
LARGE BIFURCATION SUPPORTS

N. GONCHARUK AND YU.ILYASHENKO

Abstract. In the study of global bifurcations of vector fields on
S2, it is important to distinguish a set ”where the bifurcation ac-
tually occurs”, – the bifurcation support. Hopefully, it is sufficient
to study the bifurcation in a neighborhood of the support only.

The first definition of bifurcation support was proposed by V.Arnold
in [2]. However this set appears to be too small, see [10]. In partic-
ular, the newly discovered effect, an open domain in the space of
three-parametric families on S2 with no structurally stable families
[8], is not visible in a neighborhood of the bifurcation support.

In this article, we give a new definition of ”large bifurcation
support” that accomplishes the task. Roughly speaking, if we know
the topological type of the phase portrait of a vector field, and we
also know the bifurcation in a neighborhood of the large bifurcation
support, then we know the bifurcation on the whole sphere.
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1. Introduction

Global bifurcation theory in the plane and two-sphere has two major
goals (amidst others): classification of the bifurcations met in generic
few-parameter families (with one, two, three parameters), and the
study of structural stability (or instability) of these families. In [8],
locally generic structurally unstable three parameter families of vector
fields on the sphere were discovered. After that the question whether
a generic unfolding of a particular class of degeneracies is structurally
stable becomes non-trivial; an a priori valid answer “yes” (conjectured
in [2]) is no more expected. The present paper is designed to be helpful
in the study of any classification and structural stability problem in the
global bifurcation theory on the sphere.

1.1. Who bifurcates? Consider a non-hyperbolic, i.e. structurally
unstable, vector field. It may have both hyperbolic and non-hyperbolic
singular points and limit cycles. Under a generic perturbation, the
hyperbolic singular points and limit cycles do not bifurcate, but the
non-hyperbolic ones do. A natural question arises: what subset of the
phase portrait of a non-hyperbolic vector field actually bifurcates? The
goal of this paper is to answer this question.

For any perturbation of a non-hyperbolic vector field, a closed in-
variant subset of the phase portrait of this field called large bifurcation
support (abbreviated as LBS) is distinguished. (We would prefer to
use the simpler term bifurcation support, but it is already introduced
by Arnold [2, Sec. 3.2], and has a different meaning.) In order to
check whether two perturbations of two orbitally topologically equiv-
alent vector fields are equivalent as the families of vector fields on the
whole sphere, one has to check only that these families are equivalent in
arbitrary small neighborhoods of their large bifurcation supports. For
example, two generic two-parameter perturbations of orbitally topolog-
ically equivalent vector fields with a polycycle “heart”, see Fig. 1a, are
equivalent iff they are equivalent in an arbitrary small neighborhood of
the polycycle (this is an easy consequence of the results of this paper,
but its proof is not yet written). A similar statement for vector fields
with a polycycle “lune”, Fig. 1b, is wrong. The reason is that a large
bifurcation support for any perturbation of the first degeneracy coin-
cides with the polycycle “heart”; for the perturbation of the second
degeneracy, the large bifurcation support may be much larger than the
“lune”.

This paper is heavily based on one of the key results of the quali-
tative theory of planar differential equations: the complete topological
classification of their phase portraits. This classification in different
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(a) (b)

Figure 1. “Heart” and “lune”

equivalent forms is given in [1], [13], [15], [16]. We used the most re-
cent form, so called LMF graphs suggested in [6]. This form allows us
to make use of the theory of planar graphs.

A large part of our arguments is based on the topology of planar
vector fields in the spirit of the Poincaré-Bendixon theorem. When
we started working on this paper, we could never suggest that this
topology would be so rich; see, e.g., Boundary lemma 7.3 below.

1.2. Vector fields with finiteness properties.

Definition 1.1. We say that a vector field v ∈ V ect(S2) satisfies a
Lojasiewicz inequality at 0 if there is a k ∈ N, k ≥ 1, and c > 0 such
that ‖v(x)‖ ≥ c‖x‖k on some neighborhood of 0.

Let V ect S2 be the set of all C∞ vector fields on S2, and V ect∗ S2

be the set of all vector fields with isolated singular points satisfying
Lojasievicz inequality and with finitely many cycles. It is known that
analytic vector fields with isolated singular points have finitely many
limit cycles, but this is a difficult result [9], [5].

Conjecture. Smooth vector fields met in a generic finite-parameter
family belong to V ect∗ S2.

We will simply assume that all vector fields that we consider have
this property. That is, all through the paper by default a vector field
v belongs to V ect∗ S2.

1.3. Axiomatic description of the LBS. Here and below B is an
open ball in Rn.

Definition 1.2. A smooth family of vector fields on S2 with the base
B ⊂ Rn is a smooth vector field V on B × S2 tangent to the fibers
{ε} × S2, ε ∈ B. The dimension of a family is the dimension of its
base.
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We will also write V = {vε}ε∈B where vε are restrictions of V to each
fiber.

A smooth local family of vector fields is a germ of a family of vector
fields at S2 × {0} ⊂ S2 × B. In other words, it is the family of vector
fields with the base (Rn, 0).

In Section 2.2 below, we define moderate topological equivalence of
vector fields. For vector fields with hyperbolic singular points on the
sphere, this notion is defined in [8]. We also recall a classical notion of
a weak topological equivalence.

Definition 1.3. Suppose that for any local smooth family of vector
fields V = {vε}ε∈(B,0) ⊂ V ect∗ S2, a closed v0-invariant subset Λ(V ) ⊂
S2 is defined. This set is called the large bifurcation support of V if it
has the following property:

Let two vector fields v0 and w0 be orbitally topologically equivalent on
S2. Let V and W be unfoldings of v0 and w0 that are moderately equiv-
alent in some neighborhoods of Λ(V ), Λ(W ); let this moderate equiva-
lence agree with the topological equivalence for ε = 0. Then the families
V and W are weakly topologically equivalent on the whole sphere.

Roughly speaking, equivalence of the unperturbed vector fields on
the whole sphere and moderate equivalence of their perturbations in
neighborhoods of their large bifurcation supports imply weak equiva-
lence of the perturbations on the whole sphere. In this defintion, “to be
a large bifurcation support” is a property of the mapping V 7→ Λ(V ),
not of an individual set Λ(V ).

The whole sphere S2 (i.e. the mapping V 7→ Λ(V ) = S2) is obviously
a large bifurcation support, but it is trivial. Below we give an explicit
description of the large bifurcation support for any family of vector
fields from V ect∗ S2, which is in general much smaller than S2. The
main result of the paper claims that this set is a large bifurcation
support in the sense of Definition 1.3. Below we will use the term
“large bifurcation support” for the set we construct in Sec. 2.3.2.

1.4. Applications. Classification problems form an essential part of
the catastrophe theory. It is crucial to know large bifurcation supports
for the classification of global bifurcations in k-parametric families with
small k.

2. Definitions and the main result

2.1. Separatrices. Here we briefly recall some known definitions and
introduce some new ones.
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Definition 2.1. A singular point P of a vector field v is called hyper-
bolic if both real parts of its two eigenvalues at P are non-zero.

Figure 2. Hyperbolic sector, parabolic sector and el-
liptic sector

Definition 2.2. A phase curve of a differential equation on the plane
is called a characteristic trajectory of a singular point if, as t → +∞
or t → −∞, it approaches the singular point and becomes tangent to
a straight line.

If a singular point has a characteristic trajectory, it is called charac-
teristic.

The following classical theorem can be found in many sources. It
relies on the desingularization theorem [3]; see [4, Sec. 1.5] for the
explicit statement and Sec. 3 of the same book for the reduction to the
desingularization theorem.

Theorem 2.3. Suppose that a C∞-smooth vector field v satisfies Lo-
jasiewicz inequality at all singular points. Then in a neighborhood of
each singular point, it may

• be topologically equivalent to a center or a focus;
• have a finite sectorial decomposition: namely, it has a neigh-

borhood that is split by characteristic trajectories into a finite
union of sectors with smooth boundaries, and in each sector, v
is topologically equivalent to one of the fields shown in Fig. 2.
These sectors are called hyperbolic, parabolic and elliptic sector
respectively.

Definition 2.4. A separatrix is a phase curve that contains one of two
bounding phase curves of a hyperbolic sector of some singular point P .
The separatrix is called stable if its ω-limit set is P , and unstable if
its α-limit set is P . If a curve is a stable and an unstable separatrix
simultaneously (for two different singular points or for one and the
same), then it is called a separatrix connection.
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Remark 2.5. For a hyperbolic saddle, the definition of a separatrix
above coincides with the classical one.

For v ∈ V ect∗ S2, we will use the classical Poincare-Bendixson theo-
rem (see e.g. [4, Sec. 1.7, Corollary 1.30]):

Theorem 2.6 (Poincare–Bendixson). For each vector field v ∈ V ect∗ S2,
the ω-limit set (and the α-limit set) of each point is one of the following:

• a singular point;
• a cycle;
• a monodromic polycycle.

A polycycle of a vector field v is a union of a finite number of singular
points of v joined by trajectories. The polycycle is called monodromic
if it admits a Poincare map at least on one side of it.

2.2. Moderate equivalence.

Definition 2.7. Two vector fields are called orbitally topologically
equivalent if there exists a homeomorphism H of the phase space which
identifies their phase portraits and preserves the direction of time parametriza-
tion on phase curves. We will also say that H conjugates these two
vector fields.

There are three definitions of equivalence of families of vector fields:
strong, weak, and moderate. Two of them are classical, and the third
one is new.

For a family V = {vε | ε ∈ B} of vector fields, let Sing V , PerV ,
and SepV be subsets of B × S2 formed by all singular points, all limit
cycles, and all separatrices of vε respectively. We will also use the
notation Sing v ⊂ S2, Per v ⊂ S2, and Sep v ⊂ S2 for the union of all
singular points, limit cycles, and separatrices of an individual vector
field v. The set S(v) := Sing v ∪Per v ∪ Sep v is an extended separatrix
skeleton (the set of all singular trajectories of v) and plays a special
role in topological classification of vector fields, see Theorem 3.4 below.

Definition 2.8. Two local families of vector fields on S2, V = {vε, ε ∈
(B, 0)} and W = {wε, ε ∈ (B′, 0)} are equivalent at ε = 0 if there exists
a map

(1) H : (B, 0)× S2 → (B′, 0)× S2, (ε, x) 7→ (h(ε), Hε(x)),

such that h is a homeomorphism, h(0) = 0, and for each ε ∈ (B, 0)
the map Hε : S2 → S2 conjugates vε and wh(ε). They are strongly
equivalent provided that H is a homeomorphism on (B, 0)× S2. They
are weakly equivalent if we do not pose any additional requirements on
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H. They are moderately equivalent provided that H is continuous with
respect to (ε, x) on the set

(2) S(v0) ∪ ∂((PerV ∪ SepV ) ∩ {ε = 0})
and H−1 is continuous with respect to (ε, x) on the set

(3) S(w0) ∪ ∂((PerW ∪ SepW ) ∩ {ε = 0})
Remark 2.9. The notion of moderate equivalence was introduced in
[8] for hyperbolic vector fields. In this case,

(4) ∂((PerV ∪ SepV ) ∩ {ε = 0}) ⊂ S(v0),

so it is not necessary to include this set; H must be continuous on
extended separatrix skeleton only. In general, (4) does not hold. For
example, we may take a bifurcation of a non-hyperbolic node ẋ = x3 −
εx, ẏ = y; the non-hyperbolic node (for ε = 0) bifurcates into a saddle
surrounded by two nodes (for ε > 0). Saddle separatrices of vε are
vertical and accumulate to trajectories (x = 0, y > 0) and (x = 0, y < 0)
that do not belong to S(v0).

Remark 2.10. In literature strong equivalence is usually called topo-
logical equivalence, weak equivalence is weak topological equiva-
lence.

Strong equivalence is too restrictive: families with very simple bi-
furcations may have numerical [14] and functional [17] invariants that
distinguish different equivalence classes. Weak equivalence is too loose:
families with apparently different bifurcations may be weakly topolog-
ically equivalent. Moderate equivalence seems to be more adequate
because it takes interesting objects for the one family to the corre-
sponding objects of the other family.

For Definition 1.3 above, we need a local version of moderate equiv-
alence (a moderate equivalence in neighborhoods of given closed in-
variant subsets). We will apply this version to neighborhoods of large
bifurcation supports.

Definition 2.11. Two local families of vector fields on S2, V = {vε, ε ∈
(B, 0)} and W = {wε, ε ∈ (B′, 0)}, are moderately equivalent in neigh-
borhoods of closed sets Z1, Z2 ⊂ S2 if

(1) Z1 is v0-invariant, and Z2 is w0-invariant;
(2) There exists a neighborhood U ⊃ Z1 and a map

(5) H : (B, 0)× U → (B′, 0)× S2, (ε, x) 7→ (h(ε), Hε(x)),

such that h is a homeomorphism, h(0) = 0, and for each ε ∈
(B, 0) the map Hε : U → S2 conjugates vector fields (vε)|U and
(wh(ε))|Hε(U);
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(3) H0(Z1) = Z2, and moreover,
(4) For each neighborhood V of {ε = 0} × Z1, its image H(V )

contains some neighborhood of {ε = 0} × Z2. The same holds
for the inverse map H−1;

(5) The map H is continuous with respect to (ε, x) on the intersec-
tion of its domain with (2).

The map H−1 is continuous with respect to (ε, x) on the
intersection of its domain with (3).

Remark 2.12. If a homeomorphism H satisfies the above conditions
for two families V,W in neighborhoods of closed sets Z1, Z2, and the
corresponding neighborhood is U ⊃ Z1, then H satisfies these conditions
for any smaller neighborhood U ′ ⊂ U , U ′ ⊃ Z1.

2.3. Explicit definition of the large bifurcation support.

Figure 3. Two possible cases for a non-interesting nest

2.3.1. Non-interesting limit cycles.

Definition 2.13. A nest of limit cycles of a vector field is the maximal
set of nested cycles with no singular points in between them.

A nest can consist of one limit cycle.
This definition has an additional restriction (absence of singular

points between cycles) in comparison with the classical one. Clearly,
the annulus between two neighboring cycles of one nest is a canonical
region, i.e. is filled by trajectories that wind towards these cycles in
the past and in the future. To be in one nest is an equivalence relation;
given a limit cycle, its nest is a unique nest that contains it.

Definition 2.14. A limit cycle is called semi-stable if for some choice
of coordinate on a small transversal to this cycle, the Poincaré map
satisfies P (x) > x for x 6= 0 and P (0) = 0 (here 0 is the intersection
point of the transversal with the cycle).
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Clearly, for v ∈ V ect∗ S2, each limit cycle can be attracting, re-
pelling, or semi-stable.

Definition 2.15. A limit cycle of a vector field v ∈ V ect∗ S2 is called
non-interesting if one of the following holds:

(1) its nest contains at least one attracting or one repelling limit
cycle;

(2) all the cycles in the nest are semi-stable, but inside the inner cy-
cle or outside the outer one there is only one hyperbolic singular
point.

Remark 2.16. By the index theorem, this singular point is either at-
tractor or repeller.

Note that hyperbolic cycles are all non-interesting due to the def-
inition. The motivation for this definition is the following: when a
non-interesting cycle bifurcates, nothing interesting happens; there is
no interaction between the dynamics inside and outside it.

Definition 2.17. An α- or ω-limit set of a non-singular point of a
vector field is called non-interesting if it is a hyperbolic repeller (re-
spectively, attractor), or a non-interesting limit cycle. Otherwise it is
called interesting.

2.3.2. Large bifurcation support: an explicit definition.

Definition 2.18. Extra large bifurcation support ELBS(v0) of a vector
field v0 is the union of all non-hyperbolic singular points and non-
hyperbolic limit cycles of v0, plus the closure of the set of all nonsingular
points for which both α- and ω-limit sets are interesting.

Remark 2.19. ELBS(v0) contains all non-singular points of v ex-
cept (open) basins of attraction and repulsion of non-interesting α-,
ω-limit sets. However we retain and include in ELBS(v0) all non-
hyperbolic limit cycles, including non-interesting ones. As for singular
points, ELBS(v0) contains all non-hyperbolic singular points and does
not contain hyperbolic attractors and repellers. It contains a hyperbolic
saddle if and only if one of its unstable (stable) separatrices has an
interesting ω- (α-) limit set.

