
ar
X

iv
:1

80
4.

04
31

5v
1 

 [
m

at
h.

A
P]

  1
2 

A
pr

 2
01

8

WELL-POSEDNESS FOR CONSTRAINED HAMILTON-JACOBI

EQUATIONS

YEONEUNG KIM

Abstract. The goal of this paper is to study a Hamilton-Jacobi equation
{

ut = H(Du) + R(x, I(t)) in R
n × (0,∞),

sup
Rn u(·, t) = 0 on [0,∞),

with initial conditions I(0) = 0, u0(x, 0) = u0(x) on R
n. Here (u, I) is a pair of

unknowns and the Hamiltonian H and the reaction R are given. And I(t) is an

unknown constraint (Lagrange multiplier) that forces supremum of u to be always

zero. We construct a solution in the viscosity setting using a fixed point argument

when the reaction term R(x, I) is strictly decreasing in I. We also discuss both

uniqueness and nonuniqueness. For uniqueness, a certain structural assumption

on R(x, I) is needed. We also provide an example with infinitely many solutions

when the reaction term is not strictly decreasing in I.
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1. Introduction

Darwin’s theory of evolution suggests that biological individuals evolve under
the competition between natural selection and mutation. The mathematical model
based on such theory has been studied in literatures (see [7, 8, 9, 10]). In the model,
we usually denote traits, density of population and net birth rate by x ∈ R

n, n(x, t),
R(x, I), respectively, where I(t) represents the total consumptions of the resources
of the environment at the time t. We can take mutation into account using diffusion
ε∆ for some small ε > 0 . The model we consider is the following reaction-diffusion
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equation
{

nε
t − ε∆nε = nε

ε
R(x, Iε(t)) in R

n × (0,∞),

nε(x, 0) = nε
0 ∈ L1(Rn) on R

n,

where we denote the total population associated with the rate ε by nε(x, t) and
nε
0 ≥ 0 is a given initial density. Moreover, Iε(t) is defined as

Iε(t) =

∫

Rn

ψ(x)nε(t, x)dx,

where ψ is a given smooth, non-negative compactly supported kernel representing
consumption rate of resources.
It was studied by G. Barles, S. Mirrahimi, B. Perthame [3] that after taking Hopf-

Cole transformation nε(x, t) = eu
ε(x,t)/ε, as mutation rate ε vanishes, uε converges

locally uniformly to u in R
n×[0,∞) which is a solution of the constrained Hamilton-

Jacobi equation










ut = |Du|2 +R(x, I(t)) in R
n × (0,∞),

maxRn u(·, t) = 0 on [0,∞),

u(x, 0) = u0(x) on R
n.

Motivated from this, we will discuss well-posedness of viscosity solutions for an
equation with a general Hamiltonian H(p) and an unknown constraint I(t). The
equation we consider is the following























ut = H(Du) +R(x, I(t)) in R
n × [0, T ],

sup
Rn u(·, t) = 0 on [0, T ],

I(0) = 0,

u(x, 0) = u0(x) on R
n.

(1.1)

Main Assumptions . We need assumptions on R(x, I) : Rn × [−2IM , 2IM ] → R

for IM > 0, u0(x) and I(t), some of which are natural but some are technical.

(A1) There exist K1, K2 > 0 such that −K1 ≤ RI(x, I) ≤ −K2;
(A2) maxRn R(·, IM) = 0;
(A3) minRn R(·, 0) = 0;
(A4) sup|I|≤2IM

‖R(·, I)‖W 1,∞(Rn) <∞;

(A5) u0(x) ∈ W 1,∞(Rn) and supx∈Rn u0(x) = 0;
(H1) H ∈ C(Rn, [0,∞)) is a nonnegative Hamiltonian with H(0) = 0 and is

locally Lipschitz continuous in p.

Throughout the paper, the above assumptions are always in force. Additionally,
f ∈ W 1,∞(Rn), that is; ‖f‖L∞(Rn) + ‖Df‖L∞(Rn) <∞.

Remark 1. We define R(x, I) as










R(x, 2IM)− I + 2IM when I > 2IM ,

R(x, I) when −2IM ≤ I ≤ 2IM ,

R(x,−2IM)− 2IM − I when I < −2IM ,
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so that R(x, I) is continuously extended. Later on, we will see that I(t) ∈ [0, IM ]
for t ≥ 0.

Here is the organization of this paper. In Section 2, we construct a sequence of
solution pairs (uε, Iε) for a relaxed equation using Banach’s fixed point argument.
In Section 3, we show that (uε, Iε) converges to a solution pair (u, I) for the original
equation (1.1) up to subsequences. In Section 4, uniqueness result for (1.1) is
presented when the reaction R(x, I) is assumed to be separable in variables x and
t. In Section 5, we finish this paper by giving an example where uniqueness fails
when R(x, I) is not strictly decreasing in I.

2. Construction of a solution of relaxed problem via a fixed point

argument

We first provide some regularity properties for
{

ut = H(Du) +R(x, I(t)) in R
n × [0, T ],

u(x, 0) = u0(x) on R
n,

(2.1)

where I(t) is a given continuous function on [0, T ]. It is known that there exists
a unique viscosity to u(x, t) for (2.1) which is bounded uniformly continuous in
R

n × [0, T ].

