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Numerical approximation of the data-rate limit for state

estimation under communication constraints

Sigurdur Hafstein∗ and Christoph Kawan†

Abstract

In networked control, a fundamental problem is to determine the smallest capacity of a

communication channel between a dynamical system and a controller above which a prescribed

control objective can be achieved. Often, a preliminary task of the controller, before selecting

the control input, is to estimate the state with a sufficient accuracy. For time-invariant

systems, it has been shown that the smallest channel capacity C0 above which the state can

be estimated with an arbitrarily small error, depending on the precise formulation of the

estimation objective, is given by the topological entropy or a quantity named restoration

entropy, respectively. In this paper, we propose an algorithm that computes rigorous upper

bounds of C0, based on previous analytical estimates.

Keywords: State estimation; communication constraints; nonlinear systems; topological entropy; restora-

tion entropy; Lyapunov-type functions; numerical computation
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1 Introduction

Networked control systems are spatially distributed systems, in which the communication between
sensors, controllers and actuators is accomplished through a shared digital communication net-
work. Examples can be found, for instance, in vehicle tracking, underwater communications for
remotely controlled surveillance and rescue submarines, remote surgery, space exploration and
aircraft design. Another large field of applications can be found in modern industrial systems,
where industrial production is combined with information and communication technology (‘Indus-
try 4.0’). A fundamental problem in networked control is to determine the minimal requirements
on the communication network for a specified control objective to be achieved.

In the simplest model case, a sensor measures the states of a dynamical system at discrete sam-
pling times and transmits the encoded state measurements through a finite-capacity channel to
a controller at a remote location. In this framework, various works characterize or estimate the
smallest channel capacity above which a given control objective (usually, stabilization of some
sort) can be achieved. An even more fundamental problem is to determine the smallest capacity
above which the controller is able to compute an estimate of the state with a given precision.
This problem has been studied under various assumptions on the system and the channel. No-
tably, Savkin [20] characterized the critical capacity by a quantity, which turns out to be infinite
if the system is genuinely affected by noise, and otherwise reduces to the topological entropy of
the system. A more recent contribution is Matveev and Pogromsky [16], which discusses three
estimation objectives of increasing strength and provides constructive methods to obtain upper
and lower bounds for the associated critical channel capacities. The contribution of the paper at
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hand consists in a numerical scheme to compute the upper bounds proposed in [15, 16]. Further
studies about state estimation under communication constraints include [11, 13].

The systems studied in [16] are of the form xt+1 = φ(xt) with a C1-map φ : Rn → R
n. The aim

is to generate an accurate estimate x̂t of the state xt at a remote location for initial states x0

confined to a compact set K ⊂ R
n. The only way to transmit information to the estimator is via

a noiseless discrete channel. At each time instant t, a coder encodes xt by a symbol et from a
finite coding alphabet M. This process can be described by maps Ct so that

et = Ct(x0, x1, . . . , xt; x̂0, δ), Ct : (Rn)t+1 × R
n × R>0 → M,

where x̂0 is an initial estimate satisfying ‖x0 − x̂0‖ ≤ δ for some δ > 0, depending on the aspired
exactness the estimate. The estimation process similarly can be described by maps Et so that

x̂t = Et(e0, e1, . . . , et; x̂0, δ), Et : Mt+1 × R
n × R>0 → R

n.

To allow a certain flexibility in the transmission of information, the number of bits that can
be transmitted in any time interval of length r is not fixed, but confined between two numbers
b−(r) ≤ b+(r), satisfying

C := lim
r→∞

b−(r)

r
= lim

r→∞

b+(r)

r
,

where C by definition is the capacity of the channel. A desirable objective is to obtain an estimate
of the form ‖xt − x̂t‖ ≤ ε for all t ≥ 0, whenever x0, x̂0 ∈ K and ‖x0 − x̂0‖ ≤ δ, where δ = δ(ε).
Writing C0 for the smallest capacity C above which this can be achieved for any ε > 0, it was shown
in [16] that C0 ≥ htop(φ;K) and C0 = htop(φ;K) if K is forward-invariant, where htop(φ;K) is
the topological entropy of φ on K.

One problem with the estimation objective addressed above is that the gap between the initial
error δ and the final error ε may be very large. Another problem is that a coding and estimation
policy based on topological entropy is likely to suffer from a severe non-robustness, since topological
entropy is highly discontinuous with respect to the dynamical system under consideration. To avoid
a drastic degradation of accuracy and at the same time obtain a coding and estimation scheme
that is more robust with respect to perturbations, one may require instead that ‖xt − x̂t‖ ≤ Gδ
for all t ≥ 0 with a constant G > 0. The smallest channel capacity C0 above which this objective
can be achieved can be described in terms of a different entropy notion, introduced in [17] under
the name restoration entropy. A closed-form expression for restoration entropy can be formulated
in terms of the singular values of the linearized system. This expression, which at the same time
is an upper bound on htop(φ;K), has been derived earlier by the authors of [16] in their papers
[15, 19], both for discrete- and continuous-time systems and also for time-varying systems.

In this paper, we consider a flow (φt)t∈R generated by an ODE ẋ = f(x) with a sufficiently smooth
vector field f on R

n. Our analysis focuses on the dynamics of (φt) on a compact forward-invariant
set K. Essentially following an approach used before for the computation of Lyapunov functions
[1, 6, 7, 14], we numerically compute a piecewise affine Riemannian metric on the simplices of
a triangulation of K, which is then used to produce an upper estimate on C0 in terms of the
eigenvalues of the symmetrized derivative of the vector field f , computed with respect to that
metric. Our algorithm works in two steps. The first one produces a piecewise affine function P on
the given triangulation with values in the positive definite (n × n) symmetric matrices, designed
in such a way to minimize the maximum of the largest generalized eigenvalue. The second step
produces a Lyapunov-like function, which is used to scale the metric P in order to make the
largest generalized eigenvalue even smaller. It needs to be mentioned that the original estimate in
[16, 19] involves not the largest generalized eigenvalue only, but the sum of the k largest generalized
eigenvalues, where 1 ≤ k ≤ n is chosen to maximize this sum. Hence, we can only expect good
results in low dimensions, where typically k = 1.

We apply our algorithm to the well-known Lorenz system with standard parameters on a region
containing the attractor. Using a simplified algorithm which works with a constant P , we are
already able to improve former entropy estimates obtained in [19] by analytical methods.
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The paper is organized as follows. In Section 2, we recall the main result of [16, 19], yielding upper
estimates on the topological entropy and the critical channel capacity. Section 3 explains the
relevance of our algorithm for the problem of state estimation under communications constraints.
A detailed description of the algorithm is presented in Section 4. In Section 5, the example of the
Lorenz system is discussed. Finally, Section 6 contains some concluding remarks.

2 Preliminaries

Notation. We denote by Z the set of integers and write Z+ = {n ∈ Z : n ≥ 0}. We write Sn

for the space of (n×n) real symmetric matrices and S+
n ⊂ Sn for the space of all positive definite

elements of Sn. If φ(t, x) denotes the (local) flow of an ODE ẋ = f(x) in R
n and v : Rn → E is a

C1-function into a Euclidean space E, we write v̇(x) for the orbital derivative of v at x, i.e.

v̇(x) =
d

dt

∣∣∣
t=0

v(φ(t, x)) ∈ L(R, E) ∼= E.

By I we denote the (n× n) identity matrix for any n ∈ N. By writing A � B for A,B ∈ Sn, we
mean that A−B is positive semi-definite. Furthermore, we write Bε(x) = {y ∈ R

n : ‖x− y‖ < ε}.
Finally, we use the notation i = 1 : n as a short-cut for i ∈ {1, . . . , n}.

Upper bounds for topological entropy. In the following, we recall the main result of [19],
providing upper bounds on topological entropy and critical channel capacity. In [19], the result is
formulated for nonautonomous ODEs. However, we only use the following autonomous version.

Consider an ODE of the form
ẋ = f(x), x ∈ R

n (1)

with a C1-vector field f : Rn → R
n. Since we only consider solutions that evolve within a compact

set, we may assume that all solutions are defined on the whole time domain. We write φ(t, x0)
for the unique solution satisfying the initial condition x(0) = x0. For a fixed t ∈ R, we also write
φt : R

n → R
n for the diffeomorphism x 7→ φ(t, x). We further assume the existence of a compact

forward-invariant set K ⊂ R
n, i.e. φt(K) ⊂ K for all t ≥ 0.

The topological entropy of φ on K, denoted by htop(φ;K), can be defined as follows. For τ, ε > 0,
a subset E ⊂ R

n (τ, ε)-spans K if for every x ∈ K there is y ∈ E with

max
0≤t≤τ

‖φ(t, x)− φ(t, y)‖ ≤ ε.

