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EXPLICIT co-HARMONIC FUNCTIONS IN HIGH DIMENSIONS

BIRZHAN AYANBAYEV

ABSTRACT. The aim of this work is to derive new explicit solutions to the
oo-Laplace equation, the fundamental PDE arising in Calculus of Variations
in the space L°°. These solutions obey certain symmetry conditions and are
derived in arbitrary dimensions, containing as particular sub-cases the already
known classes two-dimensional infinity-harmonic functions.

1. INTRODUCTION

Let © C R"™ be an open set and u € C?(Q2) a continuous twice differential
function. In this paper we study the existence of solutions to the PDE

(1.1) Asu = Z Dl-uDjuD?ju =0
ij=1

of the form
u(z) =[] fil=),
i=1

where f; are possibly non-linear for 1 < i < n, and = = (21,...,2,)", z € .
Solutions of this form are called separated oco-harmonicfunctions. In the above
Diza%i and D2 = ?72 The equation 1.1 is called co-Laplacian (being a special
case of the so-called more general the Aronsson equation) and it arises in Calculus
of Variations in L* as the analogue of Fuler-Lagrange equation of the functional

Ew(u,0) := ||Dul|p=(0), O €Q, uecWoZ(QR).

loc

These objects first arose in the work of G. Aronsson in the 1960s (see [A1],[A2])
and nowadays this is an active field of research for vectorial case N > 2 for u €
WI})’COO (2, RY) which has begun much more recently in 2010s (see e.g. [KK1]). Since
then, the field is developed enormously by N. Katzourakis in the series of papers
([K3]-[[X11]) and also in collaboration with the author, Abugirda, Croce, Manfredi,
Moser, Parini, Pisante and Pryer ([AyK], [AK], [CKP], [KM], [KKMo], [KPa], [KP1]
- [KP3]). A standard difficulty of 1.1 is that it is nondivergence and since in general
smooth solutions do not exist, the definition of generalised solutions is an issue. To
this end, the theory of viscosity solutions of Crandall-Ishii-Lions is utilised (see e.g.
[K2]).

In this paper all the separated oco-harmonicfunctions are found for n = 2 in
polar coordinates, for n = 3 in spherical coordinates and for all n > 2 in cartesian
coordinates. Some of these new solutions derived herein coincide with previously
known classes of solutions. For instance, the well-known G. Aronsson’s solution
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w(x,y) = |z|3 —|y|? which has a C%1/3 regularity, described in Remark 5. Also M.-

F. Bidaut-Veron, M. Garcia Huidobro and L. Veron have found a solution ([ D
which is coincides with first two solutions of the theorem 1 and I.L. Freire, A. C.
Faleiros have found a solutions of 1.1 in [FF], but only one non-trivial of their

solutions coincides with a particular case of Theorem 3 when A = 1. There may
exist other additional solutions but this topic is not discussed herein.
The main results of this paper are contained in the following theorems.

Theorem 1 (Separated two-dimensional oco-Harmonic functions in polar coordi-
nates). Let u : Q C R?> — R be a separated oo-harmonicfunction of the oo-
Laplace equation in polar coordinates

2 1 1
2 2 2
(1.2) Uy + 2 UpUgUrg + i UgUgg — 3 upug =0

of the form u(r,0) = f(r)g(0), where f, g are non-linear. Then, one of the following
holds: either

() [f(r)| =74 and |g(0)| = eB?, where A and B any constants, such that

A2 —A+B*=0

or
(ii) | f(r)| = 7 and |g(0)| = \9(90)|ef900 GOt here G(t) satisfies the following
G - G :
— arctan % + \/ﬁz_lA arctan \/Agt_)A, if A2—A>0
1 A —
t+c= Gy ¥4=0
—arctan G(t), ifA=1
G(t) A1 GU)—VA=AZ| ;42
—arctanT+2\/A7A21 ‘G(t)+\/A7A2’ if A —A<0
or

r ®(t)

(iii) [g(0)| = €B? and |f(r)| = |f(r0)|ef"0 U where ®(t) satisfies the fol-
lowing

! 20+ B 11 (1)} R 1

Eln‘m T2 piI arctan \/32_2%, ifB2—1>0

1 $2(t)+B? 11 o2 1
Injt|]+c=43 In ‘ BZ(1)—3 (1)1 B2 3F0-1 if B2 — 1=

i B | 1 S0-3-VI"B%| o1

2 1n‘q>2(t)—<1>(t)+32 W5 In PYpEERY v L if B> — 3 <0,

where ¢ is any constant.