Theorem 2.1. Let u be a unique viscosity solution of (2.1) for a given continuous
function I(t). Set L = supt∈[0,T ] ‖R(·, I(t)‖W 1,∞(Rn). Then, for T > 0,

‖Du‖L∞(Rn×[0,T ]) ≤ (L+ 1)T + ‖Du0‖L∞(Rn).

Proof. We follow arguments presented in [2, 11, 12, 1]. We first define

C(t) = (L+ 1)t+K

where K = ‖u0‖W 1,∞(Rn) and assume the solution u is not Lipschitz continuous in
space x. In other words, there exists σ > 0 such that

sup
x,y∈Rn,t∈[0,T ]

(u(x, t)− u(y, t)− C(t)|x− y|) = σ.

We then define Φ as

Φ(x, y, t, s) := u(x, t)− u(y, s)− C(t)|x− y| − 1

α2
|t− s|2 − β(|x|2 + |y|2).

for (x, y, t, s) ∈ R
2n × [0, T ]2 and α, β > 0. Since u is bounded, we can find

(x, y, t, s) ∈ R
2n × [0, T ]2 such that

max
(x,y,t,s)∈R2n×[0,T ]2

Φ(x, y, t, s) = Φ(x, y, t, s).

We can also note that

Φ(x, y, t, s) ≥ max
x,y∈Rn,t∈[0,T ]

Φ(x, y, t, t)

= sup
x,y∈Rn,t∈[0,T ]

u(x, t)− u(y, t)− C(t)|x− y| − 2β|x|2,
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which yields

Φ(x, y, t, s) >
σ

2
for β small enough regardless of α. Moreover, x 6= y for α small enough. If not,

max
(x,y,t,s)∈R2n×[0,T ]2

Φ(x, y, t, s) = Φ(x, x, t, s) = u(x, t)−u(x, s)− 1

α2
|t−s|2−2β|x|2 ≤ σ

4

for α small enough as u ∈ BUC(Rn × [0, T ]).
We use Φ(x, y, t, s) ≥ Φ(0, 0, 0, 0) to get

1

α2
|t− s|2 + β(|x|2 + |y|2) ≤ u(x, t)− u(y, s)− u(x, 0) + u(y, 0)− C(t)|x− y|

≤ u(x, t)− u(y, s)− u(x, 0) + u(y, 0).

The inequality above implies |t− s| = O(α), |x|, |y| = O(1/
√
β) since u is bounded.

Moreover, t, s have to be away from 0 since

σ

2
< Φ(x, y, t, s) < u(x, t)− u(y, s)− C(t)|x− y|

and

u(x, 0)− u(y, 0) ≤ K|x− y|
where K = C(0).
Observing that u(x, t)− φ(x, t) has maximum at (x, t) where

φ(x, t) := u(y, s) + C(t)|x− y|+ 1

α2
|t− s|2 + β(|x|2 + |y|2).

By the definition of viscosity subsolutions,

(L+ 1)|x− y|+ 2

α2
(t− s) ≤ H

(

C(t)
x− y

|x− y| + 2βx

)

+R(x, I(t)). (2.2)

Similarly, u(y, t)− η(y, t) has minimum at (y, s) where

η(y, s) := u(x, t)− C(t)|x− y| − 1

α2
|t− s|2 − β(|x|2 + |y|2).

By the definition of viscosity supersolutions,

2

α2
(t− s) ≥ H

(

C(t)
x− y

|x− y| − 2βy

)

+R(y, I(s)) (2.3)

Subtracting (2.3) from (2.2) gives us

(L+ 1)|x− y| ≤ H

(

C(t)
x− y

|x− y| + 2βx

)

−H

(

C(t)
x− y

|x− y| − 2βy

)

+R(x, I(t))− R(y, I(s))

≤ 2Aβ|x+ y|+R(x, I(t))−R(y, I(s))

where A > 0 is a local Lipschitz constant for the Hamiltonian H(p). Here, we can
choose such A since the terms inside of the Hamiltonian are not growing to either
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∞ or −∞. We note that

R(x, I(t))− R(y, I(s)) = R(x, I(t))−R(x, I(s)) +R(x, I(s))− R(y, I(s)).

≤ K1|I(t)− I(s)|+ ‖R(·, I(t))‖W 1,∞(Rn)|x− y|
Then, taking α to 0 and combining previous two above gives

(L+ 1)|x− y| ≤ 2Aβ|x+ y|+ L|x− y|.
Finally, sending β to 0 to give us

L+ 1 ≤ L,

which is a contradiction. Therefore,

sup
x,y∈Rn,t∈[0,T ]

u(x, t)− u(y, t)− C(t)|x− y| ≤ 0.

By symmetry, we get, for x, y ∈ R
n, t ∈ [0, T ],

|u(x, t)− u(y, t)| ≤ C(t)|x− y|,
and it is consistent with Lipschitz bound for u0 as C(0) = K. �

Theorem 2.2. Assume I is given and let u be a unique viscosity solution of (2.1).
Then, for a positive C(T) depending on T,

‖ut‖L∞(Rn×[0,T ]) < C(T ).

