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Abstract— Infinitesimal contraction analysis, wherein global
asymptotic convergence results are obtained from local dynami-
cal properties, has proven to be a powerful tool for applications
in biological, mechanical, and transportation systems. Thus
far, the technique has been restricted to systems governed
by a single smooth differential or difference equation. We
generalize infinitesimal contraction analysis to hybrid systems
governed by interacting differential and difference equations.
Our theoretical results are illustrated on a series of examples.

I. INTRODUCTION

A dynamical system is contractive if all trajectories con-
verge to one another [1]. Contractive systems enjoy strong
asymptotic properties, e.g. any equilibrium or periodic orbit
is globally asymptotically stable. Provocatively, these global
results can sometimes be obtained by analyzing local (or
infinitesimal) properties of the system’s dynamics. In smooth
differential (or difference) equations, for instance, a bound
on a matrix measure (or induced norm) of the derivative of
the equation can be used to prove global contractivity [1],
[2], [3], [4], [5], [6]; this approach has been successfully
applied to biological [7], [8], [9], mechanical [10], [11], and
transportation [12], [13] systems.

At its core, the infinitesimal approach to contractivity
leverages local dynamical properties of continuous–time flow
(or discrete–time reset) to bound the time rate of change of
the distance between trajectories. We generalize infinitesi-
mal contraction analysis to hybrid systems, leveraging local
dynamical properties of continuous–time flow and discrete–
time reset to bound the time rate of change of the intrinsic
distance between trajectories. The intrinsic distance metric
we employ is defined in a natural way based on the idea
that the distance between a point in a guard and the point it
resets to should be zero.1

This idea was proven in [14] to yield a (pseudo2) distance
metric that assigns finite distance to states in distinct discrete
modes (so long as there exist trajectories connecting the
modes). The intrinsic distance metric is distinct from the
Skorohod [15] or Tavernini [16] trajectory metrics [14,
Sec. V-A] and from the distance function introduced in [17];
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1i.e. d(x,R(x)) = 0 for all x ∈ G
2On the topological quotient space obtained from the smallest equivalence

relation on D containing {(x,R(x)) : x ∈ G}, the function is a distance
metric compatible with the quotient topology [14, Thm. 13].

it is a particular instantiation of the distance function defined
in [18].

The conditions we obtain for infinitesimal contraction have
intuitive appeal: the derivative of the vector field, which
captures the infinitesimal dynamics of continuous–time flow,
must be infinitesimally contractive with respect to the matrix
measure determined by the vector norm used in each discrete
mode; the saltation matrix, which captures the infinitesimal
dynamics of discrete–time reset, must be contractive with
respect to the induced norm determined by the vector norms
used on either side of the reset. If upper and lower bounds on
dwell time are available, we can bound the intrinsic distance
between trajectories, whether this distance is expanding or
contracting in continuous– or discrete– time. We present
several examples to illustrate these theoretical contributions.

II. NOTATION

Given a collection of sets {Sα}α∈A indexed by A, the
disjoint union of the collection is defined

∐
α∈A Sα =

∪α∈A({α}×Sα). Given (a, x) ∈
∐
α∈A Sα, we will simply

write x ∈
∐
α∈A Sα when a is clear from context. For

a function γ with scalar argument, we denote limits from
the left and right by γ(t−) = limσ↑t γ(σ) and γ(t+) =
limσ↓t γ(σ). Given a smooth function f : X × Y → Z, we
let Dxf : TX × Y → TZ denote the derivative of f with
respect to x ∈ X and Df = (Dxf,Dyf) : TX×TY → TZ
denote the derivative of f with respect to both x ∈ X and
y ∈ Y . Here, TX denotes the tangent bundle of X; when
X ⊂ Rd we have TX = X × Rd. The induced norm of a
linear function M : Rnj → Rnj′ is

‖M‖j,j′ = sup
x∈Rn

j′

|Mx|j
|x|j′

(1)

where | · |j and | · |j′ denote the vector norms on Rnj and
Rnj′ , respectively; when the norms are clear from context,
we omit the subscripts. The matrix measure of A ∈ Rn×n,
denoted µ(A), is

µ(A) = lim
h↓0

(‖I + hA‖ − 1)

h
. (2)

III. PRELIMINARIES

A hybrid system is a tuple H = (D,F ,G,R) where:
D =

∐
j∈J Dj is a set of states where J is a finite index

set and Dj = Rnj is equipped with a norm | · |j for
some nj ∈ N in each domain j ∈ J ;

F : [0,∞) × D → TD is a vector field that we interpret
as Fj = F|Dj

: [0,∞)×Dj → Rnj for each j ∈ J ;
G =

∐
j∈J Gj is a guard set with Gj ⊂ Dj for all j ∈ J ;

R : G → D is a reset map.
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We have assumed that Dj = Rnj for all j ∈ J for ease
of exposition. In practice, the domains of the hybrid system
may be restricted to subsets of Euclidean space, as in the
examples below. In full generality, hybrid systems exhibit a
wide range of behaviors; our theoretical results require that
we restrict the class of hybrid systems under consideration to
those satisfying the following assumptions. First, we assume
that the guard does not intersect the image of the reset to
preclude multiple simultaneous discrete transitions.