Writing r(τ, ε, φ,K) for the minimal cardinality of any (τ, ε)-spanning set for K,

htop(φ;K) := lim
ε↓0

lim sup
τ→∞

1

τ
log2 r(τ, ε, φ,K).

2.1 Theorem: Let P : K → S+
n and vd : K → R, 1 ≤ d ≤ n, be C1-functions and let λ1(x) ≥

. . . ≥ λn(x) denote the solutions of the algebraic equation

det
[
Df(x)⊤P (x) + P (x)Df(x) + Ṗ (x) − λP (x)

]
= 0. (2)

Let Λd ≥ 0, 1 ≤ d ≤ n, be constants so that

d∑

i=1

λi(x) + v̇d(x) ≤ Λd for all x ∈ K. (3)

Then for Λ := max1≤d≤nΛd, the topological entropy of φ on K satisfies

htop(φ;K) ≤ Λ

2 ln 2
.
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Some remarks about the formulation of the theorem are in order.

2.2 Remark: The functions P and vd in [19] depend on three variables, i.e. P = P (t, s, x0) and
vd = vd(t, s, x0), where t ≥ s are time variables. Such functions can be obtained from the above
formulation by putting

P̃ (t, s, x0) := P (φ(t − s, x0)), ṽd(t, s, x0) := vd(φ(t − s, x0)),

and it is easy to verify that the so-defined functions satisfy the requirements of [19, Thm. 3.2].

2.3 Remark: The function P can be interpreted as a Riemannian metric on K, defined by

〈v, w〉x := 〈P (x)v, w〉 for all x ∈ K.

Indeed, let X(·) denote the solution to the following initial value problem corresponding to the
variational equation of (1):

Ẏ (t) = Df(φt(x0))Y (t), Y (0) = I.

Let α1(t) ≥ . . . ≥ αn(t) denote the singular values of X(t) w.r.t. the metric 〈·, ·〉(·), i.e. the

eigenvalues of the self-adjoint operator
√
X(t)∗X(t), where X(t)∗ is defined by 〈X(t)v, w〉φt(x0) ≡

〈v,X(t)∗w〉x0
. Then, according to [19, Prop. 8.6],

α1(t)α2(t) · · ·αd(t) ≤ exp

(
1

2

∫ t

0

[λ1(φ(s, x0)) + · · ·+ λd(φ(s, x0))]ds

)
, 1 ≤ d ≤ n. (4)

We expect that the number d, where the maximum max1≤d≤nΛd is attained, is more or less fixed
for a given system under any reasonable choice of the functions v1, . . . , vn (it is something like the
number of positive Lyapunov exponents). If this is the case, we can also incorporate the function
vd into the metric by putting

〈v, w〉x := 〈evd(x)/dP (x)v, w〉 for all x ∈ K.

Then (2) is equivalent to

det

[
Df(x)⊤P (x) + P (x)Df(x) + Ṗ (x)−

(
λ− 1

d
v̇d(x)

)
P (x)

]
= 0,

and thus, the sum
∑d

i=1 λi(x) with the solutions of (2) becomes
∑d

i=1 λi(x) + v̇d(x).

The functions vi in Theorem 2.1 have some similarity with Lyapunov functions. Instead of v̇i < 0
we have the inequalities (3). In the rest of the paper, we call such functions Lyapunov-type

functions.

3 The state estimation problem

In this section, we show how Theorem 2.1 is related to the problem of state estimation over a
digital channel.

Consider a dynamical system given by an ODE of the form (1). Suppose that a sensor, fully
observing the state xt of the system, sends its data to an encoder. At discrete sampling times, the
encoder sends a signal et through a noisefree discrete channel to a decoder (without transmission
delay). The decoder acts as an observer of the system, trying to reconstruct the state from the
received data. For simplicity, we assume that the times of transmissions are t = 0, 1, 2, . . .. We
write xt for the state at time t and x̂t for its estimate generated by the observer. Moreover, we
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assume that x0, x̂0 ∈ K for a compact and forward-invariant set K ⊂ R
n. The encoder and the

observer are described by mappings

et = Ct(x0, x1, . . . , xt; x̂0, δ), Ct : (Rn)t+1 × R
n × R>0 → M,

and
x̂t = Et(e0, e1, . . . , et; x̂0, δ), Et : Mt+1 × R

n × R>0 → R
n.

The argument δ corresponds to the initial error at time zero, i.e. ‖x0 − x̂0‖ ≤ δ. In particular, we
assume that both the encoder and the observer are given the data x̂0 and δ.

We assume that the channel can transmit at least b−(r) and at most b+(r) bits in any time interval
of length r. The capacity of the channel is then defined by

C := lim
r→∞

b−(r)

r
= lim

r→∞

b+(r)

r
,

assuming that these limits exist and coincide.

We consider the following two observation objectives:

(O1) The observer observes the system with exactness ε > 0 if there exists δ = δ(ε,K) so that
x0, x̂0 ∈ K with ‖x0 − x̂0‖ ≤ δ implies

sup
t≥0

‖xt − x̂t‖ ≤ ε.

(O2) The observer regularly observes the system if there exist G, δ∗ > 0 so that for all δ ∈ (0, δ∗)
and x0, x̂0 ∈ K with ‖x0 − x̂0‖ ≤ δ,

sup
t≥0

‖xt − x̂t‖ ≤ Gδ.

We say that the system is

• observable on K over a channel of capacity C if for every ε > 0 an observer exists which
observes the system with exactness ε over this channel;

• regularly observable on K over a channel of capacity C if there exists an observer which
regularly observes the system over this channel.

For objective (O1) we have the following result, cf. [16]:

3.1 Theorem: The smallest channel capacity C0, so that system (1) is observable on K over
every channel of capacity C > C0 is given by

C0 = htop(φ;K).

Due to the problems related to estimation policies based on topological entropy, and the gap
between the initial error δ and the final exactness ε, both explained in the introduction, [17]
introduces another entropy notion tailored to characterize C0 for objective (O2).

For t > 0, x ∈ K and δ > 0 let p(t, x, δ) denote the minimal number of δ-balls needed to cover the
image φt(Bδ(x) ∩K). The restoration entropy of φ on K is given by

hres(φ;K) := lim
t→∞

1

t
lim sup

δ↓0
sup
x∈K

log2 p(t, x, δ).

The limit in t exists due to subadditivity, and the following data-rate theorem holds, cf. [17].
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3.2 Theorem: The smallest channel capacity C0, so that system (1) is regularly observable on
K over every channel of capacity C > C0 is given by

C0 = hres(φ;K).

Now, hres(φ;K) is a quantity that is much better behaved than htop(φ;K) in several respects. A
first manifestation of this is the following characterization of hres(φ;K) in terms of the singular
values of the derivative Dφt(x), cf. [17, Thm. 11]:

3.3 Theorem: Assume that the closure of K equals the closure of its interior. Then

hres(φ;K) = lim
t→∞

1

t
max
x∈K

n∑

i=1

max{0, log2 αi(t, x)}, (5)

where α1(t, x) ≥ . . . ≥ αn(t, x) are the singular values of Dφt(x).

The existence of the limit in (5) follows again from subadditivity. Hence, the limit can be re-
placed by the infimum over all t > 0. From this fact, one easily sees that hres depends upper
semicontinuously on the system under consideration (in the C1-topology).

We claim that Theorem 2.1 also holds with hres(φ;K) in place of htop(φ;K). A heuristic argument,
neglecting the functions v1, . . . , vn, proceeds as follows. First, one shows that formula (5) also
holds if we compute the singular values of Dφt(x) with respect to some Riemannian metric on K,
described by a C1-function P : K → S+

n . The adjoint of Dφt(x) is then given by

Dφt(x)
∗ = P (x)−1Dφt(x)

⊤P (φt(x)),

hence the singular value equation can be written as

det [Dφt(x)
⊤P (φt(x))Dφt(x)− λP (x)] = 0. (6)

Thus, due to subadditivity, for every t > 0 we have

hres(φ;K) ≤ 1

t
max
x∈K

n∑

i=1

max{0, log2 αP
i (t, x)}, (7)

where αP
1 (t, x) ≥ . . . ≥ αP

n (t, x) are the square-roots of the solutions to (6). Assuming the existence
of differentiable curves λ : [0, ε) → R and v : [0, ε) → R

n with ‖v(t)‖ ≡ 1 so that

Dφt(x)
⊤P (φt(x))Dφt(x)v(t) = λ(t)P (x)v(t) for all t ∈ [0, ε), (8)

differentiation with respect to t at t = 0 yields

(
Df(x)⊤P (x) + P (x)Df(x) + Ṗ (x)

)
v(0) + P (x)v̇(0) = λ̇(0)P (x)v(0) + λ(0)P (x)v̇(0).

For t = 0, equation (8) reduces to P (x)v(0) = λ(0)P (x)v(0), hence λ(0) = 1. Consequently, the
above equation is equivalent to

(
Df(x)⊤P (x) + P (x)Df(x) + Ṗ (x) − λ̇(0)P (x)

)
v(0) = 0.