Theorem 2 (Separated three-dimensional co-Harmonic functions in spherical co-
ordinates). Let u : Q C R® — R be a separated oo-harmonicfunction of the
oo-Laplace equation in spherical coordinates

2 2 1 2 1 2
Uy Upy + 2 i 2 UrUYUrg + 44 UpUgy — 3 2 UTU9+
(1.3) rsin” a resin” a o s8in” a
‘ 2 1 2 2 cos & 9
—SUrllalUra + —ZUqlaa = —3Urlly T ———5—UgUaliga — — 3 Ually = 0
r T T r*sin a r*sin” «

of the form u(r,0,a) = f(r)g(6)h(a), where f,g and h are non-linear. Then, one
of the following holds: either
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() |f(r)| = 72 and |g(0)| = B, where A and B any constants, h(a) =
h(ag)efao H(t)dt, where H (t) satisfies the following

2 2

A2 A+ + H(t) :dABJ@CP+

H2(1 —2A [} mixydX
sin? ¢ sin? ¢ +H )) ‘
or )

(i) [F(r)] =, [h(a)] = |sinal® and [g(6)] = |g(60)[e® “™, where G(t)

satisfies the followmg

— arctan G(t) + ‘32 L arctan \/%?A, if A2—A>0
e ol if A=0
—arctan G(t), ifA=1
— arctan G(t) + 2\/’2__1142 In ‘ ggg; ; i:ﬁi , ifA2—A<0
or " e

(iii) |g(0)| = B , |f(r)| = \f(ro)\efro © 9 where B is constant and D(t)
satisfies the following

®2(t)4C? D(t)—

1
: 1 3 21
5 In - +CZ | 5\/02_; arctan \/02_2%, ifC?—1>0
1 o2 (t)+C? 11 e 1
hl|t|+C: iln B2(1)—D(1)+C2 §¢(t)—%’ ch’ -3 =0
1 B2 (t)+C? 1 D(t)—L—/I-C? e 1
5111 D2(L)—2(t)+C%| 4\/i 2 In _;_"_\/7_02 ZfC — 2 < O7
and
Barcsinm O arctan Ccotg2
c2
|h(a)| = [h(ao)le S
or
— Barcsin 224 | ¢ arctan ——Ccota
Jvc2-p2 ~ g2
|h(@)| = [h(ao)le R

where ¢ is any constant.

N

Theorem 3 (Separated two-dimensional co-Harmonic functions). Let u :
R? — R be a separated oo-harmonicfunction of the co-Laplace equation

(1.4) uium + 2Up Uy Uy + uZuyy =0

of the formu(z,y) = f(x)g(y), where f, g are non-linear. Then, one of the following
holds: either .
(1) 1£@)] = £ (x0) e~ and |g(y)| = lg(wo)le’ ™", where G(t) satisfies

5%, if A=0
t+e= 2{4 arctan (t) + $, otherwise
2(A2+2(1))

or
(i) £ (2)] = |f(zo)]el=0 "D and |g(y)| = |g(yo)|eBW=¥0) , where F(t) satisfies

if B=0

, otherwise.

1
E(t)?

t+e= —%arctan%—i—

F(t)
2(B24F2(1))
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Theorem 4 (Separated n-dimensional oco-Harmonic functions). Let n > 2 and
u:Q CR" — R be a separated co-harmonicfunction of the oo-Laplace equation

(1.5) > DyuD;juDZu = 0.
i,j=1
then
fil@s)| = | fi(@?)| XD for 1 <i£j<n

" F(t) dt
£ (@) = 1£;(a9)] / :

and

where F(t) satisfies

Fy(t Fy(t
t+c¢c= ————— arctan j() + j()

()" (T X arere)

i#j ] 73
2. PROOFS OF MAIN RESULTS

In this section we prove our main results. The general idea of our method, which
is essentially the same for all our proofs, is to use a substitution to derive a “better”
PDE. Then, we take any points from the domain which are different only in one
component put them to the “new” equation and subtract the two equations from
each other.

