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Concentration in flux-function limits of solutions to a
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Abstract This paper is concerned with a singular flux-function limit of the Riemann solutions to a

deposition model. As a result, it is shown that the Riemann solutions to the deposition model just

converge to the corresponding Riemann solutions to the limit system, which is one of typical models

admitting delta-shocks. Especially, the phenomenon of concentration and the formation of delta-shocks

in the limit are analyzed in detail, and the process of concentration is numerically simulated.
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1. Introduction

We consider the following deposition model

{
vt + (uv)x = 0,

ut + (u2 + ǫv)x = 0,
(1.1)

where v ≥ 0 is the density of the population performing the deposition, u = −∂xh with h = h(x, t)

being the deposition height, and ǫ is a positive parameter. The first equation describes the conservation

of total population. The second one is derived from the rules governing the time evolution of the

deposition system: (1) the deposition consists of population-generating deposition and self-generating

deposition; (2) the population is driven by a velocity field proportional to the negative gradient of

height. Besides, model (1.1) can also be derived as the hydrodynamic limit of some randomly growing

interface models [9, 33]. The system (1.1) is also called as the Leroux system in the PDE literature

[18, 24]. For some investigations concerning (1.1), see [25, 10, 20, 21], etc.

One can notice that as ǫ→ 0+, the model (1.1) formally becomes the following system

{
ut + (u2)x = 0,

vt + (vu)x = 0.
(1.2)

This is one of very typical models in the literature with respect to delta-shocks [1, 28, 31, 8, 16, 15, 34,

6, 26, 4, 5], an interesting topic. It is a mathematical simplification of Euler equations of gas dynamics

and can be obtained by setting density and pressure to be constant in the momentum conservation

laws. It also has some physical interpretations. For instance, it can be used to model the flow of

particles with u being the velocity and v the density. In 1977, Korchinski [17] considered (1.2) in
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his unpublished Ph.D. thesis. Motivated by his numerical study, he used a kind of generalized delta-

function in the construction of his unique solution to the Riemann problem. Afterwards, in 1994, Tan

et al. [30] found that in the Riemann problem for (1.2), no classical weak solution exists and delta-

shocks should be introduced for some initial data. With the delta-shocks, they solved the Riemann

problem completely. Under some reasonable second order viscous approximations, the stability of

delta-shocks for (1.2) was also proved in [30, 29, 12].

The main purpose of this paper is to study the behaviors of solutions of system (1.1) as the flux ǫv

vanishes (that is, ǫ→ 0+) by the Riemann problem. We are especially concerned with the phenomenon

of concentration and the formation of delta-shocks in the limit.

Firstly, we consider the Riemann problem for (1.1) with initial data

(u, v)(x, t = 0) = (u±, v±), ±x > 0, (1.3)

where v± > 0. System (1.1) is nonstrictly hyperbolic, and both characteristic fields are genuinely

nonlinear. The elementary waves include shocks and rarefaction waves, and (1.1) belongs to the so-

called Temple class [32]. By the analysis method in phase plane, the unique global Riemann solution

is constructed with four different kinds of structures containing shock(s) and/or rarefaction wave(s).

Secondly, we study the behaviors of solutions of system (1.1) as the flux ǫv vanishes by the Riemann

problem. As a result, it is rigorously shown that as ǫ → 0+, the Riemann solutions to (1.1) just

converge to the Riemann solutions to (1.2) with the same initial data. Especially, when u+ ≤ 0 ≤ u−,

the two-shock solution to (1.1) and (1.3) tends to the delta-shock solution to (1.2) and (1.3), where the

intermediate density between the two shocks tends to a weighted δ-measure which forms the delta-

shock. Further, the process of concentration is numerically simulated. It can be seen that such a

flux-function limit may be very singular: the limit functions of solutions are no longer in the spaces of

functions BV or L∞, and the space of Radon measures, for which the divergences of certain entropy

and entropy flux fields are also Radon measures, is a natural space in order to deal with such a limit.

Let us remark that in the past more than 10 years, more attention has been paid on the investigation

of phenomenon of concentration and the formation of delta-shocks in solutions to hyperbolic systems

of conservation laws. Li [19] and Chen and Liu [2, 3] identified and analyzed the phenomenon of

concentration and the formation of delta-shocks in solutions to the Euler equations for both isentropic

and nonisentropic fluids as the pressure vanishes. Yin and Sheng [37, 38] extended the studies to the

relativistic Euler equations. With respect to this topic, also see [22, 35, 36, 27].

We arrange the rest of the paper as follows. In the following section, we recall the Riemann

problem for system (1.2). In Section 3, we solve the Riemann problem for (1.1) by the analysis

method in phase-plane. In Section 4 and Section 5, we study the limits of solutions of the Riemann

problem for (1.1) as ǫ → 0+. In Section 6, we examine the process of concentration as ǫ decreases by

some numerical results.