Letting t → 0 in the right-hand side of (7) and comparing with Theorem 2.1 then yields the claim.
For a precise formulation and proof, we refer to [17, Thm. 14].

Hence, we can conclude that Theorem 2.1, and thus our algorithm yields upper bounds for
hres(φ;K), i.e. for the smallest channel capacity above which the estimation objective (O2) can
be achieved. Moreover, the output of our algorithm can be used to implement a coding and
estimation policy which leads to regular observation, as is shown in [16, 17].

6



4 Description of the algorithm

In this section, we describe the algorithm for computing the upper bounds provided by Theorem
2.1, which is split into two optimization problems. Before we go into details, we provide a short
outline: Our algorithm aims at the computation of optimal functions P and vi by solving two
optimization problems. Starting with a triangulation T of the compact forward-invariant set K
(or some larger set), the first optimization problem delivers a piecewise affine function P on K,
affine on each simplex of the triangulation T , with values in S+

n . This is accomplished by solving
a semidefinite feasibility problem with linear matrix inequality constraints at each vertex and
extension to the whole domain by affine interpolation of the values obtained at the vertices. The
decisive quantity in this problem is a positive parameter µ, so that the solution P (if it exists)
satisfies λmax(x) ≤ µ for all x ∈ K, where λmax(x) denotes the largest generalized eigenvalue of
the pair (A(x), P (x)) with

A(x) := P (x)Df(x) + Df(x)⊤P (x) + (wν
ij · f(x))i,j=1:n,

where wν
ij stands for the gradient of the (i, j)-th entry of P on the simplex Sν satisfying x ∈ Sν .

If the algorithm yields a feasible solution for one parameter µ1, it can be run again for a smaller
parameter µ2 < µ1 to check if there is still a feasible solution. Repeating this procedure, the
maximum of the largest generalized eigenvalues over K can be minimized.

The second optimization problems takes as an input a feasible solution P of the first problem
and an upper bound m̃ on the number of positive generalized eigenvalues of the matrix pairs
(A(x), P (x)). It delivers a piecewise affine real-valued function V , affine on each simplex of a
triangulation T ∗, which is a refinement of T , and another real-valued function µ. This is done by
solving a semidefinite problem with linear matrix inequality constraints at each vertex of T ∗ and
extending again by affine interpolation. The optimization minimizes Q so that for all x ∈ K,

A(x) − µ(x)P (x) � 0 and V̇ (x) + m̃µ(x) ≤ Q.

A detailed description of these two steps is given in the following subsections. The main results
are Theorem 4.10 and Theorem 4.12, which show that solutions to the optimization problems,
computed at the vertices of the triangulation, extend to solutions on the whole domain of interest
by affine interpolation.

4.1 The semidefinite optimization problem

Given vectors x0, x1, . . . , xn ∈ R
n that are affinely independent, i.e. the vectors x1 − x0, x2 −

x0, . . . , xn − x0 are linearly independent, the convex hull

S = co(x0, x1, . . . , xn) :=

{
n∑

k=0

λkxk : λk ∈ [0, 1] and
n∑

k=0

λk = 1

}

is called an n-simplex or simply a simplex. A set

co(xk0
, xk1

, . . . , xkj
) :=

{
j∑

i=0

λki
xki

: λki
∈ [0, 1] and

j∑

i=0

λki
= 1

}

with 0 ≤ k0 < k1 < . . . < kj ≤ n and 0 ≤ j < n is called a j-face of the simplex S.

4.1 Definition: (Triangulation) We call a finite set T = {Sν}ν of n-simplices Sν a triangula-
tion in R

n if two simplices Sν ,Sµ ∈ T , µ 6= ν, intersect in a common face or not at all and the
interior D◦

T of DT :=
⋃

Sν∈T Sν is connected.
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4.1 Optimization Problem Given is a system ẋ = f(x), f ∈ C3(Rn;Rn), a triangulation T in
R

n, and a parameter µ ≥ 0. The optimization problem is a semidefinite feasibility problem with
linear matrix inequality constraints.

Constants: The constants used in this problem are

1. ǫ0 > 0 – lower bound on the matrix P (xk)

2. The diameter hν of each simplex Sν ∈ T :

hν := diam(Sν) = max
x,y∈Sν

‖x− y‖2

3. Upper bounds Bν on the second-order derivatives of the components fk of f on each simplex
Sν ∈ T :

Bν ≥ max
x∈Sν

i,j,k=1:n

∣∣∣∣
∂2fk(x)

∂xi∂xj

∣∣∣∣ (9)

4. Upper bounds B3,ν on the third-order derivatives of the components fk of f on each simplex
Sν ∈ T :

B3,ν ≥ max
x∈Sν

i,j,k,l=1:n

∣∣∣∣
∂3fl(x)

∂xi∂xj∂xk

∣∣∣∣

Variables: The variables of the problem are

1. Pij(xk) ∈ R for all 1 ≤ i ≤ j ≤ n and all vertices xk of all simplices Sν = co(x0, . . . , xn) ∈ T .
For 1 ≤ i ≤ j ≤ n the variable Pij(xk) is the (i, j)-th entry of the (n×n) matrix P (xk). The
matrix P (xk) is assumed to be symmetric and therefore these components determine it.

2. Cν ∈ R
+
0 for all simplices Sν ∈ T – upper bound on P in Sν

3. Dν ∈ R
+
0 for all simplices Sν ∈ T – upper bound on the derivative of Pij in Sν

Objective: The objective function of the optimization problem is not needed because it is a
feasibility problem, but one can, e.g., minimize max

Sν∈T
Cν .

Constraints:

1. Positive definiteness of P

For each simplex Sν = co(x0, . . . , xn) ∈ T and each vertex xk of Sν :

P (xk) � ǫ0I

2. Upper bound on P

For each simplex Sν = co(x0, . . . , xn) ∈ T and each vertex xk of Sν :

P (xk) � CνI

3. Bound on the derivative of P

For each simplex Sν ∈ T and all 1 ≤ i ≤ j ≤ n :

‖wν
ij‖1 ≤ Dν

Here wν
ij = ∇Pij

∣∣
Sν

(x) for all x ∈ Sν . See Remark 4.2 for details.
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4. Bounds on the largest generalized eigenvalue

For each simplex Sν = co(x0, . . . , xn) ∈ T and each vertex xk of Sν :

0 � A(xk)− µP (xk) + h2
νEνI

Here
A(xk) := P (xk)Df(xk) + Df(xk)

⊤P (xk) + (wν
ij · f(xk))i,j=1:n,

where Df(xk) is the Jacobian matrix of f at xk, (w
ν
ij · f(xk))i,j=1:n denotes the symmetric

(n× n)-matrix with entries wν
ij · f(xk) and wν

ij is defined as in (10) and is the same vector
for all vertices in one simplex. Further,

Eν := n2[(1 + 4
√
n)BνDν + 2nB3,νCν ].

4.2 Remark: In Constraints 3 and 4 in Optimization Problem 4.1, the gradient wν
ij of the affine

function Pij

∣∣
Sν

on the simplex Sν = co(x0, . . . , xn), i.e. ∇Pij

∣∣
Sν

= wν
ij , is given by the expression

wν
ij := X−1

ν




Pij(x1)− Pij(x0)
...

Pij(xn)− Pij(x0)


 ∈ R

n, (10)

where Xν = (x1 − x0, x2 − x0, . . . , xn − x0)
⊤ ∈ R

n×n is the so-called shape-matrix of the simplex
Sν . For a proof of this fact and, moreover, that the definition is independent of the choice of the
vertex x0, see [7, Rem. 2.9].

The Constraints 3 are indeed linear and can be implemented using the auxiliary variables Dk
ν and

the constraints
−Dk

ν ≤ [wν
ij ]k ≤ Dk

ν for k = 1 : n,

where [wν
ij ]k is the k-th component of the vector wν

ij , and setting Dν =
∑n

k=1 D
k
ν . Similarly, the

constraints ‖∇µξ‖∞ ≤ Dµ
ξ in Optimization Problem 4.2 can be implemented as

−Dµ
ξ ≤ [∇µξ]k ≤ Dµ

ξ for k = 1 : n.

4.3 Remark: The constraints above are easily transferred into the standard form
∑m

i=1 Fiyi −
F0 � 0, F0, F1, . . . , Fm ∈ R

n×n constant matrices and y1, y2, . . . , ym ∈ R the variables, for semidef-
inite programming (SDP) with linear matrix inequality (LMI) constraints. See, e.g., [6, Rem. 4.10]
for a similar transfer.

4.4 Remark: The Optimization Problem 4.1 always has a feasible solution if the parameter µ
is chosen large enough. Indeed, even for a fixed P � ǫ0I the constraints are fulfilled for a large
enough µ.