Proof of Theorem 1. For u # 0 the equation (1.2) can be written as

ﬁ U 2 Uy Up Upg 1 ug Ugg 1 u, ug _

(2.1)

w2 u o 2w ou ouo i w3 u
Let F = and G = %2, then F, + F? = = Gy + G? = “2 and JFy + 1G, +
FG = *=2. Note that u(r,0) = f(r)g(f) hence F' and G doesn’t depend on 6 and

r respectively, since F(r,0) = % and G(r,0) = 2O) Thus (2.1), becomes

9(6)
2 1, 200, 1 0 Loy 1 2
r r r T
Set ® = F'r, then r®, — ® = F.r2. Multiplying (2.2) by 7*, we have
(2.3) (®% 4+ G?)(D? + G% — D) + 192, + G*Gy = 0.

We have the following 4 cases for the functions ® and G:
Case (A) ® and G are constant functions.
Case (B) @ is constant and G is non-constant functions.
Case (C) @ is non-constant and G is constant functions.
Case (D) ® and G are non-constant functions.

Case (A) Let ® = A and G = B, then (2.3) gives A= B=0o0r A>— A+B*=0
which can be rewritten as (A— )%+ B? = ; and as the consequent of substitutions
f(r) =r4 and g(0) = B up to a constants.

Case (B) Let ® = A, then G is satisfying (2.3)

(2.4) (A2 + G?)(A%+ G2 — A) + GGy = 0.
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Therefore

(A2 +G*)(A?+G? - A) = -G Cclg
Consequently
—-G?
(2.5) /d9 /A2+G2 A2+G2—A)dG
' 1-A
- we [ e
Hence
— arctan (t) + ﬁQ 1A arctan ig?A, if A2—A>0
o ifA=0
t+c= G .
—arctan G(t), itA=1

G(t) A—1 G(t)—VA—AZ e 49
+ 2v/A-A2 In G(t)+vVA—AZ | if A —-A<0.

— arctan

If A is equal to 0 or 1, then G = 0 is also a solution, hence g = ¢ and u is a linear
solution.

Case (C) Let G = B, then @ is satisfying (2.3)

(2.6) (®2 + B?)(®* 4 B% — ®) + rd?®, = 0.
Therefore

(®? 4+ B (9?4 B* - ) = —r@QZ—@.
Consequently '
(2.7)

/Ed —/ — Ao
T ) @1 By (@ -3 + B?)

7/ R de)/ 25 d<I>/ 2 dd
) ®2 4+ B2 (®—-1)2+B2-1 (®—-12+B2-1

Hence
%ln % — %\/312_% arctan j(;);_i, if B2 — i >0
Inft] +c = { 10| ey Giem | + amoT if B -3 =0
ATy UL A Tl Zg;‘: %j B2 -1 <o

If B =0, then ® = 0 is also a solution, hence u is a constant.

Case (D) Let ® and G are non-constant functions, then there exist 71 # ro and
01 # 65 such that ®(ry) # ®(r2) and G(61) # G(6s) satisfying (2.3). Thus
(2.8)
r1®(r1)2®,. (1) — @3 (r ) +®(r1) 428 (r1)2G(0)*+G(0)2Go (0)+G(0)* —(r1)G()? = 0
(2.9)
ro®(12)2®,.(12) — @3 (ro) +®(ro) 428 (r2)2G(0)* +G(0)2Go (0)+G(0)* —®(r2) G(0)? = 0.
Subtracting (2.8) and (2.9) we get for any 6
(2.10)
G*(O)(@(r1) — ®(r2))(2AD(r1) + B(r2)) — 1) = 128%(r2) By (r2) — B(r2)* + D(r2)"*

- 7“1@2(7“1)(1%(7“1) + @(7“1>3 - ‘b(’l‘l>4,
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if 2(®(r1) + ®(ra)) — 1 # 0, then G?(f) is a constant function or G(6) is a step
function because G(61) = —G(02) and G(61) # G(62), otherwise 2(®(r1) + ®(r2)) —
1 =0 for any r; # ry such that ®(r1) # ®(r2), which means ®(r) is a step function

and the image of ® is symmetrical to y = 1 since ®(r1) — 1 = —(®(rz) — 1). For
both cases we have a contradiction to C™® regularity for co-Harmonic mappings in
two dimensions ([[£5], [9]).