Now the main definition comes.

Definition 2.20. Large bifurcation support of a local family V of vector
fields is LBS(V ) = ELBS(v0)∩

(
Sing v0 ∪ (PerV ∪ SepV ) ∩ {ε = 0}

)
.

So LBS(V ) contains all singular points and cycles of v0 that belong
to ELBS(v0) (see Remark 2.12) and all non-singular accumulation
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points of cycles and separatrices of vε, ε → 0, if these accumulation
points have interesting α- and ω-limit sets.

Remark 2.21. For vector fields with hypebolic fixed points only, LBS(V )
depends only on v0. It is not clear whether this is the case for all generic
families.

a b c

d e f

Figure 4. Examples of a vector field v0; large bifur-
cation supports for generic unfoldings of v0 are shown
in gray and thick. We only show interesting parts of
phase portraits; some hyperbolic sinks and sources are
not shown.

Example 2.22. Consider an unfolding V of each of the vector fields v0

shown on Fig. 4. In each case, the number of parameters in V equals
the codimension of the degeneracy of v0, and V is a generic family.
The large bifurcation support LBS(V ) is shown in thick curves and
gray domains. In more details:

• Fig. 4a (generic vector field v0): the set LBS(V ) is empty.
• Fig. 4b (degeneracy of codimension 1): the set LBS(V ) con-

tains the limit cycle and the two saddles with their separatrices
winding to the cycle in the positive or negative time. The cycle
is interesting.
• Fig. 4c (degeneracy of codimension 2): the set LBS(V ) con-

tains the two saddles, their separatrices that wind to the cycles
in the positive or negative time, and the whole annulus between
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the cycles. Both cycles are interesting; one may prove that sad-
dle connections accumulate to all trajectories inside the annu-
lus.
• Fig. 4d (degeneracy of codimension 2): the set LBS(V ) con-

tains the outer saddle, its separatrix that winds onto the cycle,
the cycle itself, and the closure of the parabolic sector of the
saddlenode.
• Fig. 4e (degeneracy of codimension 3): the set LBS(V ) con-

tains the cycle and the closures of parabolic sectors of saddlen-
odes.
• Fig. 4f (degeneracy of codimension 3. This is the polycycle

collection “lips” studied by Kotova and Stanzo, [12]): LBS(V )
contains the separatrix connection between saddlenodes and the
closure of the common parabolic sector of the saddlenodes, be-
cause cycles of vε, ε → 0, accumulate to all these ordits, as
shown in [12].

2.4. Main Theorem.

Theorem 2.23. Large bifurcation support LBS(V ) defined above sat-
isfies Definition 1.3.

Remark 2.24. The set ELBS(v0) is also a large bifurcation support in
terms of Definition 1.3. The proof is completely analogous to that for
LBS(V ); one may check that ELBS(v0) satisfies the properties listed
in Sec. 4.1, which are the only properties we need in the proof of the
Main theorem below.

However we prefer to prove the stronger result, for a smaller set
LBS(V ).

Let us give a more detailed and slightly improved statement of the
same theorem.

Theorem 2.25 (Main Theorem). Let two vector fields v0 and w0 be
orbitally topologically equivalent on S2; denote the corresponding home-
omorphism by Ĥ. Let V = {vε, ε ∈ (B, 0)} ⊂ V ect∗ S2,W = {wε, ε ∈
(B′, 0)} ⊂ V ect∗ S2 be smooth families unfolding these fields. Suppose
that there exists a neighborhood U of LBS(V ) and a map

H : (B, 0)× U → (B′, 0)× S2, H(ε, x) = (h(ε), Hε(x)),

h(0) = 0, which is a moderate equivalence of V,W in neighborhoods of
LBS(V ), LBS(W ) in the sense of Definition 2.11. Suppose moreover

that Ĥ|U = H0.
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Then the families V and W are weakly equivalent on the whole
sphere; namely there exists a map

Ĥ : (B, 0)× S2 → (B′, 0)× S2, Ĥ(ε, x) = (h(ε), Ĥε(x))

that provides a weak equivalence of the families V and W .

Remark 2.26. We do not assert that Ĥε|U = Hε, and this is not true
in the general case.

Remark 2.27. Remark 2.12 above shows that moderate equivalence
in some neighborhood of LBS(V ) implies moderate equivalence in any
sufficiently small neighborhood of LBS(V ). We will have to shrink U
in the proof.

Remark 2.28. Note that the maps H and Ĥ are skew products over
the same map h of the bases. This is the only difference between The-
orem 2.23 and Main Theorem.

The Main theorem 2.25 solves Problem 1 from [10]. Up to now,
this is the only general statement about bifurcations in the families of
vector fields with an arbitrary number of parameters. Several tempting
conjectures about such bifurcations were suggested in [2], but they all
turned to be wrong [12], [8], [7]. The authors do not know any other
non-trivial statement, even a conjecture, about bifurcations in generic
families with an arbitrary number of parameters that would seem to
be true.

3. Strategy of the proof

Our goal is to establish, for small ε, an orbital topological equiva-
lence of two planar vector fields vε, wh(ε). We will use the criterion
of orbital topological equivalence due to R.Fedorov [6] (based on the
classical book [1]); this result is close to the results due to L.Markus,
D.Neumann, and M.M.Peixoto [13], [15], [16]. In the following sub-
section we present this result. Simultaneously we recall the notion of
canonical regions and describe the properties of these regions needed
in the future.

3.1. Separatrix skeletons and canonical regions. First, let us for-
mulate the result of L.Markus, D.Neumann, and M.M.Peixoto [13], [15],
[16] following the book of Dumortier, Llibre and Artes [4], Sec.1.9. We
only consider the case v ∈ V ect∗ S2; the result holds true for arbitrary
C∞-smooth vector fields, but definitions should be modified for this
general case (see [4]).
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Definition 3.1. A separatrix skeleton of a vector field v ∈ V ect∗ S2

is Sing v ∪ Sep v. An extended separatrix skeleton S(v) of a vector field
v ∈ V ect∗ S2 is S(v) := Sing v ∪ Per v ∪ Sep v. A canonical region of v
is a connected component of its complement R2 \ S(v).

We will use the extended separatrix skeleton rather than the sepa-
ratrix skeleton.

Proposition 3.2. For v ∈ V ect∗ (S2), all points of the same canonical
region R have coincident α- and ω-limit sets.

Proof. First, prove that the set of points in R with the same ω-limit
set is open. This follows from continuous dependence of solutions of
ODEs on initial data. Indeed, take x ∈ R.

If ω(x) is a cycle or a monodromic polycycle, then the future semi-
trajectory of x intersects a transversal loop around this cycle or poly-
cycle. So the trajectories starting in a neighborhood of x also intersect
this loop, and thus have the same ω-limit set as x. The statement is
proved.

If ω(x) =: P is a singular point, we use its sectorial decomposition,
see Theorem 2.3. Note that the future semi-trajectory of x enters an
attracting parabolic sector or an elliptic sector of P . It may not enter
a hyperbolic sector because x does not belong to a separatrix. If a
future semi-trajectory of x enters an attracting parabolic sector, then
future semi-trajectories starting in some neighborhood of x enter the
same attracting parabolic sector of P , thus their ω-limit set is also P .
If a future semi-trajectory of x enters an elliptic sector, future semi-
trajectories starting in its neighborhood may enter either the same
elliptic sector of P , or an adjacent attracting parabolic sector of P . In
any case, their ω-limit set is P .

Since R is connected, it cannot be a union of several disjoint open
sets. So all points of R have the same ω-limit set. The same arguments
apply to the α-limit set. �

Definition 3.3. The completed separatrix skeleton of a vector field
v ∈ V ect∗ S2 is the union of the extended separatrix skeleton together
with one orbit from each one of the canonical regions.

Two completed separatrix skeletons C1, C2 are topologically equiva-
lent if there exists a homeomorphism from S2 to S2 that maps the
orbits of C1 to the orbits of C2 preserving the orientation.

Theorem 3.4 (Markus–Neumann–Peixoto Theorem). Assume that
v1, v2 ∈ V ect∗ S2. Then v1, v2 are topologically equivalent if and only if
their completed separatrix skeletons are equivalent.
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The following proposition, see [4, Proposition 1.42, p. 34], gives a
list of possible canonical regions. It motivates the fact that separatrix
skeletons classify vector fields: on the complement to S, the dynamics
is trivial.

Proposition 3.5. Every canonical region of v ∈ V ect∗ S2 is parallel,
i.e. topologically equivalent to one of the following:

• A strip flow, defined on R2 by the system of differential equa-
tions ẋ = 1, ẏ = 0;
• A spiral flow, defined on R2 r {0} the system of differential

equations ṙ = r, θ̇ = 0 in polar coordinates.

The book [4] also lists the case of an annular flow, given on R2 r{0}
by ṙ = 0, θ̇ = 1 in polar coordinates. This case corresponds to the
infinite set of cycles, hence is not possible for v ∈ V ect∗ S2.

We will also need the following corollary of Proposition 3.2:

Proposition 3.6. For v ∈ V ect∗(S2), each canonical region of v either
belongs to ELBS(v), or does not intersect it. In particular, ∂ELBS(v) ⊂
S(v).

Proof. Consider the set of all points in S2 \ S(v) whose α- and ω-limit
sets are interesting. Due to Proposition 3.2, this set is a union of several
canonical regions of v. Note that ELBS(v) is the closure of this set
plus some subset of S(v), which implies the statement. �

3.2. LMF graphs. The extended separatrix skeleton is not a graph on
a sphere, because separatrices can wind around limit cycles. However
we may turn it into a graph if we truncate the separatrices to their
intersections with transversal loops of their α- or ω-limit sets.

In [6], R. Fedorov assigned a graph to each vector field on the plane
and proved that two vector fields are orbitally topologically equivalent
if their graphs are isotopic in S2. The proof was based on the classical
book [1] where the complete set of topological invariants was given in
the form of ”schemes“. We will use the graphs introduced by Fedorov,
and we will call them LMF graphs (Leontovich, Mayer, Fedorov graphs)
of planar vector fields.

In this section, we recall the construction of LMF graphs. We only
consider vector fields from V ect∗ S2.

Choose an orientation on S2.

Definition 3.7. For a domain in S2 with smooth boundary, we say
that the boundary is oriented clockwise (resp. counterclockwise) with
respect to the domain if the domain is to the right (resp. to the left)
of its oriented boundary.
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Let a closed curve γ on S2 be disjoint to a connected set D. We say
that γ is oriented clockwise (resp. counterclockwise) with respect to D
if it is oriented clockwise (resp. counterclockwise) with respect to the
disk it bounds on the sphere that contains D.

Transversal loops around α- and ω-limit sets
Given a smooth vector field v on S2, choose a transversal loop for

each side of each its limit cycle, each monodromic side of each its poly-
cycle, and around each attracting or repelling singular point of v. We
assume that the annulus between the transversal loop and the corre-
sponding α- or ω-limit set does not contain points of other transversal
loops, and the vector field v in this annulus is orbitally topologically
equivalent to the standard vector field ṙ = ±(1− r), φ̇ = 1 in {r > 1}.

Fix a counterclockwise orientation on the chosen loop with respect
to the corresponding cycle, polycycle or singular point. From now on,
we always consider transversal loops with this orientation.

Truncated separatrices
If some separatrix γ of a singular point P of v crosses a transver-

sal loop l chosen above, consider a truncated separatrix : an arc of γ
between P and the cross-point of γ with l.

Remark 3.8. Assume that an outgoing separatrix γ of P does not
cross such loops. Poincare-Bendixson theorem implies that its ω-limit
set can only be a characteristic point, ω(γ) = Q. So this separatrix
is a characteristic trajectory for Q, and its germ at Q is C1-smooth
(see Theorem 2.3). We conclude that all non-truncated separatrices
are C1-smooth curves that join singular points of v.

Definition 3.9. LMF graph of a vector field v ∈ V ect∗ S2 is a graph
LMF (v) embedded in S2 which consists of the following elements:

• Vertices:
(1) All singular points of v;
(2) All truncation vertices : cross-points of separatrices of v

with transversal loops chosen above;
(3) A point on each cycle;
(4) A point on each empty transversal loop, i.e. on the transver-

sal loop that does not cross separatrices of v.
• Edges:

(1) Unstable (stable) separatrices of singular points, if their ω-
(resp., α-)limit sets are characteristic points.

(2) Truncated unstable (stable) separatrices of singular points,
if their ω- (resp., α-) limit sets are not characteristic points.
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(3) Limit cycles (this edge starts and ends at the vertex of type
3).

(4) Pieces of transversal loops between subsequent truncation
vertices, or the whole empty transversal loops.

(5) One homoclinic trajectory of v in each elliptic sector of a
non-hyperbolic singular point.

Orientation
The orientation of edges of types 1, 2, 3, 5 is induced by time

parametrization. The orientation of edges of type 4 is counterclockwise
with respect to the α- or ω-limit set corresponding to the transversal
loop, as mentioned above.

Labeling
LMF graph is considered together with the following labels.
Each vertex is labeled by the description of its type, namely the

labels say Singular Point (SP), Truncation Vertex (TV), Vertex on a
Limit Cycle (VLC), Vertex on an Empty Transversal Loop (VETL).
Similarly, the labels on the edges say Stable Separatrix (SS), Unstable
Separatrix (US), Separatrix Connection (SC), Stable Truncated Sepa-
ratrix (STS), Unstable Truncated Separatrix (UTS), Limit Cycle (LC),
Outgoing Transversal Loop (OTL), Ingoing Transversal Loop (ITL),
Trajectory in the Elliptic Sector (TES). We say that a transversal loop
is ingoing if this is a loop around its ω-limit set; otherwise we say that
the transversal loop is outgoing.

Fig. 5 shows the part of the phase portrait of a vector field and the
corresponding part of the LMF graph. We used abbreviations of the
labels described above.

The relation of the LMF graphs with separatrix skeletons is the
following. The edges of the LMF graph except transversal loops and
loops in elliptic sectors belong to the extended separatrix skeleton, and
their orientation is induced by the time parametrization. The face of
an LMF graph may be:

• a canonical region of v, possibly truncated by transversal loops
of its α- and ω-limit sets, which depends on types of these α-
, ω-limit sets. It will be possibly cut by a loop in an elliptic
sector;
• a petal in an elliptic sector;
• an annulus between an α- or ω-limit set of v and its transversal

loop.

The orbits in canonical regions that are included to the completed
separatrix skeleton keep the same information as labeling.
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Figure 5. A phase portrait of a vector field and its
LMF graph. For the meaning of labels, see Definition
3.9.

The classification of canonical regions (Proposition 3.5) yields the
following classification of faces of LMF graphs:

Lemma 3.10 (Faces of the LMF graph). Each open face F of the LMF
graph of a smooth vector field v ∈ V ect∗ S2 is either a topological disc,
or a topological annulus. In the second case, the following cases are
possible:

• F is a domain between an α- or ω- limit set (sink or source,
cycle, or polycycle) of v and its transversal loop;
• F is a domain between two transversal loops (of sinks, sources,

cycles or polycycles) of v.

Proof. This follows from Proposition 3.5 above. Indeed, some faces of
the LMF graph of v are annuli between α- or ω- limit sets of v and
their transversal loops. To obtain all other faces of the LMF graph, we
can take all canonical regions of v and truncate them by transversal
loops mentioned above: we cut off pieces of canonical regions that are
between α- or ω- limit sets of v and their transversal loops, and possibly
cut along loops in elliptic sectors.

If a canonical region carries a strip flow, its α- and ω-limit sets may
be surrounded or not surrounded by transversal loops; these loops will
intersect the canonical region in topological intervals transversal to the
flow. If this canonical region contains a loop in elliptic sector, this loop
intersects a canonical region in a topological interval along the flow.
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In any case, after truncation and cutting, this canonical region will
produce face(s) of LMF (v) topologically equivalent to disc(s).