Assumption 1 (isolated discrete transitions). R(G)∩G = ∅.

Informally, an execution of a hybrid system is a right–
continuous function of time that satisfies the continuous–time
dynamics specified by F and the discrete–time dynamics
specified by G and R; Formally, a function χ : [τ,∞)→ D
with τ ≥ 0 is an execution of the hybrid system if:

1) Dχ(t) = F(t, χ(t)) for almost all t ≥ τ ;
2) χ(t+) = χ(t) for all t ≥ τ ;
3) χ(t−) = χ(t) if and only if χ(t) 6∈ G;
4) Whenever χ(t−) 6= χ(t), then χ(t−) ∈ G and χ(t) =
R(χ(t−)).

Assumption 2 (existence and uniqueness). For any initial
condition x ∈ D\G and any initial time τ ≥ 0, there exists
a unique execution χ : [τ,∞)→ R satisfying χ(τ) = x; for
x ∈ G, we consider the execution from x to be the unique
execution initialized at R(x) ∈ D\G.

Assumption 2 implies that for each x ∈ D and all τ ≥ 0
there exists exactly one execution χ initialized at χ(x) = τ
that exists for all time t ≥ τ , that is, the hybrid system is
deterministic, nonblocking, and does not exhibit finite escape
time. We denote this unique execution as φ(t, τ, x) = χ(t);
the function φ defined in this way is the flow of the hybrid
system; we adopt the convention that φ(τ−, τ, x) = x for all
x ∈ D and all τ ∈ R. If φ(σ, τ, x) ∈ Dj for all σ ∈ [τ, t]
for some t ≥ τ , j ∈ J , and x ∈ Dj , we write φj(t, τ, x) =
φ(t, τ, x) to emphasize that the execution restricted to [τ, t]
lies entirely within Dj .

Assumption 3 (smooth vector field). For all j ∈ J , Fj is
a smooth vector field.

Assumption 4 (no Zeno executions). No execution under-
goes an infinite number of resets in finite time.

We define Gj,j′ = R−1(Dj′) ∩ Gj for each j, j′ ∈ J and
make the following assumptions on guards and resets.

Assumption 5 (differentiability of guards and resets). For
each j, j′ ∈ J , whenever Gj,j′ 6= ∅, there exists continuously
differentiable and nondegenerate3 gj,j′ : Dj → R such that
Gj,j′ ⊆ {x ∈ Dj : gj,j′(x) ≤ 0} ⊆ Gj . Further, there exists
continuously differentiable Rj,j′ : {x ∈ Dj : gj,j′(x) ≤
0} → Dj′ such that Rj,j′ |Gj,j′ = R|Gj,j′ .

In each domain j ∈ J , we do not allow executions to graze
the guard set Gj and thus impose a transversality property
on the vector field Fj .

3i.e. Dgj,j′ (x) 6= 0 for all x ∈ Dj

Assumption 6 (vector field transverse to guard). For all
j, j′ ∈ J , t ≥ 0, and x ∈ Gj,j′ :

Dgj,j′(x) · Fj(t, x) < 0. (3)

The reset map R induces an equivalence relation R∼ on
D defined as the smallest equivalence relation containing
{(a, b) ∈ G × D : R(a) = b} ⊂ D ×D, for which we write
a
R∼ b to indicate a and b are related. The equivalence class

for x ∈ D is defined as [x]R = {y ∈ D|x R∼ y}. The quotient
space induced by the equivalence relation is denoted

M = {[x]R|x ∈ D} (4)

endowed with the quotient topology [19, Appendix A].
We now consider paths that will be used to define a

distance function on the quotientM. To that end, a countable
partition of the interval [0, 1] is a countable collection
{ri}ki=0 ⊂ [0, 1] with possibly k = ∞ satisfying 0 =
r0 ≤ r1 ≤ r2 ≤ · · · and rk = 1 if k is finite or
limi→∞ ri = 1 if k = ∞. A path γ : [0, 1] → D is
R-connected if there exists a countable partition {ri}ki=0

of [0, 1] such that γ|[ri,ri+1) is continuous for each i ∈
{0, 1, . . . , k − 2} and γ|[rk−1,rk] is continuous whenever k

is finite, and additionally limr↑ri γ(r)
R∼ γ(ri+1) for all

i ∈ {1, . . . , k − 1}.
Because each section γ|[ri,ri+1) is continuous, it must

necessarily belong to a single Dj for j ∈ J . We further say
that γ is piecewise–differentiable if each section γ|[ri,ri+1) is
piecewise–differentiable. Intuitively, an R-connected path γ
is a path through the domains {Dj}j∈J of the hybrid system
that jumps through the reset map R (forward or backward) a
countable number of times. With a slight abuse of notation,4

we consider γ a path in M. With this identification, all R-
connected paths are (more precisely: descend to) continuous
paths in the quotient space M.