Finally integrating and substituting we complete the proof. [

Remark 5 (The Arronson solution). If A = 3 then A2 — A > 0 and G(t) function
satisfies

1
t+ ¢ = —arctan §G(t) + — arctan §G(t),
4 2 2
which can be rewritten as
27G3(t) + 54G?(t) tan 2(t + ¢) + 32tan 2(¢ + ¢) = 0.
Solving a third degree equation with respect to G(t), we get

4 tan3 (t 4 ¢) + tans (£ + ¢) + tan(t + ¢)

G) = 3 1 —tan?(t + c)

Therefore

(1 — tan3 (t +¢)) (1 + tan5 (¢ + c))%
(tan%(tJrc) — tan? (t +¢) + 1)% '

/ G(t)dt = In

Hence
12 ewar _ 1= tim%(@ +o)1 +2tan§(0 + c)zlé - e(60)
[tans (0 + ¢) — tan3 (0 +¢) + 1|3
1—tans (0 + ¢
- |1 + tanz(é + c)|)£ +elo)
= ’ cos%(ﬁ +c)— sin 0+ c)‘ - c(6p).

(&

Finally

19(0)] = [a(Bo) e

= |g(6o)| (| cos%(G +c)— sin%(ﬁ + c)|)
f(r)] =rs.

Thus, one of the possible solutions

u(r,0) = f(r)g(0)

=3 (cos3 (0 +¢) — sin?

0+0)).
u(w,y) = |z|s — [y|5.

Remark 6 (The Aronsson solution). If A = —1 then A% — A > 0, similarly as in
previous case we can find that u(r,0) = r—3 ( cos? (%1) —sin%(‘ggc)) is the solution
of the co-Laplace equation which was described in [A3] as
t tant
g(ﬁ):LQ, 9:t—2arctan<an ), —ﬁgtgf.
(14 3cos?t)s 2 2 2
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The key fact two solutions are identically equal is tang = —tan? %
Proof of Theorem 3. It is particular case of the Theorem 4, when n = 2. O
Proof of Theorem 4. For u # 0 equation (1.5) can be written as

D;u Dju D%ju
< U U
3,j=1

Let F; = '“ then D, F; + F? = jj“ and F;F; = ”u Thus (2.11), becomes

(2.12) (iﬂ(azi)Q) +ZF 2D, Fy(x;) = 0.
=1

(2.11) = 0.

Since u(z) = Hfi(:vi), then F; depends only on z;, consequently D,;F;(z;) =
i=1
Fj(x;). Set z', 2* € Qsuch that 2" = (21,22, ..., 7}, ...,

where x]l * xf in (2.12) and subtract two equations. We find

r,) and 2% = (21, 79, ...,m?, ey T,

(F2e))— F2(a?) (2§:Ff(:ci)+2Ff( D) +2F(ah)) + F2F)(a}) — F2F)(a3) = 0,

assuming F?(z}) # F2( %), we have

F2F!(z}) — F2F<(x2)
2 _ J - J J
(2.13) 2%1? (z;) = — FJ_Q

for all z;. Hence F;(x;) = A;, where A; is a constant for all ¢ # j. Thus (2.12)
gives

n 2
(ZA? + Fj(xj)2> + Fy(x;)*Fj(x;) = 0,

i=1
consequently

F?