For a canonical region carrying a spiral flow, its α- and ω-limit sets
are necessarily surrounded by transversal loops. This canonical region
after truncation will become an annular face of LMF (v) between two
transversal loops of α- and ω-limit sets. �

We use the following result of R. Fedorov [6], based on the previous
result of Andronov, Leontovich, Gordon, Mayer [1]. This result is close
to Theorem 3.4.

Theorem 3.11 (R. Fedorov, [6]). If two LMF graphs Γ1 = LMF (v),Γ2 =
LMF (w) of two vector fields v, w are isotopic on the sphere (i.e. there
exists an orientation-preserving homeomorphism of the sphere which
maps one to another, preserves orientation on edges and matches la-
bels on edges and vertices), then v and w are orbitally topologically
equivalent.

Remark 3.12. Theorem 3.11 in [6] was proved for a slightly different
construction of the graph. Below we list the differences.

• We label transversal loops as ingoing or outgoing, while Fedorov
puts these labels on singular points and each side of cycles or
polycycles themselves.
• Fedorov does not add transversal loops around singular points if

they are characteristic attractors or repellers.
• Fedorov does not add empty transversal loops.
• We do not describe a labeling for center-type vertices (as Fe-

dorov does) because they do not appear in V ect∗ S2, due to its
definition.

These differences do not affect Theorem 3.11. Indeed, let two vector
fields v1, v2 have isotopic LMF graphs. Recall that all attractors (both
characteristic and non-characteristic) are locally topologically equiva-
lent, and the same holds for repellers. So we may and will assume that
all attractors and repellers of v1, v2 are characteristic. Prove that v1

and v2 have isotopic Fedorov’s graphs.
Indeed, looking at the graph (with its embedding into S2), one can

determine which transversal loop corresponds to which α- or ω-limit
set, and put labels ( attracting, repelling) on each side of these sets as
in Fedorov’s graph. Further, we erase empty transversal loops from both
graphs (the only information they bear is labeling). Finally, we remove
transversal loops around all attractors and repellers and let truncated
separatrices that terminated at these loops enter the singular points
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themselves. Since the LMF graphs were isotopic, the resulting Fedorov’s
graphs will be isotopic.

This reduces Theorem 3.11 for Fedorov’s graphs to Theorem 3.11 for
LMF graphs described above.

The proof of Main Theorem will consist of proving the isotopy of
LMF graphs of vε, wh(ε) for small ε.

3.3. Isotopy of graphs on S2. We use the following theorem from
graph theory (see [19, Theorem 2] for the more general result).

Theorem 3.13. Suppose that two oriented connected planar graphs
Γ1,Γ2 are embedded in S2 by maps φ1 : Γ1 → S2, φ2 : Γ2 → S2. Choose
an orientation in S2.

Suppose that g : Γ1 → Γ2 is an isomorphism of oriented graphs Γ1,Γ2,
and suppose that the graph isomorphism g preserves a counterclockwise
order of edges at each vertex (induced by the immersions φ1, φ2).

Then the map φ2◦g◦φ−1
1 can be extended to the orientation-preserving

homeomorphism of S2, in particular φ1(Γ1) is isotopic to φ2(Γ2).

The idea of the proof of this theorem is to establish the correspon-
dence of faces of Γ1,Γ2 using the information on the order of edges in
each vertex, and to define a sphere homeomorphism inside each face.

LMF graphs are usually not connected; some of their faces can be
annuli, see Lemma 3.10 above. We will use the following theorem.

Theorem 3.14. Suppose that two oriented planar graphs Γ1,Γ2 (not
neccessarily connected) are embedded in S2 by maps φ1 : Γ1 → S2, φ2 : Γ2 →
S2, and their (open) faces in S2 are topological discs or annuli. Choose
an orientation in S2.

Suppose that these graphs are isomorphic as oriented graphs. Sup-
pose that the graph isomorphism g preserves a counterclockwise order
of edges at each vertex (induced by the immersions φ1, φ2). Suppose
that the map φ2 ◦ g ◦ φ−1

1 extends to an orientation-preserving homeo-
morphism of the annuli-shaped faces.

Then the the map φ2 ◦ g ◦ φ−1
1 can be extended to the orientation-

preserving homeomorphism of S2, so φ1(Γ1) is isotopic to φ2(Γ2).

Proof. The idea of the proof is to add edges through all annuli-shaped
faces of our graph, so that the extended graph is connected, and then
use Theorem 3.13. Formally, for each annuli-shaped face we do the
following.

Let A1 ⊂ S2 be an annuli-shaped open face of φ1(Γ1), and let G be
the homeomorphism that extends φ2◦g◦φ−1

1 to A1. Then A2 := G(A1)
is an open face of φ2(Γ2).
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Let φ1(V1), φ1(V ), φ1(V2) ∈ S2 be three subsequent vertices on one of
the two boundary components of A1 (the orientation on ∂A1 is induced
by the orientation on A1 ⊂ S2). Let φ1(W1), φ1(W ), φ1(W2) be three
subsequent vertices on another boundary component of A1. If one of
boundary components contains only two vertices, we put V1 = V2; if it
contains only one vertex, we put V1 = V = V2.

Take a continuous curve γ ⊂ A1 joining φ1(V ) to φ1(W ). To the
graph Γ1, add the edge joining V to W . Extend φ1 so that φ1([VW ]) =
γ.

Take a curve G(γ) ⊂ A2 joining G(φ1(V )) to G(φ1(W )). Simi-
larly, to the graph Γ2, add the edge joining φ−1

2 (G(φ1(V ))) = g(V )
to φ−1

2 (G(φ1(W ))) = g(W ). Extend φ2 so that it takes this edge to the
curve G(γ).

Finally, extend g to the graph isomorphism of enlarged graphs, by
putting g([VW ]) = [g(V ), g(W )]).

A counterclockwise order of edges at V contained a part [V V2], [V V1];
now this part changed to [V V2], [VW ], [V V1]. A counterclockwise order
of edges at g(V ) contained a part [g(V )g(V2)], [g(V )g(V1)]; now this
part changed to [g(V )g(V2)], [g(V )g(W )], [g(V )g(V1)]. So g still pre-
serves a counterclockwise order of edges at V ; similarly, it preserves
the order at W .

We repeat this process for each annuli-shaped face. Finally, we get
connected graphs Γ̃1, Γ̃2, because the number of their connected compo-
nents decreases after each step of extension. These new graphs satisfy
the assumptions of Theorem 3.13.

So the initial map φ2 ◦ g ◦ φ−1
1 (as well as the extended one) can be

extended to the homeomorphism of the sphere.
�

3.4. Idea of the proof of the Main Theorem. We are going to
prove that under assumptions of Main Theorem, for small ε, two vec-
tor fields vε and wh(ε) are topologically equivalent. Due to the definition
of moderate topological equivalence, we are given the map H = (h,Hε),
h : B → B′, such that Hε : U → Hε(U) conjugates vε to wh(ε) in
neighborhoods of large bifurcation supports. We are also given a map
Ĥ : S2 → S2 that conjugated v0 to w0 on the whole sphere.

We will not directly extend Hε to the whole sphere. We will rather
prove that two graphs LMF (vε) and LMF (wh(ε)) are isomorphic for
small ε. Then we refer to Theorem 3.14 together with Theorem 3.11
and conclude that for small ε, there exists a homeomorphism Ĥε : S2 →
S2 that conjugates vε to wh(ε). The family of maps Ĥ = (h, Ĥε) is a
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weak topological equivalence of the families {vε} and {wh(ε)} as re-
quired.

Note that we do not guarantee that (Ĥε)|U = Hε.
The following theorem will imply the Main Theorem:

Theorem 3.15. Under the assumptions of Main Theorem, for suffi-
ciently small ε, the graphs LMF (vε) and LMF (wh(ε)) are isomorphic
as oriented graphs, and the isomorphism Gε meets the conditions of
Theorem 3.14.

We will construct the isomorphism Gε on the LMF-graphs as subsets
of S2. Roughly speaking, in order to define Gε, we use Hε whenever it
is defined, i.e. inside a neighborhood U of the large bifurcation support
of vε. Outside U , all singular points and cycles of v0 are hyperbolic,
thus vε has close singular points and cycles. When we define Gε on
singular points and cycles outside U , we use Ĥ plus continuation of
hyperbolic singular points and cycles with respect to the parameter.
The edges of LMF (V ) that are partly inside U and partly outside it
will be one of our main concerns.

4. Properties of large bifurcation supports and
moderate topological equivalence

4.1. Large bifurcation support. In this section, we list the funda-
mental properties of the set LBS(V ) described above. These are the
only properties we are going to use in the proofs.

(1) LBS(V ) is a closed v0-invariant set (Proposition 4.1).
(2) Hyperbolic singular points and hyperbolic limit cycles of v0 do

not belong to LBS(V ). All non-hyperbolic singular points and
non-hyperbolic cycles of v0 belong to LBS(V ) (Proposition 4.3).

(3) Non-interesting non-hyperbolic cycles of v0 are connected com-
ponents of LBS(V ) (Remark 4.4).

(4) Sep-property (Proposition 4.7) and Separatrix lemma (Lemma
4.8).

(5) No-entrance property (Lemma 4.10).
(6) No cycles of mixed location (Proposition 4.11).
(7) Moderate topological equivalence of two families V,W implies

continuity of conjugacy on {ε = 0} × ∂LBS(V ), {ε = 0} ×
∂LBS(W ) (Proposition 4.12)

Now we pass to the exact statements.

4.1.1. LBS(V ) is closed and invariant.



24 N. GONCHARUK AND YU.ILYASHENKO

Proposition 4.1. If V ⊂ V ect∗ S2, then both ELBS(v0) and LBS(V )
are closed v0-invariant sets.

Proof. The set of points with interesting α- and ω-limit sets under v0 is
v0-invariant. Thus its closure is closed and v0-invariant. So ELBS(v0)
is closed and v0-invariant. The set (Sing v0∪(PerV ∪Sep V )∩{ε = 0})
is closed and v0-invariant. The set LBS(V ) is closed and v0-invariant
as the intersection of two closed and v0-invariant sets.

�

Though the topology of LBS(V ) may be complicated, it has finitely
many connected components due to the following proposition.

Proposition 4.2. If v ∈ V ect∗ S2, then each closed v-invariant set
A ⊂ S2 has finitely many connected components.

In particular, this holds for A = LBS(V ).

Proof. If A is closed and v-invariant, then each its connected compo-
nent is closed and v-invariant. Hence each connected component of
A contains trajectories of v together with their ω- and α-limit sets.
Due to Poincare-Bendixson theorem, each α- and ω-limit set contains
either a singular point of v, or a cycle of v. However, each vector field
v ∈ V ect∗ S2 has finitely many singular points and cycles. Each con-
nected component of A contains at least one of them. Thus the number
of connected components is finite. �

4.1.2. α- and ω-limit sets in LBS(V ). The next proposition follows
immediately from the definition of LBS(V ).

Proposition 4.3. Large bifurcation support LBS(V ) does not contain
hyperbolic attractors, hyperbolic repellers, or hyperbolic cycles of v0. It
contains all non-hyperbolic singular points, non-hyperbolic cycles, and
all separatrix connections of v0.

Note that due to Poincare-Bendixson theorem, α- and ω-limit sets
are singular points, limit cycles, and monodromic polycycles. Since
monodromic polycycles are formed by separatrix connections, they be-
long to LBS(V ). This implies the following remark.

Remark 4.4. All interesting α-, ω-limit sets of v0 except some saddles
belong to LBS(V ). All non-interesting α-, ω-limit sets of v0 except
non-hyperbolic non-interesting cycles belong to its complement.

We will also need the following proposition.

Proposition 4.5. For families V with v0 ∈ V ect∗ S2, non-hyperbolic
non-interesting cycles are connected components of LBS(V ).
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Proof. A neighborhood of a cycle is filled by points whose semi-trajectories
(in positive or negative time) wind around this cycle. However a point
whose semi-trajectory winds around a non-interesting cycle does not
belong to LBS(V ), due to the definition of ELBS(v0). So the inter-
section of LBS(V ) with a neighborhood of a non-interesting cycle is
this cycle only. �

This motivates the following definition.

Definition 4.6. Denote LBS∗(V ) = LBS(V )\{non-interesting cycles of v0}.

The set LBS∗(V ) is closed and v0-invariant, due to the previous
proposition.

4.1.3. Sep-property.

Proposition 4.7. Suppose that for an unstable separatrix γ of v0,
ωv0(γ) intersects LBS∗(V ); equivalently, γ hits arbitrarily small neigh-
borhood of LBS∗(V ). Then γ ⊂ LBS(V ).

The same statement holds for stable separatrices and α-limit sets.

Proof. Let γ be the separatrix mentioned in the lemma. Suppose that
it is unstable; the case of stable separatrices is treated in the same way.
By the Poincare-Bendixson theorem, the set ωv0(γ) may be a singular
point, a limit cycle or a polycycle.

Prove that ωv0(γ) is interesting. Indeed, all polycycles are interesting
limit sets, and all singular points and limit cycles in LBS∗(V ) are also
interesting due to Remark 4.4.

Since γ is an unstable separatrix, αv0(γ) is a saddle; so it is interesting
by definition. We conclude that both αv0(γ) and ωv0(γ) are interesting.
Hence γ ⊂ ELBS(v0). Since γ ⊂ Sep(v0), it belongs to LBS(V ). �

4.1.4. Separatrix lemma. Recall that the upper topological limit limAk
of a sequence of sets Ak in a topological space is a set of points x such
that any neighborhood of x intersects infinitely many of Ak; in other
words, this is the set of all limit points of the sequence Ak.

Lemma 4.8 (Separatrix lemma). Let γk be separatrices of vector fields
vεk that connect two interesting singular points, and εk → 0. Then
limγk ⊂ LBS∗(V ). The same holds for stable separatrices.

In particular, all separatrix connections of vε for small ε are close to
LBS∗(V ).

Proof. Let x belong to limγk. Prove that x ∈ LBS∗(V ). Passing to
a subsequence, we may and will assume that x = limk→∞ xk where
xk ∈ γk.
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Consider three cases:
Case 1. x ∈ Per(v0).
Assume that x is not in LBS∗(V ); then it belongs to a non-interesting

(parabolic or hyperbolic) cycle. In both cases, it is easy to see that ei-
ther α- or ω-limit set of a close point xk under a close vector field vεk
is either a cycle that bifurcates from a non-interesting nest, or a non-
interesting sink/source inside the nest. Both cases are impossible for
separatrices γk 3 xk, and the contradiction shows that x ∈ LBS∗(V ).

Case 2. x /∈ (Sing(v0) ∪ Per(v0)).
Suppose that x has a non-interesting α-limit set under v0. Then

a close point xk has a non-interesting α-limit set under a close vector
field vεk , which is impossible for separatrices γk 3 xk. The contradiction
shows that αv0(x) is interesting; similarly, ωv0(x) is interesting. Since
x /∈ Sing(v0), we conclude that x ∈ ELBS(v0). Since x is a limit point
of separatrices, x ∈ SepV , so we have x ∈ LBS(V ). Since x does not
belong to a limit cycle, x ∈ LBS∗(V ).

Case 3. x ∈ Sing(v0).
The set limγk is connected as a limit of connected sets. If it co-

incides with x, then separatrices γk of vεk collapse to x, thus x is
non-hyperbolic; hence x ∈ LBS∗(V ). If limγk does not coincide with
x, then arbitrarily close to x, there are non-singular limit points of γk.
They all belong to LBS∗(V ) due to the previous case. Hence x belongs
to LBS∗(V ), because LBS∗(V ) is closed. �

4.1.5. No-entrance lemma.

Definition 4.9. For a vector field v, a separatrix γ of a singular point
P does not enter an open set Ω ⊂ S2 if one of the following holds:

• γ does not intersect ∂Ω;
• P ∈ Ω and the cross-point γ ∩ ∂Ω is unique.

Lemma 4.10 (No-entrance lemma). In assumptions of the Main The-
orem, there exists an arbitrarily small neighborhood U∗ of LBS∗(V )
such that for sufficiently small ε, no separatrices of vε enter U∗.