Proof. We first show −C ≤ ut ≤ C for (x, t) ∈ R
n × [0, T ] in viscosity sense for a

positive constant C depending only on T when u is the viscosity solution of (2.1).
Let us assume that φ(x, t) ∈ C1(Rn×(0,∞) touches u(x, t) from above so that u−φ
has maximum at (x0, t0) ∈ R

n × (0, T ]. For φ to touch u from above at (x0, t0),

lim sup
(y,s)→(x0,t0)

u(y, s)− u(x0, t0)− (Dφ, φt) · (y − x0, s− t0)

|(y, s)− (x0, t0)|
≤ 0.

Let us take a sequence (x′, t0) converging to (x0, t0) such that

− Dφ(x0, t0)

|Dφ(x0, t0)|
=

x′ − x0
|x′ − x0|

Then we have

0 ≥ lim sup
(y,s)→(x0,t0)

u(y, s)− u(x0, t0)− (Dφ, φt) · (y − x0, s− t0)

|(y, s)− (x0, t0)|

≥ lim sup
(x′,t0)→(x0,t0)

u(x′, t0)− u(x0, t0)−Dφ(x′, t0) · (x′ − x0)

|x′ − x0|
≥ −C(t0) + |Dφ(x0, t0)|

where C(t) = (L + 1)t+K from Theorem 2.1. Hence, |Dφ| is bounded depending
only on T regardless of choice of test functions φ.
By the definition of viscosity subsolutions, we obtain

φt ≤ H(Dφ) +R(x0, I(t0)) ≤ C
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for a positive constant C which depends on T . Therefore, ut ≤ C in viscosity sense.
One can show the other inequality similarly.
It remains to check that the inequality above in viscosity sense implies Lipschitz

continuity of u in time. Although elementary, we present the proof of it. Let us fix
the time s and define u1 and u2 as

u1(x, t) = u(x, t+ s),

u2(x, t) = u(x, s) + Ct,

so that u1(x, 0) = u2(x, 0). Then, u1 is a viscosity subsolution of ut = C while u2 is
a viscosity solution of ut = C. Therefore, we have

u1(x, t) ≤ u2(x, t) for (x, t) ∈ R
n × [0, T ]

by comparison principle, which implies

u(x, t+ s) ≤ u(x, s) + Ct.

Similarly, we can derive

u(x, s)− Ct ≤ u(x, t+ s),

which finishes the proof. �

Definition 1. For ε > 0 and I ∈ C([0, T ]) such that I(0) = 0, we define a mapping
Σ from W = {I ∈ C([0, T ]), I(0) = 0} to itself as following

Σ : I(t) 7→ (1− ε)I(t) + sup
Rn

uε(·, t)

where uε(x, t) is a unique bounded uniformly continuous viscosity solution of (2.1)
corresponding to I(t).

The mapping Σ is well defined as supRn uε(·, t) is continuous in time t due to
Lipschitz regularity properties of the viscosity solution uε(x, t). We first prove the
following proposition before we show Σ is contraction mapping.

Proposition 2.3. Let (u1, I1), (u2, I2) be two solution pairs for (2.1). Then, for
f(t) := ‖(u1 − u2)(·, t)‖L∞(Rn), f

′(t) ≤ K1|I1(t)− I2(t)| in viscosity sense where K1

is a constant from (A1).

Proof. Let (u1, I1), (u2, I2) be two viscosity solution pairs satisfying (2.1). We first
prove that

d

dt
‖(u1 − u2)(·, t)‖L∞(Rn) ≤ K1|I1(t)− I2(t)|

in viscosity sense. Clearly f(t) is Lipschitz continuous as both u1, u2 are bounded
and Lipschitz continuous. Without loss of generality, we may assume there exists
φ(t) ∈ C1((0, T ]) for which f(t)− φ(t) has a strict maximum at t0 > 0 as 0 so that
φ(t0) = f(t0) and f(t0) = sup

Rn(u1−u2)(·, t0) ≥ 0. We can also assume that φ ≥ 0.
Now for λ > 0 and ε > 0 we define

Φ(x, y, t, s) := u1(x, t)− u2(y, s) + λ(t+ s)− 1

2
(φ(t) + φ(s))

− 1

ε2
(|t− s|2 + |x− y|2)− ε(|x|2 + |y|2).
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Since u1, u2 are bounded, for λ > 0 given, there exists (xε, yε, tε, sε) ∈ R
2n × [0, T ]

such that

max
(x,y,t,s)∈R2n×[0,T ]2

Φ(x, y, t, s) = Φ(xε, yε, tε, sε) > λt0 (2.4)

for all ε small enough. To verify this, for λ > 0 given, we choose δ > 0 to be an
arbitrarily small positive number such that 2λt0 − δ > 0. There also exists x′ ∈ R

n

such that u1(x
′, t0)− u2(x

′, t0)− φ(t0) > −δ. By observing

Φ(xε, yε, tε, sε) ≥ Φ(x′, x′, t0, t0) > 2λt0 − δ − 2ε|x′|2,
we deduce

lim inf
ε→0

Φ(xε, yε, tε, sε) ≥ 2λt0

since δ is arbitrary. Hence, we can conclude by

Φ(xε, yε, tε, sε) > λt0

for all ε small enough, which verifies (2.4).
From Φ(xε, yε, tε, sε) ≥ Φ(0, 0, 0, 0), we get

u1(xε, tε)− u2(yε, sε) + λ(tε + sε)−
1

2
(φ(tε) + φ(sε))−

1

ε2
(|tε − sε|2 + |xε − yε|2)

− ε(|xε|2 + |yε|2) ≥ u1(0, 0)− u2(0, 0)− φ(0),

which implies

1

ε2
(|tε − sε|2 + |xε − yε|2) + ε(|xε|2 + |yε|2) <∞

since u1, u2, φ are all bounded. Hence, we obtain

|xε − yε|, |tε − sε| = O(ε), |xε|, |yε| = O(1/
√
ε).