The length of a piecewise–differentiable path γj : [0, 1]→
Dj completely contained in a domain Dj is computed in
the usual way using the norm | · |j in Dj : Lj(γj) =∫ 1

0
|Dγj(r)|jdr. We drop the subscript for L when the

domain is clear from context and instead write L(γj).
Let Γ denote the set of R-connected and piecewise–

differentiable paths in M, and let

Γ(a, b) = {γ ∈ Γ : γ(0) = a and γ(1) = b, a, b ∈ D}. (5)

We use the norm–induced length of each domain to define
a length structure [20, Ch. 2] on M from which we derive
a distance metric. To that end, for γ ∈ Γ, let {ri}ki=0 be a
countable partition of [0, 1] such that γ|[ri,ri+1) is piecewise–
differentiable for all i ∈ {0, 1, . . . , k − 1}. With the length
of γ defined as

L(γ) =

k∑
i=1

L(γ|[ri,ri+1)), (6)

4Formally, π ◦ γ is a path in M, where π : D → M is the quotient
projection.



the function d :M×M→ R≥0 defined by

d(x, y) = inf
γ∈Γ(x,y)

L(γ) (7)

is a distance metric on M compatible with the quotient
topology [14, Thm. 13].

The final required technical assumption is closely related
to continuity of φ with respect to initial conditions x, as
claimed in Proposition 1 below (some proofs omitted due to
page constraints).

Assumption 7 (forward–invariance of R-connected paths).
For all t ≥ τ and all piecewise–differentiable R-connected
paths γ ∈ Γ, φ(t, τ, γ(r)), interpreted as a function of r, is
a piecewise–differentiable R-connected path.

Proposition 1. Under Assumptions 1–7, the flow φ(t, τ, x)
varies continuously with respect to x for all t ≥ τ such that
φ(t−, τ, x) 6∈ G.

It is well–known [21] that Assumptions 1–7 together ensure
that the flow φ is differentiable almost everywhere and,
moreover, its derivative can be computed by solving a jump–
linear–time–varying differential equation as in the following
Proposition.

Proposition 2. Under Assumptions 1–7, given an initial time
τ ≥ 0 and a piecewise–differentiable R-connected path γ ∈
Γ, let ψ(t, r) = φ(t, τ, γ(r)) for all t ≥ τ and define

w(t, r) = Drψ(t, r) (8)

whenever the derivative exists. Then w(τ−, r) = Drγ(r) and
w(·, r) satisfies a linear–time–varying differential equation

Dtw(t, r) = DxF(t, ψ(t, r))w(t, r), ψ(t−, r) ∈ D\G, (9)

with jumps

w(t, r) = Ξ(t, ψ(t−, r))w(t−, r), ψ(t−, r) ∈ G, (10)

where Ξ(t, x) is a saltation matrix given by

Ξ(t, x) =
(Fj′(t,R(x))−DR(x) · Fj(t, x)) ·Dgj,j′(x)

Dgj,j′(x) · Fj(t, x)

+DR(x) (11)

for all t ≥ 0 and all x ∈ Gj,j′ = Gj ∩R−1(Dj′).

IV. MAIN RESULT

The main contribution of this paper is to provide local
conditions under which the distance between any pair of
trajectories in a hybrid system (as measured by the intrinsic
metric defined in (7)) is globally bounded by an exponential
envelope. These conditions are made precise in Theorem 1
and Corollary 1. In the case when the system satisfies a
continuous contraction condition within each domain of the
hybrid system as well as a discrete nonexpansion condition
through the reset map between domains, this exponential
envelope is decreasing in time so that the intrinsic distance
between trajectories decreases exponentially in time, i.e., the
system is contractive.

Example 1. Consider a hybrid system with two domains in
the positive orthant of the plane so that D = DL

∐
DR with

DL = DR = {x ∈ R2|x1 ≥ 0 and x2 ≥ 0}, and further take
gR,L(x) = x1−1 and gL,R(x) = 1−x1 so that the system is
in the left (resp., right) domain DL (resp., DR) when x1 < 1
(resp., x1 > 1). Assume the reset map R is the identity map
and ẋ = Fj(x) = Ajx for j ∈ {L,R} with

Aj =

[
−aj 0

0 −bj

]
, aj , bj > 0 for j ∈ {L,R}. (12)

All executions initialized inD flow toDL and converge to the
origin. Equip both domains with the standard Euclidean 2–
norm so that |x|L = |x|R = |x|2 and consider two executions
x(t) = φ(t, 0, ξ), z(t) = φ(t, 0, ζ) with initial conditions
ξ, ζ ∈ D. Then d(x(t), z(t)) = |x(t) − z(t)|2 = |e(t)|2 for
e(t) = x(t) − z(t). When both executions are in the same
domain so that x, z ∈ Dj for some j ∈ {L,R}, the error
dynamics obey the dynamics of that domain. It therefore
follows that Dtd(x, z) ≤ max{−aj ,−bj}d(x, z) so that the
distance decreases at exponential rate max{−aj ,−bj}.

