L∞

T
Hα−(2k−2),β .

(88)
Combining (87)-(88) and using (81)-(82), we can conclude the for sufficiently
small T depending only on ‖γ‖L∞

T
Hα,β and ‖B(γ, γ)‖L1

T
Hα,β , we have

γ̆2k−1,− ∈ L∞
T Hα−(2k−1),β (89)

ζ̆2k−1,− ∈ L1
TH

α−(2k−1),β . (90)

Now we can combine (85)-(86) with (89) and (80) to conclude that

γ2k,− ∈ L∞
T Hα−2k,β (91)

ζ2k,− ∈ L1
TH

α−2k,β. (92)

Finally, we must verify the assumptions (80-82) which were used in the
inductive process. The point here is that it is not enough to prove that
γ2k,− ∈ L∞

T Hα−2k,β and γ̆2k−1,− ∈ L∞
T Hα−(2k−1),β , because we do not have

continuity bounds for the operator B+ itself. Rather it is essential to use
the facts that ζ2k,− ∈ L1

TH
α−2k,β and ζ̆2k−1,− ∈ L1

TH
α−(2k−1),β ; fortunately,

these bounds are provided to us by the induction itself, so we may conclude.
�

5. Persistence of Regularity

Now the question is as follows: suppose we have a solution γ(t) in Hα,β

on a maximal time interval [0, T ), and suppose further that γ(0) ∈ Hα1,β1

for some α1 ≥ α and β1 ≥ β. Then there is a maximal solution γ1(t) in
Hα1,β1 which exists on a time interval [0, T1) with γ1(0) = γ(0). Clearly
γ1 coincides with γ on [0, T1), and in particular T1 ≤ T . Can we say that
T1 = T ? The results in this section answer this question in the affirmative
when b is bounded and (α1 − α) is an integer.

Proposition 5.1. Let γ(t) be a solution of Boltzmann’s equation with ‖b‖∞ <

∞, and suppose γ ∈ L∞
T Hα,β and B(γ, γ) ∈ L1

TH
α,β for some α, β >
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d−1
2 , and further suppose that γ(0) ∈ Hα+r,β for some r ∈ N. Then

γ ∈ L∞
T Hα+r,β and B(γ, γ) ∈ L1

TH
α+r,β.

Proof. To begin, notice that we have local well-posedness in Hα+r,β, and
γ(0) ∈ Hα+r,β; this suffices to justify our formal computations. All we have
to show is that γ(t) remains bounded in Hα+r,β on the full time interval
[0, T ]. By an iteration in time, it suffices to prove the result for T small
enough depending only on ‖γ‖L∞

T
Hα,β and ‖B(γ, γ)‖L1

T
Hα,β .

The proof follows by a simple induction using Lemma 3.3, combined with
Proposition 3.1 and the fact that (∇x +∇x′) commutes with the free prop-
agator eit∆± . For notational convenience, we denote by ∂k

∗ a multi-index of
the following form:

(

∂x1 + ∂x′
1

)k1
(

∂x2 + ∂x′
2

)k2
. . .

(

∂xd
+ ∂x′

d

)kd
(93)

with k1+k2+ · · ·+kd = |k|. Differentiating Boltzmann’s equation and using
Lemma 3.3, we have

(

i∂t +
1

2
(∆x −∆x′)

)

(

∂k

∗ γ
)

= B
(

∂k

∗ γ, γ
)

+B
(

γ, ∂k

∗ γ
)

+

+
∑

c≤k

c6=0
c6=k

k!

c!(k− c)!
B
(

∂c

∗γ, ∂
k−c

∗ γ
)

(94)

where k! = k1!k2! . . . kd!. We assume for the induction that if c ≤ k, c 6= 0,
and c 6= k, then

B
(

∂c

∗γ, ∂
k−c

∗ γ
)

∈ L1
TH

α,β (95)

This assertion will eventually be justified by the induction (note that the
base case |k| = 1 is trivial).

Let us define

ζk(t) = B
(

∂k

∗ γ(t), γ(t)
)

+B
(

γ(t), ∂k

∗ γ(t)
)

(96)

Then (94) is equivalent to the following system of equations:

∂k

∗ γ(t) = e
1
2
it∆±∂k

∗ γ(0)− i

ˆ T

0
e

1
2
i(t−t1)∆±ζk(t1)dt1

− i
∑

c≤k

c6=0
c6=k

k!

c!(k− c)!

ˆ T

0
e

1
2
i(t−t1)∆±B

(

∂c

∗γ(t1), ∂
k−c

∗ γ(t1)
)

dt1

(97)
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ζk(t) =

= B
(

e
1
2
it∆±γ(0), e

1
2
it∆±∂k

∗ γ(0)
)

+B
(

e
1
2
i(t−t1)∆±∂k

∗ γ(0), e
1
2
i(t−t1)∆±γ(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζ(t1), e

1
2
i(t−t1)∆±∂k

∗ γ(t1)
)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±∂k

∗ γ(t1), e
1
2
i(t−t1)∆±ζ(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±ζk(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζk(t1), e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− i
∑

c≤k

c6=0
c6=k

k!

c!(k − c)!
×

×

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±B

(

∂c

∗γ(t1), ∂
k−c

∗ γ(t1)
))

dt1

− i
∑

c≤k

c6=0
c6=k

k!

c!(k − c)!
×

×

ˆ t

0
B
(

e
1
2
i(t−t1)∆±B

(

∂c

∗γ(t1), ∂
k−c

∗ γ(t1)
)

, e
1
2
i(t−t1)∆±γ(t1)

)

dt1.

(98)
We deduce the following estimates using Proposition 3.1:

∥

∥

∥∂k

∗ γ
∥

∥

∥

L∞
T
Hα,β

≤
∥

∥

∥∂k

∗ γ(0)
∥

∥

∥

Hα,β
+ ‖ζk‖L1

T
Hα,β +

+ Ck sup
c≤k

c6=0
c6=k

∥

∥

∥B
(

∂c

∗γ, ∂
k−c

∗ γ
)∥

∥

∥

L1
T
Hα,β

(99)

‖ζk‖L1
T
Hα,β ≤ CT

1
2 ‖γ‖L∞

T
Hα,β

∥

∥

∥∂k

∗ γ(0)
∥

∥

∥

Hα,β
+

+ CT
1
2

∥

∥

∥∂k

∗ γ
∥

∥

∥

L∞
T
Hα,β

‖ζ‖L1
T
Hα,β +

+ CT
1
2 ‖γ‖L∞

T
Hα,β ‖ζk‖L1

T
Hα,β +

+ CkT
1
2 ‖γ‖L∞

T
Hα,β sup

c≤k

c6=0
c6=k

∥

∥

∥B
(

∂c

∗γ, ∂
k−c

∗ γ
)∥

∥

∥

L1
T
Hα,β

.