Similarly, we use Φ(xε, yε, tε, sε) ≥ Φ(xε, xε, tε, tε) to have

1

ε2
(|tε − sε|2 + |xε − yε|2) ≤ u2(xε, tε)− u2(yε, sε) + λ(sε − tε)

+
1

2
(φ(tε)− φ(sε)) + ε(xε − yε) · (xε + yε).

It follows that |tε−sε|, |xε−yε|=o(ε) since u2 is uniformly continuous. Addition-
ally, from Φ(xε, yε, tε, sε) ≥ Φ(xε, xε, tε, sε), we obtain

u2(xε, sε)− u2(yε, sε) + ε(xε − yε) · (xε + yε) ≥
1

ε2
|xε − yε|2

and by Lipschitz continuity of u2 in space, boundedness of 1
ε2
|xε − yε| follows given

that x 6= y. Even if x = y, we can claim the same bound. Moreover, from (2.4), we
have

0 < λt0 < u1(xε, tε)− u2(yε, sε) + λ(tε + sε)

for all ε small enough, we deduce that there exists µ > 0 such that tε, sε ≥ µ.
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Noticing that u1(x, t)− η1(x, t) achieves maximum at (xε, tε) where

η1(x, t) := u2(yε, sε)−λ(t+sε)+
1

2
(φ(t)+φ(sε))+

1

ε2
(|t−sε|2+|x−yε|2)+ε(|x|2+|yε|2),

we can use the viscosity subsolution test to get

− λ+
2

ε2
(tε − sε) +

1

2
φ′(tε) ≤ H

(

2

ε2
(xε − yε) + 2εxε

)

+R(xε, I1(tε)). (2.5)

Similarly, u2(y, s)− η2(y, s) achieves minimum at (yε, sε) where

η2(y, s) = u(xε, tε)+λ(tε+s)−
1

2
(φ(tε)+φ(s))−

1

ε2
(|tε−s|2+|xε−y|2)−ε(|xε|2+|y|2).

Again by the viscosity supersolution test, we get

λ+
2

ε2
(tε − sε)−

1

2
φ′(sε) ≥ H

(

2

ε2
(xε − yε)− 2εyε

)

+R(yε, I2(sε)). (2.6)

Subtracting (2.6) from (2.5) results in

−2λ+
1

2
(φ′(tε) + φ′(sε)) ≤ H

(

2

ε2
(xε − yε) + 2εxε

)

−H

(

2

ε2
(xε − yε)− 2εyε

)

+R(xε, I1(tε))−R(yε, I2(sε)).

Using the fact that 2
ε2
(xε−yε) is bounded. Because of Theorem 2.1 and H(p) locally

Lipschitz continuous, we have

φ′(t0) ≤ K1|I1(t0)− I2(t0)|

if tε and sε converge to t0 as ε vanishes as λ > 0 is arbitrary. Hence, it is enough
to prove that tε, sε actually converge to t0 as ε goes to 0 up to subsequence for a
given λ > 0. Let us suppose that tε, sε converge to t′0 6= t0 up to subsequence with
respect to ε. Then there exists γ > 0 such that supx∈Rn(u1−u2)(·, t′0)−φ(t′0) ≤ −γ
since f(t)− φ(t) obtains a strict maximum 0 at t0.
We now observe that

Φ(xε, yε, tε, sε) ≤ u1(xε, tε)− u2(yε, sε) + λ(tε + sε)−
1

2
(φ(tε) + φ(sε))

= (u1(xε, tε)− u1(xε, t
′
0))− (u2(yε, sε)− u2(yε, t

′
0)) + (λ(tε + sε)− 2λt′0)

− 1

2
(φ(tε) + φ(sε)) + φ(t′0) + u1(xε, t

′
0)− u2(yε, t

′
0) + 2λt′0 − φ(t′0).

We then take lim infε→0 on both sides, the following is obtained;

λt0 ≤ −γ + 2λt′0.

However, taking λ to 0 yields that 0 ≤ −γ, which is a contradiction. Therefore, tε,
sε must converge to t0. �
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Proposition 2.4. The map Σ : W 7→W is a contraction mapping for a short time
T ′ = 2ε

K1

> 0, and there exists a viscosity solution of























uεt = H(Duε) +R(x, Iε(t)) in R
n × [0, T ],

εIε(t) = sup
Rn uε(·, t) on [0, T ],

Iε(0) = 0,

uε(x, 0) = u0(x) on R
n

for Iε ∈ W . We call this a relaxed equation.