4.2 Feasible solution to Optimization Problem 4.1

A feasible solution of the Optimization Problem 4.1 returns a matrix P (xk) = (Pij(xk))i,j=1:n at
each vertex xk of the triangulation T and values Cν and Dν for each simplex Sν ∈ T . From these
we can easily obtain A(xk) and Eν as in Constraints 4 at each vertex xk and for each simplex Sν ,
respectively.

We define the CPA (continuous piecewise affine) metric M by affine interpolation on each simplex.

4.5 Definition: (CPA interpolation) Let T be a triangulation in R
n with DT =

⋃
Sν∈T Sν .

Let Pij(xk) be fixed by a feasible solution to the Optimization Problem 4.1. An x ∈ Sν =

9



co(x0, . . . , xn) ∈ T can be written uniquely as x =
∑n

k=0 λkxk with λk ∈ [0, 1] and
∑n

k=0 λk = 1
and we define

Pij(x) :=

n∑

k=0

λkPij(xk)

and

P (x) :=




P11(x) P12(x) · · · P1n(x)
P21(x) P22(x) · · · P2n(x)

...
...

. . .
...

Pn1(x) Pn2(x) · · · Pnn(x)


 . (11)

We refer to the functions Pij and P as the CPA interpolations of the values Pij(xk) and P (xk),
respectively, where the xk are the vertices of the simplices in T . Furthermore, we write CPA[T ]
for the space of all piecewise affine functions on DT defined in this way by interpolation of the
values on the vertices of T .

The following lemma can be proved exactly as [6, Lem. 4.13].

4.6 Lemma: The matrix P (x) in (11) is symmetric and positive definite for all x ∈ DT .

4.7 Definition: (Orbital derivative) Let P (x) be as in Definition 4.5 and fix a point x ∈ D◦
T .

As shown in the proof of [6, Lem. 4.7], there exists aSν = co(x0, . . . , xn) ∈ T and a number θ∗ > 0
such that x+ θf(x) ∈ Sν for all θ ∈ [0, θ∗]. Then x =

∑n
k=0 λkxk with λk ∈ [0, 1],

∑n
k=0 λk = 1,

and we define the orbital derivative Ṗij(x) of Pij at x as

Ṗij(x) := wν
ij · f(x).

Our definition of the orbital derivative is natural, because with t 7→ φ(t, x) as the solution to
ẋ = f(x) crossing x at time t = 0 and for any locally Lipschitz function g : Rn → R, we have
(cf. [14, Thm. 1.17])

lim sup
h→0+

g(φ(h, x))− g(x)

h
= lim sup

h→0+

g(x+ hf(x))− g(x)

h

and with Sν chosen for x as in Definition 4.7, we have

lim sup
h→0+

Pij(x+ hf(x))− Pij(x)

h
= wν

ij · f(x).

Note that Pij

∣∣
Sν

is an affine function and its gradient wν
ij was defined in Constraints 3 of Opti-

mization Problem 4.1 and is the same vector for all points x ∈ Sν .

Before proceeding to prove the implications of Optimization Problem 4.1, let us first recall a few
elementary relations about matrix norms. For an A ∈ R

n×n we define

‖A‖max := max
i,j=1:n

|aij | and ‖A‖p := max
‖x‖p=1

‖Ax‖p for p = 1, 2,∞.

The following relations hold:

‖A‖max ≤ ‖A‖2 ≤ n‖A‖max, ‖A‖2 ≤
√
n‖A‖1, and ‖A‖2 ≤

√
n‖A‖∞.

For a symmetric and positive definite A, the largest singular value λmax of A, which equals ‖A‖2
and is the largest of its eigenvalues, is the smallest number such that A � λmaxI. Further,

‖A‖1 = max
j=1:n

n∑

i=1

|aij | = ‖A⊤‖∞.
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We will now relate Ṗ (x) to Ṗ (xk), as well as P (x)Df(x) to P (xk)Df(xk). For the proof we
will need the following auxiliary result, see [1, Prop. 4.1 and Cor. 4.3]. The notation is as in
Optimization Problem 4.1.

4.8 Lemma: Denoting the Hessian of f by H(x) :=
(

∂2f(x)
∂xi∂xj

)

ij
, we have

∥∥∥∥∥f(x)−
n∑

k=0

λkf(xk)

∥∥∥∥∥
∞

≤ max
x∈Sν

‖H(x)‖2h2
ν ≤ nBνh

2
ν .

4.9 Lemma: Consider a feasible solution to Optimization Problem 4.1 and let P be defined as
in Definition 4.5. Fix a point x ∈ D◦

T and a corresponding simplex Sν = co(x0, x1, . . . , xn) ∈ T
as in Definition 4.7. Set

A(y) := P (y)Df(y) + Df(y)⊤P (y) + (wν
ij · f(y))i,j=1:n

for all y ∈ Sν . Then we have the following estimate:

∥∥∥∥∥A(x)−
n∑

k=0

λkA(xk)

∥∥∥∥∥
2

≤ h2
νEν . (12)

Proof: We show this in several steps:

Step 1: Entry-wise bounds on Ṗ(x)
The estimate ∣∣∣∣∣w

ν
ij · f(x)−

n∑

k=0

λkw
ν
ij · f(xk)

∣∣∣∣∣ ≤ nBνDνh
2
ν (13)

follows by Hölder’s inequality, Constraints 3, and Lemma 4.8:

∣∣∣∣∣w
ν
ij ·
(
f(x)−

n∑

k=0

λkf(xk)

)∣∣∣∣∣ ≤ ‖wν
ij‖1

∥∥∥∥∥f(x) −
n∑

k=0

λkf(xk)

∥∥∥∥∥
∞

≤ DνnBνh
2
ν .

Step 2: Entry-wise bounds on P(x)Df(x) and Df(x)⊤P(x)
We show that

∣∣∣∣∣[P (x)Df(x)]ij −
n∑

k=0

λk[P (xk)Df(xk)]ij

∣∣∣∣∣ ≤ nh2
ν(2

√
nBνDν + nB3,νCν). (14)

Consider two scalar-valued functions g, h ∈ C2(Sν). We apply Lemma 4.8 to gh, yielding

∣∣∣∣∣g(x)h(x) −
n∑

k=0

λkg(xk)h(xk)

∣∣∣∣∣ ≤ max
y∈Sν

‖H(y)‖2h2
ν , (15)

where the matrix H(y) is defined by [H(y)]rs := ∂2(gh)(y)
∂xr∂xs

. Set g(y) := Pil(y). Since Pil(y) =

wν
il · (y − x0) + Pil(x0), we get ∂g

∂xs
(y) = [wν

il]s and ∂2g
∂xr∂xs

(y) = 0 for all y ∈ Sν . Hence,

∂

∂xs
gh =

∂g

∂xs
h+ g

∂h

∂xs
= [wν

il]sh+ g
∂h

∂xs

and then

∂2

∂xr∂xs
gh = [wν

il]s
∂h

∂xr
+

∂g

∂xr

∂h

∂xs
+ g

∂2h

∂xr∂xs
= [wν

il]s
∂h

∂xr
+ [wν

il]r
∂h

∂xs
+ Pil

∂2h

∂xr∂xs
.
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Now set h(y) := [Df(y)]lj . Then
∂h
∂xr

= ∂2fl
∂xr∂xj

and ∂2h
∂xr∂xs

= ∂3fl
∂xr∂xs∂xj

and thus

|[H(y)]rs| =
∣∣∣∣
∂2(gh)(y)

∂xr∂xs

∣∣∣∣ ≤ |[wν
il]s|Bν + |[wν

il]r|Bν + |Pil(y)|B3,ν .

Using in succession for any H1, H2, H3 ∈ R
n×n that

‖H1 +H2 +H3‖2 ≤ ‖H1‖2 + ‖H2‖2 + ‖H3‖2

and
‖H1‖2 ≤

√
n‖H1‖∞, ‖H2‖2 ≤

√
n‖H2‖1, and ‖H3‖2 ≤ n‖H3‖max,

this delivers

‖H(y)‖2 ≤
√
n‖wν

il‖1Bν +
√
n‖wν

il‖1Bν + nB3,ν max
x∈Sν

max
1≤i≤l≤n

|Pil(x)|

≤ 2
√
nBνDν + nB3,νCν , (16)

because we have |Pil(y)| ≤ ‖P (y)‖2 ≤ Cν by Constraints 2.

Hence, (15) and (16) establish

∣∣∣∣∣[P (x)Df(x)]ij −
n∑

k=0

λk[P (xk)Df(xk)]ij

∣∣∣∣∣ =
∣∣∣∣∣

n∑

l=1

Pil(x)[Df(x)]lj −
n∑

l=1

n∑

k=0

λkPil(xk)[Df(xk)]lj

∣∣∣∣∣

≤
n∑

l=1

∣∣∣∣∣Pil(x)[Df(x)]lj −
n∑

k=0

λkPil(xk)[Df(xk)]lj

∣∣∣∣∣ ≤ n · (2
√
nBνDν + nB3,νCν) · h2

ν .