2. Solutions of the Riemann problem for (1.2)

In this section, we recall the Riemann problem for (1.2) with initial data (1.3) which was solved by

Tan et al. [30]. The characteristic roots of (1.2) are λ1 = u and λ2 = 2u, and the corresponding right

characteristic vectors are r1 = (0, 1)T and r2 = (1, v/u)T , respectively. They satisfy ∇λ1 · r1 ≡ 0 and

∇λ2 · r2 = 2, where and in the following ∇ = (∂/∂u, ∂/∂v) is the gradient operator. Therefore (1.2)

is nonstrictly hyperbolic because of λ1 = λ2 at u = 0, λ1 is linearly degenerate, and λ2 is genuinely

nonlinear.
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Since the equations and the Riemann data are invariant under uniform stretching of coordinates

(x, t) → (βx, βt)(β > 0), we consider the self-similar solutions (u, v)(x, t) = (u, v)(ξ), where ξ = x/t.

Then the Riemann problem turns into

{
−ξuξ + (u2)ξ = 0,

−ξvξ + (vu)ξ = 0,
(2.1)

and

(u, v)(±∞) = (u±, v±). (2.2)

This is a two-point boundary value problem of first-order ordinary differential equations with the

boundary values in the infinity.

Besides the constant states, the self-similar waves (u, v)(ξ)(ξ = x/t) of the first family are contact

discontinuities

J : ξ = ul = ur, (2.3)

and those of the second family are rarefaction waves

R : ξ = 2u, u/v = ul/vl, u > ul, (2.4)

or shocks

S : ξ = ul + ur, ur/vr = ul/vl, ul > ur > 0 or 0 > ul > ur, (2.5)

where the indices l and r denote the left and right states respectively. All of J,R and S are waves

with (u(ξ), v(ξ)) ∈ BV and are called the classical waves.

Using the classical waves, by the analysis in phase-plane, one can construct the solutions of Rie-

mann problem (1.2) and (1.3) in the following cases

R+ J (u− < u+ < 0), J +R (0 < u− < u+), R+R (u− ≤ 0 ≤ u+),

S + J (u+ < u− < 0), J + S (0 < u+ < u−).

However, for the case u+ ≤ 0 ≤ u−, the singularity cannot be a jump with finite amplitude; that is,

there is no solution which is piecewise smooth and bounded. Hence a solution containing a weighted δ-

measure (i.e., delta-shock) supported on a line should be introduced in order to establish the existence

in a space of measures from the mathematical point of view.

We define the weighted δ-measure w(s)δL supported on a smooth curve L parameterized as t =

t(s), x = x(s) (c ≤ s ≤ d) by

〈
w(s)δL, ψ(x, t)

〉
=

∫ d

c

w(s)ψ
(
t(s), x(s)

)
ds (2.6)

for all test functions ψ(x, t) ∈ C∞
0 ((−∞,+∞)× [0,+∞)).

With this definition, when u+ ≤ 0 ≤ u−, the solution of Riemann problem (1.2) and (1.3) is the

following solution involving delta-shock in the form

(u, v)(x, t) =





(u−, v−), x < x(t),
(
uδ(t), w(t)δ(x − x(t))

)
, x = x(t),

(u+, v+), x > x(t)

(2.7)
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satisfying the generalized Rankine-Hugoniot relation





dx(t)

dt
= uδ(t)

−uδ(t)[u] + [u2] = 0,

dw(t)

dt
= −uδ(t)[v] + [uv]

(2.8)

and the entropy condition

λ2(u+) ≤ λ1(u+) ≤ uδ(t) ≤ λ1(u−) ≤ λ2(u−), (2.9)

where [g] = g−−g+ is the jump of g across the discontinuity. Solving the generalized Rankine-Hugoniot

relation (2.8) under the entropy condition (2.9) gives





x(t) = (u− + u+)t,

uδ(t) = u− + u+,

w(t) = (u−v+ − u+v−)t.

(2.10)

3. Solutions of the Riemann problem for (1.1)

In this section, we solve the Riemann problem for system (1.1) with initial data (1.3), and examine

the dependence of the Riemann solutions on the parameter ǫ > 0. Also see the paper [13]. The

characteristic roots and corresponding right characteristic vectors of (1.1) are

λǫ1 = u+
u−

√
u2 + 4ǫv

2
, λǫ2 = u+

u+
√
u2 + 4ǫv

2
,

−→r ǫ
1 =

(
1,

−u−
√
u2 + 4ǫv

2ǫ

)T

, −→r ǫ
2 =

(
1,

−u+
√
u2 + 4ǫv

2ǫ

)T

.