Proof. First of all, the proposition (2.3) results in

‖(u1 − u2)(·, t)‖W 1,∞(Rn) ≤ K1‖I1 − I2‖L∞([0,T ]). (2.7)

Now, let I1 and I2 be in W and T ′ = 2ε
K1

. Observing

Σ(I2)− Σ(I1) ≤ (1− ε)(I2(t)− I1(t)) + sup
Rn

u2(·, t)− sup
Rn

u2(·, t)

≤ (1− ε)(I2(t)− I1(t)) + | sup
Rn

u2(·, t)− sup
Rn

u2(·, t)|,

and combining with (2.7), we have

‖Σ(I2)− Σ(I1)‖L∞([0,T ′]) ≤ (1− ε+K1T
′)‖I2 − I2‖L∞([0,T ′])

= (1− ε

2
)‖I2 − I2‖L∞([0,T ′]),

which implies Σ is a contraction mapping.
For a fixed ε > 0 and time T ′, by Banach’s fixed point theorem, there exists a

unique fixed point Iε ∈ W such that

Iε = Σ(Iε) = (1− ε)Iε + sup
Rn

uε(·, t)

⇔ εIε = sup
Rn

uε(·, t)

Therefore, for the short time T ′ = 2ε
K1

, we have a solution pair (uε, Iε) for























uεt = H(Duε) +R(x, Iε(t)) in R
n × [0, T ′],

εIε(t) = sup
Rn uε(·, t) on [0, T ′],

Iε(0) = 0,

uε(x, 0) = u0(x) on R
n.

We also notice that that T ′ depends only on K1 and ε, applying the argument
above successively on time intervals [0, T ′], [T ′, 2T ′], [2T ′, 3T ′], · · ·, one can obtain
a solution which is valid for whole time interval [0, T ]. �
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3. Limiting equation

In the previous section, for each ε > 0, we have constructed a solution pair (uε, Iε)
to























uεt = H(Duε) +R(x, Iε(t)) in R
n × [0, T ],

εIε(t) = sup
Rn uε(·, t) on [0, T ],

Iε(0) = 0,

uε(x, 0) = u0(x) on R
n.

(3.1)

By Theorems 2.1 and 2.2, uε is Lipschitz continuous in both time and space but
Lipschitz constants are not uniform in ε. The constants rather depend on the
bound of I(t) as we can see in the proofs. In this section, we first prove Iε is
nondecreasing and uniformly bounded by IM regardless of ε. Then it follows that
Lipschitz constants in time and space for uε are uniform so that uε converges locally
uniformly to a bounded Lipschitz continuous function u up to subsequence of ε by
the Arzela-Ascoli theorem. We finish this section by noting that a limit function u
actually solves the original constrained problem with I(t) using the stability result
for discontinuous Hamilton-Jacobi equations.

Proposition 3.1. Let (uε, Iε) be a solution of (3.1). Then Iε(t) is nondecreasing
in t.

Proof. We first claim that Iε(t) cannot have an interior strict local maximum. Let
us suppose Iε(t) obtains a strict local maximum at t0 ∈ (0, T ) so it satisfies

εIε(t0) = sup
Rn

uε(·, t0). (3.2)

For β > 0, let us define

f(x, t) := uε(x, t)− εIε(t0)− β
√

1 + |x|2

so that we can find (xβ , tβ) ∈ R
n × [0, T ] such that

max
(x,t)∈Rn×[0,T ]

f(x, t) = f(xβ , tβ)

Clearly, tβ = t0 as f(x, t) ≤ f(x, t0). For any positive δ > 0 given, from (3.2), one
can find y ∈ R

n, such that

εIε(t0)− δ < uε(y, t0) < εIε(t0),

which yields,

f(xβ, t0) ≥ f(y, t0) = u(y, t0)− εIε(t0)− β
√

1 + |y|2 ≥ −δ − β
√

1 + |y|2.
Now we take lim inf on both sides, we get lim infβ→0 f(xβ, t0) ≥ −δ for any δ > 0.

Moreover, it is clear that f(xβ, t0) ≤ 0. Combining these two, we get

lim
β→0

f(xβ , t0) = 0.

Additionally, one can derive

lim
β→0

β
√

1 + |xβ|2 = 0
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since

0 ≥ −β
√

1 + |xβ |2 ≥ f(xβ , t0)

and f(xβ , t0) → 0 as β goes to 0. Therefore, we can conclude with

lim
β→0

uε(xβ , t0) = εIε(t0).

We can also observe that u(x, t)− φ(x, t) obtains a local maximum at (xβ, t0) ∈
R

n × (0, T ) where φ(x, t) := εIε(t0)− β
√

1 + |x|2. Hence, we have

0 ≤ H

(

β
2xβ

√

1 + |xβ |2

)

+R(xβ, I
ε(t0))

by the definition of viscosity subsolutions. Taking lim inf with respect to β, we have

lim inf
β→0

R(xβ , I
ε(t0)) ≥ 0 (3.3)

since
2xβ√
1+|xβ |2

is bounded. From (3.1), we get the following inequalities for h > 0

small enough

εIε(t0 + h)− uε(xβ , t0) ≥ uε(xβ , t0 + h)− uε(xβ , t0)

=

∫ t0+h

t0

uεt (xβ, t)dt

≥
∫ t0+h

t0

R(xβ , I
ε(t))dt

≥
∫ t0+h

t0

R(xβ , I
ε(t))dt = hR(xβ , I

ε(t0)).