Step 3: Bounds on matrices
From the definition of A(y) we get

∥∥∥∥∥A(x) −
n∑

k=0

λkA(xk)

∥∥∥∥∥
2

≤
∥∥∥∥∥P (x)Df(x) −

n∑

k=0

λkP (xk)Df(xk)

∥∥∥∥∥
2

+

∥∥∥∥∥Df(x)⊤P (x) −
n∑

k=0

λkDf(xk)
⊤P (xk)

∥∥∥∥∥
2

+

∥∥∥∥∥(w
ν
ij · f(x))i,j=1:n −

n∑

k=0

λk(w
ν
ij · f(xk))i,j=1:n

∥∥∥∥∥
2

.

The first two norms on the right-hand side are equal because P is symmetric and therefore the
matrices in the norms are conjugate. The entry-wise bounds (13) and (14) together with ‖H‖2 ≤
n‖H‖max for any H ∈ R

n×n now deliver (12). �

Using Lemma 4.9 we can now establish, that the parameter µ in Optimization Problem 4.1 is an
upper bound on the generalized eigenvalues of the matrix pair (A(x), P (x)) for all x ∈ D◦

T . For
completeness, we first give a short description of generalized eigenvalues as needed here.

The generalized eigenvalue problem for two symmetric matrices A,B ∈ R
n×n, B ≻ 0, is to find

values λi ∈ R and corresponding nonzero vectors xi ∈ R
n such that Axi = λiBxi for i = 1 : n.

Since B ≻ 0, we can define B
1

2 := O⊤D
1

2O, where B = O⊤DO is the spectral decomposition of
B, i.e. O is orthogonal and D is a diagonal matrix with strictly positive entries on the diagonal.
D

1

2 is then canonically defined as the diagonal matrix with the square-roots of the entries of D
on the diagonal. Further, B− 1

2 := (B
1

2 )−1. The matrix C = B− 1

2AB− 1

2 is then symmetric and if

λ ∈ R is an eigenvalue of C with corresponding eigenvector y ∈ R
n, then B− 1

2AB− 1

2 y = λy. From
this AB− 1

2 y = λB
1

2 y = BB− 1

2 y or Ax = λBx with x = B− 1

2 y, i.e. λ is a generalized eigenvalue
for the matrix pair A and B and x is a corresponding generalized eigenvector. With {yi} as an
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orthonormal set of eigenvectors of C, the generalized eigenvectors xi = B− 1

2 yi are thus a basis of
R

n and x⊤

i Bxj = y⊤

i B
− 1

2BB− 1

2 yj = y⊤

i yj = δij . It follows from an easy calculation that if λmax

is the largest generalized eigenvalue of the pair (A,B), then

0 � A− µB if and only if µ ≥ λmax.

Also note that 0 � A − µB + αI for an α ≥ 0 clearly implies 0 � A − µB. Since B ≻ 0, the
smallest eigenvalue of B is given by ‖B−1‖−1

2 and then ‖B−1‖−1
2 I � B and with α ≥ 0 we get

A− µB + αI � A−
(
µ− α‖B−1‖2

)
B � 0 if µ− α‖B−1‖2 ≥ λmax. (17)

From this discussion on generalized eigenvalues and Lemma 4.9 we can draw the following conclu-
sion:

4.10 Theorem: Assume that we have a feasible solution to Optimization Problem 4.1 with pa-
rameter µ ≥ 0 and let P (x) be defined from the feasible solution as in Definition 4.5 and define
for every x ∈ D◦

T the matrix

A(x) := P (x)Df(x) + Df(x)⊤P (x) + (wν
ij · f(x))i,j=1:n.

Denote for every x ∈ D◦
T by λmax(x) the largest generalized eigenvalue of the matrix pair

(A(x), P (x)). Then µ ≥ λmax(x) for every x ∈ D◦
T .

Proof: Let x ∈ D◦
T be arbitrary and fix an Sν ∈ T as in Definition 4.7 such that x ∈ Sν . By

Lemma 4.9 we have ∥∥∥∥∥A(x)−
n∑

k=0

λkA(xk)

∥∥∥∥∥
2

≤ h2
νEν ,

from which

A(x) −
n∑

k=0

λkA(xk) �
∥∥∥∥∥A(x) −

n∑

k=0

λkA(xk)

∥∥∥∥∥
2

I � h2
νEνI

follows. But then

A(x) − µP (x) �
∥∥∥∥∥A(x) −

n∑

k=0

λkA(x)

∥∥∥∥∥
2

I +

n∑

k=0

λkA(xk)− µ

n∑

k=0

λkP (xk)

�
n∑

k=0

λk

[
A(xk)− µP (xk) + h2

νEνI
]
� 0

by Constraints 4. The assertion of the lemma now follows by the discussion on generalized eigen-
values above. �

After we have found a parameter µ ≥ 0 and a triangulation T such that Optimization Problem 4.1
has a feasible solution, we can use this solution as the input to another optimization problem to get
bounds on htop(φ;K) as in Theorem 2.1. We now use P (x) computed by Optimization Problem
4.1 to compute two functions, µ, V : DT → R. The function µ, satisfying 0 ≤ λmax(x) ≤ µ(x) ≤ µ,
is a local upper bound on the largest generalized eigenvalue λmax(x) of (A(x), P (x)) and V is a
Lyapunov-type function as used in Theorem 2.1.

4.2 Optimization Problem Given is a feasible solution to Optimization Problem 4.1 for a sys-
tem ẋ = f(x), f ∈ C3(Rn;Rn), with a triangulation T , a parameter µ ≥ 0, and an upper bound
m̃ on the number of positive generalized eigenvalues of the matrix pairs (A(x), P (x)) from the
feasible solution. Further, a refined triangulation T ∗ of T is given, i.e. T ∗ is a triangulation as in
Definition 4.1, DT ∗ = DT , and each simplex Sν ∈ T is the union of simplices Sξ in T ∗.

The optimization problem is a semidefinite problem with linear matrix inequality constraints.

Constants The constants used in problem are :
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1. The diameter hξ of each simplex Sξ ∈ T ∗ :

hξ := diam(Sξ) = max
x,y∈Sξ

‖x− y‖2

2. Dν and Eν for each simplex Sν ∈ T – delivered by the feasible solution to Optimization
Problem 4.1

3. Upper bounds B∗
ξ on the second-order derivatives of the components of f on each simplex

Sξ ∈ T ∗, just as in (9) but for the simplices in T ∗. For example, one can set B∗
ξ := Bν for

every Sξ ∈ T ∗ fulfilling Sξ ⊂ Sν ∈ T .

We additionally use the functions A,P : D∗
T → R

n×n from the feasible solution to Optimization
Problem 4.1.

Variables The variables of the semidefinite feasibility problem are :

1. µ(xk) ∈ R for all vertices xk of all simplices Sν = co(x0, . . . , xn) ∈ T ∗ – upper bound on
the largest generalized eigenvalue

2. Dµ
ξ ∈ R

+
0 for all simplices Sξ ∈ T ∗ – upper bound on the gradient of µ

3. V (xk) ∈ R for all vertices xk of all simplices Sν = co(x0, . . . , xn) ∈ T ∗ – value of the
Lyapunov-type function at xk

4. DV
ξ ∈ R for all simplices Sξ ∈ T ∗ – upper bound on the gradient of V

5. Q ∈ R
+
0 – the quantity to be minimized

Objective
minimize Q

Constraints

1. Bound on the gradient of µ
For each simplex Sξ = co(x0, . . . , xn) ∈ T ∗ :

‖∇µξ‖∞ ≤ Dµ
ξ

See Remark 4.2 for details.

2. µ(x) an upper bound on the generalized eigenvalues
For each simplex Sξ = co(x0, . . . , xn) ∈ T ∗ and each vertex xk of Sξ :

A(xk)− µ(xk)P (xk) + h2
ξ(Eν + 2n

√
nDνD

µ
ξ )I � 0 (18)

Eν and Dν correspond to the simplex Sν ∈ T such that Sξ ⊂ Sν .

3. Bound on the gradient of V
For each simplex Sξ = co(x0, . . . , xn) ∈ T ∗ :

‖∇Vξ‖1 ≤ DV
ξ

Here ∇Vξ := ∇V
∣∣
Sξ

(x) for all x ∈ Sξ. It is constructed exactly as the vectors wν
ij in

Optimization Problem 4.1, see also Remark 4.2.