It is easy to calculate ∇λǫi · −→r ǫ
i = 2 (i = 1, 2). So (1.1) is nonstrictly hyperbolic, both characteristic

fields are genuinely nonlinear. Moreover, the Riemann invariants along with the characteristic fields

may be selected as, respectively,

w(u, v) =
−u−

√
u2 + 4ǫv

2ǫ
, z(u, v) =

−u+
√
u2 + 4ǫv

2ǫ
. (3.1)

As usual, we seek the self-similar solutions (u, v)(x, t) = (u, v)(ξ), where ξ = x/t. Then the

Riemann problem becomes the boundary value problem

{
−ξuξ +

(
u2 + ǫv

)
ξ
= 0,

−ξvξ + (vu)ξ = 0,
(3.2)

and

(u, v)(±∞) = (u±, v±). (3.3)

For any smooth solution, (3.2) becomes

(
2u− ξ ǫ

v u− ξ

)(
u

v

)

ξ

= 0. (3.4)
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Besides the constant states, the smooth solutions are composed of the 1-rarefaction waves





ξ = λǫ1 = u+
u−

√
u2 + 4ǫv

2
,

u− u0 =

(
u0 −

√
u20 + 4ǫv0
2v0

)
(v − v0),

(3.5)

and the 2-rarefaction waves




ξ = λǫ2 = u+
u+

√
u2 + 4ǫv

2
,

u− u0 =

(
u0 +

√
u20 + 4ǫv0
2v0

)
(v − v0),

(3.6)

where (u0, v0) is any state. For them, we have

dλǫi
du

=
∂λǫi
∂u

+
∂λǫi
∂v

dv

du
= 2 > 0, i = 1, 2. (3.7)

Let (ul, vl) and (ur, vr) denote the states connected by a rarefaction wave on the left and right sides

respectively. Then the condition λǫ1(ur, vr) > λǫ1(ul, vl) and λ
ǫ
2(ur, vr) > λǫ2(ul, vl) are required for the

1- and 2-rarefaction wave, respectively. From (3.7), it is known that both the 1- and 2-rarefaction

wave should satisfy

ur > ul. (3.8)

For a given state (ul, vl), all possible states which can connect to (ul, vl) on the right by a 1-

rarefaction wave must be located on the straight line

R1(ul, vl) : u− ul =

(
ul −

√
u2l + 4ǫvl

2vl

)
(v − vl), u > ul, (3.9)

and all possible states which can connect to (ul, vl) on the right by a 2-rarefaction wave must be

located on straight line

R2(ul, vl) : u− ul =

(
ul +

√
u2l + 4ǫvl

2vl

)
(v − vl), u > ul. (3.10)

Let us turn to the discontinuous solutions. For a bounded discontinuity at x = x(t), the Rankine-

Hugoniot relation reads {
−σ[u] + [u2 + ǫv] = 0,

−σ[v] + [vu] = 0,
(3.11)

where σ = dx/dt, [u] = ul − ur with ul = u(x(t) − 0, t) and ur = u(x(t) + 0, t), and so forth.

From (3.11), one easily obtains

ǫ

(
[v]

[u]

)2

+ (ul + ur)
[v]

[u]
− [uv]

[u]
= 0. (3.12)

By noticing
[uv]

[u]
= vl + ur

[v]

[u]
,
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we solve (3.12) to obtain

[v]

[u]
=

−ul ±
√
u2l + 4ǫvl

2ǫ
. (3.13)

Then we obtain two kinds of discontinuities




σ1 = ur +
ul −

√
u2l + 4ǫvl

2
,

ur − ul =

(
ul −

√
u2l + 4ǫvl

2vl

)
(vr − vl)

(3.14)

and 



σ2 = ur +
ul +

√
u2l + 4ǫvl

2
,

ur − ul =

(
ul +

√
u2l + 4ǫvl

2vl

)
(vr − vl).

(3.15)

Notice that the second equations in (3.14) and (3.15) are equivalent to

−ul −
√
u2l + 4ǫvl

2ǫ
=

−ur −
√
u2r + 4ǫvr
2ǫ

(3.16)

and

−ul +
√
u2l + 4ǫvl

2ǫ
=

−ur +
√
u2r + 4ǫvr
2ǫ

(3.17)

respectively.

In order to identity the admissible solution, the discontinuity (3.14) associating with λǫ1 should

satisfy

σ1 < λǫ1(ul, vl) < λǫ2(ul, vl), λǫ1(ur, vr) < σ1 < λǫ2(ur, vr), (3.18)

while the discontinuity (3.15) associating with λǫ2 should satisfy

λǫ1(ul, vl) < σ2 < λǫ2(ul, vl), λǫ1(ur, vr) < λǫ2(ur, vr) < σ2. (3.19)

Then one can check that both the inequality (3.18) and (3.19) are equivalent to

ur < ul. (3.20)

The discontinuity (3.14) with (3.20) is called as 1-shock and symbolized by S1, and (3.15) with

(3.20) is called as 2-shock and symbolized by S2.