Consequently, taking lim inf with respect to β yields

ε(Iε(t0 + h)− Iε(t0)) ≥ lim inf
β→0

hR(xβ, I
ε(t0)) ≥ 0,

which contradicts the fact that Iε(t) achieves a strict local maximum at t0. Hence,
Iε(t) cannot have an interior strict local maximum.
It remains to prove Iε(t) is nonnegative and is even nondecreasing on [0, T ]. Let

us first assume that there exists t0 ∈ (0, T ) such that Iε(t0) < 0. If Iε(t) is negative
for all t ∈ (0, t0), we get a contradiction using the similar argument above with t0
replaced by 0 since R(x, Iε(t)) > 0 when Iε(t) < 0 and Iε(0) = 0. Else if there
exists t1 ∈ (0, t0) such that Iε(t1) > 0, then Iε(t) has an interior local maximum,
which cannot happen. Therefore, Iε(t) is nonnegative. Now it is easy to see Iε is
nondecreasing on [0, T ] by the following argument; if we can find 0 < t0 < t1 in
(0, T ) such that Iε(t0) > Iε(t1) > 0, then Iε(t) achieves interior local maximum as
well because Iε(0) = 0. Hence, we finish the proof. �

Proposition 3.2. Let (uε, Iε) be a solution of (3.1). Then 0 ≤ Iε(t) ≤ IM for
t ≥ 0.
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Proof. We may assume that there exists t0 ∈ (0, T ) at which Iε(t) is differentiable
and Iε(t0) > IM . It follows that

R(x, Iε(t0)) < 0. (3.4)

since maxx∈Rn R(x, IM) = 0. We can also find φ(t) ∈ C1(R+) such that εIε(t)−φ(t)
has a local maximum at t0 and φ′(t0) > 0. For β > 0.
We now consider

Φ(x, t) = uε(x, t)− φ(t)− β
√

1 + |x|2,
which has a maximum at (xβ, t0). By the definition of viscosity subsolutions, we
have

φ′(t0) ≤ H

(

β
2xβ

√

1 + |xβ |2

)

+R(xβ, I
ε(t0)).

Therefore, we have

0 < φ′(t0) ≤ lim inf
β→0

R(xβ , I
ε(t0)).

However, this contradicts (3.4). Therefore, 0 ≤ Iε(t) ≤ IM since Iε is nondecreasing
and Iε(0) = 0. �

For a family of locally uniformly bounded functions {uα}α∈R, we define up-
per(lower) half-relaxed limit u(or u) as

u = lim sup
α→∞

⋆uα(x) := lim
α→∞

sup{uδ(y) : |x− y| ≤ 1/β where δ, β ≥ α}

and

u = lim inf
α→∞ ⋆uα(x) := lim

α→∞
inf{uδ(y) : |x− y| ≤ 1/β where δ, β ≥ α}

Lemma 3.3. Upper half-relaxed limit I(t) and lower-half relaxed limit I(t) of Iε(t)
agree almost everywhere for {Iε} ⊂ C([0, T ]) nondecreasing.

Proof. By Helly’s compactness theorem, we may assume that

Iε(t) → I(t) everywhere up to passing to a subsequence

where I(t) is nondecreasing on [0, T ]. Moreover, I(t) has only countably many jump
discontinuities. We claim that

I(t) ≤ I(t+)

and

I(t) ≥ I(t−).

For simplicity, we may assume t = 0 and it is enough to prove the first case as
proving the second case is pretty much similar.
By the definition of upper half-relaxed limit and the property that Iε is nonde-

creasing, we have

I(0) = lim
γ→0

sup
β
{Iβ(γ) : β ≤ γ}.
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We note that supβ{Iβ(γ) : β ≤ γ} is decreasing in γ. For δ > 0 and a fixed γ0 > 0,

we can choose β0 ≤ γ0 such that |Iβ(γ0)− I(γ0)| < δ for all β ≤ β0. Therefore, for
γ > 0 given, we have

I(0) ≤ sup
β
{Iβ(β0) : β ≤ β0}

≤ sup
β
{Iβ(γ0) : β ≤ β0}

= sup
β
{Iβ(γ0)− I(γ0) : β ≤ β0}+ I(γ0)

≤ δ + I(γ0).

Since, δ is arbitrary, taking γ0 to 0 yields

I(0) ≤ I(0+).

Similarly, one can prove the other inequality, hence, we can conclude that

I(t) = I(t) a.e.

�

Theorem 3.4. There exists a pair (u, I) solving (1.1).

Proof. By the stability result for discontinuous Hamiltonian in [2, 11], u is a subso-
lution of

ut = H(Du) +R(x, I(t))

and u is a supersolution of

ut = H(Du) + R(x, I(t)).

Since 0 ≤ Iε ≤ IM , there exists a subsequence {uεj}j∈N such that

uεj → u locally uniformly on R
n × [0, T ]

Therefore, we can let u = u = u. Moreover, I(t) = I(t) almost everywhere, we let

I(t) = I(t) = I(t).