(100)

Combining (99)-(100) with (95), and choosing T sufficiently small depending
only on ‖γ‖L∞

T
Hα,β and ‖ζ‖L1

T
Hα,β (and noting that ‖ζ‖L1

T
Hα,β scales at worst
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like T
1
2 for T small), we obtain:

∂k

∗ γ ∈ L∞
T Hα,β (101)

ζk ∈ L1
TH

α,β (102)

Letting k range over multi-indices of magnitude |k|, we are able to conclude

that γ ∈ L∞
T Hα+|k|,β.

Finally we must verify the assertion (95) to use for the next step of the
induction. This follows immediately from Proposition 3.1 combined with
the facts that ∂k

∗ γ ∈ L∞
T Hα,β and ζk ∈ L1

TH
α,β. �

Proposition 5.2. Let γ(t) be a solution of Boltzmann’s equation with ‖b‖∞ <

∞, and suppose γ ∈ L∞
T Hα,β and B(γ, γ) ∈ L1

TH
α,β for some α, β >

d−1
2 , and further suppose that γ(0) ∈ Hα,β+r for some r > 0. Then

γ ∈ L∞
T Hα,β+r and B(γ, γ) ∈ L1

TH
α,β+r.

Proof. As usual, it suffices to prove the result for a small time depending on
‖γ‖L∞

T
Hα,β and ‖B(γ, γ)‖L1

T
Hα,β . Furthermore, we will only prove the result

for small values of r (with smallness only depending on d, α, β), as allowed
by Proposition 3.1; the general result then follows immediately.

We know γ solves Boltzmann’s equation,
(

i∂t +
1

2
(∆x −∆x′)

)

γ = B(γ, γ) (103)

This equation is equivalent to the following system of equations, where we
write ζ(t) = B(γ(t), γ(t)):

γ(t) = e
1
2
it∆±γ(0) − i

ˆ t

0
e

1
2
i(t−t1)∆±ζ(t1)dt1 (104)

ζ(t) = B
(

e
1
2
it∆±γ(0), e

1
2
it∆±γ(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±ζ(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζ(t1), e

1
2
i(t−t1)∆±γ(t1)

)

dt1

(105)

Applying Proposition 3.1 with a small δ > 0, we obtain:

‖γ‖L∞
T
Hα,β+δ ≤ ‖γ(0)‖Hα,β+δ + ‖ζ‖L1

T
Hα,β+δ (106)

‖ζ‖L1
T
Hα,β+δ ≤ CT

1
2 ‖γ(0)‖Hα,β+δ ‖γ(0)‖Hα,β +

+ CT
1
2 ‖γ‖L∞

T
Hα,β+δ ‖ζ‖L1

T
Hα,β + CT

1
2 ‖ζ‖L1

T
Hα,β+δ ‖γ‖L∞

T
Hα,β

(107)

Since ‖ζ‖L1
T
Hα,β scales at worst like O(T

1
2 ), we easily deduce that γ ∈

L∞
T Hα,β+δ and ζ ∈ L1

TH
α,β+δ, as soon as T is chosen sufficiently small

depending only on the norm of γ in Hα,β. �
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6. Regularity in time

In this section we discuss regularity in the time variable. This should
seem to be a very simple matter due to the obvious formula

∂tB(γ, γ) = B(∂tγ, γ) +B(γ, ∂tγ) (108)

and the fact that ∂t commutes with
(

i∂t +
1
2(∆x −∆x′)

)

. The difficulty

which arises can already be seen when we try to control ∂tγ in L∞
T Hα,β (in

fact we will need to control higher derivatives ∂k
t γ to eventually prove that

γ is locally Cr in (t, x, x′)). Indeed we have the following closed equation
for ∂tγ:

(

i∂t +
1

2
(∆x −∆x′)

)

(∂tγ) = B(∂tγ, γ) +B(γ, ∂tγ) (109)

We can re-cast this system as a closed pair of integral equations for the
functions {∂tγ, ∂tζ} where ζ = B(γ, γ), exactly as we have done previously
to propagate regularity and moments in all other variables.

However, to solve the system, we will at the very least need to know that
(∂tγ)(0) ∈ Hα,β, which means

i

2
(∆x −∆x′)γ(0) − iB(γ(0), γ(0)) ∈ Hα,β (110)

For the first term it is enough to suppose that γ(0) ∈ Hα+1,β+1 (say), but the
second term is tricky because Proposition 3.1 does not provide bounds for
B(γ, γ) in the spaces Hα,β. Only quantities involving the free propagator,

such as B
(

e
1
2
it∆±γ(0), e

1
2
it∆±γ(0)

)

, are controlled via Proposition 3.1. To

resolve this problem, in Appendix A we prove bilinear estimates for B(γ, γ)
without a free propagator; the price we must pay is a small loss in the β
index for the gain term (and we must also assume α, β > d

2 ). Due to the loss
coming from Proposition A.1, it is not possible to use that bound in place
of Proposition 3.1 elsewhere in this paper.

Proposition 6.1. Let γ(t) be a solution of Boltzmann’s equation with ‖b‖∞ <

∞, and suppose γ ∈ L∞
T Hα,β and B(γ, γ) ∈ L1

TH
α,β for some α, β > d−1

2 .

Further suppose that K > 0 is an integer with K < min(α, β)− d
2 . Then for

all 1 ≤ k ≤ K there holds ∂k
t γ ∈ L∞

T Hα−k,β−k.

Proof. We will prove the desired result on a small time interval T > 0
depending only on the underlying solution γ(t) of Boltzmann’s equation;
the general result then follows immediately.

For any integer k ≥ 1 we have
(

i∂t +
1

2
(∆x −∆x′)

)

(

∂k
t γ
)

= B(∂k
t γ, γ) +B(γ, ∂k

t γ)+

+
∑

0<j<k

(

k

j

)

B(∂k−j
t γ, ∂j

t γ)
(111)
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Let us define

ζk(t) = B(∂k
t γ(t), γ(t)) +B(γ(t), ∂k

t γ(t)) (112)

Then (111) is equivalent to the following system of equations:

∂k
t γ(t) = e

1
2
it∆±∂k

t γ(0)− i

ˆ t

0
e

1
2
i(t−t1)∆±ζk(t1)dt1

− i
∑

0<j<k

(

k

j

)
ˆ t

0
e

1
2
i(t−t1)∆±B

(

∂k−j
t γ(t1), ∂

j
t γ(t1)

)

dt1

(113)

ζk(t) = B
(

e
1
2
it∆±∂k

t γ(0), e
1
2
it∆±γ(0)

)

+B
(

e
1
2
it∆±γ(0), e

1
2
it∆±∂k

t γ(0)
)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζk(t1), e

1
2
i(t−t1)∆±γ(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±∂k

t γ(t1), e
1
2
i(t−t1)∆±ζ(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζ(t1), e

1
2
i(t−t1)∆±∂k

t γ(t1)
)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±ζk(t1)

)

dt1

− i
∑

0<j<k

(

k

j

)

×

×

ˆ t

0
B
(

e
1
2
i(t−t1)∆±B

(

∂k−j
t γ(t1), ∂

j
t γ(t1)

)