For a given state (ul, vl), all possible states which can connect to (ul, vl) on the right by a 1-shock

must be located on the straight line

S1(ul, vl) : u− ul =

(
ul −

√
u2l + 4ǫvl

2vl

)
(v − vl), u < ul, (3.21)

and all possible states which can connect to (ul, vl) on the right by a 2-shock must be located on the

straight line

S2(ul, vl) : u− ul =

(
ul +

√
u2l + 4ǫvl

2vl

)
(v − vl), u < ul. (3.22)
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Let us denote W1(ul, vl) = R1(ul, vl) ∪ S1(ul, vl) and W2(ul, vl) = R2(ul, vl) ∪ S2(ul, vl). Draw the

line W1(u−, v−) and W2(u−, v−) in the upper half (u, v)-plane, then the upper half (u, v)-plane is di-

vided into four regions (see Fig.1). According to the right state (u+, v+) in the different regions, one can

construct the unique global Riemann solution connecting two constant states (u−, v−) and (u+, v+).

To be more exact, the Riemann solutions contain (i) a 1-rarefaction wave and a 2-rarefaction wave

when (u+, v+) ∈ R1R2(u−, v−), (ii) a 1-rarefaction wave and a 2-shock when (u+, v+) ∈ R1S2(u−, v−),

(iii) a 1-shock and a 2-rarefaction wave when (u+, v+) ∈ S1R2(u−, v−), (iv) a 1-shock and a 2-shock

when (u+, v+) ∈ S1S2(u−, v−).

v

u

(u
−

, v
−

)

O

R1(u−, v
−
)

R2(u−, v
−
)S1(u−, v

−
)

S2(u−, v
−
)

u1u2

I

II

III

IV

Figure 1: Curves of elementary waves. Here u1 =
u−+

√
u2
−
+4ǫv−

2 and u2 =
u−−

√
u2
−
+4ǫv−

2

The conclusion can be stated in the following theorem.

Theorem 3.1. The Riemann problem for (1.1) with initial data (1.3) has a unique piecewise

smooth solution consisting of waves of constant states, shocks and rarefaction waves.

4. Limits of Riemann solution to (1.1) for u+ < u−, u+/v+ < u−/v−

In this section, we study the limits of the Riemann solution ǫ → 0+ when the initial data satisfy

u+ < u−, u+/v+ < u−/v−. Especially, we pay more attention on the phenomenon of concentration

and the formation of delta-shocks in the limit.

For u+ < u−, u+/v+ < u−/v−, there must exist ǫ0 > 0 such that the Riemann solution just consists

of two shocks for any ǫ < ǫ0. In fact, since all states (u, v) connected with (u−, v−) by S1 and S2
satisfy

u− u− =

(
u− −

√
u2− + 4ǫv−

2v−

)
(v − v−), u < u−, v > v−,

and

u− u− =

(
u− +

√
u2− + 4ǫv−

2v−

)
(v − v−), u < u−, v < v−,

respectively, then if v+ = v−, ǫ0 may be taken any real positive number, otherwise, we have the

conclusion by taking

ǫ0 =

(
2v−

(
u+−u−

v+−v−

)
− u−

)2
− u2−

4v−
=

(u+ − u−)(v−u+ − v+u−)

(v+ − v−)2
.
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For fixed ǫ < ǫ0, let U
ǫ(ξ) denote the two-shock Riemann solution for (1.1) and (1.3) constructed

in Section 3

U ǫ(ξ) = (uǫ, vǫ)(ξ) =





(u−, v−), ξ < σǫ1,

(uǫ∗, v
ǫ
∗), σǫ1 < ξ < σǫ2,

(u+, v+), ξ > σǫ2,

(4.1)

where (u−, v−) and (uǫ∗, v
ǫ
∗) are connected by a shock S1 with speed σǫ1, and (uǫ∗, v

ǫ
∗) and (u+, v+) are

connected by a shock S2 with speed σǫ2:

S1 :





σǫ1 = uǫ∗ +
u− −

√
u2− + 4ǫv−

2
,

uǫ∗ − u− =

(
u− −

√
u2− + 4ǫv−

2v−

)
(vǫ∗ − v−),

vǫ∗ > v−, (4.2)

S2 :





σǫ2 = u+ +
uǫ∗ +

√
(uǫ∗)

2 + 4ǫvǫ∗
2

,

u+ − uǫ∗ =

(
uǫ∗ +

√
(uǫ∗)

2 + 4ǫvǫ∗
2vǫ∗

)
(v+ − vǫ∗),

vǫ∗ > v+. (4.3)

Here

u− −
√
u2− + 4ǫv−

2v−
=
uǫ∗ −

√
(uǫ∗)

2 + 4ǫvǫ∗
2vǫ∗

(4.4)

and

uǫ∗ +
√

(uǫ∗)
2 + 4ǫvǫ∗

2vǫ∗
=
u+ +

√
u2+ + 4ǫv+

2v+
. (4.5)

The following Lemmas 4.1-4.2 show the limit behaviors of the states between two shocks.