4. Upper bound on the sum of generalized eigenvalues
For each simplex Sξ = co(x0, . . . , xn) ∈ T ∗ and each vertex xk of Sξ :

∇Vξ · f(xk) + h2
ξ · nB∗

ξD
V
ξ + m̃µ(xk) ≤ Q (19)
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The orbital derivative of V is defined as in Definition 4.7, but with the triangulation T ∗ of course.

4.11 Remark: The Optimization Problem 4.2 clearly has a solution Q ≥ m̃µ, where µ is the
parameter from Optimization Problem 4.1 chosen such that it has a feasible solution. Indeed, just
set µ(xk) = µ and V (xk) = 0 for all vertices xk of T ∗.

4.12 Theorem: Consider a feasible solution to Optimization Problem 4.2 and let µ(x) and V (x)
be constructed as in Definition 4.5. Then for every x ∈ D◦

T ∗ we have

A(x) − µ(x)P (x) � 0 and V ′(x) + m̃µ(x) ≤ Q.

Proof: Fix a point x ∈ D◦
T ∗ and a corresponding simplex Sξ = co(x0, x1, . . . , xn) ∈ T ∗ as in

Definition 4.7. Further, denote by Sν the simplex in T such that Sξ ⊂ Sν . Now

∥∥∥∥∥A(x) − µ(x)P (x) −
n∑

k=0

λk [A(xk)− µ(xk)P (xk)]

∥∥∥∥∥
2

≤
∥∥∥∥∥A(x) −

n∑

k=0

λkA(xk)

∥∥∥∥∥
2

+

∥∥∥∥∥µ(x)P (x) −
n∑

k=0

λkµ(xk)P (xk)

∥∥∥∥∥
2

. (20)

Just as in the proof of Lemma 4.9, we can show that
∥∥∥∥∥A(x)−

n∑

k=0

λkA(xk)

∥∥∥∥∥
2

≤ h2
ξEν . (21)

For the second norm on the right-hand side of (20) consider two scalar-valued functions g, h :
Sξ → R, where g, h ∈ C2. We apply Lemma 4.8 to gh, yielding

∣∣∣∣∣g(x)h(x) −
n∑

k=0

λkg(xk)h(xk)

∣∣∣∣∣ ≤ max
y∈Sξ

‖H(y)‖2h2
ξ,

where the matrix H(y) is defined by [H(y)]rs := ∂2(gh)(y)
∂xr∂xs

. Set g(y) := Pil(y) and h(y) := µ(y).
Since Sξ ⊂ Sν , we have Pil(y) = wν

il · (y − x0) + Pil(x0) and because µ(y) is defined as a CPA

interpolation, we have µ(y) = [∇µξ]·(y−x0)+µ(x0). Thus, we have
∂g
∂xs

(y) = [wν
il]s,

∂2g
∂xr∂xs

(y) = 0,
∂h
∂xs

(y) = [∇µξ]s, and
∂2h

∂xr∂xs
(y) = 0 for all y ∈ Sν . Hence,

∂

∂xs
gh =

∂g

∂xs
h+ g

∂h

∂xs
= [wν

il]sh+ g[∇µξ]s

and

∂2

∂xr∂xs
gh = [wν

il]s
∂h

∂xr
+

∂g

∂xr
[∇µξ]s = [wν

il]s[∇µξ]r + [wν
il]r[∇µξ]s.

Thus
|[H(y)]rs| = |[wν

il]s[∇µξ]r + [wν
il]r[∇µξ]s| ≤ |[wν

il]s[∇µξ]r|+ |[wν
il]r[∇µξ]s| .

Using that for any H1, H2 ∈ R
n×n we have

‖H1 +H2‖2 ≤ ‖H1‖2 + ‖H2‖2 ≤
√
n‖H1‖1 +

√
n‖H2‖∞,

we get
‖H(y)‖2 ≤ 2

√
n‖wν

il‖1‖∇µξ‖∞ ≤ 2
√
nDνD

µ
ξ ,

because ‖wν
il‖1 ≤ Dν by Constraints 3 in Optimization Problem 4.1 and ‖∇µξ‖∞ ≤ Dµ

ξ by
Constraints 1 in Optimization Problem 4.2.
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We have shown that
∥∥∥∥∥µ(x)P (x) −

n∑

k=0

λkµ(xk)P (xk)

∥∥∥∥∥
max

≤ h2
ξ · 2

√
nDνD

µ
ξ

and it follows that
∥∥∥∥∥µ(x)P (x) −

n∑

k=0

λkµ(xk)P (xk)

∥∥∥∥∥
2

≤ h2
ξ · 2n

√
nDνD

µ
ξ . (22)

Thus, we have by (20), (21), (22), and Constraints 2 of Optimization Problem 4.2

A(x) − µ(x)P (x) �
n∑

k=0

λk[A(xk)− µ(xk)P (xk)] +

∥∥∥∥∥A(x) −
n∑

k=0

λkA(xk)

∥∥∥∥∥
2

I

+

∥∥∥∥∥µ(x)P (x) −
n∑

k=0

λkµ(xk)P (xk)

∥∥∥∥∥
2

I

�
n∑

k=0

λk[A(xk)− µ(xk)P (xk) + h2
ξ(Eν + 2n

√
nDνD

µ
ξ )I] � 0

and the estimate (23) follows and, as before, it also follows that µ(x) is an upper bound on the
largest generalized eigenvalue of the matrix pair (A(x), P (x)) for every x ∈ D◦

T .

Let x ∈ DT ∗ and Sξ be as above. We now show the implications of Constraints 4. By Hölder’s
inequality and Lemma 4.8 we get

∇Vξ · f(x) ≤
n∑

k=0

λk∇Vξ · f(xk) +

∣∣∣∣∣∇Vξ · f(x)−
n∑

k=0

λk∇Vξ · f(xk)

∣∣∣∣∣

≤
n∑

k=0

λk∇Vξ · f(xk) + ‖∇Vξ‖1

∥∥∥∥∥f(x)−
n∑

k=1

λkf(xk)

∥∥∥∥∥
∞

≤
n∑

k=0

λk∇Vξ · f(xk) + h2
ξ · nB∗

ξD
V
ξ

and then by Constraints 4 of Optimization Problem 4.2

∇Vξ · f(x) + m̃µ(x) ≤
n∑

k=0

λk

[
∇Vξ · f(xk) + h2

ξ · nB∗
ξD

V
ξ + m̃µ(xk)

]
≤

n∑

k=0

λkQ = Q,

i.e. the estimate (24). �

The following lemma shows that the piecewise affine functions P , V and µ computed by our algo-
rithm can be approximated by smooth functions asymptotically satisfying the same inequalities.
Hence, we do not get into trouble because of the differentiability assumptions in Theorem 2.1.

For any subset D ⊂ R
n and ε > 0 define D−ε := {x ∈ D : Bε(x) ⊂ D}. Define φ : Rn → R+,

φ(x) := C exp(−1/(1 − ‖x‖2)) for ‖x‖2 < 1 and φ(x) := 0 otherwise and choose the constant C
such that

∫
Rn φ(y) dy = 1. For an ε > 0 define

φ̃ε(x) :=
φ(x/ε)

εn
.

For a locally integrable g : D → R, D ⊂ R
n, define the function gε := g ∗ φ̃ε, i.e. gε(x) =∫

D
g(y)φ̃ε(y − x)dy. It is well-known that gε, φ̃ε ∈ C∞(Rn) and if g is continuous on D ⊂ R

n and
K ⊂ D◦ is compact, then the functions gε approximate g uniformly on K, i.e. maxx∈K |gε(x) −
g(x)| → 0 as ε → 0+.
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4.13 Lemma: Assume g ∈ CPA[T ] → R (cf. Definition 4.5), ε > 0, and denote by wν the gradient
of g on Sν . That is, g(x) = wν · x+ bν on Sν . Then for every x ∈ (DT )−ε we have

∇gε(x) =
∑

ν

αx,ε
ν wν , where αx,ε

ν :=

∫

Sν∩Bε(x)

φ̃ε(x − y) dy.

Especially, the nonnegative numbers αx,ε
ν only depend on x and ε > 0 and not on the function g

and they sum to one.

Proof: This follows from the following calculation, using integration by parts:

∇gε(x) =

∫
∇xφ̃ε(x − y)g(y) dy =

∑

ν

∫

Sν∩Bε(x)

−∇yφ̃ε(x− y)g(y) dy

=
∑

ν

∫

Sν∩Bε(x)

φ̃ε(x− y)∇yg(y) dy =
∑

ν

∫

Sν∩Bε(x)

φ̃ε(x− y)wν dy =
∑

ν

αx,ε
ν wν .

�

4.14 Lemma: Given the same assumption as in Theorem 4.12, let δ > 0. Then there exist
smooth Pε : (DT )−δ → R

n×n and Vε, µε : (DT )−δ → R, such that for every x ∈ (DT )−δ we have

Aε(x)− µε(x)Pε(x) � δI (23)

and
V̇ε(x) + m̃µε(x) ≤ Q+ δ, (24)

where
Aε(x) := Pε(x)Df(x) + Df(x)⊤Pε(x) + Ṗε(x)

and Q is the same constant as in Theorem 4.12.