, e
1
2
i(t−t1)∆±γ(t1)

)

dt1

− i
∑

0<j<k

(

k

j

)

×

×

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ(t1), e

1
2
i(t−t1)∆±B

(

∂k−j
t γ(t1), ∂

j
t γ(t1)

))

dt1

(114)
Hence by applying Proposition (3.1), we obtain the following estimates:

∥

∥

∥
∂k
t γ(t)

∥

∥

∥

L∞
T
Hα−k,β−k

≤
∥

∥

∥
∂k
t γ(0)

∥

∥

∥

Hα−k,β−k
+ ‖ζk‖L1

T
Hα−k,β−k

+
∑

0<j<k

(

k

j

)

∥

∥

∥B
(

∂k−j
t γ(t1), ∂

j
t γ(t1)

)∥

∥

∥

L1
T
Hα−k,β−k

(115)

‖ζk‖L1
T
Hα−k,β−k ≤ CT

1
2

∥

∥

∥∂k
t γ(0)

∥

∥

∥

Hα−k,β−k
‖γ(0)‖Hα,β +

+ CT
1
2 ‖ζk‖L1

T
Hα−k,β−k ‖γ‖L∞

T
Hα,β + CT

1
2

∥

∥

∥∂k
t γ
∥

∥

∥

L∞
T
Hα−k,β−k

‖ζ‖L1
T
Hα,β +

+ CkT
1
2 ‖γ‖L∞

T
Hα,β sup

0<j<k

∥

∥

∥B
(

∂k−j
t γ(t), ∂j

t γ(t)
)∥

∥

∥

L1
T
Hα−k,β−k

(116)



MOMENTS FOR BOLTZMANN’S EQUATION VIA WIGNER TRANSFORM 27

Now if we assume that ∂k
t γ(0) ∈ Hα−k,β−k, ∂j

t γ ∈ L∞
T Hα−j,β−j for 0 ≤

j < k, and ζj ∈ L1
TH

α−j,β−j for 0 ≤ j < k, then we can show that ∂k
t γ ∈

L∞
T Hα−k,β−k and ζk ∈ L1

TH
α−k,β−k.

It only remains to verify that ∂k
t γ(0) ∈ Hα−k,β−k. To see this, observe

that

i∂k
t γ +

1

2
(∆x −∆x′)∂k−1

t γ =
∑

0≤j≤k−1

(

k − 1

j

)

B(∂k−1−j
t γ, ∂j

t γ) (117)

Now since ∂k−1
t γ ∈ L∞

T Hα−k+1,β−k+1 (in fact it is continuous in time in this

functional space), we have (∆x −∆x′)
(

∂k−1
t γ

)

(0) ∈ Hα−k,β−k. Addition-

ally, since
(

∂j
t γ(0)

)

∈ Hα−j,β−j for 0 ≤ j < k, by Proposition A.1, we find

that B
(

(∂k−1−j
t γ)(0), (∂j

t γ(0))
)

∈ Hα−k,β−k when 0 ≤ j ≤ k − 1. �

7. Continuity of the Solution Map

It is sometimes useful to be able to approximate a given initial data by
some other, better behaved, initial data for the purpose of formal compu-
tations. In order to pass the results of computations to the limit and reach
a non-void conclusion about the original data, it is necessary to know that
the solution map is sufficiently smooth with respect to perturbations. Such
an argument is apparently necessary to prove the non-negativity of solu-
tions to Boltzmann’s equation in the spaces Hα,β for arbitrary α, β > d−1

2 ,
because we have no convenient characterization of non-negativity of f just
from looking at the (inverse) Wigner transform γ.

Proposition 7.1. Let γj(t) be a solution of Boltzmann’s equation with
‖b‖∞ < ∞, for j = 1, 2, with γj ∈ L∞

T Hα,β and B(γj , γj) ∈ L1
TH

α,β for

j = 1, 2 and some α, β > d−1
2 . Furthermore, assume that

∥

∥γj
∥

∥

L∞
T
Hα,β ≤ M

for j = 1, 2. Then we have
∥

∥γ1 − γ2
∥

∥

L∞
T
Hα,β ≤ CM,T

∥

∥γ1(0) − γ2(0)
∥

∥

Hα,β (118)

where the constant may depend on α, β.

Proof. We will prove the result for T small enough depending only on the
upper bound M ; the full result then follows by iterating in time.

We recall that each γi solves Boltzmann’s equation:
(

i∂t +
1

2
(∆x −∆x′)

)

γj = B
(

γj, γj
)

(119)

This is equivalent to the following system of equations, where ζj(t) =
B(γj(t), γj(t)):

γj(t) = e
1
2
it∆±γj(0)− i

ˆ t

0
e

1
2
i(t−t1)∆±ζj(t1)dt1 (120)
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ζj(t) = B
(

e
1
2
it∆±γj(0), e

1
2
it∆±γj(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γj(t1), e

1
2
i(t−t1)∆±ζj(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζj(t1), e

1
2
i(t−t1)∆±γj(t1)

)

dt1

(121)

Let us define
γr(t) = γ1(t)− γ2(t) (122)

ζr(t) = ζ1(t)− ζ2(t) (123)

Then we can write the following system of equations for γr, ζr:

γr(t) = e
1
2
it∆±γr(0)− i

ˆ t

0
e

1
2
i(t−t1)∆±ζr(t1)dt1 (124)

ζr(t) = B
(

e
1
2
it∆±γ1(0), e

1
2
it∆±γr(0)

)

+B
(

e
1
2
it∆±γr(0), e

1
2
it∆±γ2(0)

)

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γ1(t1), e

1
2
i(t−t1)∆±ζr(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±γr(t1), e

1
2
i(t−t1)∆±ζ2(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζ1(t1), e

1
2
i(t−t1)∆±γr(t1)

)

dt1

− i

ˆ t

0
B
(

e
1
2
i(t−t1)∆±ζr(t1), e

1
2
i(t−t1)∆±γ2(t1)

)

dt1

(125)
Using Proposition 3.1, we deduce the following estimates:

‖γr‖L∞
T
Hα,β ≤ ‖γr(0)‖Hα,β + ‖ζr‖L1

T
Hα,β (126)

‖ζr‖L1
T
Hα,β ≤ CT

1
2

(

∥

∥γ1
∥

∥

L∞
T
Hα,β +

∥

∥γ2
∥

∥

L∞
T
Hα,β

)

‖γr(0)‖Hα,β +

+ CT
1
2

∥

∥γ1
∥

∥

L∞
T
Hα,β ‖ζ

r‖L1
T
Hα,β + CT

1
2 ‖γr‖L∞

T
Hα,β

∥

∥ζ2
∥

∥

L1
T
Hα,β +

+ CT
1
2

∥

∥ζ1
∥

∥

L1
T
Hα,β ‖γ

r‖L∞
T
Hα,β + CT

1
2 ‖ζr‖L1

T
Hα,β

∥

∥γ2
∥

∥

L∞
T
Hα,β

(127)
Hence if we define

AT = T
1
2 ‖γr‖L∞

T
Hα,β + ‖ζr‖L1

T
Hα,β (128)

then we easily deduce

AT ≤ CMT
1
2AT + CMT

1
2 ‖γr(0)‖Hα,β (129)

Choosing T sufficiently small (depending only on M), the conclusion follows.
�
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Appendix A. Bilinear Estimates with Loss

The main difficulty in proving time regularity estimates in Section 6 is the
fact that Proposition 3.1 only controls the collision operator in L1

T , whereas
we must make sense of B(γ, γ) at a fixed time (namely t = 0) just to write
down (∂tγ) (0). In order to resolve this issue, in this Appendix we prove
instantaneous bounds on the operator B(γ, γ) in the Sobolev spaces Hα,β

when α, β > d
2 . The proof involves a small loss in the β index; for this reason,

these estimates (as stated in this Appendix) cannot replace Proposition 3.1
elsewhere in this paper, regardless of the size of α, β. The idea of the proof
is drawn from Theorem 4.3 of [13].