The proof is postponed till Sec. 7.2. The statement does not hold
true for any sufficiently small neighborhood of LBS∗(V ). To use this
statement, in Sec. 7.3 we will have to restrict ourselves to special neigh-
borhoods U of LBS(V ) instead of all sufficiently small neighborhoods,
even though we have moderate equivalence for all small neighborhoods
of LBS(V ) (see Remark 2.12).

4.1.6. No cycles of mixed location. Each limit cycle of vε either lies in
a neighborhood of LBS(V ) or completely outside it. In more detail,
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we have the following proposition (it also treats singular points, which
is analogous but simpler).

Proposition 4.11. For any smooth local family V ⊂ V ect∗ S2 of vector
fields and any small neighborhood U of LBS(V ), for sufficiently small
ε, each singular point of vε is either inside U , or belongs to a continuous
family Pε, ε ∈ (B, 0), of hyperbolic singular points of vε such that P0 /∈
LBS(V ).

Each limit cycle of vε is either inside U , or belongs to a continuous
family cε, ε ∈ (B, 0), of hyperbolic limit cycles of vε such that c0 does
not belong to LBS(V ).

Proof. Any singular point P of vε, ε small, is close to some singular
point P0 of v0. If P0 ∈ LBS(V ), then P ∈ U . If P0 /∈ LBS(V ), then P0

is hyperbolic (see Proposition 4.3), so locally structurally stable. Thus
P belongs to a continuous family of singular points of vε as required.

The proof for limit cycles is a bit more complicated. The set PerV ∩
{ε = 0} (a limit periodic set) is described by [18, Theorem 5, Section
2.1.2]. This theorem claims that the limit cycles of vε as ε → 0 may
accumulate to:

• a hyperbolic limit cycle of v0;
• a non-hyperbolic limit cycle of v0;
• a non-hyperbolic singular point of v0;
• a polycycle of v0, namely a finite union of trajectories ϕi and

singular points Pi of v0, i = 1, . . . , n (some of these points may
coincide), such that α(ϕi) = Pi, ω(ϕi) = Pi+1, and ω(ϕn) = P1.

Note that the polycycle in the last case may be non-monodromic.
Clearly, the proposition holds in the first case. In the second and
the third cases, it holds true as well: non-hyperbolic singular points
and cycles of v0 belong to LBS(V ), so the corresponding limit cycles
of vε belong to U for sufficiently small ε.

Prove that any polycycle of v0 belongs to LBS(V ). Indeed, the
points Pi are neither sinks nor sources, because some orbits enter Pi and
some quit. Hence Pi are interesting limit sets. Thus ϕi has interesting
α-, ω-limit sets, so ϕi ⊂ ELBS(v0). But ϕi ⊂ PerV , so ϕi ⊂ LBS(V ).
This completes the proof.

�

4.1.7. Relation to moderate equivalence.

Proposition 4.12. Let two local families V and W be moderately
equivalent in some neighborhood of LBS(V ), LBS(W ) in the sense
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of Definition 2.11. Then the corresponding maps H and H−1 are con-
tinuous in ε, x on the sets {ε = 0}×∂LBS(V ) and {ε = 0}×∂LBS(W )
respectively.

Remark 4.13. In the proof of Main Theorem, we will only use the
continuity of H, H−1 on the above sets and on {ε = 0} × Sep(v0|U),
{ε = 0} × Sep(w0|Ĥ(U)).

Proof. Since the boundary of intersection and the boundary of union
belong to the union of boundaries,

∂LBS(V ) ⊂ ∂ELBS(v0)
⋃

∂ Sing v0∪∂((Per V ∪Sep V )∩{ε = 0}).

Note that ∂ Sing v0 = Sing v0. Due to Proposition 3.6, ∂ELBS(v0) ⊂
S(v0). Thus

∂LBS(V ) ⊂ S(v0) ∪ ∂((PerV ∪ SepV ) ∩ {ε = 0})
which is the set (2) from the definition of moderate equivalence. The
same arguments apply to W . This completes the proof. �

4.2. Moderate topological equivalence. This section contains sim-
ple topological statements that follow from the definition of moderate
equivalence.

The following proposition enables us to work in small neighborhoods
of LBS(V ) and LBS(W ).

Proposition 4.14. Under assumptions of the Main Theorem, for each
neighborhood Ũ+ of LBS(W ), there exists a small open neighborhood
U of LBS(V ), such that Hε(U) ⊂ Ũ+ for all small ε.

Since hyperbolic sinks, sources and cycles of w0 are outside LBS(W )
(Proposition 4.3), this Proposition immediately implies the corollary:

Corollary 4.15. For small U ⊃ LBS(V ) and any small ε, the set
Hε(U) is detached from all hyperbolic attracting and repelling singular
points and cycles of w0.

Proof of Proposition 4.14. Suppose that for some neighborhood Ũ+ ⊃
LBS(W ), the statement does not hold true. So there exists a sequence
of shrinking open neighborhoods Un: ∩Un = LBS(V ), and a sequence
εn → 0, such that none of the domains Hεn(Un) are contained in Ũ+.
Then there exists a sequence xn ∈ Un such that Hεn(xn) /∈ Ũ+.

Due to Requirement 4 of Definition 2.11 of moderate equivalence
(applied to H−1), the set H−1

εn (Ũ+) for small εn is a neighborhood of

LBS(V ), in particular, LBS(V ) ⊂ H−1
εn (Ũ+). So Hεn(LBS(V )) ⊂ Ũ+,

hence xn /∈ LBS(V ).
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Since sphere is compact, we can choose a convergent subsequence
x′n of xn. Since Un shrink to the closed set LBS(V ), this subsequence
converges to a point of ∂LBS(V ). This contradicts the continuity of
the map H on {ε = 0} × ∂LBS(V ) (see Proposition 4.12). �

The next proposition shows that under assumptions of the Main
theorem, the conjugacy of families V and W respects connected com-
ponents of LBS(V ), LBS(W ) and their neighborhoods.

Proposition 4.16. In assumptions of Main Theorem, let U, Ũ+ be the
same as in Proposition 4.14. Suppose that each connected component
of Ũ+ contains one, and only one, connected component of LBS(W ).
Suppose that each connected component of U contains a connected com-
ponent of LBS(V ). Then for sufficiently small U , for small ε1, ε2

and for two different connected components U1, U2 of U , their images
Hε1(U1) and Hε2(U2) do not intersect and belong to different connected
components of Ũ+.

Proof. Recall that Hε(U) ⊂ Ũ+ for all small ε as in Proposition 4.14.
Let Ci be a connected component of LBS(V ) that belongs to Ui. By

assumption, connected components Ĥ(C1), Ĥ(C2) of LBS(W ) are in
different connected components of Ũ+; let Ũ1, Ũ2 be these connected
components of Ũ+.

Since Ĥ(C1) ⊂ Ũ1, the whole component Ĥ(U1) belongs to Ũ1. Due
to Proposition 4.12, H is continuous on ∂C1. So for small ε1, Hε1(∂C)

is close to H0(∂C) = Ĥ(∂C) ⊂ Ũ1. Hence Hε1(U1) ⊃ Hε1(∂C1) inter-

sects Ĥ(U1); we conclude that Hε(U1) ⊂ Ũ1 for all small ε. Similarly,
Hε(U2) ⊂ Ũ2 for all small ε, which finishes the proof.

�

5. Combinatorial equivalence of the LMF graphs: first
steps of the construction

5.1. General approach. Recall that a neighborhood U of LBS(V ) is
fixed in the statement of the Main Theorem and does not depend on ε.
However we will have to shrink U further in the proof; this is possible
due to Remark 2.12.

Our goal is to define an isomorphism

Gε : LMF (vε)→ LMF (wh(ε))

of the LMF graphs of vε and wh(ε), and to prove that it meets the
conditions of Theorem 3.14. For each element c (i.e. vertex or edge) of
LMF (vε) that belongs to U we will define

Gε|c := Hε|c.
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It turns out that the elements of LMF (vε) that lie outside U depend
continuously on ε (say, all singular points outside U are hyperbolic, thus
structurally stable). When we define Gε on these parts of LMF (vε), we

use Ĥ plus continuous continuation in ε of hyperbolic singular points
and cycles.

For a smooth local family V ⊂ V ect∗ S2 of vector fields, each hyper-
bolic singular point P0, each hyperbolic limit cycle c0 and each germ
of a separatrix of a hyperbolic saddle (γ0, P0) of a vector field v0 gen-
erates a continuous family of hyperbolic points, cycles and germs of
separatrices Pε, cε, (γε, Pε) respectively of vε. This enables us to give
the following definition.

Definition 5.1 (Notation). In the above assumptions, let πε be a con-
tinuous map that depends continuously on ε, ε small, and takes home-
omorphically Pε to P0, cε to c0 and (γε, Pε) to (γ0, P0), preserving time
orientation.

In assumptions of Main Theorem, let π̃ε be the analogous map for
the family W playing the role of V .

5.2. Partial definition of Gε.

5.2.1. Singular points, limit cycles, and germs of separatrices. Denote
by Sep∗ vε the set of germs of separatrices of vε at singular points of
vε. Note that a separatrix connection of vε corresponds to two germs
in Sep∗ vε. Let us define Gε on Sing vε ∪ Per vε ∪ Sep∗ vε =: S∗(vε).

Let p ∈ S∗(vε). If p /∈ U , then p is a hyperbolic singular point, or
belongs to a cycle, or belongs to a germ of a separatrix of a hyperbolic
saddle. We define

Gε(p) := π̃−1
h(ε) ◦ Ĥ ◦ πε(p).

(see Definition 5.1 for the definition of πε, π̃ε). If p ∈ U , we define

Gε(p) := Hε(p).

This completes the definition of Gε on S∗(vε). Note that we have
constructed Gε on vertices of type 1, 3 (singular points and points on
limit cycles) and edges of type 3 (limit cycles), because these vertices
and edges belong to S∗(vε).

Remark 5.2. Gε preserves topological types of singular points and limit
cycles, thus preserves labels on the vertices of type 1, 3 and edges of
type 3. Gε also preserves the time orientation on cycles and germs of
separatrices of vε.
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5.2.2. Elliptic sectors. Each elliptic sector E of vε corresponds to a
non-hyperbolic singular point P of vε; we have P ∈ U by Proposition
4.11. Consider a germ of the elliptic sector (E,P ); its image under Hε

is a germ of an elliptic sector of wh(ε). Denote it by Ẽ := Hε((E,P )).
In the construction of LMF (vε), we need to choose a trajectory l of vε
in E. We may and will assume that l is close to P so that l ⊂ U . In
the elliptic sector Ẽ of wh(ε), we need to choose a homoclinic trajectory
of wh(ε); let us choose Hε(l). Then we define

Gε|l := Hε|l.
We have constructed Gε on edges of type 5 (homoclinic trajectories in
elliptic sectors).

Remark 5.3. Gε preserves time orientation on edges of type 5 (homo-
clinic trajectories in elliptic sectors), and preserves incidence of edges
of type 5 and vertices of type 1.

5.2.3. Non-truncated separatrices. Let γ be a non-truncated separatrix
of vε. Then for small ε, it belongs to U , due to Separatrix Lemma 4.8
above. Define

Gε|γ := Hε|γ.
This agrees with the definition of Gε on the germs of separatrices. We
have constructed Gε on edges of type 1 (non-truncated separatrices).

Remark 5.4. Gε preserves incidence of vertices of type 1 and edges of
type 1. For non-truncated separatrices (edges of type 1), Gε preserves
labels. Indeed, the labels say that the separatrix is stable, unstable or a
separatrix connection. Since Gε is induced by a homeomorphism Hε in
a neighborhood of such edge, it preserves such labels.

Remark 5.5. Now Gε is defined on all monodromic polycycles of vε,
because they are formed by non-truncated separatrices. Hence Gε is
defined on all possible α- and ω-limit sets of vε (singular points, limit
cycles and monodromic polycycles) of vε.

5.2.4. The graph correspondence Gε is a bijection. By now, we have
constructed Gε for small ε on all vertices and edges of the LMF (V )
disjoint from the transversal loops. Let us prove that this map is one-
to-one.

Proposition 5.6. For small U ⊃ LBS(V ), for sufficiently small ε,
the map Gε defined in Sec. 5.2.1, Sec. 5.2.2, and Sec. 5.2.3 is one-
to-one on singular points, limit cycles, non-truncated separatrices, and
trajectories in elliptic sectors (vertices of types 1, 3, edges of type 1, 3, 5)
of vε, wh(ε). It preserves incidence of these vertices and edges, labels
and time orientation.
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Proof. Fix U ⊃ LBS(V ) such that for all small ε, Hε(U) is detached
from hyperbolic cycles and singular points of w0. This is possible due
to Corollary 4.15 above.

Note that Gε is defined on all edges and vertices of LMF (vε) listed
in the proposition. Each of the listed edges is either completely inside
U , or completely outside it. In U , Gε is induced by Hε, so is injective.
Outside U , the map Gε = π̃−1

h(ε)◦Ĥ◦πε is a composition of three injective

maps, so is injective as well.
For all listed vertices and edges that are inside U , their images under

Gε are located inside Hε(U); for the edges and vertices outside U , their
images are close to hyperbolic singular points and cycles of w0. Due
to Corollary 4.15, Hε(U) is detached from these hyperbolic singular
points and cycles of w0, thus Gε is injective for small ε.

Prove that Gε is surjective. Recall that Ũ := ∩|ε|≤ε0Hε(U) is a
neighborhood of LBS(W ), due to Requirement 4 of Definition 2.11 of
moderate equivalence.

For small ε, each non-truncated separatrix of wh(ε) belongs to Ũ
(Separatrix lemma 4.8). Thus it belongs to the range of Hε. So Gε is
surjective on truncated separatrices. Each elliptic sector of wh(ε) is an
elliptic sector of a non-hyperbolic singular point, and all such points
belong to Ũ ⊂ Hε(U). So the edge of type 5 in this sector is the image
under Gε = Hε of the edge of type 5 of LMF (vε). Thus Gε is surjective
on edges of type 5.

Each singular point and each limit cycle of wh(ε) is either completely

inside Ũ , or completely outside it (Proposition 4.11 applied to W ). In
the first case, this singular point (cycle) is the image of some cycle or
singular point of (vε)|U under Hε = Gε. In the second case, it belongs
to a continuous family of singular points (cycles) of (wε)|S2\U , thus

belongs to the range of Gε = π̃−1
h(ε) ◦ Ĥ ◦ πε.

So Gε is surjective on the union of verteces and edges of vε disjoint
from the transversal loops.

This map preserves incidence of vertices and edges, labels and time
orientation due to Remarks 5.2, 5.3, 5.4 above. �

5.2.5. Transversal loops. Consider a hyperbolic sink, a source or a limit
cycle of v0; in all the three cases, we denote this object by P . Let l be
a transversal loop around P . We assume that U is sufficiently small so
that it does not intersect l. Since P is hyperbolic, it persists under small
perturbations, so l is a transversal loop for the corresponding object
Pε := π−1

ε P of vε, ε small. We may and will assume that l belongs to

the graph LMF (vε) as a transversal loop for Pε. Now, l̃ = Ĥ(l) is a
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transversal loop of Ĥ(P ) for w0. Moreover, l̃ is a transversal loop of

the corresponding object π̃−1
ε (Ĥ(P )) = Gε(Pε) of wh(ε). We may and

will assume that l̃ belongs to the graph LMF (wh(ε)) as a transversal
loop of Gε(Pε). Define

Gε|l := Ĥ|l.
If a cycle, polycycle, a sink or a source P of vε belongs to U , we choose
its transversal loop l so that l ⊂ U and the annulus between P and l
belongs to U . Then Hε(l) is a transversal loop of Hε(P ) for wh(ε), so
we may assume that Hε(l) belongs to LMF (wh(ε)). We define

Gε|l := Hε|l.

Note that all limit cycles and singular points are either inside or outside
U by Proposition 4.11. All monodromic polycycles are inside U due
to Separatrix lemma 4.8. So we have already constructed Gε on all
transversal loops that belong to LMF (vε).

Note that we did not yet define Gε on the truncation verteces of
LMF (vε). In Sec. 6.3, we will have to modifyGε on transversal loops so
that it provides a correct identification of truncation vertices. However
we will not change the set Gε(l) for a transversal loop l.