J
dl’j = — - 2dFj,
( > A7+ Ff)
i#E]
hence
1 Fi(zs s
zj+ec=— arctan 5(25) + () , if ZAZ;éO

2 >4 a2 A Ee)  F
i#j i#j i#j

F]4(Ij) + FZ(IJ)F/(Ij) =0,

Otherwise

S0
(2.14) F?(z) + Fj(x;) =0, since we assume sz(x}) # Ff(m?)
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Solving (2.14) we get Fj(z;) = —# Hence fi(z;) = x; + ¢; for all ¢ # j and
fi(z;) = ﬁ, where ¢; are constants for all 1 <+ < n.

If there is no j such that F7?(x}) # F?(x3) then F7(z;) = ¢; forall 1 <j <n
and (2.12) gives that all ¢; = 0 for all 1 < j < n. So fi(z;) = C;, where C; is
constant for all 7. O

Proof of Theorem 2. For u # 0 we can rewrite (1.3) as

(2.15)
u?u 2 uu 1 2 1 29
Up Upp 2 UrUgUrg L UpUsy L Ur Uy 2 U Ug Ura
w2 v r2sinfau v u  risinfau? v rdsinfauu? rZu ou o u
1 ui Uaer 1 u, ui 2 UG Ug Uhoy COSQY Uy ug _
rdu?2 oy r3u w2 plginfau u w rdsin’® o u u?
Let
Uy Ug Ug,
F=% G=" and H="2
U u U

Then, we have

Ferr="" g 1a>=" and H + g2 = Yoo
u U u
Also,
D0 _pe, Y PE and 22— G'H
U U U
Note that F, G and H depend on only r, 6§ and «a respectively, since == = le,
Yo = % and %o = % Thus (2.14) becomes
2 1 1
FA(F + F2) 72 sin? aF2G2 - r4 sin? aG2 (@7 +6) - 73 sin? aFG2+
2 1 1 2 cos
—F?H?+ —H*(H*+ H') - —FH*+ ———G*H?* - ———HG*=0
i 72 ’ r4 (H™+ 1) r3 i r4sin? o r4sin® o ’

which is equivalent to

1 1 2 1 1
<F2 G2 —HZ) 4P 4 —— GG+ — H2H' -
(2.16) r2sin® o r2 rdsin® o rt
' COS (v 1 1
HG? — FG? - —_FH?=0.
rdsin® o r3sin? o r3

Let ® = 7F. Then, r® — ® = r2F’. Multiplying (2.16) by r* we have

(22 + ﬂaa(o)’é’ + H()?) (@) — @(r) +

(217) sin
——H(a)G(0)* + r®(r)*®'(r) +

sin” «

L G0)" + H(0)?) -

sin” «v

Sinﬂ aG(é))?G'(e) + H(a)?H'(a) = 0.

Setting (r1,0, ), (r2,0,a) € Q such that r1 # ro in (2.17) and subtracting two
equation we get

2 2 2 L

(202(r1) = @(r1) — 20%(r2) + 0(r2) ) (H2(0) + —5—G*(0) )+

ST -«

(I)4<7”1) — (I)4<7"2) - (1)3(7"1) + ‘1)3(7"2) + qu)z(Tl)q)l(Tl) - 7“2@2(7“2)(1)/0“2) =0.




EXPLICIT co-HARMONIC FUNCTIONS IN HIGH DIMENSIONS 9

Case 1. If 20%(r ) — ®(r) # ¢, then H?*(a) + -—5=G*(#) = C?, hence G() = B,

sin?
H(a) =+4/C% = and (2.17) becomes

(2.18) e
(@%) + 02) (@Q(T) o) + 02) 102 (1)@ (1) = H(a)B?

COS «x

ita H?(a)H'(a).

LHS in (2.18) depends on r only and RHS in (2.18) depends on « only, so we have
the system

02(r) + C2) (92(r) = (1) + C2) + 12 (1) @(r) = &1
H(a)B? £~ — H2( )H’(a) =

(2.19) sin?
H(a)=+4/C% - smg
G0)=B
Solving (2.19) we get ¢; = 0, G(A) = B, H(a) = £4/C? — — and from the
previous result (2.6) ® satisfies the following
D2 (t)+C? D(t)— % .
iln 7@%)(;@”02 - %\/02 = arctan \/0272%, ifC2—1>0
o2 (t)+C?
In|t| +c=1 3ln ‘I>2(t)(;>()+02 +;<I>(t) T if C?— =0
1 b2(1)4C? @(t)———\ﬂf—CQ .
3 ln @2(t)—q>(t)+02 - 4\/%1—02 ln @(t \/7702 s lf 02 — i < O.