Proposition A.1. Let α, β ∈
(

d
2 ,∞

)

. Then for any δ > 0 we have for all

γ1, γ2 ∈ Hα,β+δ the following estimates:
∥

∥B± (γ1, γ2)
∥

∥

Hα,β ≤ Cδ ‖b‖∞ ‖γ1‖Hα,β+δ ‖γ2‖Hα,β+δ (130)

Proof. We treat the loss term and gain term separately.
Loss term. For any function F (x, x′) we denote the Fourier transform,

F̂ (ξ, ξ′) =

ˆ

dxdx′e−iξ·xe−iξ′·x′
F (x, x′) (131)

A routine computation shows that, if ‖b‖∞ < ∞, then
∣

∣

∣

(

B−(γ1, γ2)
)∧

(ξ, ξ′)
∣

∣

∣
≤ C ‖b‖∞

ˆ

dηdη′
∣

∣

∣

∣

γ̂1

(

ξ −
η + η′

2

)∣

∣

∣

∣

∣

∣γ̂2(η, η
′)
∣

∣

(132)
Therefore we have
∥

∥B−(γ1, γ2)
∥

∥

2

Hα,β =

ˆ

∣

∣

∣

(

B−(γ1, γ2)
)∧

(ξ, ξ′)
∣

∣

∣

2 〈
ξ + ξ′

〉2α 〈
ξ − ξ′

〉2β
dξdξ′

≤ C2 ‖b‖2∞

ˆ

dξdξ′dη1dη
′
1dη2dη

′
2

〈

ξ + ξ′
〉2α 〈

ξ − ξ′
〉2β

×

×

∣

∣

∣

∣

γ̂1

(

ξ −
η1 + η′1

2
, ξ′ −

η1 + η′1
2

)∣

∣

∣

∣

∣

∣γ̂2(η1, η
′
1)
∣

∣×

×

∣

∣

∣

∣

γ̂1

(

ξ −
η2 + η′2

2
, ξ′ −

η2 + η′2
2

)∣

∣

∣

∣

∣

∣γ̂2(η2, η
′
2)
∣

∣

(133)
Now we multiply and divide under the integral sign by the following factor,

∏

i=1,2

{

〈

ξ + ξ′ − ηi − η′i
〉α 〈

ξ − ξ′
〉β 〈

ηi + η′i
〉α 〈

ηi − η′i
〉β
}

(134)
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and apply the Cauchy-Schwarz inequality pointwise under the integral. This
gives us
∥

∥B−(γ1, γ2)
∥

∥

2

Hα,β ≤ C2 ‖b‖2∞

ˆ

dξdξ′dη1dη
′
1dη2dη

′
2×

×
〈ξ + ξ′〉2α

〈ξ + ξ′ − η2 − η′2〉
2α 〈η2 + η′2〉

2α 〈η2 − η′2〉
2β

×

×

∣

∣

∣

∣

〈

ξ + ξ′ − η1 − η′1
〉α 〈

ξ − ξ′
〉β

γ̂1

(

ξ −
η1 + η′1

2
, ξ′ −

η1 + η′1
2

)∣

∣

∣

∣

2

×

×
∣

∣

∣

〈

η1 + η′1
〉α 〈

η1 − η′1
〉β

γ̂2(η1, η
′
1)
∣

∣

∣

2

(135)
Observe now that if

I ≡ sup
ξ,ξ′

ˆ

dηdη′
〈ξ + ξ′〉2α

〈ξ + ξ′ − η2 − η′2〉
2α 〈η2 + η′2〉

2α 〈η2 − η′2〉
2β

< ∞ (136)

then we conclude
∥

∥B−(γ1, γ2)
∥

∥

Hα,β ≤ C ‖b‖∞ ‖γ1‖Hα,β ‖γ2‖Hα,β (137)

The bound (136) is equivalent to the following estimate:

sup
W∈Rd

ˆ

Rd

dw
〈W 〉2α

〈W − w〉2α 〈w〉2α

ˆ

Rd

dz
1

〈z〉2β
< ∞ (138)

It is easy to verify that the bound (138) holds whenever α, β > d
2 .

Gain term. By a routine calculation, if ‖b‖∞ < ∞, we have:
∣

∣

∣

(

B+(γ1, γ2)
)∧

(ξ, ξ′)
∣

∣

∣
≤

≤ C ‖b‖∞

ˆ

Sd−1

dω

ˆ

dη1dη
′
1dη2dη

′
2γ̂1(η1, η

′
1)γ̂2(η2, η

′
2)×

× δ

(

−ξ + η1 +
η2 + η′2

2
−

1

2
Pω(η1 − η′1) +

1

2
Pω(η2 − η′2)

)

×

× δ

(

−ξ′ + η′1 +
η2 + η′2

2
+

1

2
Pω(η1 − η′1)−

1

2
Pω(η2 − η′2)

)

(139)

Performing changes of variables as in [11], this gives:
∣

∣

∣

(

B+(γ1, γ2)
)∧

(ξ, ξ′)
∣

∣

∣
≤

≤ C ‖b‖∞

ˆ

Sd−1

dω

ˆ

ds1ds2×

× γ̂1

(

s1 + 2s
‖
2 +

3ξ − ξ′

4
, s1 − 2s

‖
2 +

3ξ′ − ξ

4

)

×

× γ̂2

(

−s1 − 2s⊥2 +
3ξ − ξ′

4
,−s1 + 2s⊥2 +

3ξ′ − ξ

4

)

(140)
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where s
‖
2 = Pω(s2) and s⊥2 = (I− Pω)(s2).