Remark 5.7. Gε preserves the correspondence of α-, ω-limit sets and
their transversal loops: if l is a transversal loop of a cycle, polycycle or
singular point P of vε, then Gε(l) is a transversal loop of Gε(P ).

This implies that Gε is one-to-one on transversal loops of LMF (vε),
LMF (whε), because it is one-to-one on limit cycles, polycycles and
singular points of vε, wh(ε).

6. Main lemmas and the proof of Main Theorem

In this section, we formulate two main lemmas and prove the Main
Theorem modulo these lemmas.

6.1. The plan of the proof. In the previous section, we have partially
constructed the required isomorphism Gε : LMF (vε) → LMF (wh(ε)).
However Gε is not yet defined on truncated separatrices; it is only
defined on their germs at singular points. To complete the construction,
we will need the following Correspondence lemma: if separatrices of
vε cross a transversal loop of vε, then the corresponding separatrices
of wh(ε) cross the corresponding transversal loop of wh(ε); the formal
statement appears below. This lemma will enable us to extend Gε to
truncated separatrices and truncation vertices, and we will be forced
to modify restrictions of Gε to transversal loops so that it provides a
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correct identification of truncation vertices. However, for a transversal
loop l, we will not change its image Gε(l).

After Gε is constructed, we have to verify the assumptions of The-
orem 3.14 for it. The most non-trivial assumption concerns annular
faces of LMF graphs. We will state and prove the Annuli faces lemma
to handle this problem.

6.2. Main lemmas.

Lemma 6.1 (Annuli faces lemma). In assumptions of Main theorem,
let ε be sufficiently small. Let A be an annular face of LMF (vε). Then
the map Gε (see Sec. 5.2) takes ∂A homeomorphically to the boundary
of an annular face Ã of LMF (wh(ε)). Moreover, Gε extends to an

orientation-preserving homeomorphism that takes A to Ã.

The proof constitutes Section 8. Clearly, the modification of Gε on
transversal loops will not affect this lemma.

Now we introduce notation for Correspondence lemma. Recall that
we always choose counterclockwise orientation on transversal loops
with respect to their α-(ω-)limit sets, see Sec. 3.2. We will call this
”proper orientation“.

Take a transversal loop l that belongs to LMF (vε). Denote by
{γi}, i = 1, . . . , n, all separatrices of singular points Pi of vε that cross
l (the case n = 0 is not excluded). We suppose that the cross-points
pi := γi ∩ l, i.e. truncation vertices on l, are ordered cyclically along l.
Note that if a singular point P has several separatrices that intersect
l, then it appears several times in the list {Pi}.

Let γ̃i be the separatrix of wh(ε) that corresponds to γi, i.e. contains
the germ Gε((γi, Pi)).

Lemma 6.2 (Correspondence lemma). In assumptions of Main The-
orem, let l be a properly oriented transversal loop of vε that belongs to
LMF (vε). Let {γi} be all separatrices of vε that intersect l, so that
the corresponding truncation vertices pi are ordered cyclically along l.
Then for sufficiently small ε,

1) The corresponding separatrices {γ̃i}, i = 1, . . . , n of wh(ε) cross

the properly oriented transversal loop l̃ := Gε(l), and the truncation

vertices p̃i := γ̃i ∩ l̃ are ordered cyclically along l̃.
2) There are no more truncation vertices on l̃.

The proof constitutes Section 9. The proof is simple if we only con-
sider separatrices that are completely inside U or comlpetely inside its
complement. The problem occurs if the separatix has mixed location:
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belongs partly to U and partly to its complement. We will classify
such separatrices as well as the boundary components of U that may
intersect them.

6.3. Isomorphism of LMF graphs. This section completes the con-
struction of the graph isomorphism Gε : LMF (vε)→ LMF (wh(ε)).

Let l be a transversal loop in LMF (vε). We will introduce γi, pi, l̃, γ̃i,
and p̃i as in Correspondence lemma 6.2. Note that pi are all truncation
vertices on l and p̃i are all truncation vertices on l̃.

Now we modify Gε|l so that Gε(l) = l̃, the map takes pi to p̃i and

preserves counterclockwise orienation on l, l̃. If l is empty, i.e. does not
intersect separatrices of vε, it contains one vertex of type 4. Correspon-
dence lemma implies that l̃ does not intersect separatrices of wh(ε), so
it also contains one vertex of type 4. In this case, we modify Gε|l so
that it matches these vertices of type 4 and preserves counterclockwise
orienation on l, l̃.
Gε takes the germs (γi, Pi) of truncated separatrices to (γ̃i, Gε(Pi)),

due to the definition of γ̃i. We extend Gε to the whole truncated
separatrices so that it identifies truncation vertices: Gε(pi) = p̃i. This
completes the construction of Gε on vertices of type 2, 4 and edges of
type 2, 4.

Remark 6.3. Gε is one-to-one on vertices and edges of type 2, 4, due
to Remark 5.7 and Correspondence lemma. It preserves incidence of
vertices and edges, labels, and orientation on transversal loops.

Each truncated separatrix of wh(ε) terminates on some transversal
loop, so all of them are in the range of Gε. This shows that Gε is
surjective on truncated separatrices. Injectivity is clear because Gε is
injective on germs of truncated separatrices. We conclude that Gε is
one-to-one on truncated separatrices.

Proposition 5.6 and Remark 6.3 show that the map Gε is one-to-one
on vertices and edges of LMF (vε) and LMF (wh(ε)), preserves inci-
dence of vertices and edges, labels and orientation. So Gε is a graph
isomorphism.

6.4. Isotopy of the LMF graphs. We are going to check the as-
sumptions of Theorem 3.14: Gε preserves orders of edges in all ver-
tices of LMF (vε) and extends to annuli-shaped faces of LMF (vε),
LMF (wh(ε)). The second statement follows directly from Annuli faces
Lemma 6.1. Now we check the first statement in all vertices of LMF (vε).

Vertices of type 1 (singular points) inside U .
The edges that start at such vertex P are
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• edges of type 1, i.e. non-truncated separatrices of vε. They
belong to U due to Separatrix lemma 4.8.
• edges of type 5, i.e. homoclinic trajectories in elliptic sectors of
P .
• edges of type 2, i.e. truncated separatrices of that singular point
P .

On the edges of types 1,5, and on the germs of edges of type 2, Gε

coincides with Hε. Hence it preserves cyclical orders of edges at all
vertices of type 1 inside U , because so does Hε.

Vertices of type 1 outside U
Note that vertices of type 1 outside U are either hyperbolic saddles,

or hyperbolic sinks, or sources. Hyperbolic sinks and sources are iso-
lated vertices of LMF (vε), and there is nothing to prove for them. Let
P be a hyperbolic saddle outside U ; on the (germs of) edges adjacent

to P , we have Gε((γ, P )) = π̃−1
h(ε) ◦ Ĥ ◦ πε((γ, P )). All maps in this

composition preserve orders of separatrices at hyperbolic saddles, so
Gε preserves order of edges at P .

Vertices of type 2: truncation vertices
Such vertex has degree 3: one of the corresponding edges is of type 2

(a truncated separatrix), and two other edges are of type 4 (two arcs of
a transversal loop, or possibly one arc coinciding with the whole loop).
The order of edges in such vertex is always such that the truncated
separatrix is ”from the right-hand side“ with respect to the orientation
along the transversal loop. Indeed, the transversal loop is oriented
counterclockwise with respect to its α- or ω-limit set (see the definition
of LMF graphs), and the separatrix crosses it from the other side. So
the order of edges in this vertex is determined by the orientation of the
edges of the graph, and Gε preserves this orientation.

Vertices of type 3 and type 4 (points on limit cycles and on
empty transversal loops)

Such vertices are only joined to themselves by edges of types 3 and 4
respectively. So the cyclical order in such vertices is trivial, and there
is nothing to prove.

Main Theorem is now proved modulo main lemmas.

7. Auxiliary lemmas

The proofs of both main lemmas, as well as the proof of No-entrance
lemma (see Lemma 4.10), are heavily based on the following Boundary
lemma.
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7.1. Boundary lemma. In this section, we formulate the Boundary
lemma. Its proof is postponed till Section 10.

Definition 7.1. Let U be an open domain. A point p ∈ ∂U is called
an inner topological tangency point of ∂U with v if a germ of the
trajectory of p under v is inside U and only crosses ∂U at p. It is called
an outer topological tangency point of ∂U with v if this germ is outside
U and only crosses ∂U at p.

Note that if ∂U is smooth and only has isolated quadratic tangencies
with v, then all these tangencies are either inner or outer topological
tangency points.

Definition 7.2. Let v be a smooth vector field. A closed v-invariant
set Z ⊂ S2 is said to have a Sep-property if:

• For any unstable separatrix γ 6⊂ Z, the set ω(γ) is detached
from Z;
• For any stable separatrix γ 6⊂ Z, the set α(γ) is detached from
Z.

Ω

Ω
Ω

Figure 6. Type 1, Type 2, and Type 3 boundary com-
ponents of Ω. For Type 2, inside the dotted transversal
loops there are α- and ω-limit sets of maximal transversal
arcs of this boundary component.

Lemma 7.3 (Boundary lemma (see Fig. 6)). Let v ∈ V ect∗ S2 be
a vector field; let Z ⊂ S2 be a closed non-empty v-invariant set with
Sep-property.

Then there exists an arbitrarily small neighborhood Ω of Z with
smooth boundary and finitely many boundary components with isolated
quadratic tangencies of ∂Ω with v, such that any connected component
ϕ of its boundary ∂Ω is of one of the following types:

• Type 1: ϕ contains two inner tangency points of ∂Ω with v
and bounds a disc D ⊂ (S2 \ Ω); v|D is orbitally topologically
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equivalent to the vector field ∂/∂x in the unit disc. Trajectories
of points of ϕ under v|Ω belong to Ω.
• Type 2: ϕ contains only outer tangency points of ∂Ω with v

(probably no tangency points). The trajectories of points of ϕ
under v|S2\Ω belong to S2 \ Ω.

Each maximal transversal arc β ⊂ ϕ intersects a separatrix of
v|Ω. If β is outgoing, then all its points have a common ω-limit
set under v. If β is ingoing, then all its points have a common
α-limit set under v. This ω- (resp. α-) limit set lies outside Ω.
• Type 3: ϕ is a transversal loop of some α- or ω-limit set (an

attracting or repelling singular point, a cycle or a polycycle) of
v, and this object belongs to Z.

Moreover, separatrices of v|S2\Ω do not intersect Ω in all the three cases
above.

Figure 7. Examples of Type 1, Type 2, and Type 3
boundary components of Ω ⊃ Z; the set Z is shown in
thick, and boundary components are dashed. On all of
these pictures, Z is a part of the large bifurcation support
of a generic unfolding of v

Note that the characteristic feature of the Type 2 boundary compo-
nents is not the presence of outer tangencies (they may be absent), but
rather the presence of separatrices that cross these components.

Remark 7.4 (Indices of boundary components of Ω). Recall that we
orient ∂Ω counterclockwise with respect to Ω. For a boundary compo-
nent ϕ of Ω, suppose that the point ∞ of the sphere is located to the
left of ϕ (i.e. on the same side as Ω). Then the indices of boundary
components of Ω with respect to v are the following:

• Type 1: index 0;
• Type 2: indices 1, 2, . . . ;
• Type 3: index 1.
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We will use this remark later to distinguish between boundary compo-
nents of different types.

Proposition 7.5. There exists an arbitrarily small open neighborhood
U∗ ⊃ LBS∗(V ) that satisfies assumptions of Boundary lemma for Z =
LBS∗(V ) and v = v0. Moreover, for boundary components of Type
2, the common α- (resp. ω-) limit set under v0 of each ingoing (resp.
outgoing) transversal subarc β ⊂ ∂U∗ is non-interesting.

Proof. Let us check that LBS∗(V ) satisfies assumptions of Boundary
lemma. Clearly, it is closed and v0-invariant (Proposition 4.1). It has
a Sep-property due to Proposition 4.7. The application of Boundary
lemma provides us with a neighborhood U∗. This implies the first
statement of the proposition.

Let ϕ ⊂ U∗ be a boundary component of U∗ of Type 2, and let β ⊂ ϕ
be its outgoing transversal subarc. Boundary lemma implies that the
common ω-limit set of β under v0 is outside U∗. The only interesting
ω-limit sets of v0 outside LBS∗(V ) are saddles (see Remark 4.4). But
saddle separatrices of v|S2\U∗ do not intersect U∗ due to Sep-property
of LBS(V ). So ω(β) is non-interesting. The same arguments apply to
ingoing transversal arcs and their α-limit sets. �

7.2. Proof of No-entrance lemma 4.10 modulo Boundary lemma.

Remark 7.6. In fact, we will prove that any neighborhood U∗ that sat-
isfies Boundary lemma (for v0 and LBS∗(V )) also satisfies No-entrance
lemma.

Proof. Choose a neighborhood U∗ that satisfies Boundary lemma for v0

and LBS∗(V ). It exists due to Proposition 7.5. Suppose that unstable
separatrices of vε enter U∗ for arbitrarily small ε. Then there exists a
sequence εk → 0 and points pk ∈ ∂U∗ where unstable separatrices of
vεk enter U∗. Let p be a limit point of the sequence pk ∈ ∂U∗. Then
p ∈ ∂U∗; clearly, p belongs to the closure of an ingoing transversal arc
of ∂U∗.

On the other hand, p ∈ (SepV ) ∩ {ε = 0}. We claim that p ∈
ELBS(v0); this will imply p ∈ LBS(V ) and contradict p ∈ ∂U∗.

Since p ∈ ∂U∗, it is not singular. Prove that its α-limit set under
v0 is interesting. Indeed, otherwise the negative semi-trajectory of p
under v0 crosses a transversal arc of a non-interesting set αv0(p). Thus
for close points pk, their negative semi-trajectories under close vector
fields vεk cross this arc as well. Hence these semi-trajectories cannot
be unstable saddle separatrices, and we get a contradiction.

So αv0(p) is interesting. Let us prove that ωv0(p) is interesting.
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Since αv0(p) is interesting, Proposition 7.5 implies that p cannot
belong to the boundary component of Type 2. So it belongs to the
boundary component of Type 1 or Type 3. In both cases, the future
semi-trajectory of p under v0 belongs to U∗ due to Boundary Lemma
7.3. The ω-limit set of p under v0 is thus inside U

∗
; due to Remark 4.4,

ωv0(p) is interesting.
Hence α- and ω-limit sets of p are both interesting. We conclude

that p ∈ ELBS(v0) ∩ (SepV ) ∩ {ε = 0} ⊂ LBS(V ), which contradicts
p ∈ ∂U∗. So separatrices of vε cannot enter U∗. �

7.3. Choice of U . If U is a neighborhood of LBS(V ), we denote by
U∗ the union of its connected components that do not contain non-
interesting cycles of v0. If Ũ± is a neighborhood of LBS(W ), we denote
by Ũ±∗ the union of its connected components that do not contain non-
interesting cycles of w0.

Proposition 7.7. Under the assumptions of the Main Theorem, there
exists an arbitrarily small open neighborhood U of LBS(V ) and arbi-
trarily small open neighborhoods Ũ± of LBS(W ) such that

- U∗ satisfies Boundary lemma for v0 and LBS∗(V );
- Ũ±∗ satisfy Boundary lemma for w0 and LBS∗(W );
- for all small ε, Ũ− ⊂ Hε(U) ⊂ Ũ+;
- the sets U \ U∗, Ũ± \ Ũ±∗ are unions of neighborhoods of non-

interesting cycles bounded by their transversal loops.
- each connected component of U, Ũ± contains one connected com-

ponent of LBS(V ), LBS(W ) respectively.

Note that this proposition implies that U, Ũ± satisfy the assertions of
No-entrance lemma, see Remark 7.6. The last assertion of this proposi-
tion shows that Proposition 4.16 on connected components is applicable
for U, Ũ+.