Proof: Let P , V , and µ be defined as in Theorem 4.12 and set

G := max

{
max
Sν∈T

i,j=1:n

‖wν
ij‖2,max

ξ∈T ∗
‖∇Vξ‖2

}
.

Fix 0 < ε < δ so small that for all x ∈ (DT )−δ and all y satisfying ‖x− y‖2 < ε we have

|(Bε)ij(x)−Bij(x)| <
δ

3n
, |Bij(x) −Bij(y)| <

δ

3n
,

‖f(x)− f(y)‖2 <
δ

3nG
, |V (x) − V (y)| < δ

2
,

|µ(x) − µ(y)| < δ

3m̃
, |µε(x)− µ(x)| < δ

3
,

where the mollified functions with ε in the subscript are defined as in Lemma 4.13,

B(x) := P (x)Df(x) + Df(x)⊤P (x)− µ(x)P (x)

and
Bε(x) := Pε(x)Df(x) + Df(x)⊤Pε(x) − µε(x)Pε(x).

Fix x ∈ (DT )−δ. For each αx,ε
ν > 0, cf. Lemma 4.13, for a Sν ∈ T select an xν in the interior of

Sν ∩Bε(x) and for each αx,ε
ξ > 0 for a Sξ ∈ T ∗ select an xξ in the interior of Sξ ∩Bε(x).
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Now for all i, j = 1 : n we have by the estimates above, Lemma 4.13, and the Cauchy-Schwarz
inequality

(Bε)ij(x) +∇(Pε)ij(x) · f(x) < Bij(x) +
δ

3n
+
∑

ν

αx,ε
ν wν

ij · f(x)

<
∑

ν

αx,ε
ν

(
Bij(xν) +

δ

3n
+ wν

ij · f(xν) + ‖wν
ij‖2

δ

3nG

)
+

δ

3n

<
∑

ν

αx,ε
ν

(
Bij(xν) + wν

ij · f(xν)
)
+

δ

n
.

Hence,

Aε(x)− µε(x)Pε(x) = Bε(x) + Ṗε(x) �
∑

ν

αx,ε
ν

(
B(xν ) + Ṗ (xν)

)
+

δ

n
(1)ij

=
∑

ν

αx,ε
ν (A(xν)− µ(xν)P (xν)) +

δ

n
(1)ij � δI.

Similarly,

V̇ε(x) + m̃µε(x) =
∑

ξ

αx,ε
ξ (∇Vξ · f(x) + m̃µ(x)) +

δ

3

=
∑

ξ

αx,ε
ξ (∇Vξ · f(xξ) + m̃µ(xξ)) +

δ

3n
+

δ

3
+

δ

3
≤ Q+ δ.

�

Note that the Constraints 1 and 2 in Optimization Problem 4.2 are not very strongly coupled to
the Constraints 3 and 4. Constraints 2 balance the values µ(xk) and the gradient Dµ

ξ , whereas
Constraints 4 do not have to take the gradient of µ into account. Since the gradient is multiplied
by h2

ξ, which is small for small simplices Sξ ∈ T ∗, the gradient can be rendered less important in
Constraints 2 by using smaller simplices. It is thus tempting to split Optimization Problem 4.2 into
two optimization problems, the first with Constraints 1 and 2 and some objective function that
makes the collection of the µ(xk) small in some sense, and then consecutively run an optimization
problem with Constraints 3 and 4, where the µ(xk) from a solution to the first optimization problem
are constants. This is especially tempting, because SDP solvers have not reached the maturity of
linear programming solvers and are sometimes not able to deliver solutions to moderately sized
feasible problems or worse, deliver solutions that are quite far from being feasible.

Further, if we use Optimization Problem 4.1 to find a constant matrix P (x), the optimization
problem is much smaller and easier to solve. From such a solution the Optimization Problem 4.2
can be naturally split into two optimization problems as described above without any disadvantage,
because the coupling between Constraints 1 and 2 on the one hand and Constraints 3 and 4 on
the other hand vanishes completely. Even better, since P (x) is constant, its gradient is zero and
therefore Dν = 0. Thus, the gradient of µ plays no role, because its upper bound Dµ

ξ is multiplied
by Dν in Constraints 2. We can thus drop Constraints 1 and compute the optimal µ(xk) directly.

First, for each vertex xk we find the minimum µ(xk) such that (18) is fulfilled for every ν such
that xk is a vertex of Sν . Then we minimize Q under the linear constraints (19). This is described
in more detail in the next section.

4.3 Simplified procedure

In the simplified procedure we restrict our search for a matrix P (x) in Optimization Problem
4.1 to a constant matrix and then split Optimization Problem 4.2 into two simpler problems. In
detail:
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In Optimization Problem 4.1 we set Pij(xk) := Pij and then P (xk) := (Pij) for all vertices xk

of all simplices of T . Then clearly we can set Dν := 0 and C := Cν for all Sν ∈ T and the
constraints simplify to:

ǫ0I � P � CI

and for each simplex Sν = co(x0, . . . , xn) ∈ T and each vertex xk of Sν :

0 �A(xk)− µP + h2
ν · 2n3B3,νCI,

where
A(xk) = PDf(xk) + Df(xk)

⊤P,

because wν
ij , the gradient of P , is now the zero vector.

Let us now consider Optimization Problem 4.2. The Constraints 2 become: For each simplex
Sξ = co(x0, . . . , xn) ∈ T ∗ and each vertex xk of Sν :

0 � A(xk)− µ(xk)P + h2
ξ · 2n3B3,νCI, (25)

because Dν = 0. The variables Dµ
ξ are thus redundant and we can eliminate Constraints 1. An

even farther reaching consequence is that we do not even have to combine the Constraints (25)
with Constraints 3 and 4. We can compute the optimal µ(xk) locally for each vertex xk by solving:
For each vertex xk of the triangulation T ∗ maximize the value µ(xk) under the constraints

0 � A(xk)− µ(xk)P + h2
ξ · 2n3B3,νCI

for every ν such that xk ∈ Sν ∈ T .

An even simpler version of this optimization problem is obtained by defining

By
3 := max

Sν∈T
B3,ν

and solving: For each vertex xk of the triangulation T ∗ maximize the value µ(xk) under the
constraints

0 � A(xk)− µ(xk)P + h2
ξ · 2n3Bxk

3 CI.

For small hξ > 0 good estimates on these optimal µ(xk) for the Optimization Problem 4.2 can be
directly computed using (17). Just set

µ(xk) := λmax(xk) + h2
ξ · 2n3Bxk

3 C‖P−1‖2,

where λmax(xk) is the largest generalized eigenvalue of the matrix pair (A(xk), P ). Since C ≥ ‖P‖2,
this formula can be further simplified to

µ(xk) := λmax(xk) + h2
ξ · 2n3Bxk

3 κ2(P ),

using the condition number κ2(P ) := ‖P‖2‖P−1‖2 of P .

After this being done, we can minimize Q under the Constraints 3 and 4 of Optimization Problem
4.2, and this is a linear programming problem, for which much more mature solvers exist.

5 An example: the Lorenz system

We consider the Lorenz system

d

dt




x
y
z



 =




−σx+ σy
rx− y − xz
−bz + xy



 =: g(x, y, z). (26)
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For our approach it is advantageous to scale the system such that its attractors are contained in a
smaller set. For this purpose, define S := diag(sx, sy, sz) for constants sx, sy, sz > 0 and consider
the system ẋ = f(x) with f(x) = S−1g(Sx), i.e. the system

d

dt



x
y
z


 =




−σx+ σ
sy
sx
y

r sx
sy
x− y − sxsz

sy
xz

−bz +
sxsy
sz

xy


 . (27)

Clearly one can take

Bν = sx ·max

{
sy
sz

,
sz
sy

}

in the optimization problems for all Sν , independent of the triangulation T , because the right-
hand side is a global bound on the second-order derivatives of f , and we can set B3,ν := 0 for all
Sν , because the components of f are second-order polynomials. We use the scaling parameters
sx = 24.5 and sy = sz = 100 and thus Bν = 24.5 in what follows.