Reasoning as for the loss term, if we can show that the integral
ˆ

Sd−1

dω

ˆ

Rd×Rd

ds1ds2×

×
〈ξ + ξ′〉2α 〈ξ − ξ′〉2β

〈

2s1 +
ξ+ξ′

2

〉2α 〈

4s
‖
2 + ξ − ξ′

〉2(β+δ) 〈

−2s1 +
ξ+ξ′

2

〉2α
〈

−4s⊥2 + ξ − ξ′
〉2(β+δ)

(141)
is bounded uniformly with respect to ξ, ξ′ ∈ R

d, then we will have the
estimate

∥

∥B+(γ1, γ2)
∥

∥

Hα,β ≤ C ‖b‖∞ ‖γ1‖Hα,β+δ ‖γ2‖Hα,β+δ (142)

In fact it suffices to show the following two bounds:

sup
W∈Rd

ˆ

Rd

ds
〈W 〉2α

〈s〉2α 〈W − s〉2α
< ∞ (143)

sup
W∈Rd

ˆ

Sd−1

dω

ˆ

Rd

ds
〈W 〉2β

〈

s‖ +W⊥
〉2(β+δ) 〈

s⊥ +W ‖
〉2(β+δ)

< ∞ (144)

It is easy to verify that (143) holds whenever α > d
2 , so we only have to

prove (144).
We easily bound the integral (144) with respect to s ∈ R

d when β > d−1
2

by decomposing ds = ds‖ds⊥. Then all we must show is that

sup
W∈Rd

ˆ

Sd−1

dω 〈W 〉2β
〈

W ‖
〉d−1−2(β+δ) 〈

W⊥
〉1−2(β+δ)

< ∞ (145)

Now we may decompose

〈W 〉2β .
〈

W ‖
〉2β

+
〈

W⊥
〉2β

(146)

Therefore it suffices to bound the following two integrals:

I =

ˆ

Sd−1

dω
〈

W ‖
〉d−1−2δ 〈

W⊥
〉1−2(β+δ)

(147)

I ′ =

ˆ

Sd−1

dω
〈

W ‖
〉d−1−2(β+δ) 〈

W⊥
〉1−2δ

(148)

We can bound both integrals using a dyadic decomposition, as in [11], when-
ever β > d

2 , as follows:

I .

∞
∑

k=1

ˆ

ω:2−k−1|W ‖|≤|W⊥|<2−k|W ‖|
dω
〈

W ‖
〉d−1−2δ 〈

W⊥
〉1−2(β+δ)

.

∞
∑

k=1

2−k−1 × (2−k)d−2 × (2k+1)d−1−2δ < ∞

(149)
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I ′ .
∞
∑

k=1

ˆ

ω:2−k−1|W⊥|≤|W ‖|<2−k|W⊥|
dω
〈

W ‖
〉d−1−2(β+δ) 〈

W⊥
〉1−2δ

.

∞
∑

k=1

2−k−1 × (2k+1)1−2δ < ∞

(150)

Hence we may conclude. �

Appendix B. Proof of Proposition 3.1 when δ = 0

In this appendix we will provide a proof of Proposition 3.1; it is based
on bilinear Strichartz estimates, following the strategy of [22]. In fact, we
will improve on the results of [11] by allowing exponents β > d−1

2 in the
case of bounded collision kernels (this was claimed without proof in [11]). It
is straightforward (from the proof in this Appendix) to obtain the claimed
improvement in moments for the gain term (only) in Proposition 3.1 (i.e.
δ > 0).

The proof presented in this Appendix is adapted from an early manuscript
of [11]. However, the proof presented here diverges from that of [11] in
many details; in particular, only constant or bounded collision kernels are
considered here (with a corresponding improvement in the available range
of regularity in the β exponent). In fact we include only the case of constant
collision kernel in this Appendix; the only difference with the bounded case
is that we bound b by its L∞ norm after passing to the spacetime Fourier
transform.

Proof. (case δ = 0)
Sobolev Estimates for the Loss Term

Consider the loss term, which is as follows for a constant collision kernel:

B−[γ1, γ2](x, x
′) = γ1(x, x

′)γ2

(

x+ x′

2
,
x+ x′

2

)

(151)

We will fix some initial data γ1(x, x
′), γ2(x, x

′), and consider the following
function (it is the action of the nonlinearity upon the free Schrödinger flow):

B−
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]

(t, x, x′) (152)

The spacetime Fourier transform of a function F (t, x, x′) is

F̃ (τ, ξ, ξ′) =

ˆ

dtdxdx′e−itτ e−ix·ξe−ix′·ξ′F (t, x, x′) (153)

The spacetime Fourier transform of e
1
2
it(∆x−∆x′)γ0 is

γ̂0(ξ, ξ
′)δ

(

τ +
1

2
|ξ|2 −

1

2
|ξ′|2

)

(154)

where

γ̂0(ξ, ξ
′) =

ˆ

dxdx′e−ix·ξe−ix′·ξ′γ0(x, x
′) (155)
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We also have
(

B−
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

])∼
(τ, ξ, ξ′) =

=

ˆ

dηdη′δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η + η′

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η + η′

2

∣

∣

∣

∣

2

+
1

2
|η|2 −

1

2
|η′|2

)

×

× γ̂1

(

ξ −
η + η′

2
, ξ′ −

η + η′

2

)

γ̂2(η, η
′)

(156)
We want to estimate the following integral, for suitable α, β > 0:

I−α,β =

ˆ

〈

ξ + ξ′
〉2α 〈

ξ − ξ′
〉2β

×

×
∣

∣

∣

(

B−
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]

(τ, ξ, ξ′)
)∼∣
∣

∣

2
dτdξdξ′

(157)

To start, observe that

I−α,β ≤

ˆ

dτdξdξ′dη1dη
′
1dη2dη

′
2

〈

ξ + ξ′
〉2α 〈

ξ − ξ′
〉2β

×

× δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η1 + η′1

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η1 + η′1

2

∣

∣

∣

∣

2

+
1

2
|η1|

2 −
1

2

∣

∣η′1
∣

∣

2

)

×

× δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η2 + η′2

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η2 + η′2

2

∣

∣

∣

∣

2

+
1

2
|η2|

2 −
1

2

∣

∣η′2
∣

∣

2

)

×

×

∣

∣

∣

∣

γ̂1

(

ξ −
η1 + η′1

2
, ξ′ −

η1 + η′1
2

)∣

∣

∣

∣

∣

∣γ̂2(η1, η
′
1)
∣

∣×

×

∣

∣

∣

∣

γ̂1

(

ξ −
η2 + η′2

2
, ξ′ −

η2 + η′2
2

)∣

∣

∣

∣

∣

∣γ̂2(η2, η
′
2)
∣

∣

Multiply and divide the integrand by the following factor:

2
∏

j=1

{

〈

ξ + ξ′ − ηj − η′j
〉α 〈

ξ − ξ′
〉β 〈

ηj + η′j
〉α 〈

ηj − η′j
〉β
}

(158)

Then group terms together and apply Cauchy-Schwarz pointwise under the
integral sign. We obtain two different terms that are equal due to symmetry
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under re-labeling coordinates; hence,