Proof. Choose a neighborhood Ũ∗+ of LBS∗(W ) satisfying Boundary
lemma for the vector field w0. We may remove its connected compo-
nents that do not contain connected components of LBS∗(W ); if it
is sufficiently small, then each its connected component contains only
one component of LBS∗(W ). Add small annular neighborhoods of
non-interesting cycles of w0 bounded by transversal loops; we get the
required neighborhood Ũ+ of LBS(W ).

Now, take a small neighborhood U∗ of LBS∗(V ) that satisfies the
assumptions of Boundary lemma, and add small annular neighborhoods
of non-interesting cycles of v0 bounded by transversal loops. We get
a neighborhood U ⊃ LBS(V ). Due to Proposition 4.14, we may and
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will assume that for small ε, Hε(U) ⊂ Ũ+. As above, we assume that
each connected component of U contains one connected component of
LBS(V ).

Recall that for any small ε0, ∩|ε|<ε0Hε(U) is a neighborhood of LBS(W )
due to the definition of moderate equivalence (Requirement 4 of Def-
inition 2.11). We choose Ũ−∗ ⊃ LBS∗(W ) that satisfies Boundary
lemma for w0, and add small annular neighborhoods of non-interesting
cycles of w0 bounded by transversal loops, in order to get a neigh-
borhood Ũ− of LBS(W ). We assume that Ũ− is sufficiently small so
that Ũ− ⊂ (∩|ε|<ε0Hε(U)). Once again, we assume that each connected

component of Ũ− contains one connected component of LBS(W ).
Finally, Ũ− ⊂ Hε(U) ⊂ Ũ+ for small ε as required.

�

From now on, we assume that U , Ũ+ and Ũ− satisfy the proposition
above.

7.4. Images of Type 1, 2, and 3 boundary components. In the
proofs of both main theorems, we will also need results on the images
of Type 1, Type 2, and Type 3 boundary components of U∗ under Hε.
In some sence, they say that the boundary component Hε(ϕ) of Hε(U)
has similar properties to that of ϕ, and also provide some control on
the location of Hε(ϕ) for different ε.

For the three subsequent lemmas, U , Ũ± are as in Proposition 7.7 and
are sufficiently small, i.e. belong to some preassigned neighborhoods of
the corresponding large bifurcation supports. From now on, we assume
that Hε extends homeomorphically to U , otherwise we slightly diminish
U .

Lemma 7.8 (Images of Type 1 boundary components). Under the
assumptions of Main Theorem, suppose that ϕ is a Type 1 boundary
component of ∂U . Then Hε(ϕ) bounds an open topological disc D ⊂
S2 \Hε(U), and wh(ε) has no singular points and limit cycles in D.

The following lemma is important for Correspondence lemma: it
shows thatHε preserves the correspondence between outgoing (ingoing)
transversal arcs of Type 2 boundary components and their ω- (resp. α-
)limit sets outside U∗.

Here and below the orientation on ∂U is clockwise with respect to
U .

Lemma 7.9 (Images of Type 2 boundary components). Under the
assumptions of Main Theorem, suppose that β is a transversal outgoing
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arc of a Type 2 boundary component ϕ ⊂ ∂U∗. Let βε ⊂ ϕ be the
maximal arc transversal to vε and close to β. Put β̃ε := Hε(βε).

Let l be a transversal loop around ω(β). Put l̃ = Ĥ(l). Then for

small ε, positive semi-trajectories of points of β̃ε under wh(ε) stay in S2\
Hε(U∗), and the Poincare map P̃ε : β̃ε → l̃ along wh(ε) is well-defined.

The map P̃ε takes the clockwise orientation on β̃ε with respect to Hε(U)

to the counterclockwise orientation on l̃ with respect to Ĥ(ω(β)).

Moreover, P̃ε(β̃ε) ⊂ l̃ intersects P̃0(β̃0) for small ε. The analogous
statement holds for ingoing arcs.

Corollary 7.10. Let ϕ be an outgoing transversal Type 2 boundary
component of ∂U , let l, l̃ be as in Lemma 7.9. Then for all small ε,
there are no singular points and limit cycles of wh(ε) between two closed

curves Hε(ϕ) and l̃.

Proof. This follows from Lemma 7.9 above, since the Poincare map
P̃ε : Hε(ϕ)→ l̃ along the orbits of wh(ε) is well-defined. �

Lemma 7.11 (Images of Type 3 boundary components). Under the
assumptions of Main Theorem, let ϕ ⊂ ∂U be a Type 3 boundary com-
ponent of ∂U . Then for all small ε, the oriented curves Hε(ϕ) and

Ĥ(ϕ) are homotopic in Ũ+ \ (LBS(W ) ∪ Singwh(ε) ∪ Perwh(ε)).

The proofs of these lemmas is postponed till Section 11.

7.5. Logical relation between subsequent sections. We now turn
to the proof of the main lemmas. The logical relation between sections
8 - 11 is the following: 10 → 11 → 8 → 9. Yet we start with main
lemmas: Annuli faces lemma and Correspondence lemma in Sections
8 and 9 respectively, making use of the Boundary lemma and Lemmas
7.8, 7.9, 7.11. Then we prove Boundary lemma and these lemmas in
Sections 10 and 11 respectively.

8. Proof of the Annuli faces lemma

8.1. Empty annuli lemma.

Definition 8.1. We say that the annulus A ⊂ S2 is empty with respect
to a vector field v if its boundaries are topologically transversal to v
and there are no singular points or limit cycles of v inside A.

In this case, v|A is orbitally topologically equivalent to the radial
vector field ∂/∂r in the standard annulus {1 < r < 2}.

Let us now define a collection L of transversal loops around non-
interesting nests of v0 (see Definition 2.15 of non-interesting cycles).
This collection will be used in the proof of the Correspondence lemma.
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For a non-interesting nest of v0, let us order the cycles by inclusion.
The first and the last cycles are called boundary cycles of the nest.
In the case when we have a nest of non-interesting semi-stable cycles
(case 2 in Definition 2.15), we suppose that the hyperbolic singular
point mentioned in this definition lies inside the inner cycle of the
nest. This enables us to distinguish the inner and the outer cycle of
the nest.

Transversal loops of the limit cycles of the nest belong to the LMF
graph of the vector field v0, but it is possible that they do not belong
to the LMF-graph of vε because the limit cycles of the nest may de-
stroy. However it is convenient to consider LMF (vε) together with the
transversal loops that encircle the nest.

Definition 8.2 (Collection L of transversal loops). For each non-
interesting and not semi-stable nest of v0 (case 1 of Definition 2.15),
fix two transversal loops l−, l+ of the boundary cycles of the nest such
that the whole nest is in the annulus between l−, l+.

For each non-interesting semi-stable nest of v0 (case 2 in Definition
2.15), fix an outer transversal loop l of the most outer cycle of the nest,
such that l encircles the whole nest.

We orient these loops counterclockwise with respect to the annulus
between l−, l+ or with respect to the disc encircled by l respectively.
Let L be a collection of transversal loops thus obtained. We say that
l ∈ L is ingoing if future semi-trajectories of its points enter the corre-
sponding nest, and outgoing otherwise.

The Annuli faces lemma follows from a more general statement,
Empty annuli lemma, which we will also need below in the proof of
Correspondence lemma (see Section 9).

Lemma 8.3 (Empty annuli lemma). Under the assumptions of Main
Theorem, for sufficiently small open U ⊃ LBS(V ), suppose that transver-
sal loops l1, l2 bound an empty annulus A for a vector field vε. Suppose
that li is either a transversal loop around a hyperbolic singular point
or a cycle of vε, or li ⊂ U , or li ∈ L. Let l̃i := Hε(li) if li ⊂ U and

l̃i := Ĥ(li) in other cases.

Then l̃1, l̃2 bound an empty annulus Ã for wh(ε).

Moreover, let the orientation on l̃i be induced by Ĥ or Hε from the
orientation on li. Then l1, l2 are oriented with respect to A in the same
way as l̃1, l̃2 are oriented with respect to Ã.

The last assertion implies that Ĥ, Hε restricted to ∂A extend to the
homeomorphism of A, Ã. Note that transversal loops from the LBS(V )
either surround a hyperbolic singular point or a cycle of vε, or belong
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to U . The case li ∈ L will be used in the proof of Correspondence
lemma in Section 9 below.

8.2. Reduction.

Proof of the Annuli faces lemma modulo Empty annuli lemma. LetA be
the same as in the Annuli faces lemma, that is, an annuli shaped face of
the LMF graph of vε. Due to the classification of faces of LMF graphs
(Lemma 3.10), we have two cases. Consider them one by one.

• A is an annulus between a transversal loop l of vε and the
corresponding α- or ω-limit set c.

Due to Remark 5.7, Gε preserves the correspondence of transversal
loops and their α-, ω-limit sets, so the loop Gε(l) is a transversal loop
for Gε(c) in LMF (wh(ε)). Thus Gε(l) and Gε(c) bound an annulus

Ã. It remains to prove that Gε extends to a homeomorphism of A, Ã,
i.e. to analyze whether it preserves orientation on ∂A. We have two
subcases:

1) If c ⊂ U , then A is inside U , due to the choice of transversal loops
in Section 5.2.5. Then Gε is induced by Hε on ∂A. So Hε provides a
required extension of Gε to this annuli-shaped face.

2) If c is outside U , then c is either a hyperbolic cycle, or a hyperbolic
sink, or a source. We only consider the case when c is a cycle; other
cases are analogous but simpler.

Recall that the orientation on c and its transversal loop l is chosen
in such a way that c is to the left with respect to l; suppose that l is
to the left with respect to the timewise orientation of c. It remains
to prove that the mutual orientation of l̃ := Gε(l) = Ĥ(l) and c̃ :=

Gε(c) = π̃h(ε)Ĥ(π−1
ε (c)) is the same as the orientation of c, l described

above. This will imply that Gε matches the orientations on ∂A, ∂Ã;
thus Gε extends to a homeomorphism between the faces A and Ã.

Indeed, c̃ is to the left with respect to l̃ due to the choice of orientation
on transversal loops. Further, l̃ = Ĥ(l) is to the left with respect to

Ĥ(c) because Ĥ is an orientation-preserving homeomorphism. The

curve Ĥ(c) is close to the cycle Gε(c) = π̃h(ε)Ĥ(π−1
ε (c)) which implies

the statement.

• A is an annulus between two transversal loops l1, l2 of vε.

In this case, Lemma 6.1 follows from the Empty annuli Lemma 8.3.
Note that A is an empty annulus of vε in the sense of Definition

8.1. By Empty annuli Lemma 8.3, the annulus Ã between l̃1 and l̃2 is
empty for wh(ε). By construction of Gε, its boundaries l̃1, l̃2 belong to
LMF (wh(ε)).
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Let l1 be an outgoing transversal loop, and let l2 be ingoing; clearly,
no unstable separatrices may cross an outgoing transversal loop l̃1 of a
cycle, source or a monodromic polycycle. Similarly, no stable separa-
trices may cross l̃2. So no separatrices enter an empty annulus Ã, thus
it forms a face of LMF (wh(ε)).

By Lemma 8.3, the map Gε : ∂A→ ∂Ã may be extended to a home-
omorphism between A and Ã. �

8.3. Plan of the proof of the Empty annuli lemma 8.3. The nat-
ural way to prove the Empty Annuli lemma is to compare restrictions
to A of the phase portraits of vε and v0. The first restriction is trivial;
the second one may be quite different, see Figures 8 and 9. We will
need the Boundary Lemma for the case shown in Fig. 8, and both
Boundary and Correspondence Lemmas for Fig. 9.

Let us pass to the formal proof.
Consider all boundary components of U that are inside A. It is

possible that some of them are non-contractible inside A; then A is split
into several smaller annuli. Note that all these boundary components
have index 1 with respect to vε. Hence they have index 1 with respect
to v0. Therefore, they are transversal boundary components for U and
v0 (see Boundary Lemma 7.3). Clearly, each smaller annulus is an
empty annulus for vε. We are going to prove the Empty annuli lemma
for each of these smaller annuli.

Any smaller annulus does not contain non-contractive boundary com-
ponents of U . So there are two possible cases: the boundary com-
ponents l1, l2 of a smaller annulus A belong to the same connected
component of U or to the same connected component of CU = S2 \U .

Indeed, suppose that l1 and l2 do not belong to the same connected
component of U . The annulus bounded by l1 and l2 does not contain
non-contractive boundary components of U , hence the curves l1 and l2
are not separated by U . Therefore, they belong to the same connented
component of CU .

The two possible cases mentioned above are considered below in
Lemmas 8.4 and 8.5, so these lemmas conclude the proof. See Figures
8 and 9 respectively.

8.4. One connected component of Ū .

Lemma 8.4. The statement of Empty annuli lemma holds true if l1,
l2 belong to the same connected component of U .

Proof. Consider all the boundary components ϕi of this connected com-
ponent of U that are located inside A. They are contractive in A, so
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Figure 8. Empty annuli lemma: auxiliary lemma 8.4,
orbits of vε (left) and v0 (right). The component of U is
shadowed, its boundary is dotted, the large bifurcation
support is shown in thick. The vector field v0 has degen-
eracy of codimension 6; four saddlenodes of v0 vanish as
ε changes, and the annulus A becomes empty.

they bound topological discs in A. These disks contain no singular
points of vε, so the index of the vector field vε with respect to each
curve ϕi is 0 (we assume that the point ∞ on S2 is outside A). The
same holds for the vector field v0. Thus these components ϕi are of
Type 1 (see Remark 7.4), they bound discs Di ⊂ CU , and A\∪Di ⊂ U .
So the annulus Ã between Hε(l1) and Hε(l2) is a union of Hε(A \ ∪Di)
and regions D̃i bounded by Hε(ϕi), where ϕi are Type 1 boundary
components for v0, see Fig. 8 left. Fig. 8 right shows an example of a
vector field with such boundary components of U .

Let us prove that Ã is empty for wh(ε). Due to Lemma 7.8 on the

images of Type 1 components, the regions D̃i inside Hε(ϕi) do not
contain limit cycles and singular points of wh(ε). The set Hε(A \ ∪Di)
does not contain singular points and limit cycles of wh(ε) too, because
its preimage under Hε does not contain singular points and limit cycles
of vε.

The case when a limit cycle belongs partly to Hε(A\∪Di) and partly
to its complement in Ã is prohibited by Proposition 4.11: each cycle
of wh(ε) for small ε either belongs to Ũ− ⊂ Hε(U), or is close to a
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hyperbolic cycle of w0 (thus does not intersect Ũ+ ⊃ Hε(U)). Thus Ã
contains no singular points or limit cycles of wh(ε).

Let us prove that ∂Ã is transversal to wh(ε). Indeed, ∂A is transversal

to v0, thus to vε; Hε preserves topological transversality, thus ∂Ã is
transversal to wh(ε).

So Ã is empty in this case. Clearly, the map Hε|ϕi
may be extended

to a homeomorphism Hi : Di → D̃i. Hence, the map Hε|∂A may be
extended to a homeomorphism of A by Hε on A \ ∪Di and by Hi on
Di. Thus the last claim of the Empty annuli lemma holds true. �

Figure 9. Empty annuli lemma: auxiliary lemma 8.5,
orbits of vε (left) and of v0 (right). The component of
U is shadowed, its boundary is dotted, the large bifur-
cation support is shown in thick. The vector field v0

has degeneracy of codimension 2. As ε changes, its two
saddlenodes vanish, and the annulus becomes empty

8.5. One connected component of CU .

Lemma 8.5. The statement of the Empty annuli lemma holds true if
l1, l2 belong to the same connected component of CU .

Proof. As the curves l1, l2 belong to the same component of CU , they
may either belong to ∂U , or to the interior of CU . So for each of them,
we have the following three cases:

(1) A transversal loop of a hyperbolic sink or source, or a hyperbolic
cycle, or a non-interesting cycle (namely l ∈ L);

(2) A boundary component of Ū of Type 2;
(3) A boundary component of Ū of Type 3.

If one of l1, l2 is a Type 2 transversal boundary component of U ,
then the other one is a transversal loop around the corresponding non-
interesting α- or ω-limit set. This follows from Boundary lemma and
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Proposition 7.5. In this case Lemma 8.5 follows from Corollary 7.10
above.