Now suppose x and z are in different domains at some
time t and, without loss of generality, assume x ∈ DL and
z ∈ DR. Writing

x =

[
1− εL
x2

]
, z =

[
1 + εR
x2 + δ

]
(13)

for some εL, εR > 0 and δ ∈ R, we have

Dt(d(x, z)2) = Dt((x− z)T (x− z)) (14)
= 2(εL + εR)(aL − aR) + 2δx2(b1 − b2)

+ H.O.T. (15)

where the higher order terms H.O.T. are quadratic in εL,
εR, and δ. Then Dt(d(x, z)2) < 0 for all x2 ≥ 0 and all
sufficiently small εL > 0, εR > 0, δ ∈ R if and only if
aL < aR and bL = bR. In other words, contraction between
any two arbitrarily close executions transitioning from DR to
DL occurs only if executions “slow down” in the direction
normal to the guard surface when transitioning domains, and
the dynamics orthogonal to the guard are unaffected. This
example is illustrated in Figure 1.

�

We now generalize the intuition of Example 1.

Theorem 1. Under Assumptions 1–7, if there exists c ∈ R
such that

µj (DxFj(t, x)) ≤ c (16)

for all j ∈ J , x ∈ Dj\Gj , t ≥ 0, and

‖Ξ(t, x)‖j,j′ ≤ 1 (17)

for all j ∈ J , x ∈ Gj,j′ , t ≥ 0, then

d(φ(t, 0, ξ), φ(t, 0, ζ)) ≤ ectd(ξ, ζ) (18)

for all t ≥ 0 and ξ, ζ ∈ D.

Proof. Given x(0) = ξ and z(0) = ζ, for fixed ε > 0, let
γ : [0, 1] → D be a piecewise–differentiable R-connected



1− ε 1

DL DR

x(t)
z(t)e(t)

e(t+ τ)

x1

x2

Fig. 1. An illustration of two executions x(t) and z(t) of the hybrid system
in Example 1 in different domains DL and DR. The distance between
executions is the Euclidean length of e(t) = x(t) − z(t). When x(t) and
z(t) are close, |e(t)| decreases over a short time window [t, t+ τ ] if and
only if aL < aR and bL = bR, that is, the horizontal component of x
decreases at a slower rate than the horizontal component of z and the rates
of change of the vertical components are equal.

path satisfying γ(0) = ξ, γ(1) = ζ, and L(γ) < d(ξ, ζ) + ε,
and let ψ(t, r) = φ(t, 0, γ(r)). Since φ(t, 0, ·) is piecewise–
differentiable, it follows from Assumption 7 that ψ(t, ·) is
a piecewise–differentiable R-connected path for all t ≥ 0.
Let w(t, r) = Drψ(t, r) whenever the derivative exists. By
Proposition 1, w(t, r) satisfies the jump–linear–time-varying
equations

ẇ(t, r) =
∂f

∂x
(t, ψ(t, r))w(t, r), ψ(t, r) ∈ D\G, (19)

w(t+, r) = Ξ(t, ψ(t−, r))w(t−, r), ψ(t−, r) ∈ G. (20)

We claim that

|w(t, r)| ≤ ect|w(0−, r)| (21)

for all t ≥ 0 and for all r ∈ [0, 1] whenever w(t, r) exists.
To prove the claim, for fixed r, let {ti}ki=1 ⊂ [0,∞) with
t0 ≤ t1 ≤ · · · and possibly k = ∞ be the set of times at
which the hybrid execution φ(t, 0, γ(r)) intersects a guard so
that ψ(·, r)|[ti,ti+1) is continuous for all i ∈ {0, 1, . . . , k−1}
where t0 = 0 by convention, and, additionally, ψ(·, r)|[tk,∞)

is continuous if k < ∞. Note that if k = ∞ then
limi→∞ ti =∞ since Zeno executions are not allowed. Now
consider some fixed time T > 0. If k <∞ and tk ≤ T , let
i = k; otherwise, let i be such that ti ≤ T < ti+1. Let
j be the active domain of the system during the interval
[ti, ti+1), i.e. ψ(t, r) ∈ Dj for all t ∈ [ti, ti+1). With
J(t) = DxFj(ψ(t, r)) for t ∈ [ti, ti+1) we have

|w(T, r)| ≤ e
∫ T
ti
µ(J(τ))dτ |w(t+i , r)| (22)

≤ ec(T−ti)|w(t+i , r)| (23)

≤ ec(T−ti)‖Ξ(t, ψ(t−i , r))‖|w(t−i , r)| (24)

≤ ec(T−ti)|w(t−i , r)| (25)

where (22) follows by Coppel’s inequality applied to (19),
(23) follows from (16), (24) follows from (20), and (25)
follows from (17). Since (22)–(25) holds for any T < ti+1,
we further conclude that |w(t−i+1, r)| ≤ ec(ti+1−ti)|w(t−i , r)|
whenever i ≤ k. Then, by recursion, |w(T, r)| ≤
ecT |w(0−, r)|. Since T was arbitrary, (21) holds.