I−α,β ≤

ˆ

dτdξdξ′dη1dη
′
1dη2dη

′
2×

×
〈ξ + ξ′〉2α 〈ξ − ξ′〉2β

〈ξ + ξ′ − η1 − η′1〉
2α 〈ξ − ξ′〉2β 〈η1 + η′1〉

2α 〈η1 − η′1〉
2β

×

× δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η1 + η′1

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η1 + η′1

2

∣

∣

∣

∣

2

+
1

2
|η1|

2 −
1

2

∣

∣η′1
∣

∣

2

)

×

× δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η2 + η′2

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η2 + η′2

2

∣

∣

∣

∣

2

+
1

2
|η2|

2 −
1

2

∣

∣η′2
∣

∣

2

)

×

×

∣

∣

∣

∣

〈

ξ + ξ′ − η2 − η′2
〉α 〈

ξ − ξ′
〉β

γ̂1

(

ξ −
η2 + η′2

2
, ξ′ −

η2 + η′2
2

)∣

∣

∣

∣

2

×

×
∣

∣

∣

〈

η2 + η′2
〉α 〈

η2 − η′2
〉β

γ̂2(η2, η
′
2)
∣

∣

∣

2

The integral completely factorizes in the following way:

I−α ≤

ˆ

dτdξdξ′
(
ˆ

dη1dη
′
1 . . .

)(
ˆ

dη2dη
′
2 . . .

)

≤

(

sup
τ,ξ,ξ′

ˆ

dη1dη
′
1 . . .

)

×

ˆ

dτdξdξ′
(
ˆ

dη2dη
′
2 . . .

)

Finally we are able to conclude that if the following integral,
ˆ

dηdη′δ

(

τ +
1

2

∣

∣

∣

∣

ξ −
η + η′

2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

ξ′ −
η + η′

2

∣

∣

∣

∣

2

+
1

2
|η|2 −

1

2
|η′|2

)

×

×
〈ξ + ξ′〉2α

〈ξ + ξ′ − η − η′〉2α 〈η + η′〉2α 〈η − η′〉2β

(159)
is bounded uniformly with respect to τ, ξ, ξ′, then the following estimate
holds:

∥

∥

∥B−
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]∥

∥

∥

L2
tH

α,β
≤ C

∏

j=1,2

‖γj‖Hα,β (160)

Let us make the change of variables w = η+η′

2 , z = η−η′

2 in (159); then,
up to a constant, the integral becomes:
ˆ

dwdzδ

(

τ +
1

2
|ξ − w|2 −

1

2

∣

∣ξ′ − w
∣

∣

2
+

1

2
|w + z|2 −

1

2
|w − z|2

)

×

×
〈ξ + ξ′〉2α

〈ξ + ξ′ − 2w〉2α 〈2w〉2α 〈2z〉2β

(161)
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This is the same as:

K =

ˆ

dwdzδ

(

τ +
1

2

(

|ξ|2 − |ξ′|2
)

−
(

ξ − ξ′ − 2z
)

· w

)

×

×
〈ξ + ξ′〉2α

〈ξ + ξ′ − 2w〉2α 〈2w〉2α 〈2z〉2β

(162)

Hence, one way to parametrize the integral is to let z ∈ R
d be arbitrary

and let w range over a codimension one hyperplane in R
d; the hyperplane

is determined by τ, ξ, ξ′, z. Alternatively, we can let w ∈ R
d be arbitrary

and let z range over a different codimension one hyperplane in R
d. We will

choose the second option.
We have

K =
〈

ξ + ξ′
〉2α
ˆ

Rd

dw

2|w| 〈ξ + ξ′ − 2w〉2α 〈2w〉2α

ˆ

P

dS(z)

〈2z〉2β
(163)

where

P =

{

z ∈ R
d

∣

∣

∣

∣

τ +
1

2

(

|ξ|2 − |ξ′|2
)

−
(

ξ − ξ′
)

· w + 2w · z = 0

}

(164)

and dS(z) is the surface measure on P .
The integral over P is no larger than the integral over a parallel hyper-

plane running through the origin, for which the evaluation is very easy. We
find that as long as β > d−1

2 the integral over P converges, uniformly in
w, ξ, ξ′, τ . Hence we are left with

K .
〈

ξ + ξ′
〉2α
ˆ

Rd

dw

2|w| 〈ξ + ξ′ − 2w〉2α 〈2w〉2α
(165)

The integral over the set |w| ≤ 1 is trivially bounded uniformly in ξ, ξ′.
Therefore the boundedness ofK uniformly in ξ, ξ′ is equivalent to the bound-
edness of the follwing integral

K ′ = 〈W 〉2α
ˆ

Rd

dw

〈w〉2α+1 〈W −w〉2α
(166)

uniformly in W .
The integral over |w| < 1

2 |W | is trivially bounded uniformly in W if

α > d−1
2 . Similarly the integral over |w| > 2|W | is bounded uniformly in W

if α > d−1
2 . Hence we are left with the following integral:

〈W 〉2α
ˆ

1
2
|W |≤|w|≤2|W |

dw

〈w〉2α+1 〈W − w〉2α
(167)

which is obviously bounded by the following integral:

〈W 〉−1
ˆ

1
2
|W |≤|w|≤2|W |

dw

〈W − w〉2α
(168)
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Shifting w to W − w this is bounded by

〈W 〉−1
ˆ

|w|≤3|W |

dw

〈w〉2α
(169)

or even

〈W 〉d−1
ˆ

|u|≤3

du

〈|W |u〉2α
(170)

Splitting the last integral into the pieces |u| ≤ 1
|W | and

1
|W | ≤ |u| ≤ 3, we

find that the integral K ′ is uniformly bounded in W if α > d−1
2 .

Summarizing, we have the bound:
∥

∥

∥
B−

[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]∥

∥

∥

L2
tH

α,β
≤ C

∏

j=1,2

‖γj‖Hα,β (171)

as long as min(α, β) > d−1
2 . The endpoint estimates are not achieved, with

respect to either α or β, by the above argument.

Sobolev Estimates for the Gain Term

Consider the gain term, which is the following for a constant collision
kernel:

B+[γ1, γ1](t, x, x
′) =

ˆ

Sd−1

dωB+
ω [γ, γ](t, x, x

′) (172)

where

B+
ω [γ1, γ2](t, x, x

′) =

= γ1

(

t, x−
1

2
Pω(x− x′), x′ +

1

2
Pω(x− x′)

)

×

× γ2

(

t,
x+ x′

2
+

1

2
Pω(x− x′),

x+ x′

2
−

1

2
Pω(x− x′)

)

(173)

The spacetime Fourier transform of the function

B+
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]

(t, x, x′) (174)

is the following, up to a constant:
ˆ

Sd−1

dω

ˆ

dη1dη
′
1dη2dη

′
2δ

(

τ +
1

2
|η1|

2 −
1

2
|η′1|

2 +
1

2
|η2|

2 −
1

2
|η′2|

2

)

×

× δ

(

−ξ + η1 +
η2 + η′2

2
−

1

2
Pω(η1 − η′1) +

1

2
Pω(η2 − η′2)

)

×

× δ

(

−ξ′ + η′1 +
η2 + η′2

2
+

1

2
Pω(η1 − η′1)−

1

2
Pω(η2 − η′2)

)