In [2, §2.2] it is shown that if σ ≥ 1 and b ≥ 2 in (26), then the system is dissipative in the sense
of Levinson and the region D of dissipation fulfills

D ⊂
{
(x, y, z) ∈ R

3 : x2 + y2 + (z − [σ + r])2 ≤ b

2
(σ + r)2

}
, (28)

D ⊂
{
(x, y, z) ∈ R

3 : 2x2 + y2 + (z − [σ + r])2 ≤
[
1 +

(b− 2)2

4(b− 1)

]
(σ + r)2

}
, (29)

D ⊂
{
(x, y, z) ∈ R

3 : y2 + (z − r)2 ≤ b2r2

4(b− 1)

}
, (30)

D ⊂
{
(x, y, z) ∈ R

3 : z ≥ 0
}
. (31)

All attractors of (26) are inside D. For the common parameters σ = 10, r = 28, and b = 8/3 in
(26), it suffices to compute our metric P and Lyapunov-type function V on the set

K := [−1, 1]× [−0.29, 0.29]× [0, 0.57],

because with these parameters (30) implies

|y| ≤ 4√
15

r ≤ 29 = sy · 0.29

and (30) and (31) imply

0 ≤ z ≤
(
1 +

4√
15

)
r ≤ 57 = sz · 0.57,

which in turn with (29) implies that

|x| ≤

√√√√1

2

(
16

15
(σ + r)2 −

(
4√
15

r − σ

)2
)

≤ 24.5 = sx · 1.

Thus, all the attractors of (27) are inside of K.

For our example we used the simplified procedure from Section 4.3 and the computer we used has
an i9-7900X CPU.

5.1 Remark: The implementation of our algorithm, even the simplified one, is not simple, and
a detailed discussion of it is beyond the scope of this paper. We refer the reader to [9, 10] for
some implementation details on triangulations for the computation of Lyapunov functions. We
used similar methods, adapted to our problem.
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First we compute a constant metric P (x) = P on the set K using a triangulation with the vertices

(
1.0 · ix

12
, 0.29 · iy

6
, 0.57 · iz

10

)
for ix = −12 : 12, iy = −6 : 6, and iz = 0 : 10.

The triangulation we used is a so-called standard-triangulation as in [8, §4], but with different
scaling along the different axes, i.e. ρ in [8, Def. 4.8] is ρx = 1/12 along the x-axis, ρy = 0.29/6
along the y-axis, and ρz = 0.57/10 along the z-axis. We set ǫ0 := 0.1 in Optimization Problem
4.1 and the constraints become

0.1I � P � CI

for each simplex Sν ∈ T and for each vertex xk of Sν :

0 �PDf(xk) + Df(xk)
⊤P − µP.

The optimization problem is especially simple because B3,ν = 0 for all Sν , and therefore we do
not even have to repeat the second constraints for all Sν , i.e. we can replace for each simplex

Sν ∈ T and for each vertex xk of Sν with for each vertex xk of a simplex in T .

By trying out a few different µs, we obtained a feasible solution with µ = 27. Investigation gave
us that there is only one positive generalized eigenvalue for all x, so we can take m̃ = 1. Writing
the problem took a few seconds with our software and solving the optimization problem took 140
sec. using the solver PENSDP 2.2 [12]. The problem has 7 variables and 69,122 matrix constraints.
The matrix computed is

P =




0.1008469737786 −0.01415360101927 0
−0.01415360101927 0.3361537095909 0

0 0 0.3139832543019




which has ‖P−1‖2 = 0.1 as the smallest and C = ‖P‖2 = 0.3370007906512 as the largest eigen-
value. If we only used these results in the formula in [19, Thm. 3.2] for the upper bound on the
topological/restoration entropy, i.e. set V (x) =const., this P delivers λ/(2 ln(2)) ≈ 19.4764 as an
upper bound.

The formula (13) in [19] delivers the upper bound

1

2 ln(2)

(√
(σ − 1)2 + 4rσ − (σ + 1)

)
≈ 17.0638 (32)

for our parameters.

For computing the Lyapunov-type function we used the triangulation T ∗, which is constructed
exactly as the triangulation T above, but with the vertices

(
1.0 · ix

Nx
, 0.29 · iy

Ny
, 0.57 · iz

Nz

)
for ix = −Nx : Nx, iy = −Ny : Ny, and iz = −1 : Nz, (33)

for some Nx, Ny, Nz ∈ N. We tried a few different sets of parameter values, expecting lower upper
bounds on the topological/restoration entropy for larger values of Nx, Ny, and Nz. We used the
state of the art solver GUROBI, which is free for academic use, to solve the LP problems using
the barrier method.

The first set of parameters was Nx = 30, Ny = 14, and Nz = 28 and with those the LP problem
with 930,032 variables and 3,800,122 constraints was written in 11 sec. with our software and
solved in 291 sec. with the optimal value of Q = 23.9094 which delivers the upper bound 17.247,
which is slightly worse than in (32).

The second set of parameters was Nx = 42, Ny = 14, and Nz = 28 and with those the LP problem
with 1,301,696 variables and 5,320,176 constraints was written in 28 sec. with our software and
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Nx Ny Nz time [s] impr. bounds Q u.b.
30 14 28 302 No 23.909 17.247
30 14 28 448 Yes 22.540 16.260
42 14 28 917 No 23.525 16.970
42 14 28 536 Yes 22.094 15.937
50 18 32 901 Yes 21.701 15.654
70 22 40 5862 Yes 21.311 15.373

Table 1: The results of our computations. Nx, Ny, Nz are the parameters for the grid in (33),
‘time’ is the total time in seconds needed to write and solve the problem, ‘impr. bounds’ states
whether the improved bounds discussed in the text are used (Yes) or not (No), Q is the objective
that is minimized in Optimization Problem 4.2, and ‘u.b.’ is the associated upper bound on the
topological/restoration entropy. For reference, the upper bound 17.064 is computed in [19].

solved in 889 sec. with the optimal value of Q = 23.5254 which delivers the upper bound 16.970,
which is slightly better than in (32).

Because we are using such a simple axially parallel triangulation, one can use somewhat less
conservative bounds the LP problems. That is, the term nh2

ξB
∗
ξ in Constraints 4 in Optimization

Problem 4.2 can be replaced with a smaller number and Theorem 4.12 still holds true. For these
less conservative bounds we refer to [14, Lem. 4.16]. Using these less conservative bounds in the
LP problems gave notably better results. Using the first set of parameters, the LP problem was
solved in 437 sec. with the optimal value of Q = 22.5403, which delivers the upper bound 16.260,
and using the second set of parameters the LP problem was solved in 508 sec. with the optimal
value of Q = 22.094, which delivers the upper bound 15.937.

For the third set of parameters we took Nx = 50, Ny = 18, and Nz = 32 and only used the less
conservative bounds on the second-order derivatives of f . The LP problem had 2,265,460 variables
and 9,266,354 constraints, was written in 24 sec. with our software and solved in 877 sec. with the
optimal value of Q = 21.701 which delivers the upper bound 15.654.

The fourth and final set of parameters was Nx = 70, Ny = 22, and Nz = 40 and only used the less
conservative bounds on the second-order derivatives of f . The LP problem had 4,812,572 variables
and 19,699,632 constraints, was written in 61 sec. with our software and solved in 5,801 sec. with
the optimal value of Q = 21.311 which delivers the upper bound 15.373.

Thus, the best estimate we got with our method was the upper bound 15.373 on the topologi-
cal/restoration entropy, which is considerably better than 17.064 given by formula (13) in [19].The
results of the computations are summarized in Table 1.

Running the full Optimization algorithms 4.1 and 4.2 and thus computing a nonconstant matrix
P would be very interesting, but is hardly possible for examples of interest with today’s SDP
problems solvers. It remains interesting to see if these solvers mature enough in the near future
for this to change and how much the upper bound decreases using our fully fledged method.

6 Concluding remarks

In this paper, we proposed an algorithm for computing upper bounds on the critical channel
capacity for state estimation over a finite-capacity channel, a typical problem studied in networked
control. The upper bounds computed by our algorithm are, at the same time, upper bounds on
the topological entropy of the dynamical system under consideration. Moreover, the output of the
algorithm can be used to implement a coding and estimation policy which operates over a channel
of the corresponding capacity.

It is not hard to see that topological entropy, in general, cannot be approximated very well by
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our algorithm, since the computed values are upper bounds on restoration entropy hres, as shown
in Section 3, and the strict inequality htop < hres holds for most dynamical systems. Hence, we
do not claim that our paper contributes to the problem of numerical computation of topological
entropy. Some standard references on this quite intricate subject (for multi-dimensional systems)
are [3, 4, 5, 18].

At this point, it is not clear whether restoration entropy can be approximated (and not only
upper-bounded) by the estimates of Theorem 2.1. We believe, however, that this is the case and
hope to deliver a proof in a future work.

Our full algorithm, using both Optimization Problem 4.1 and Optimization Problem 4.2 for a
non-constant matrix P , overstrains currently even the best semidefinite-programming solvers in
problems of interest. It will be interesting to see if this situation changes in the near future.
Therefore, we derived a simplified algorithm in Section 4.3, which computes an then uses a constant
P . Using this simplified algorithm allowed us to study the Lorenz system with our method and
we got superior results to [19], where an analytical bound is derived. It remains an interesting
question how much the full algorithm can improve these bounds.
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