Again fix T > 0. Because ψ(T, ·) is a piecewise–
differentiable R-connected path, there exists a finite collec-
tion {ri}ki=0 ⊂ [0, 1] with 0 = r0 ≤ r1 ≤ . . . ≤ rk = 1
such that ψ(T, ·)|(ri,ri+1) is piecewise–differentiable for all
i ∈ {0, 1, . . . , k − 2} and ψ(T, ·)|(rk−1,rk) is piecewise–
differentiable. It follows that

L(ψ(T, ·)|[ri,ri+1)) =

∫ ri

ri−1

|w(T, s)|ds. (26)

Then

L(ψ(T, ·)) =

k−1∑
i=0

L(ψ(T, ·)|[ri,ri+1)) (27)

≤
∫ 1

0

|w(T, s)|ds (28)

≤ ecT
∫ 1

0

|w(0−, s)|ds (29)

= ecTL(γ) (30)

≤ ecT (1 + ε)d(ξ, ζ) (31)

where (29) follows from (21), and (30) follows because
w(0−, r) = Drγ(r). In addition, observe

d(φ(T, 0, ξ), φ(T, 0, ζ)) ≤ L(ψ(T, ·)). (32)

Since T was arbitrary and ε can be chosen arbitrarily small,
(18) holds.

Suppose that global upper and lower bounds on the dwell
time between successive resets are known. Then, over a given
time window, the number of domain transitions is upper and
lower bounded, and the proof of Theorem 1 can be adapted to
derive an exponential bound on the intrinsic distance between
any pair of trajectories as in the following Corollary.

Corollary 1. Under Assumptions 1–7, suppose the dwell
time between resets is at most τ ∈ (0,∞] and at least
τ ∈ [0,∞),

µj(DxFj(t, x)) ≤ c (33)

for some c ∈ R for all j ∈ J , x ∈ Dj\Gj , t ≥ 0, and

‖Ξ(t, x)‖j,j′ ≤ K (34)

for some K ∈ R≥0 and all j ∈ J , x ∈ Gj,j′ , t ≥ 0. Then

d(φ(t, 0, ξ), φ(t, 0, ζ)) ≤ max{Kdt/τe,Kbt/τc}ectd(ξ, ζ).
(35)

In particular, if max{Kecτ ,Kecτ} < 1 then

lim
t→∞

d(φ(t, 0, ξ), φ(t, 0, ζ)) = 0 (36)

for all ξ, ζ ∈ D.

We now address an important special case, namely, when
domains have the same dimension, are equipped with the
same norm, and resets are simple translations (e.g. identity
resets). Proposition 3 establishes that the induced norm of the
saltation matrix is lower bounded by unity; In the particular
case of the standard Euclidean 2–norm, Proposition 4 shows
that the induced norm of the saltation matrix is equal to



unity if and only if the difference between the vector field
evaluated at x and R(x) lies in the direction of the gradient
of the guard function.

Proposition 3. Under Assumptions 1, 3, 5, and 6, for some
j, j′ ∈ J , suppose DRj,j′(x) = I for all x ∈ Gj,j′ , that is,
Rj,j′ is a translation. Suppose also that | · |j = | · |j′ . Then

‖Ξ(t, x)‖j,j′ ≥ 1 for all x ∈ Gj,j′ , t ≥ 0. (37)

Proof. Under the hypotheses of the proposition, we have that

Ξ(t, x) = I +
(Fj′(t,R(x))−Fj(t, x)) ·Dgj,j′(x)

Dgj,j′(x) · Fj(t, x)
. (38)

Fix x ∈ Gj,j′ and let z ∈ Null(Dgj,j′(x)). Then Ξ(t, x)z = z
so that always ‖Ξ(t, x)‖j,j′ ≥ 1.

Proposition 4. Under Assumptions 1, 3, 5, and 6, for some
j, j′ ∈ J , suppose DRj,j′(x) = I for all x ∈ Gj,j′ , that is,
Rj,j′ is a translation. Suppose also that | · |j = | · |j′ = | · |2
where | · |2 denotes the standard Euclidean 2–norm. Then
‖Ξ(t, x)‖j,j′ ≤ 1 if and only if ‖Ξ(t, x)‖j,j′ = 1 if and only
if

Fj′(t,R(x))−Fj(t, x) = α(t, x)Dgj,j′(x)T (39)

for all t ≥ 0 and all x ∈ Gj,j′ for some α : [0,∞)×Gj,j′ →
R satisfying

0 ≤ α(t, x) ≤ −2Dgj,j′(x) · F(t, x)

|Dgj,j′(x)|22
. (40)

V. EXAMPLES

A. A planar piecewise–linear system

Consider a piecewise–linear system with states in the left–
and right–half plane,

D = D−
∐
D+, D± =

{
x = (x1, x2) ∈ R2 : ±x1 ≥ 0

}
,

(41)
whose continuous dynamics are given by ẋ = A±x, x ∈
D±, where

A± =

[
α± −β±
β± α±

]
(42)

so that specA± = α± ± jβ± and hence the standard
Euclidean matrix measure µ2(A±) = σmax

(
1
2A
>
± +A±

)
=

α±. Supposing β± > 0, all trajectories in D± will eventually
reach the set G± =

{
(x1, x2) ∈ R2 : ±x1 ≤ 0,±x2 > 0

}
,

where a reset will be applied that scales the second coordi-
nate by c± > 0,

∀x ∈ G± ⊂ D± : x+ = R±(x−) = (x−1 , c±x
−
2 ) ∈ D∓.