×

× γ̂1(η1, η
′
1)γ̂2(η2, η

′
2)

(175)
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Introduce the change of variables w1 =
η1+η′1

2 , z1 =
η1−η′1

2 , w2 =
η2+η′2

2 ,

z2 =
η2−η′2

2 . Then (175) becomes
ˆ

Sd−1

dω

ˆ

dw1dz1dw2dz2×

× δ

(

τ +
1

2
|w1 + z1|

2 −
1

2
|w1 − z1|

2 +
1

2
|w2 + z2|

2 −
1

2
|w2 − z2|

2

)

×

× δ (−ξ + w1 + z1 + w2 − Pω(z1 − z2))×

× δ
(

−ξ′ + w1 − z1 + w2 + Pω(z1 − z2)
)

×

× γ̂1(w1 + z1, w1 − z1)γ̂2(w2 + z2, w2 − z2)
(176)

Introduce yet another change of variables r1 = w1+w2
2 , s1 = w1−w2

2 , r2 =
z1+z2

2 , s2 =
z1−z2

2 . Then (176) becomes
ˆ

Sd−1

dω

ˆ

dr1ds1dr2ds2×

× δ

(

τ +
1

2
|r1 + s1 + r2 + s2|

2 −
1

2
|r1 + s1 − r2 − s2|

2+

+
1

2
|r1 − s1 + r2 − s2|

2 −
1

2
|r1 − s1 − r2 + s2|

2

)

×

× δ (−ξ + 2r1 + r2 + s2 − 2Pωs2)×

× δ
(

−ξ′ + 2r1 − r2 − s2 + 2Pωs2
)

×

× γ̂1(r1 + s1 + r2 + s2, r1 + s1 − r2 − s2)×

× γ̂2(r1 − s1 + r2 − s2, r1 − s1 − r2 + s2)

(177)

Replace r1 with r1
2 throughout:

ˆ

Sd−1

dω

ˆ

dr1ds1dr2ds2×

× δ

(

τ +
1

2

∣

∣

∣

r1
2

+ s1 + r2 + s2

∣

∣

∣

2
−

1

2

∣

∣

∣

r1
2

+ s1 − r2 − s2

∣

∣

∣

2
+

+
1

2

∣

∣

∣

r1
2

− s1 + r2 − s2

∣

∣

∣

2
−

1

2

∣

∣

∣

r1
2

− s1 − r2 + s2

∣

∣

∣

2
)

×

× δ (−ξ + r1 + r2 + s2 − 2Pωs2)×

× δ
(

−ξ′ + r1 − r2 − s2 + 2Pωs2
)

×

× γ̂1

(r1
2

+ s1 + r2 + s2,
r1
2

+ s1 − r2 − s2

)

×

× γ̂2

(r1
2

− s1 + r2 − s2,
r1
2

− s1 − r2 + s2

)

(178)



38 THOMAS CHEN, RYAN DENLINGER, AND NATAŠA PAVLOVIĆ

Finally perform the change of variables ζ1 = r1 + r2, ζ2 = r1 − r2:
ˆ

Sd−1

dω

ˆ

dζ1dζ2ds1ds2×

× δ

(

τ +
1

2

∣

∣

∣

∣

3ζ1
4

−
ζ2
4

+ s1 + s2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

−
ζ1
4

+
3ζ2
4

+ s1 − s2

∣

∣

∣

∣

2

+

+
1

2

∣

∣

∣

∣

3ζ1
4

−
ζ2
4

− s1 − s2

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

−
ζ1
4

+
3ζ2
4

− s1 + s2

∣

∣

∣

∣

2
)

×

× δ (−ξ + ζ1 + s2 − 2Pωs2)×

× δ
(

−ξ′ + ζ2 − s2 + 2Pωs2
)

×

× γ̂1

(

3ζ1
4

−
ζ2
4

+ s1 + s2,−
ζ1
4

+
3ζ2
4

+ s1 − s2

)

×

× γ̂2

(

3ζ1
4

−
ζ2
4

− s1 − s2,−
ζ1
4

+
3ζ2
4

− s1 + s2

)

(179)

Now we can integrate out the variables ζ1, ζ2 to obtain:
ˆ

Sd−1

dω

ˆ

ds1ds2×

× δ

(

τ +
1

2

∣

∣

∣

∣

s1 + 2s
‖
2 +

3ξ − ξ′

4

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

s1 − 2s
‖
2 +

3ξ′ − ξ

4

∣

∣

∣

∣

2

+

+
1

2

∣

∣

∣

∣

−s1 − 2s⊥2 +
3ξ − ξ′

4

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

−s1 + 2s⊥2 +
3ξ′ − ξ

4

∣

∣

∣

∣

2
)

×

× γ̂1

(

s1 + 2s
‖
2 +

3ξ − ξ′

4
, s1 − 2s

‖
2 +

3ξ′ − ξ

4

)

×

× γ̂2

(

−s1 − 2s⊥2 +
3ξ − ξ′

4
,−s1 + 2s⊥2 +

3ξ′ − ξ

4

)

(180)

where s
‖
2 = Pωs2 and s⊥2 = s2 − Pωs2.

We want to estimate the following integral, for suitable α, β > 0:

I+α,β =

ˆ

〈

ξ + ξ′
〉2α 〈

ξ − ξ′
〉2β

×

×
∣

∣

∣

(

B+
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]

(τ, ξ, ξ′)
)∼∣
∣

∣

2
dτdξdξ′

(181)
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Reasoning as for the loss term, if we can show that the following integral
ˆ

Sd−1

dω

ˆ

ds1ds2×

× δ

(

τ +
1

2

∣

∣

∣

∣

s1 + 2s
‖
2 +

3ξ − ξ′

4

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

s1 − 2s
‖
2 +

3ξ′ − ξ

4

∣

∣

∣

∣

2

+

+
1

2

∣

∣

∣

∣

−s1 − 2s⊥2 +
3ξ − ξ′

4

∣

∣

∣

∣

2

−
1

2

∣

∣

∣

∣

−s1 + 2s⊥2 +
3ξ′ − ξ

4

∣

∣

∣

∣

2
)

×

×
〈ξ + ξ′〉2α 〈ξ − ξ′〉2β

〈

2s1 +
ξ+ξ′

2

〉2α 〈

4s
‖
2 + ξ − ξ′

〉2β 〈

−2s1 +
ξ+ξ′

2

〉2α 〈
−4s⊥2 + ξ − ξ′

〉2β

(182)
is bounded uniformly in τ, ξ, ξ′, then we will have the following estimate:

∥

∥

∥B+
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]∥

∥

∥

L2
tH

α,β
≤ C

∏

j=1,2

‖γj‖Hα,β (183)

The integral (182) is equivalent to the following integral:
ˆ

Sd−1

dω

ˆ

ds1ds2×

× δ

(

τ +
1

2

(

|ξ|2 − |ξ′|2
)

+
(

4s1 −Rω(ξ + ξ′)
)

· s2

)