Lemma 4.1.

lim
ǫ→0+

vǫ∗ =





(u−/u+)v+, for u− > u+ > 0,

(u+/u−)v−, for 0 > u− > u+,

+∞, for u− ≥ 0 ≥ u+.

Proof. Based on (4.2) and (4.3), vǫ∗ can be expressed as

u− +

(
u− −

√
u2− + 4ǫv−

2v−

)
(vǫ∗ − v−) = u+ −

(
u+ +

√
u2+ + 4ǫv+

2v+

)
(v+ − vǫ∗).

Solving this equation gives

vǫ∗ =
u+ − u− −

(
u++

√
u2
+
+4ǫv+

2v+

)
v+ +

(
u−−

√
u2
−
+4ǫv−

2v−

)
v−

u−−
√

u2
−
+4ǫv−

2v−
− u++

√
u2
+
+4ǫv+

2v+

. (4.6)

Taking the limit ǫ→ 0+ will lead to the conclusions. The proof is finished. �

Lemma 4.2.

lim
ǫ→0+

uǫ∗ =





u−, for u− > u+ > 0,

u+, for 0 > u− > u+,

u− + u+, for u− ≥ 0 ≥ u+.
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Proof. From the second equation in (4.2), we have

uǫ∗ = u− +

(
u− −

√
u2− + 4ǫv−

2v−

)
(vǫ∗ − v−).

For the cases u− > u+ > 0 and 0 > u− > u+, the conclusions are obvious because of the Lemma 4.2.

For the case u− ≥ 0 ≥ u+, due to

u++
√

u2
+
+4ǫv+

2v+

u−−
√

u2
−
+4ǫv−

2v−

=
u+ +

√
u2+ + 4ǫv+

u− −
√
u2− + 4ǫv−

· v−
v+

=
u− +

√
u2− + 4ǫv−

u+ −
√
u2+ + 4ǫv+

→ u−
u+

as ǫ→ 0+,

we have

(
u−−

√
u2
−
+4ǫv−

2v−

)
vǫ∗ =

(
u−−

√
u2
−
+4ǫv−

2v−

)
·
u+−u−−

(
u++

√
u
2
+

+4ǫv+

2v+

)
v++

(
u
−

−

√
u
2
−

+4ǫv
−

2v
−

)
v−

u
−

−

√
u
2
−

+4ǫv
−

2v
−

−
u++

√
u
2
+

+4ǫv+

2v+

=
u+−u−−

(
u++

√
u
2
+

+4ǫv+

2v+

)
v++

(
u
−

−

√
u
2
−

+4ǫv
−

2v
−

)
v−

1−

u++

√
u
2
+

+4ǫv+

2v+

u
−

−

√
u
2
−

+4ǫv
−

2v
−

→ u+ as ǫ → 0+,

which gives the conclusion. The proof is finished. �

The following Lemma 4.3 shows the limit behaviors of the speeds of two shocks.

Lemma 4.3.

lim
ǫ→0+

(σǫ1, σ
ǫ
2) =





(u−, u− + u+), for u− > u+ > 0,

(u− + u+, u+), for 0 > u− > u+,

(u− + u+, u− + u+), for u− ≥ 0 ≥ u+.

Proof. For u− > u+ > 0,

lim
ǫ→0+

σǫ1 = lim
ǫ→0+

(
uǫ∗ +

u−−
√

u2
−
+4ǫv−

2

)
= lim

ǫ→0+
uǫ∗ = u−,

and

lim
ǫ→0+

σǫ2 = lim
ǫ→0+

(
u+ +

uǫ∗ +
√

(uǫ∗)
2 + 4ǫvǫ∗

2

)

= lim
ǫ→0+

(
u+ +

(
u+ +

√
u2+ + 4ǫv+

2v+

)
vǫ∗

)

= u− + u+.