(43)
This yields a saltation matrix

Ξ± = DxR± +
(
F∓ −DxR± · F±

) Dxg±
Dxg± · F±

=

[
β∓
β±

0
1
β±

(α±c± − α∓) c±

]
.

(44)

With respect to the standard Euclidean 2–norm:

1) The continuous–time flows are contractive if α± < 0,
expansive if α± > 0.

2) Unless A± = A∓ and R± = idR2 , one of the discrete–
time resets is an expansion.

The first claim follows directly from µ2(A±) = α±. To see
that the second claim is true, note that β+ 6= β−, c+ > 1,
or c− > 1 implies one of the diagonal entries of one of the
Ξ’s are expansive. Taking β+ = β− and c± ≤ 1 to ensure
that the diagonal entries of Ξ± are non–expansive yields a
saltation matrix of the form

Ξ =

[
1 0
d c

]
(45)

with singular values

σ(Ξ) = spec
1

2

(
Ξ> + Ξ

)
=

1

2

(
(c+ 1)±

√
d2 + (c− 1)2

)
;

(46)

unless c = 1 (i.e. c+ = c− = 1 so R± = idR2 ) and d = 0
(i.e. α+ = α− so A+ = A−), one of these singular values
is larger than unity.

B. Traffic flow with capacity drop

Consider a length of freeway divided into two segments
or links. The state of the system is the traffic density on the
two links. Traffic flows from the first segment to the second.
The second link has a finite jam density xjam

2 > 0, and we
consider link 1 to have infinite capacity so that always the
state x satisfies x ∈ X = [0,∞)× [0, xjam

2 ] ⊂ R2.
The system has two modes, an uncongested (resp., con-

gested) mode for which the flow between the two links
depends only on the density of the upstream (resp., down-
stream) link. The dynamics of the uncongested mode is

ẋ1 = u(t)−∆1(x1) (47)
ẋ2 = ∆1(x1)−∆2(x2) (48)

for which we write ẋ = Funcon(x, t) assuming a fixed u(t),
and for the congested mode is

ẋ1 = u(t)− S2(x2) (49)
ẋ2 = S2(x2)−∆2(x2) (50)

for which we write ẋ = Fcon(x, t) where ∆1 and ∆2 are
continuously differentiable and strictly increasing demand
functions satisfying ∆1(0) = ∆2(0) = 0, and S2 is a
continuously differentiable and strictly decreasing supply
function satisfying S2(xjam

2 ) = 0; see [12] for further details
of the model.

The system is in the congested mode only (but not nec-
essarily) if ∆1(x1) ≥ S2(x2). Moreover, empirical studies
suggest that traffic flow exhibits a hysteresis effect such that
traffic remains in the uncongested mode until x2 ≥ x̄2 for
some x̄2 and does not return to the uncongested mode until
x2 ≤ x2 for some x2 < x̄2 [22], [23]. Here, we assume
x̄2 ∈ [0, xcrit

2 ) where xcrit
2 is the unique density satisfying

∆2(x2) = S2(x2); see Figure 2. This effect is called capacity
drop.
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Fig. 3. The traffic network is modeled as a hybrid system with four
domains, J = {SC̄, S̄C̄, S̄C, S̄C̄}. The only non-identity reset occurs when
the system transitions from DS̄C̄ to DS̄C.

We model the traffic flow as a hybrid system with four
domains DSC,DSC̄,DS̄C,DS̄C̄ where

DSC = X ∩ {x : ∆1(x1) ≤ S2(x2)} ∩ {x : x2 ≥ x2}, (51)
DS̄C = X ∩ {x : ∆1(x1) ≥ S2(x2)} ∩ {x : x2 ≥ x2}, (52)
DSC̄ = X ∩ {x : ∆1(x1) ≤ S2(x2)} ∩ {x : x2 ≤ x̄2}, (53)
DS̄C̄ = X ∩ {x : ∆1(x1) ≥ S2(x2)} ∩ {x : x2 ≤ x̄2}, (54)

and the index set is given by J = {SC̄, S̄C̄, S̄C, S̄C̄}.
Furthermore, FSC = FSC̄ = FS̄C̄ = Funcon and FS̄C = Fcon.
As a mnemonic, S indicates that ∆1(x1) ≤ S2(x2) so that
adequate downstream supply is available, and S̄ indicates the
opposite. Similarly, C indicates the status of the hysteresis
effect so that the congestion mode is only possible for
domains with C, and impossible for domains with C̄.