×

×
〈ξ + ξ′〉2α 〈ξ − ξ′〉2β

〈

2s1 +
ξ+ξ′

2

〉2α 〈

4s
‖
2 + ξ − ξ′

〉2β 〈

−2s1 +
ξ+ξ′

2

〉2α
〈

−4s⊥2 + ξ − ξ′
〉2β

(184)
where Rω(u) = u − 2Pωu is reflection about the plane perpendicular to ω.
This is in turn equivalent to the following integral:
ˆ

Sd−1

dω

ˆ

ds2
〈ξ − ξ′〉2β

|4s2|
〈

4s
‖
2 + ξ − ξ′

〉2β
〈

−4s⊥2 + ξ − ξ′
〉2β

×

×

ˆ

P

dS(s1)
〈ξ + ξ′〉2α

〈

2s1 +
ξ+ξ′

2

〉2α 〈

−2s1 +
ξ+ξ′

2

〉2α

(185)
where P ⊂ R

d is the following codimension one hyperplane:

P =

{

s1 ∈ R
d

∣

∣

∣

∣

τ +
1

2

(

|ξ|2 − |ξ′|2
)

+
(

4s1 −Rω(ξ + ξ′)
)

· s2 = 0

}

(186)



40 THOMAS CHEN, RYAN DENLINGER, AND NATAŠA PAVLOVIĆ

Therefore we only need to show the boundedness of the following two quan-
tities uniformly in ξ, ξ′, τ :

I1 = sup
P⊂Rd:dimP=d−1

ˆ

P

dS(s)
〈ξ + ξ′〉2α

〈

2s+ ξ+ξ′

2

〉2α 〈

−2s+ ξ+ξ′

2

〉2α (187)

I2 =

ˆ

Sd−1

dω

ˆ

Rd

ds
〈ξ − ξ′〉2β

|4s|
〈

4s‖ + ξ − ξ′
〉2β

〈−4s⊥ + ξ − ξ′〉
2β

(188)

Let us first consider the integral I2; here we will assume that β > d−1
2 .

Clearly, I2 is equivalent to the following quantity:

I2 .

ˆ

Sd−1

dω

ˆ

Rd

ds
〈ξ − ξ′〉2β

|s|
〈

s‖ + ξ − ξ′
〉2β

〈s⊥ + ξ − ξ′〉
2β

(189)

Setting W = ξ − ξ′, this gives:

I2 .

ˆ

Sd−1

dω

ˆ

Rd

ds
〈W 〉2β

|s|
〈

s‖ +W
〉2β

〈s⊥ +W 〉
2β

(190)

Moreover, since the integral for |s| ≤ 1 is obviously uniformly bounded in
W , we may instead bound the following integral:

I ′2 .

ˆ

Sd−1

dω

ˆ

Rd

ds
〈W 〉2β

〈s〉
〈

s‖ +W
〉2β

〈s⊥ +W 〉
2β

(191)

Since |s‖| ≤ |s| we have:

I ′2 .

ˆ

Sd−1

dω

ˆ

Rd

ds
〈W 〉2β

〈

s‖
〉 〈

s‖ +W
〉2β

〈s⊥ +W 〉
2β

(192)

Therefore, for all large enough |W |,

I ′2 .

ˆ

Sd−1

dω

ˆ

Rd

ds
〈W 〉2β

〈

s‖
〉 〈

s‖ +W
〉2β

〈s⊥ +W 〉
2β

=

ˆ

Sd−1

dω 〈W 〉2β

(

ˆ

ds‖
〈

s‖
〉 〈

s‖ +W
〉2β

)(

ˆ

ds⊥

〈s⊥ +W 〉
2β

)

.

ˆ

Sd−1

dω 〈W 〉2β
(

〈W 〉−1
〈

W⊥
〉1−2β

log 〈W 〉

)(

〈

W ‖
〉d−1−2β

)

(193)

Note that the integral over s⊥ is estimated by a trivial computation, whereas
the integral over s‖ may be estimated by considering separately the regions
|s‖| ≤ 1

2 |W |, |s‖| > 2|W |, and 1
2 |W | < |s‖| ≤ 2|W |. The integral over

|s‖| ≤ 1
2 |W | yields the logarithmic divergence, whereas the integral over

1
2 |W | < |s‖| ≤ 2|W | provides the explicit dependence on W⊥.
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We find that, for any fixed ε > 0, I ′2 obeys the following estimate:

I ′2 .

ˆ

Sd−1

dω 〈W 〉2β−1+ε
〈

W⊥
〉1−2β 〈

W ‖
〉d−1−2β

(194)

Then we have

〈W 〉2β−1+ε .
〈

W ‖
〉2β−1+ε

+
〈

W⊥
〉2β−1+ε

(195)

Hence I ′2 . I ′′2 + I ′′′2 where

I ′′2 =

ˆ

Sd−1

dω
〈

W⊥
〉1−2β 〈

W ‖
〉d−2+ε

(196)

I ′′′2 =

ˆ

Sd−1

dω
〈

W⊥
〉ε 〈

W ‖
〉d−1−2β

(197)

Then for any β > d−1
2 , for some sufficiently small ε > 0 depending on β,

both I ′′2 and I ′′′2 may be bounded using dyadic decompositions in the angular
parameter ω, as follows: neglecting additive constants,

I ′′2 .

∞
∑

k=1

ˆ

ω:2−k−1|W ‖|≤|W⊥|<2−k|W ‖|
dω
〈

W⊥
〉1−2β 〈

W ‖
〉d−2+ε

.

∞
∑

k=1

2−k−1 × (2−k)d−2 × (2k+1)d−2+ε < ∞

(198)

I ′′′2 .

∞
∑

k=1

ˆ

ω:2−k−1|W⊥|≤|W ‖|<2−k|W⊥|
dω
〈

W⊥
〉ε 〈

W ‖
〉d−1−2β

.

∞
∑

k=1

2−k−1 × (2k+1)ε < ∞

(199)

The factor of (2−k)d−2 in I ′′2 comes from the Jacobian for spherical coordi-
nates in R

d.
We now turn to I1, which is clearly bounded by the following quantity:

I1 . sup
W∈Rd

sup
P⊂Rd:dimP=d−1

ˆ

P

dS(s)
〈W 〉2α

〈s〉2α 〈s+W 〉2α
(200)

The integrals over P∩
{

|s| < 1
2 |W |

}

, P∩{|s| > 2|W |}, and P∩
{

1
2 |W | ≤ |s| ≤ 2|W |

}

are each easily bounded uniformly in W as long as α > d−1
2 .

To conclude, for any parameters α, β such that min(α, β) > d−1
2 , we have

the following estimate:
∥

∥

∥B+
[

e
1
2
it(∆x−∆x′)γ1, e

1
2
it(∆x−∆x′)γ2

]∥

∥

∥

L2
tH

α,β
≤ C

∏

j=1,2

‖γj‖Hα,β (201)

The endpoint estimates are not achieved, with respect to either α or β, by
the above argument.

�
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