For 0 > u− > u+, the conclusions can be proved in a similar way. For u− ≥ 0 ≥ u+,

lim
ǫ→0+

σǫ1 = lim
ǫ→0+

uǫ∗ = u− + u+

9



and

lim
ǫ→0+

σǫ2 = lim
ǫ→0+

(
u+ +

uǫ∗ +
√
(uǫ∗)

2 + 4ǫvǫ∗
2

)

= lim
ǫ→0+

(
u+ +

(
u+ +

√
u2+ + 4ǫv+

2v+

)
vǫ∗

)

= lim
ǫ→0+

(
u+ +

(
u+ +

√
u2+ + 4ǫv+

2v+

)
v+ − (u+ − uǫ∗)

)

= u− + u+,

where we have used
(

u++
√

u2
+
+4ǫv+

2v+

)
vǫ∗ =

(
u++

√
u2
+
+4ǫv+

2v+

)
v+ − (u+ − uǫ∗) (4.7)

obtaining from the second equality of (4.3). The proof is finished. �

Let U0(ξ) = lim
ǫ→0+

U ǫ(ξ). Then when u− > u+ > 0, u+/v+ < u−/v−,

U0(ξ) =





(u−, v−), ξ < σ1,

(u−, v∗), σ1 < ξ < σ2,

(u+, v+), ξ > σ2,

where σ1 = u−, σ2 = u− + u+ and v∗ = (u−/u+)v−. When 0 > u− > u+, u+/v+ < u−/v−,

U0(ξ) =





(u−, v−), ξ < σ1,

(u+, v∗), σ1 < ξ < σ2,

(u+, v+), ξ > σ2,

σ1 = u− + u+, σ2 = u+ and v∗ = (u+/u−)v+. It can be seen that U0(ξ) coincides with the Riemann

solution for (1.2) constructed in Section 2.

For the case u− ≥ 0 ≥ u+, it has been shown that two shocks will coincide at ξ = u− + u+ := σ

as ǫ→ 0+. Furthermore, for the component uǫ(ξ), it has been shown that

lim
ǫ→0+

uǫ(ξ) =





u−, ξ < σ,

u− + u+, ξ = σ,

u+, ξ > σ.

(4.8)

For the component vǫ(ξ), we have proven that the intermediate state vǫ∗ becomes infinity as ǫ → 0+.

Further, we have

Lemma 4.4.

lim
ǫ→0+

(σǫ2 − σǫ1)v
ǫ
∗ = u−v+ − u+v−.

Proof. With

uǫ∗ +
√
(uǫ∗)

2 + 4ǫvǫ∗
2

=
uǫ∗ +

√
(uǫ∗)

2 + 4ǫvǫ∗
2vǫ∗

vǫ∗ =
u+ +

√
u2+ + 4ǫv+

2v+
vǫ∗

10



and (4.7), it follows

σǫ2 − σǫ1 = u+ +
uǫ∗ +

√
(uǫ∗)

2 + 4ǫvǫ∗
2

− uǫ∗ −
u− −

√
u2− + 4ǫv−

2

=
u+ +

√
u2+ + 4ǫv+

2
−
u− −

√
u2− + 4ǫv−

2
.

Then

lim
ǫ→0+

(σǫ2 − σǫ1)v
ǫ
∗ = lim

ǫ→0+

(
u++

√
u2
+
+4ǫv+

2 − u−−
√

u2
−
+4ǫv−

2

)
·

u+−

√
u
2
+

+4ǫv+

2
−

u
−

+

√
u
2
−

+4ǫv
−

2

u
−

−

√
u
2
−

+4ǫv
−

2v
−

−
u++

√
u
2
+

+4ǫv+

2v+

= lim
ǫ→0+

(
u+−

√
u2
+
+4ǫv+

2 − u−+
√

u2
−
+4ǫv−

2

)
· (u++

√
u2
+
+4ǫv+)−(u−−

√
u2
−
+4ǫv−)

u
−

−

√
u
2
−

+4ǫv
−

v
−

−
u++

√
u
2
+

+4ǫv+

v+

= lim
ǫ→0+

(
u+−

√
u2
+
+4ǫv+

2 − u−+
√

u2
−
+4ǫv−

2

)
·

u++

√
u
2
+

+4ǫv+

u
−

−

√
u
2
−

+4ǫv
−

−1

1

v
−

−
1

v+
·
u++

√
u
2
+

+4ǫv+

u
−

−

√
u
2
−

+4ǫv
−

= u−v+ − u+v−.

The proof is finished. �

Take φ(ξ) ∈ C∞
0 (−∞,+∞) such that φ(ξ) ≡ φ(σ) for ξ in a neighborhood Ω of ξ = σ (φ is called

a sloping test function [7, 11]). Assume when ǫ < ǫ0, it holds σǫ1 ∈ Ω and σǫ2 ∈ Ω. It is well known

that the solution (4.1) satisfies weak formulation

−
∫ +∞

−∞

vǫ(uǫ − ξ)φ′dξ +

∫ +∞

−∞

vǫφdξ = 0. (4.9)

Since ∫ +∞

−∞

vǫ(uǫ − ξ)φ′dξ =

(∫ σǫ

1

−∞

+

∫ +∞

σǫ

2

)
vǫ(uǫ − ξ)φ′dξ,

we have

lim
ǫ→0+

∫ +∞

−∞

vǫ(uǫ − ξ)φ′dξ = lim
ǫ→0+

∫ σǫ

1

−∞

v−(u− − ξ)φ′dξ + lim
ǫ→0+

∫ +∞

σǫ

2

v+(u+ − ξ)φ′dξ

=
(
u−v+ − u+v−

)
φ(σ) +

∫ +∞

−∞

H(ξ − σ)φdξ,

where

H(x) =

{
v−, x < 0,

v+, x > 0.