Define the guard functions

gSC,S̄C(x) = gSC̄,S̄C̄(x) = S2(x2)−∆1(x1), (55)
gS̄C,SC(x) = gS̄C̄,SC̄(x) = ∆1(x1)− S2(x2), (56)
gSC̄,SC(x) = gS̄C̄,S̄C(x) = x̄2 − x2, (57)
gSC,SC̄(x) = x2 − x2. (58)

If no guard function is specified between two domains,
then no transition is possible between those domains. For all
j, j′ ∈ J such that gj,j′ is defined, let Gj,j′ = {x : gj,j′(x) ≤
0} ∩ Dj , and let Gj = ∪j′∈J Gj,j′ for each j ∈ J .

We have that

Juncon(x) = DxFuncon(x, t) =

[
−D∆1(x1) 0
D∆′1(x1) −D∆2(x2)

]
,

(59)

Jcon(x) = DxFcon(x, t) =

[
0 −DS2(x2)
0 DS2(x2)−D∆2(x2)

]
.

(60)

Let |·|1 be the standard one-norm and µ1 the corresponding
matrix measure. It can be verified that

µ1(Juncon(x)) ≤ 0 ∀x ∈ X , and (61)
µ1(Jcon(x)) ≤ 0 ∀x ∈ X . (62)

Now consider a trajectory in domain DS̄C̄ transitioning to
DS̄C so that S2(x2) ≤ ∆1(x1) and the system experiences
a capacity drop so that the dynamics transition from uncon-
gested to congested. Computing the saltation matrix Ξ for x
such that gS̄C̄,S̄C(x) = 0, we have

ΞS̄C̄,S̄C(t, x) = I +
(Fcon(t, x)−Funcon(t, x)) ·DxgS̄C̄,S̄C(x)

DxgS̄C̄,S̄C(x) · Funcon(t, x)
(63)

= I +
−1

∆1(x1)−∆2(x̄2)

[
∆1(x1)− S2(x̄2)
S2(x̄2)−∆1(x1)

]
·
[
0 −1

]
(64)

for all x ∈ {x : x2 = x̄2} = GS̄C̄,S̄C(x). Let ρ(x1) =
∆1(x1)−S2(x̄2)
∆1(x1)−∆2(x̄2) so that

ΞS̄C̄,S̄C(t, x) =

[
1 ρ(x1)
0 1− ρ(x1)

]
(65)

for all x ∈ {x : x2 = x̄2}. Because x̄2 < xcrit
2 , it holds that

∆2(x̄2) < S2(x̄2) and therefore

0 ≤ ρ(x1) < 1 ∀x1 ∈ {x1 : ∆1(x1) ≥ S2(x̄2)}. (66)

Therefore, ‖ΞS̄C̄,S̄C(t, x)‖1 = 1 for all x ∈ {x : x2 = x̄2} =
GS̄C̄,S̄C.

For all (j, j′) 6= (S̄C̄, S̄C) such that Gj,j′ is nonempty, it
can be verified that Fj′(x) = Fj(x) for all x ∈ Gj,j′ so that
Ξj,j′(t, x) = I and trivially ‖Ξj,j′(t, x)‖1 = 1. Applying
Theorem 1, we conclude that

|y(t)− x(t)|1 ≤ |y(0)− x(0)|1 (67)

for any pair of trajectories x(t), y(t) of the traffic flow system
with initial conditions y(0), x(0) subject to any input u(t),
that is, the system is nonexpansive.

In fact, it is possible to conclude that limt→∞ |x(t) −
γ(t)|1 = 0 for any initial condition x(0) using an approach
analogous to that used in [24, Example 4], which considers
contraction in traffic flow without modeling capacity drop. In
particular, if the derivatives of ∆1, ∆2, and S2 are bounded
away from zero, and u(t) is periodic with period T and
is such that there exists a periodic orbit γ(t) of the hybrid
system such that γ(t∗) ∈ int(D\DS̄C) for some t∗, then the
system is strictly contracting towards γ(t) for a portion of
each period T . This implies that eventually, each trajectory
converges to γ(t). Figure 4 shows simulation results for
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Fig. 4. Sample trajectories of the two link traffic network with capacity
drop modeled as hysteresis with a periodic input. All trajectories contract
to a unique periodic trajectory.

several initial conditions where u(t) = 1500 + 800 cos(2πt),
∆1(x1) = 2400(1−e−x1/33), ∆2(x2) = 1900(1−e−x2/33),
S2(x2) = 20(160 − x), x2 = 60, x2 = 55, and time is in
hours.

VI. CONCLUSION

We generalized infinitesimal contraction analysis to hy-
brid systems by leveraging local dynamical properties of
continuous–time flow and discrete–time reset to bound the
time rate of change of the intrinsic distance between trajec-
tories. In addition to expanding the toolkit for analysis of
hybrid systems, under dwell time assumptions we provide a
novel bound for the intrinsic distance metric.