With this new I(t), u is a viscosity solution of
{

ut = H(Du) +R(x, I(t)) in R
n × [0, T ],

u(x, 0) = u0(x) on R
n.

Moreover, we obtain

sup
Rn

u(·, t) = 0

from the relation

εIε(t) = sup
Rn

uε(·, t)

together with locally uniform convergence of uε. �
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4. Uniqueness for a certain birth rate

In this section, we deal with uniqueness of a pair (u, I) where u(x, t) is a bounded
uniformly continuous viscosity solution of equation (1.1). We provide uniqueness
result when R(x, I) has certain structures. Here, we follow structural conditions in
[13]. We have not been able to obtain full unconditional uniqueness result when
R(x, I) is not decoupled.

Theorem 4.1. For the equation (1.1), there exists a unique viscosity solution u(x, t)
and nonnegative increasing function I(t) when the birth R(x, I) can be written as
either

R(x, I(t)) = b(x)− d(x)Q(I),with Q(I) > 0 increasing,

or

R(x, I(t)) = b(x)Q(I)− d(x),with Q(I) > 0 decreasing,

where b(x), d(x) ∈ W 1,∞(Rn) and there exists bm > 0 such that b(x) > bm.

Proof. We only need to deal with the first case as handling the second case is
similar. Again, we follow the argument by B. Perthame and G. Barles in [13]. Let
us assume that there are two viscosity solutions u1 and u2 corresponding to I1(t)
and I2(t) respectively. In other words, u′is satisfy























(ui)t = H(Dui) +R(x, Ii(t)) in R
n × [0, T ],

supRn ui(·, t) = 0 on [0, T ],

I(0) = 0,

ui(x, 0) = u0(x) on R
n,

for i = 1, 2 in viscosity sense. Now we consider

Ψi = ui(x, t)− b(x)Σi(t)

Σi(t) =

∫ t

0

Q(Ii(s))ds

and they satisfy

(Ψi)t = −d(x) +H (D(Ψi + b(x)Σi(t)))

for i = 1, 2 in viscosity sense. Using similar argument in Proposition 2.3, we have

d

dt
‖Ψ1 −Ψ2(·, t)‖L∞(Rn) ≤ C|Σ1(t)− Σ2(t)| (4.1)

in viscosity sense for a positive C.
Noting that supx∈Rn u1(x, t) = 0, for any δ > 0 given, we can find y ∈ R

n such
that

−δ ≤ u1(y, t) ≤ 0.
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By the following inequalities,

−δ ≤ u1(y, t)− sup
Rn

u2(·, t)

≤ u1(y, t)− u2(y, t)

= b(y)[Σ1(t)− Σ2(t)] + Ψ1(y, t)−Ψ2(y, t)

≤ b(y)[Σ1(t)− Σ2(t)] + sup
Rn

[Ψ1(·, t)−Ψ2(·, t)],

we get

b(y)[Σ2(t)− Σ1(t)] ≤ sup
Rn

[Ψ1(·, t)−Ψ2(·, t)] + δ.

Here we may assume Σ2(t)− Σ1(t) is positive. Then

bm|Σ2(t)− Σ1(t)| = bm[Σ2(t)− Σ1(t)]

≤ b(y)[Σ2(t)− Σ1(t)]

≤ sup
x∈Rn

|Ψ1(·, t)−Ψ2(·, t)|+ δ.

Since δ > 0 is arbitrary, we have

bm|Σ2(t)− Σ1(t)| ≤ sup
Rn

|Ψ1(·, t)−Ψ2(·, t)|

by switching the role of Σ1 and Σ2 if necessary. Combining with (4.1) yields

d

dt
‖(Ψ1 −Ψ2)(·, t)‖L∞(Rn) ≤ C‖(Ψ1 −Ψ2)(·, t)‖L∞(Rn).

Consequently, uniqueness follows by Gronwall’s inequality. �

5. Nonuniqueness result

If R(x, I) is not strictly decreasing in I, we can give an example of nonuniqueness.

Theorem 5.1. Let I(t) be a nondecreasing continuous function such that I(0) = 0
and I(t) ≥ 0. Assume R(x, I) is defined as

{

R(x, I) = 0 |x| ≥ 1
2
,

R(x, I) = (1− |x|)(1− I(t)) |x| ≤ 1
2
,

and u0(x) satisfies






















0 |x| ≥ 2,

−(x−2
2
)2 1 ≤ x ≤ 2,

−(x+2
2
)2 −2 ≤ x ≤ −1,

1
2
x2 − 3

4
|x| ≤ 1.

Then, for T > 0 small enough, there exist infinitely many viscosity solutions to
{

ut = |Du|2 +R(x, I(t)) in R
n × [0, T ],

u(x, 0) = u0(x) on R
n,

(5.1)

satisfying

sup
Rn

u(·, t) = 0 on [0, T ]
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Proof. Let I(t) be a continuous nondecreasing function such that I(0) = 0 and c > 0
satisfy c ≥ 1 − I(t). Also we denote a unique viscosity solution of (5.1) by u(x, t).
Now let us define vc(x, t) as

vc(x, t) =























0 |x| ≥ 2,

−(x−2
2
)2 1 + ct ≤ x ≤ 2,

−1
4
+ ct |x| ≤ 1 + ct,

−(x+2
2
)2 −2 ≤ x ≤ −1− ct,

and wc(x, t) as

wc(x, t) =























0 |x| ≥ 2,

−(x−2
2
)2 2−

√
3
2
− ct ≤ x ≤ 2,

−3
4
− ct |x| ≤ 2−

√
3− ct,

−(x+2
2
)2 −2 ≤ x ≤ −(2−

√
3) + ct.