Returning to (4.9),we get

lim
ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
φdξ = (u−v+ − u+v−)φ(σ) (4.10)

for all sloping test functions φ ∈ C∞
0 (−∞,+∞).
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For an arbitrary test function ϕ(ξ) ∈ C∞
0 (−∞,+∞), we take a sloping test function φ such that

φ(σ) = ϕ(σ) and

max
ξ∈(−∞,+∞)

|φ− ϕ| < µ.

We have

lim
ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
ϕdξ

= lim
ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
φdξ + lim

ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
(ϕ− φ)dξ.

The first limit on the right side

lim
ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
φdξ = (u−v+ − u+v−)φ(σ)

= (u−v+ − u+v−)ϕ(σ).

The second limit on the right side

∫ +∞

−∞

(
vǫ∗ −H(ξ − σ)

)
(ϕ− φ)dξ =

∫ σǫ

2

σǫ

1

(
vǫ∗ −H(ξ − σ)

)
(ϕ− φ)dξ

=

∫ σǫ

2

σǫ

1

vǫ(ϕ− φ)dξ +

∫ σǫ

2

σǫ

1

H(ξ − σ)(ϕ− φ)dξ,

which converges to 0 by sending µ→ 0 and recalling Lemma 4.5. Thus we have that

lim
ǫ→0+

∫ +∞

−∞

(
vǫ −H(ξ − σ)

)
ϕdξ = (u−v+ − u+v−)ϕ(σ) (4.11)

for all test functions ϕ ∈ C∞
0 (−∞,+∞).

Let ψ(x, t) ∈ C∞
0 ((−∞,+∞) × [0,+∞)) be a smooth test function, and let ψ̃(ξ, t) := ψ(ξt, t).

Then it follows

lim
ǫ→0+

∫ +∞

0

∫ +∞

−∞

vǫ(x/t)ψ(x, t)dxdt = lim
ǫ→0+

∫ +∞

0

∫ +∞

−∞

vǫ(ξ)ψ(ξt, t)d(ξt)dt

= lim
ǫ→0+

∫ +∞

0
t

(∫ +∞

−∞

vǫ(ξ)ψ̃(ξ, t)dξ

)
dt

and from (4.11)

lim
ǫ→0+

∫ +∞

−∞

vǫ(ξ)ψ̃(ξ, t)dξ

=

∫ +∞

−∞

H(ξ − σ)ψ̃(ξ, t)dξ +
(
u−v+ − u+v−

)
ψ̃(σ, t)

= t−1

∫ +∞

−∞

H(x− σt)ψ(x, t)dx +
(
u−v+ − u+v−

)
ψ(σt, t).

Combining the two relations above yields

lim
ǫ→0+

∫ +∞

0

∫ +∞

−∞

vǫ(x/t)ψ(x, t)dxdt

=

∫ +∞

0

∫ +∞

−∞

H(x− σt)ψ(x, t)dxdt +

∫ +∞

0

(
u−v+ − u+v−

)
tψ(σt, t)dt.
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The last term, by the definition,

∫ +∞

0

(
u−v+ − u+v−

)
tψ(σt, t)dt =

〈
w(t)δx=σt, ψ(x, t)

〉

with

w(t) =
(
u−v+ − u+v−

)
t.

Thus we obtain the following Theorem.

Theorem 4.5. Let u− ≥ 0 ≥ u+, and (uǫ(x, t), vǫ(x, t)) is the two-shock solution to (1.1) and (1.3).

Then (uǫ(x, t), vǫ(x, t)) converges in the sense of distributions. Denote the limit functions U0(x, t),

then

U0(x, t) =





(u−, v−), x < σt,(
u− + u+, w(t)δ(x − σt)

)
, x = σt,

(u+, v+), x > σt,

where w(t) = (u−v+ − u+v−)t and σ = u− + u+, which is just the delta-shock Riemann solution of

(1.2) with the same initial data.

5. Limits of Riemann solution to (1.1) for u+ > u−, u+/v+ > u−/v−

In this section, we study the limits of the Riemann solution as ǫ→ 0+ when the initial data satisfy

u+ > u−, u+/v+ > u−/v−. At this moment, there must exist ǫ0 > 0 such that the Riemann solution

just consists of two rarefaction waves for any ǫ < ǫ0.