REFERENCES

[1] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-
linear systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[2] A. Pavlov, A. Pogromsky, N. van de Wouw, and H. Nijmeijer,
“Convergent dynamics, a tribute to Boris Pavlovich Demidovich,”
Systems & Control Letters, vol. 52, no. 3, pp. 257–261, 2004.

[3] E. D. Sontag, “Contractive systems with inputs,” in Perspectives
in Mathematical System Theory, Control, and Signal Processing,
pp. 217–228, Springer, 2010.

[4] E. D. Sontag, M. Margaliot, and T. Tuller, “On three generalizations
of contraction,” in IEEE Conference on Decision and Control (CDC),
pp. 1539–1544, 2014.

[5] M. Margaliot, E. D. Sontag, and T. Tuller, “Contraction after small
transients,” Automatica, vol. 67, pp. 178–184, 2016.

[6] Z. Aminzarey and E. D. Sontag, “Contraction methods for nonlinear
systems: A brief introduction and some open problems,” in IEEE
Conference on Decision and Control (CDC), pp. 3835–3847, IEEE,
2014.

[7] A. Raveh, M. Margaliot, E. D. Sontag, and T. Tuller, “A model for
competition for ribosomes in the cell,” Journal of The Royal Society
Interface, vol. 13, no. 116, p. 20151062, 2016.

[8] M. Margaliot, E. D. Sontag, and T. Tuller, “Entrainment to periodic
initiation and transition rates in a computational model for gene
translation,” PLoS one, vol. 9, no. 5, p. e96039, 2014.

[9] W. Wang and J.-J. E. Slotine, “On partial contraction analysis for
coupled nonlinear oscillators,” Biological Cybernetics, vol. 92, no. 1,
pp. 38–53, 2005.

[10] W. Lohmiller and J. J. E. Slotine, “Control system design for mechani-
cal systems using contraction theory,” IEEE transactions on automatic
control, vol. 45, no. 5, pp. 984–989, 2000.

[11] I. R. Manchester and J.-J. E. Slotine, “Transverse contraction criteria
for existence, stability, and robustness of a limit cycle,” Systems &
Control Letters, vol. 63, no. Supplement C, pp. 32–38, 2014.

[12] S. Coogan and M. Arcak, “A compartmental model for traffic networks
and its dynamical behavior,” IEEE Transactions on Automatic Control,
vol. 60, no. 10, pp. 2698–2703, 2015.

[13] G. Como, E. Lovisari, and K. Savla, “Throughput optimality and over-
load behavior of dynamical flow networks under monotone distributed
routing,” IEEE Transactions on Control of Network Systems, vol. 2,
no. 1, pp. 57–67, 2015.

[14] S. A. Burden, H. Gonzalez, R. Vasudevan, R. Bajcsy, and S. S. Sastry,
“Metrization and Simulation of Controlled Hybrid Systems,” IEEE
Transactions on Automatic Control, vol. 60, no. 9, pp. 2307–2320,
2015.

[15] D. Gokhman, “Topologies for hybrid solutions,” Nonlinear Analysis:
Hybrid Systems, vol. 2, no. 2, pp. 468–473, 2008.

[16] L. Tavernini, “Differential automata and their discrete simulators,”
Nonlinear Analysis, Theory, Methods & Applications, vol. 11, no. 6,
pp. 665–683, 1987.

[17] J. J. B. Biemond, W. P. M. H. Heemels, R. G. Sanfelice, and N. van de
Wouw, “Distance function design and lyapunov techniques for the
stability of hybrid trajectories,” Automatica, vol. 73, no. Supplement
C, pp. 38–46, 2016.

[18] J. J. B. Biemond, N. v. de Wouw, W. P. M. H. Heemels, and H. Nijmei-
jer, “Tracking control for hybrid systems with State-Triggered jumps,”
IEEE Transactions on Automatic Control, vol. 58, no. 4, pp. 876–890,
2013.

[19] J. Lee, Introduction to Smooth Manifolds. Springer, 2012.
[20] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry.

American Mathematical Society Providence, RI, 2001.
[21] M. A. Aizerman and F. R. Gantmacher, “Determination of stability by

linear approximation of a periodic solution of a system of differential
equations with discontinuous Right–Hand sides,” Quarterly Journal
of Mechanics and Applied Mathematics, vol. 11, no. 4, pp. 385–398,
1958.

[22] M. J. Cassidy and R. L. Bertini, “Some traffic features at freeway
bottlenecks,” Transportation Research Part B: Methodological, vol. 33,
no. 1, pp. 25–42, 1999.

[23] J. A. Laval and C. F. Daganzo, “Lane-changing in traffic streams,”
Transportation Research Part B: Methodological, vol. 40, no. 3,
pp. 251–264, 2006.

[24] S. Coogan, “Separability of Lyapunov functions for contractive mono-
tone systems,” in IEEE Conference on Decision and Control (CDC),
pp. 2184–2189, 2016.


	I Introduction
	II Notation
	III Preliminaries
	IV Main result
	V Examples
	V-A A planar piecewise–linear system
	V-B Traffic flow with capacity drop

	VI Conclusion
	References