If B=0, then C =0, ® =0 is also a solution of (2.19).
Case 2. If 2802(r) — ®(r) = ¢, then ®(r) = A. Setting (r,601,q), (r,02,a) € Q
such that 6; # 6, in (2.17) and subtracting two equations, we get

(G2(01) - G2(92)) (2H2(a) — cot(a) H(a) + 24% — A) -

Sl «

b (G0)E (0) - C0:)G(0) + G (0:) ~ G (02)) =0

Case 2a. If G%(0) # c, then (2H2 () — cot(a)H(a) + 2A? — A) sin?a = C and
(2.17) becomes
q4£0) + C%an) <2H2(0¢) — cot(a)H(a) 4 2®(r)* — <I)(7‘)) + GQLE/(G) =
®(r) — @*(r) — 2H*(a)®*(0) + ®(r)H*(a) — H* () — H?* () H' (1),

thus

o) GL(0) + G2(0)C + G2(0)G'(9) = sin’ a(<1>3(r) — o) — 2H2()D(0) +
2.20
O(r)H2(a) — H () — H2(a)H’(a)>.
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The LHS of (2.20) depends on € only and the RHS depends on r and « only,
hence we have a system
(2.21)

GA(0) + G2(0)C + G2(0)G'(h) =
sin® a(q)?’(r) — () — 2H2(a)q> (0) + (r)H?(a) — H (a) — H?(a)H/(a)) —a
d(ry=A
<2H2(a) — cot(a)H(a) + 2A% — A) sin? a = C.
Solving (2.21) we get C =2A4% — A, c; = —A*+ A3, &(r) = A, H(a) = Acot(a)
and G(6) satisfies the following
(02(9) + A2) (G2(9) A2 A) +G2(0)G'(0) =0

which is equivalent from the previous result (2.4) to

—arctan €0 4 \/’:2 L_arctan \/jgt_)A, if A2—A>0
L ifA=0
t4e=24 0 .
—arctan G(t), if A=1
( ) Gt)—vVA—A® e A2
— arctan +2 = A2 hl‘G(t)Jr —=| HAT-A<O.

If A is equal to 0 or 1, then G = 0 is also a solution of (2.21).
Case 2b. If G%(0) = ¢, then G(A) = B. Thus (2.17) gives

(2.22)
2 32
(AP At e ) (4242 120)) - B o)+ 12 () (o) = 0.
sin® sin o sin” a
Let W(a) = 5%~ + H?(a), then (2.22) becomes

(A2 — A+ ) (A% + ) + H(a)%\IJ’(a) =0,

> - 0,
consequently
A2 — A+ W(t)] = e A, W(ty)) (A2 + W(t))e > o T,

which gives us
A2 - A+ U
A2+ U

1+H |
— | In
2A

so that
B2 72A / —d/\
A2 A+ +H?(t)| = (A, B, H(ty)) | A*+———+H?(t)
sin’ ¢ sin? ¢
Finally integrating and substituting we complete the proof. (I

3. NUMERICAL APPROXIMATIONS OF 0o-HARMONIC FUNCTIONS

In this section we illustrate the co-Harmonic functions derived earlier, depending
on the parameter(s). The results illustrate that we may have a family of solutions
depending on the 27-interval even if the parameter(s) is/are fixed. For example:
the solution on Figure 3h is a combination of those in Figure 3i and Figure 3j when
0 belongs to 1st and 2nd 27- interval of the domain respectively.
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FIGURE 1. The approximation to u of the Theorem 1 i, depending
on the parameters A and B.
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FIGURE 2. The approximation to u of the Theorem 1 ii, depending
on the parameter A.
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FIGURE 3. The approximation to u of the Theorem 1 iii, depend-
ing on the parameter B.
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