Let us prove that in all other cases the following implication holds:
if A is empty for vε and Ĥ(A) is empty for wh(ε), then Ã is empty for
wh(ε).

Suppose that both l1, l2 are of Type 3. In this case, Lemma 7.11 im-
plies that Ĥ(li) and Hε(li) are homotopic in Ũ+\(Singwh(ε)∪Perwh(ε))

as oriented curves. So we may replace l̃i = Hε(li) by Ĥ(li): if Ĥ(A) is
empty, then Ã is empty as well.

Suppose that l1 is of Type 3, and l2 falls into the case 1 above. Then
Hε(l1) may be replaced by Ĥ(l1) as before, and l̃2 = Ĥ(l2). Again, if

Ĥ(A) is empty, then Ã is empty as well.
Suppose that both l1, l2 fall into the case 1 above. In this case,

l̃i = Ĥ(li), and there is nothing to prove.
Now, the following proposition implies the first assertion of the Empty

annuli lemma.

Proposition 8.6. In assumptions of Lemma 8.5, the annulus Ĥ(A) is
empty with respect to wh(ε).

Proof. By contraposition, suppose that some singular point or a cycle
c̃ of wh(ε) is in Ĥ(A). We only consider the case when c̃ is a cycle; the
case of a singular point is analogous.

Due to Proposition 4.11 applied to the family W , the cycle c̃ either
belongs to Ũ− or belongs to a continuous family of hyperbolic cycles
c̃δ of vector fields wδ defined for all δ small.

In the first case, let Hε(Ui) be a connected component of Hε(U) that
contains c̃. Then Ui contains a cycle H−1

ε (c̃) of vε. It remains to prove
that Ui is inside A; this will contradict to the fact that A is empty for
vε.

Since Ĥ(Ui) is the only component of Ĥ(U) that intersects Hε(Ui)

(see Proposition 4.16) and c̃ ⊂ Ũ− ⊂ Ĥ(U), we have c̃ ⊂ Ĥ(Ui). So

Ĥ(Ui) intersects the annulus Ĥ(A). Thus Ui intersects the annulus A,
and since boundaries of A are in one and the same connected compo-
nent of CU , we have that Ui ⊂ A. We get a contradiction mentioned
in the previous paragraph.

In the second case, the cycles c̃δ belong entirely to Ĥ(A) because the
boundary of this annulus is transversal to wδ for any δ small. Hence,
no limit cycle of wδ can cross this boundary. Therefore, c̃0 belongs
to Ĥ(A) as well. Therefore, the vector field v0 has a hyperbolic limit

cycle Ĥ−1(c̃0) in A. The same holds for the vector field vε, so A is not
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empty with respect to vε. We get a contradiction again. This finishes
the proof. �

The first statement of the Empty Annuli lemma in assumptions of
Lemma 8.5 is proved.

Let us prove the second one: Gε may be extended to a homeomor-
phism of A. The same statement for Ĥ(A) instead of Ã is clear, because

Ĥ is an orientation-preserving homeomorphism. Suppose that both
l1, l2 belong to U (other cases are analogous but simpler). Since l1 and
l2 are in different connected components of U , their images Hε(l1) and
Hε(l2) are in different connected components of Ũ+ (see Proposition
4.16; this proposition is applicable due to the last assertion of Proposi-
tion 7.7). By Lemma 7.11, the oriented curves Hε(l1) and Ĥ(l1) are ho-
motopic inside Ũ+. Thus as we perform the homotopy between Hε(l1)

and Ĥ(l1), all the intermediate curves do not intersect l̃2. Similar argu-

ments apply to the homotopy between Hε(l2) and Ĥ(l2). Finally, l̃1, l̃2
are oriented with respect to Ã in the same way as Ĥ(l1), Ĥ(l2) with

respect to Ĥ(A). The latter orientation coincides with the orientation
of l1, l2 with respect to A, which implies the statement. �

9. Proof of the Correspondence Lemma 6.2

9.1. Plan of the proof. Without loss of generality we assume that l
is an ingoing transversal loop. Choose U following Sec. 7.3. Note that
any transversal loop l ⊂ LMF (vε) either belongs entirely to U , or to
its complement, due to the choice of transversal loops in Sec. 5.2.5. So
there are the following cases to consider depending on the location of
l.

• The loop l ∈ LMF (vε) lies outside U . Simultaneously, we will
prove the statement of Correspondence lemma for l ∈ L (see
Definition 8.2 of the collection L), though such loops may be
not included in LMF (vε).

– Case 1. Some backward orbit of l under v0 hits ∂U∗ at a
transversal boundary component.

– Case 2. All backward orbits of l under v0 either hit ∂U∗ at
non-transversal boundary components, or do not intersect
U∗.

• The loop l ∈ LMF (vε) lies inside U .
– Case 3. l ⊂ U∗.
– Case 4. l ⊂ U \ U∗, i.e. l is inside a non-interesting nest.

Here we will use Correspondence lemma for l ∈ L (Case 1
above).
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In Sec. 9.2 – 9.5, we prove the first statement of Correspondence
Lemma in each of the above four cases. In Sec. 9.6, we prove the
second statement of the Correspondence Lemma.

l

ξ

Figure 10. Proposition 9.1: Poincare map between ϕ and l.

9.2. The first statement of the Correspondence lemma: Case
1.

Proposition 9.1. The first statement of the Correspondence lemma
holds true for an ingoing transversal loop l ∈ LMF (vε) or l ∈ L, if
backward orbits of some points of l under v0 hit a transversal boundary
component of ∂U∗.

Proof. Let ϕ be one of these components of ∂U∗.
A trajectory of v0 joins ϕ to l, so a close trajectory ξ of vε joins

ϕ to l as well. We conclude that a Poincare map along vε between
some arcs of the transversal loops ϕ and l is defined. The endpoints
of its domain must be intersections of ϕ with separatrices of vε (see
Fig. 10). But separatrices of vε do not enter U∗ through ϕ due to
No-entrance lemma 4.10. Therefore this Poincare map is defined on
the whole ϕ, thus l and ϕ bound an annulus A filled by trajectories of
vε. We conclude that the separatrices γi of vε that cross l also cross ϕ,
and the intersection points γi ∩ ϕ are ordered clockwise with respect
to U (see Fig. 11). Due to No-entrance lemma 4.10, separatrices of vε
cannot enter U∗, see Definition 4.9. So all separatrices of vε that cross
ϕ ⊂ ∂U∗ intersect it only once, and γi ∩ U are their arcs starting at
the corresponding singular points Pi ∈ U∗. Hence γ̃i are separatrices
of Hε(Pi) that contain arcs Hε(γi ∩ U), so γ̃i intersect Hε(ϕ), and the
intersection points Hε(γi ∩ ϕ) are ordered clockwise with respect to
Hε(U).

Finally, note that l and ϕ satisfy assumptions of Empty annuli
Lemma, that is, they bound an empty annulus A, see Fig 11. This
lemma yields that l̃ = Ĥ(l) and Hε(ϕ) bound an empty annulus Ã for
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Figure 11. Proposition 9.1, annuli A and Ã

wh(ε), and the orientation on its boundaries is the same as for A. Thus

the separatrices γ̃i that cross Hε(ϕ) also cross l̃, and the intersection

points γ̃i ∩ l̃ are ordered counterclockwise with respect to it. �

l

a1

a2

a3

a4

a5

U

U

q1

q2 q3

¯1

¯2

Figure 12. Proposition 9.2: points qi, aj on l. Dashed
circles are transversal loops around non-interesting α-
limit sets outside U∗.

9.3. Case 2.

Proposition 9.2. The first statement of the Correspondence lemma
holds true for an ingoing transversal loop l ⊂ LMF (vε) or l ∈ L, if
backward orbits of all points of l under v0 either cross ∂U∗ by non-
transversal boundary components, or do not intersect U∗.

Proof. Note that these boundary components must be all of Type 2
(see Boundary lemma for the classification). Indeed, non-transversal
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boundary components of ∂U are of Type 1 or Type 2. But the trajec-
tories originating from a Type 1 component fill the whole disc with no
transversal loops in it.

Clearly, l is the union of the following sets:

• (open) hyperbolic arcs: a negative semi-trajectory of each point
of this arc under v0 tends to a non-interesting set and does not
hit U∗.
• intersections qi with separatrices of (v0)|S2\U , i.e. with separa-

trices of hyperbolic saddles.
• (closed) images P0(βi) of transversal outgoing arcs βi ⊂ ϕj ⊂
∂U under Poincare maps P0 along v0, where each ϕj is a bound-
ary component of Type 2, see Fig. 12.

Pick one point from each hyperbolic arc; let ai be these points (or-
dered cyclically along l). As l lies outside U , again as in Case 1,

l̃ = Ĥ(l). Put ãi = Ĥ(ai); these points are ordered cyclically along

l̃. It is sufficient to prove the statement of Correspondence lemma for
each arc [ai, ai+1]. Put I = [ai, ai+1], Ĩ = [ãi, ãi+1].

Since each qj and each P0(βj) is adjacent to open hyperbolic arcs on
both sides, we have the following three cases for I:

(1) The arc I contains the point q of intersection with a separatrix ν
of a hyperbolic saddle P of v0; I \{q} belongs to two subsequent
hyperbolic arcs. The arcs [a1, a2], [a3, a4], [a4, a5] on Fig. 12 are
of that type, as well as all arcs on Fig. 13.

a1

a2

q1 q2

a1

q1

Figure 13. Proposition 9.2: case 1

Then the only separatrix of vε that intersects I is γ := π−1
ε (ν).

Since Ĥ conjugates v0 to w0, the separatrix Ĥ(ν) intersects

the arc Ĥ(I) = Ĩ. The close separatrix of wh(ε), namely the

separatrix that contains a germ π̃−1
ε (Ĥ(ν, P )), also intersects Ĩ.

This germ is Gε(γ, P ), thus this separatrix is γ̃. We conclude
that if γ intersects I, then γ̃ intersects Ĩ. This completes the
proof of the statement of Correspondence lemma for I in this
case.
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(2) The arc I contains the image P0(β) of some transversal outgoing
arc β ⊂ ϕ ⊂ ∂U . The set I \ P0(β) belongs to two subsequent
hyperbolic arcs. The arcs [a2, a3], [a5, a1] on Fig. 12 are of that
type.

As in Lemma 7.9, let βε be the maximal arc of ϕ transversal
to vε and close to β. Let Pε : βε → l be the Poincare map along
vε.

Since separatrices of vε cannot originate from non-interesting
sets, each separatrix of vε that intersects I also intersects βε.
Let {γk} be these separatrices, ordered counterclockwise along
I; then they intersect βε and are ordered clockwise along it. Due
to No-entrance lemma, separatrices γk intersect ∂U∗ only once.
Thus the separatrices γ̃k are the separatrices that contain arcs
Hε(γk ∩ U). Since Hε conjugates vε to wh(ε), we conclude that

the separatrices γ̃k intersect β̃ε := Hε(βε) in a clockwise order

along β̃ε. Lemma 7.9 implies that the Poincare map P̃ε : β̃ε →
l̃ is well-defined and takes the clockwise orientation on β̃ε to
the counterclockwise orientation on l̃. Thus the separatrices γ̃k
intersect P̃ε(β̃ε) ⊂ l̃ in a counterclockwise order along l̃. Now

it suffices to prove that P̃ε(β̃ε) ⊂ Ĩ; this will prove that γ̃k
intersect Ĩ and are ordered counterclockwise along it.

Applying Ĥ to the inclusion P0(β) ⊂ I, we get that P̃0(β̃0) ⊂
Ĩ. Lemma 7.9 implies that P̃ε(β̃ε) intersects P̃0(β̃0). Now, it

is sufficient to prove that P̃ε(β̃ε) does not contain endpoints of
Ĩ. Note that the negative semi-trajectories of endpoints of Ĩ
under wh(ε) are close to their trajectories under w0, thus tend

to non-interesting sets and do not intersect the closure of Ũ+∗.
This completes the proof of the statement of Correspondence
lemma for I in this case.

(3) The arc I does not fall into the two previous cases. So it belongs
to one hyperbolic arc, which is only possible if all ai coinside.
Then I = l and all negative semi-trajectories of points of l under
v0 tend to a non-interesting set and do not visit U∗. Thus for
small ε, no separatrices of vε intersect l, and there is nothing to
prove.

�

9.4. Case 3: l ⊂ U∗. For l ⊂ U∗, Correspondence lemma follows
directly from No-entrance lemma 4.10.

Proposition 9.3. The first statement of Correspondence lemma holds
if l is a transversal loop of an α- (ω-) limit set inside U∗.
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Proof. Let {γj} be the set of all separatrices that hit l, as in Corre-
spondence lemma. No-entrance lemma 4.10 implies that they belong
completely to U∗, i.e. γj ⊂ U∗. So Gε is induced by Hε on γj. The
statement follows from the fact that Hε is a homeomorphism.

�

The same arguments apply if we consider arbitrary separatrices with
ω-limit sets inside U∗. Let P be a singular point of vε, let γ be its
unstable separatrix. Suppose that γ̃ is the corresponding separatrix of
wh(ε): (γ̃, P̃ ) = Gε((γ, P )).

Proposition 9.4. In assumptions of Main Theorem, let γ be an un-
stable separatrix of vε. For sufficiently small ε, if ω(γ) belongs to U∗,
then ω(γ̃) = Gε(ω(γ)).

Here ω-limit sets are with respect to vε, wh(ε). The same holds for
stable separatrices and their α-limit sets.

The proof literally repeats the proof of the previous proposition.

9.5. Case 4: l ⊂ U \ U∗. Suppose that l ⊂ U \ U∗ corresponds to a
cycle c that bifurcates from a non-interesting nest, and suppose that
l is not homotopic in S2 \ Per vε to the outer transversal loops of the
nest. Then no separatrices of vε intersects l. Indeed, if a separatrix γ
accumulates to c, then it must enter a non-interesting nest, i.e. intersect
its outer transversal loop l′ ∈ L. However l′ is separated from l by
cycles of vε, and we get a contradiction. So the first statement of the
Correspondence lemma is trivial for l.

Suppose that l is homotopic in S2 \ Per vε to the outer transversal
loop l′ of the nest. Then the separatrices {γi} of vε that intersect l also
intersect l′. Cases 1,2 of Correspondence lemma (see Propositions 9.1,

9.2) for l′ ∈ L imply that γ̃i intersect Ĥ(l′) and are ordered cyclically
along it. Empty annuli lemma 8.3 implies that the annulus Ã between
Hε(l) and Ĥ(l′) is empty with respect to wh(ε), so {γ̃i} intersect Hε(l).

Their order is the same as for vε, because the curves Hε(l) and Ĥ(l′)
are oriented with respect to Ã in the same way as l, l′ are oriented with
respect to A (see Empty annuli lemma 8.3). This completes the proof.

9.6. Second statement of the Correspondence lemma. The first
statement of the Correspondence lemma implies the second one because
vε and wh(ε) have the same amount of separatrices. For a detailed proof,
we will need the following proposition.

Proposition 9.5. For small ε, the vector field wh(ε) has the same
amount of separatrices as vε.
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Proof. Note that the number of separatrices of a vector field equals
to the number of germs of separatrices at the corresponding singular
points minus the number of separatrix connections. Due to Proposi-
tion 5.6, the map Gε provides a one-to-one correspondence on singular
points of vε and wh(ε). This map preserves their topological types due
to Remark 5.2. So the amount of germs of separatrices at singular
points is the same for vε and wh(ε).

Moreover, vε and wh(ε) have the same amount of separatrix connec-
tions: due to Separatrix lemma 4.8, all separatrix connections of vε,
wh(ε) for small ε are inside small neighborhoods of large bifurcation
supports, so Hε identifies separatrix connections of vε and separatrix
connections of wh(ε). The statement follows. �

The first statement of Correspondence Lemma implies that if k sep-
aratrices of vε intersect a transversal loop l outside U∗, then at least k
separatrices of wh(ε) intersect a transversal loop l̃.

Proposition 9.4 implies that if k unstable separatrices of vε have
the same ω-limit set c inside U∗, then at least k separatrices of wh(ε)

have the ω-limit set Hε(c); the same holds for α-limit sets of stable
separatrices.