It is straightforward to check wc is a viscosity subsolution to (5.1) since there is
no test function touching from above at |x| = 1 + ct. On the other hand, as
(5.1) is a concave Hamilton-Jacobi equation and a Lipschitz continuous function vc
solves (5.1) almost everywhere sence. By Proposition 7.25 in [11], vc is a viscosity
supersolution. Therefore, we have

wc(x, 0) ≤ u(x, 0) ≤ vc(x, 0).

It follows that

wc(x, t) ≤ u(x, t) ≤ vc(x, t)

by comparison principle. Moreover, for T > 0 small,

sup
Rn

vc(·, t) = sup
Rn

wc(·, t) = 0 for 0 ≤ t ≤ T.

Therefore, u satisfies the constraint condition (5.1). As we can repeat that process
for any choice of I(t) and c, infinitely many solution pairs (u, I) are generated. �

6. Conclusion

We presented a new way of building a viscosity solution of Hamilton-Jacobi equa-
tion with an unknown function I(t) and a supremum constraint via a fixed point
argument. We also provided that when R(x, I) is separable in x and t, the solution
is unique for any nonnegative, locally Lipschitz continuous Hamiltonian H(p) satis-
fying H(0) = 0. Here, we do not need convexity of the Hamiltonian. On the other
hand, many solutions can be generated when the reaction R(x, I) fails to strictly
decreasing with respect to resource, I. Up to now, uniqueness of a solution pair
(u, I) corresponding to a general reaction R(x, I) is still open. In the recent work by
Mirrahimi and Roquejoffre [12], it was proved that the solution is unique under re-
strictive assumptions that Hamiltonian and initial condition are uniformly concave
and satisfy some further structural assumptions using optimal control formulation.
We plan to investigate this matter in the near future.



WELL-POSEDNESS FOR CONSTRAINED HAMILTON-JACOBI EQUATIONS 17

References

[1] S. Armstrong, H. V. Tran, Viscosity solutions of general viscous HamiltonJacobi equations,

Mathematische Annalen. 361 (2014), 647-687.

[2] G. Barles, Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided

visit, Nonlinear Analysis: Theory, Methods & Appl. 20 (1999), no. 9, 1123-1134.

[3] G. Barles, S. Mirrahimi, B. Perthame, Concentration in Lotka-Volterra parabolic or integral

equations: a general convergence result, Methods Appl. Anal. 16 (2009), no. 3, pp.321-340.

[4] G. Barles, B. Perthame, Concentrations and constrained Hamilton-Jacobi equations arising

in adaptive dynamics, Contemporary Math. 439 (2007), 57-68.

[5] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, The dynamics of adaptation : an illu-

minating example and a Hamilton-Jacobi approach, Th. Pop. Biol. 67 (2005), no. 4, 257-271.

[6] M. G. Crandall, L. C. Evans, P.-L. Lions, Some properties of viscosity solutions of Hamilton-

Jacobi equations, Transaction of American Mathematical Society, 282 (1984), no. 2, 487-502.

[7] O. Diekmann, Beginner’s guide to adaptive dynamics, Banach Center Publications 63 (2004),

47-86.

[8] S. A. H. Geritz, E. Kisdi, G. Mészena, J. A. J. Metz, Dynamics of adaptation and evolutionary

branching, Phy. Rev. Letters 78 (1997), 2024-2027.

[9] S. A. H. Geritz, E. Kisdi, G. Mészena, J. A. J. Metz, Evolutionary singular strategies and

the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology 12 (1998),

35-57.

[10] S. A. H. Geritz, E. Kisdi, , M. Gyllenberg, F. J. Jacobs, J. A. J. Metz Link between population

dynamics and dynamics of Darwinian evolution, Phy. Rev. Letters 95 (2005), no. 7.

[11] N. Q. Le, H. Mitake, H. V. Tran, Dynamical and Geometric Aspects of Hamilton-Jacobi and

Linearized Monge-Ampere Equations, Lecture notes in Mathematics 2183 (2016).

[12] S. Mirahimi, J.-M. Roquejoffre, A class of Hamilton-Jacobi equations with constraint: Unique-

ness and constructive approach, J. of Differential Equations 250.5 (2016), 4717-4738.

[13] B. Perthame, G. Barles, Dirac concentrations in Lotka-Volterra parabolic PDEs, Indiana Univ.

Math., J. 57 (2008), no. 7, 3275-3301.

Department of Mathematics, University of Wisconsin Madison, 480 Lincoln Drive,

Madison, WI 53706, USA

E-mail address : yeonkim@math.wisc.edu


	1. Introduction
	2. Construction of a solution of relaxed problem via a fixed point argument
	3. Limiting equation
	4. Uniqueness for a certain birth rate
	5. Nonuniqueness result
	6. Conclusion
	References