For fixed ǫ < ǫ0, let U
ǫ(ξ) denote the two-rarefaction-wave Riemann solution for (1.1) and (1.3)

constructed in Section 3

U ǫ(ξ) = (uǫ, vǫ)(ξ) =





(u−, v−), −∞ < ξ ≤ λ1(u−, v−),

R1, λ1(u−, v−) ≤ ξ ≤ λ1(u
ǫ
∗, v

ǫ
∗),

(uǫ∗, v
ǫ
∗), λ1(u

ǫ
∗, v

ǫ
∗) ≤ ξ ≤ λ2(u

ǫ
∗, v

ǫ
∗),

R2, λ2(u
ǫ
∗, v

ǫ
∗) ≤ ξ ≤ λ2(u+, v+),

(u+, v+), λ2(u+, v+) ≤ ξ < +∞,

(5.1)

where

R1 :





ξ = λǫ1(u, v) = u+
u−

√
u2 + 4ǫv

2
,

u− u− =

(
u− −

√
u2− + 4ǫv−

2v−

)
(v − v−),

v− ≥ v ≥ vǫ∗, u
ǫ
∗ ≥ u ≥ u−, (5.2)

and

R2 :





ξ = λǫ2(u, v) = u+
u+

√
u2 + 4ǫv

2
,

u− u+ =

(
u+ +

√
u2+ + 4ǫv+

2v+

)
(v − v+),

v+ ≥ v ≥ vǫ∗, u+ ≥ u ≥ uǫ∗. (5.3)

The follow lemmas describe the limit behaviors of the intermediate state (uǫ∗, v
ǫ
∗) between two

rarefaction waves.
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Lemma 5.1.

lim
ǫ→0+

vǫ∗ =





(u−/u+)v+, for u+ > u− > 0,

(u+/u−)v−, for 0 > u+ > u−,

0, for u+ > 0 > u−.

Proof. From (5.2) and (5.3), it follows

vǫ∗ =
u+ − u− − u++

√
u2
+
+4ǫv+

2v+
v+ +

u−−
√

u2
−
+4ǫv−

2v−
v−

u−−
√

u2
−
+4ǫv−

2v−
− u++

√
u2
+
+4ǫv+

2v+

.

Then the conclusions can be obtained directly by taking the limit ǫ → 0+. The proof is finished.

�

Lemma 5.2.

lim
ǫ→0+

uǫ∗ =





u−, for u+ > u− > 0,

u+, for 0 > u+ > u−,

0, for u+ ≥ 0 ≥ u−.

Proof. From (5.2), we have

u = u− +

(
u− −

√
u2− + 4ǫv−

2v−

)
(vǫ∗ − v−).

With the Lemma 5.1, we easily get the conclusions. The proof is complete. �

Besides, as ǫ→ 0+, when u+ > u− > 0, the rarefaction wave R1 tends to

ξ = u = u−, (5.4)

and the rarefaction wave R2 tends to

ξ = 2u, u/v = u+/v+. (5.5)

When 0 > u+ > u−, the rarefaction wave R1 tends to

ξ = 2u, u/v = u−/v−, (5.6)

and the rarefaction wave R2 tends to

ξ = u = u+, (5.7)

When u+ ≥ 0 ≥ u−, the rarefaction wave R1 tends to (5.6), and the rarefaction wave R2 tends to

(5.5).

In conclusion, when u+ > u−, u+/v+ > u−/v−, the limits of Riemann solution of (1.1) are just the

solutions of (1.2) with the same initial data.

In the above two sections, we have proven that when u+ < u−, u+/v+ < u−/v− and u+ >

u−, u+/v+ > u−/v−, the solutions to the Riemann problem for (1.1) just are the solutions to the

Riemann problem for (1.2) with the same initial data. The same conclusions are true for the rest two

cases u+ > u−, u+/v+ < u−/v− and u+ < u−, u+/v+ > u−/v−, and we omit the discussions.
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6. Process of concentration: Numerical simulations

To understand the phenomenon of concentration and the process of formation of delta-shocks in

the Riemann solutions to (1.1) as the flux ǫv vanishes, in this section, we present some representative

numerical results, obtained by employing the Nessyahu-Tadmor scheme [23, 14] with 500 cells and

CFL = 0.475. We take the initial data as follows

(u, v)(x, t = 0) =

{
(1, 1), x < 0,

(−1, 1.5), x > 0.

The numerical simulations for different choices of ǫ are presented in Figs.2-5.
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Figure 2: Velocity and density for ǫ = 0.3 at t = 0.4
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Figure 3: Velocity and density for ǫ = 0.15 at t = 0.4

One can observe clearly from these above numerical results that, when ǫ decreases, the location

of the two shocks becomes closer and closer, and the density of the intermediate state increases

dramatically, while the velocity is closer to a step function. The numerical simulations are in complete

agreement with the theoretical analysis.
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Figure 4: Velocity and density for ǫ = 0.07 at t = 0.4
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Figure 5: Velocity and density for ǫ = 0.001 at t = 0.4
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