Clearly, each separatrix of vε falls into one of the two cases above.
Due to Proposition 9.5, vε and wh(ε) have the same amount of separa-
trices. So in each of the two cases above, the amount of separatrices
of vε equals the amount of corresponding separatrices of wh(ε). This
completes the proof of Correspondence lemma.

10. Proof of the Boundary lemma

10.1. Boundaries of canonical regions. In the proof of the Bound-
ary lemma, we will construct a neighborhood Ω as the union of its
intersections with all canonical regions of v. Recall that these regions
are described in Section 3.1. We start with an explicit description of
the boundaries of canonical regions.

Let v ∈ V ect∗(S2). In the definitions below all the singular points,
separatrices and so on are those of v.

Definition 10.1. A separatrix chain C ⊂ S2 is one of the following
sets:

• A union C = α(γ0)∪γ0∪P1∪γ1∪P2∪· · ·∪γn∪ω(γn), where γi
is an ingoing separatrix of a singular point Pi+1 and γi+1 is an
outgoing separatrix of Pi+1. In what follows, we say that γ0 is
the first separatrix of the chain C, and γn is the last separatrix



56 N. GONCHARUK AND YU.ILYASHENKO

of the chain; we also say that the chain C connects the limit
sets α(γ0) to ω(γn).
• A union C = α(γ) ∪ γ ∪ ω(γ) where γ is a separatrix. Then γ

is both the first and the last separatrix in the chain, and the
chain connects α(γ) to ω(γ).
• A singular point; it coincides with both its α- and ω-limit sets

and the corresponding chain has no separatrices.

Note that points Pi with different numbers in one and the same chain
may coincide.

Definition 10.2. For a canonical region R of a vector field, we denote
by α(R) and ω(R) the common α- and ω-limit set of all its points.

Note that a strip canonical region is simply connected, and a spiral
one is a topological annulus. Recall that due to Proposition 3.5, for a
strip canonical region, there exists a homeomorphism Ψ: R×(0, 1)→ R
that conjugates ∂/∂x to v.

Definition 10.3. Side boundaries ν1(R), ν2(R) of a strip canonical
region R are upper topological limits

ν1(R) = limy→0Ψ(R× {y}),

ν2(R) = limy→1Ψ(R× {y}).
Clearly, ∂R is a union of two side boundaries of R. Each one of the

side boundaries includes α(R) and ω(R).

Lemma 10.4 (Side boundaries of strip canonical regions). For a vector
field v ∈ V ect∗ S2, side boundaries ν1(R), ν2(R) of a strip canonical
region R of v are chains of separatrices that join α(R) to ω(R).

We expect that this lemma is known to experts, but we did not find
it in the literature.

Remark 10.5. One can prove that the homeomorphism Ψ can be so
chosen that it extends continuously to ψ1 : R× {0} → S2 and ψ2 : R×
{1} → S2. The images of ψ1,2 contain ν1,2(R) \ (α(R) ∪ ω(R)) respec-
tively and are contained in ν1,2(R). Note that ψ1, ψ2 may glue subseg-
ments of their domains in various ways, see Fig. 14.

We will not prove this statement, because we are going to use it in
some heuristic arguments only.

Proof of Lemma 10.4. We prove the lemma for ν1(R). Note that ν1(R)
is a closed and v-invariant set; also, ν1(R) ⊂ ∂R ⊂ S(v) = Sing v ∪
Per v ∪ Sep v.
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Note that ν1(R) \α(R) \ω(R) may not contain limit cycles. Indeed,
since α-, ω-limit sets of all points of R are α(R), ω(R), the set ν1(R) is
detached from basins of attraction and repulsion of all other α-, ω-limit
sets of v, and may not contain limit cycles other than α(R) or ω(R).
Therefore ν1(R) \ α(R) \ ω(R) ⊂ Sing v ∪ Sep v.

Since ν1(R) is connected as a limit of connected sets, ν1(R) \ α(R) \
ω(R) may not contain isolated singular points; it is either empty or
contains a separatrix.

If ν1(R)\α(R)\ω(R) is empty, the argument that ν1(R) is connected
implies that α(R) and ω(R) intersect. This is only possible if α(R) =
ω(R) is a singular point, and the statement is proved (this may happen
when R is an elliptic sector of a complex singular point).

Suppose that ν1(R)\α(R)\ω(R) contains a separatrix γ (this is the
last case to consider). Since ν1(R) is a limit of trajectories Ψ(R×{y})
and Ψ is injective, a local analysis in each flow-box surrounding γ shows
that there exists a semi-neighborhood Uγ of γ that belongs to R.

Note that ω(γ) ⊂ ν1(R) because ν1(R) is closed. There are the
following possibilities for ω(γ):

• ω(γ) is a cycle or a polycycle. Then all the points in a neighbor-
hood of γ are also attracted to this set, including some points
of R; thus ω(R) = ω(γ). So γ will be the last separatrix in the
chain.
• ω(γ) is a singular point P , and the semi-neighborhood Uγ con-

tains a piece of parabolic or elliptic sector near (γ, P ). Similarly,
ω(R) = ω(γ), and γ will be the last separatrix in the chain.
• ω(γ) is a singular point P , and the semi-neighborhood Uγ con-

tains a piece of a hyperbolic sector near (γ, P ); so γ is a sep-
aratrix of P . Then γ will be a separatrix γi in the middle of
the chain, Pi+1 = P , and γi+1 is another border of the same
hyperbolic sector. Now we may repeat our arguments for γi+1

and find Pi+2, γi+2, etc.

The same arguments apply to α(γ) and allow us to enumerate separa-
trices of ν1(R) as required. Possibly we will have only one separatrix
γ0 = γn and no singular points Pi. This may happen, for instance,
when ∂R is a union of a singular point and its homoclinic curve, a
separatrix, and R is an elliptic sector (see Fig. 14 middle). Note also
that one and the same singular point may appear several times in the
list {Pi}, see Fig. 14 right.

It is easy to see that the union of semi-neighborhoods of γi and
hyperbolic sectors at Pi is saturated by trajectories of v, so it exhausts
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R

R
R

Figure 14. Some possible shapes of canonical regions

all Ψ(R × (0, ε)) for small ε; hence ν1(R) coincides with the chain
α(R) ∪ ω(R) ∪ {γi} ∪ {Pi}. �

Lemma 10.6. The boundary of a spiral canonical region is the union
of its α- and ω-limit sets:

∂R = α(R) ∪ ω(R).

The proof is obvious.
The following proposition provides a key tool for the proof of the

Boundary lemma.

Proposition 10.7. For a vector field v ∈ V ect∗ S2, let Z ⊂ S2 be a
closed, v-invariant set with Sep-property.

1) Let C = {γi}n−1
i=1 ∪ {Pi}ni=1 be a union of singular points and

separatrix connections of v: γi is a separatrix connection between Pi
and Pi+1. Then Z either contains C, or does not intersect it.

2) For each α- or ω-limit set c of v, the set Z ∩ c is either empty, or
coincides with c.

In particular, 1) applies to any chain of separatrices (see Definition
10.1) if we remove α(γ0), γ0, γn, and ω(γn) from the chain.

Proof. 1) Suppose that Z contains Pi ∈ C.
A separatrix connection is both a stable and an unstable separatrix;

due to Definition 7.2 of Sep-property, if γi does not belong to Z, then
both its α- and ω-limit sets Pi, Pi+1 are detached from Z. So for i > 1,
Pi ∈ Z implies γi−1 ⊂ Z, and due to closedness, Pi−1 ∈ Z. Similarly,
for i 6= n, Pi ∈ Z implies γi ⊂ Z and Pi+1 ∈ Z. The induction in i
proves the statement.

2) If c is a singular point or a cycle, this clearly follows from v-
invariance of Z. If c is a monodromic polycycle, then the statement
follows from 1). �
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Figure 15. Intersections Z ∩ R (left; shown in thick)
and Ω ∩R (right; ∂Ω is dotted) in all 5 possible cases

10.2. Plan of the proof of the Boundary lemma. In order to con-
struct the required neighborhood Ω ⊃ Z, we describe its intersection
with each R, where R is a canonical region of v:

ΩR = Ω ∩R.
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Note that the number of canonical regions for v ∈ V ect∗ S2 is finite,
because v ∈ V ect∗ S2 has a finite number of limit cycles, separatrices
and singular points. So we set

(6) Ω = ∪ΩR.

If Z ∩R is empty, then Ω ∩R will be empty; we do not discuss this
case any more.

Depending on the type of R and the type of intersection Z ∩ R, we
have the following five cases for R. If R is a spiral canonical region,
either 1) Z ∩R = ∅ or 2) Z ∩R 6= ∅. If R is a strip canonical region,
either 3) Z ∩ R contains both α(R) and ω(R), or 4) one of them, or
5) none of them (there are no other cases due to Proposition 10.7 part
2).

The first three cases give rise to Type 1 and Type 3 boundary compo-
nents of Ω that belong to R entirely. These components are constructed
in Section 10.3.

The last two cases 4), 5) give rise to Type 2 boundary components of
Ω that belong to the union of several adjacent canonical regions. These
components are constructed in Section 10.4.

Then we define the set Ω by (6), and prove that it has the required
properties.

10.3. Construction of Ω ∩ R in the cases 1), 2), 3). We have to
construct an “arbitrary small” neighborhood of Z with certain prop-
erties. This means that it must belong to a preassigned neighborhood
Ω0 of Z. From now on, this latter neighborhood is fixed.

• 1): R is a spiral canonical region, Z ∩R = ∅. Due to Proposi-
tion 10.7 part 2, Z ∩R is α(R), ω(R), or α(R) ∪ ω(R).

Take ΩR := Ω∩R to be a thin strip around α(R) or ω(R) (or two strips
around both) bounded by its smooth transversal loop. This yields one
or two Type 3 boundary components, see row 1 of Figure 15.

Complete semi-trajectories of points of such boundary components
under v|Ω stay in Ω, because these trajectories wind around α(R) or
ω(R) respectively. Clearly, separatrices of v|S2\Ω do not enter ΩR. The
set ∂ΩR∩R consists of one or two topological circles. They are bound-
ary components of Type 3.

• 2): R is a spiral canonical region, Z ∩R 6= ∅, see row 2 of
Figure 15.

In the case 2), Z contains a trajectory of v|R. So it contains α- and
ω-limit sets of this trajectory, i.e. α(R) and ω(R). Therefore R \ Z is
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a union of at most countably many open strips with parallel flows in
them. For each such strip S,

- If S ⊂ Ω0, we include it completely in Ω.
- Otherwise, let D ⊂ S be a large ellipse in the rectifying chart

for v in S such that S \D ⊂ Ω0, and let ∂D have two quadratic
tangency points with the vector field. Let S \D =: Ω ∩ S.

This yields a finite number of Type 1 boundary components.
Complete semi-trajectories of points of such boundary com-

ponent under v|Ω stay in Ω because they stay in S.

Clearly, separatrices of v|S2\Ω do not enter ΩR. Again, the set ∂ΩR∩R
consists of a finite number of topological circles. They are boundary
components of Type 1.

• 3): R is a strip canonical region, Z∩R contains α(R) and ω(R),
see row 3 of Figure 15.

Due to Sep-property, Z also contains the first and the last separatri-
ces of ν1(R), ν2(R); due to closedness, Z contains endpoints of these
separatrices.

Note that νi(R) without the first and the last separatrix and with-
out α(R), ω(R) is a chain that satisfies Proposition 10.7 part 1. So Z
contains the whole ν1(R) and ν2(R). It can also contain several tra-
jectories of v|R. So this case is analogous to case 2) and yields a finite
number of Type 1 boundary components.

10.4. Construction of Ω∩R in the cases 4), 5). First, on the whole
sphere, we choose marked points on all separatrices of v that ”leave” a
neighborhood of Z. In more detail, suppose that for a singular point
P ∈ Z, its separatrix γ does not belong to Z. Then some arc of γ
starting at P belongs to Ω0. Fix one point on this arc; this point will
be called marked. We will use marked points later in the construction;
namely, ∂Ω will intersect γ at the marked point.

In the cases 4) and 5), Z ∩ R is empty; otherwise Z would contain
both α and ω-limit set of a trajectory of v|R, thus satisfy assumptions
of case 3) above.

• 4): Z ∩ R = ∅, α(R) ⊂ Z, and ω(R) does not intersect Z (or
vice versa: α and ω are exchanged), see row 4 of Figure 15.

Due to Sep-property, Z contains the first separatrix of ν1(R), ν2(R);
due to closedness, Z contains endpoints of these separatrices. Now,
due to Proposition 10.7 part 1, Z contains all ν1(R), ν2(R) except
their last separatrices and ω(R). Z cannot contain last separatrices
of ν1(R), ν2(R), because it does not contain their ω-limit set ω(R).
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a
(R)

Figure 16. Case 4) in the proof of Boundary lemma;
ϕ(R) is a topological circle. The domain ΩR is shadowed

Finally, Z ∩ R is the union of α(R) and ν1,2(R) except for their
last separatrices and ω(R). Note that last separatrices of ν1,2(R) have
marked points on them.

Take ΩR ⊂ Ω0 to be a neighborhood of Z ∩ R in R bounded by a
smooth curve ϕ(R) ⊂ R that is transversal to v and connects marked
points of last separatrices of ν1(R) and ν2(R). Take ϕ(R) to be orthog-
onal to the corresponding separatrices at marked points. The existence
of ϕ(R) follows from the fact that R is parallel. The endpoints of ϕ(R)
may coincide, then it is a topological circle (see Fig. 16); otherwise
ϕ(R) is a topological segment (see Fig. 15, row 4). After we put
Ω = ∪ΩR at the end of the proof, we will have that in the first case,
ϕ(R) is a transversal Type 2 boundary component, and in the second
case, it is a part of Type 2 boundary component, namely a transversal
subarc in ∂Ω crossed by separatrices of v at its endpoints.

• 5): Z ∩ R = ∅, both α(R) and ω(R) do not intersect Z, see
row 5 of Figure 15.

If ν1(R) intersects Z, then Z contains the whole ν1(R) except for its
first and last separatrices, and α(R), ω(R), due to Proposition 10.7
part 1. Note that both the first and the last separatrix of ν1(R) have
marked points on them.

Take a smooth curve ϕ1(R) ⊂ R with the following properties: ϕ1(R)
connects the marked points on the first and last separatrices of ν1(R),
is close to Z∩ν1(R), is perpendicular to the first and the last separatrix
at its endpoints, and has one quadratic tangency point with v. It is
easy to construct an appropriate curve in the rectifying chart, i.e. in
R× [0, 1] (see Fig. 17a); let ϕ1(R) be its image under Ψ.
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Figure 17. Case 5) in the proof of Boundary lemma.
(a) shows Ψ−1(ϕ(R)) and the domain Ψ−1(Ω) (shad-
owed), (b) and (c) show that ϕ(R) can be a topologi-
cal segment and a topological circle respectively. The
domain ΩR is shadowed

If ν1(R) intersects Z and ν2(R) does not, we put ϕ(R) := ϕ1(R), and
ΩR is bounded by ϕ1(R) and an arc of ν1(R). If ν2(R) also intersects Z,
we choose the curve ϕ2(R) in a similar way, and put ϕ(R) := ϕ1(R) ∪
ϕ2(R). Then ΩR is the union of two domains, one between ϕ1(R) and
ν1(R) and the other one between ϕ2(R) and ν2(R); see Figure 15 row
5.

Note that the two curves ϕ1(R) and ϕ2(R) may have one or two
common endpoints, see Fig. 17b, 17c respectively. So ϕ(R) can be
either two smooth curves with one contact point on each, or one simple
curve with two contact points, or a closed loop with two contact points.
In any case, ϕ(R) will be a part of a Type 2 boundary component; in
the third case, it is the whole Type 2 boundary component with two
contact points.

Remark 10.8. Under assumptions of Boundary lemma, let R be a
canonical region satisfying assumptions of case 5) above. Then for any
small neighborhood Ω of Z, R contains a trajectory of v that does not
intersect Ω (see Fig. 17a).

We will use this remark in the next section.

10.5. End of the proof of the Boundary lemma. We have con-
structed an intersection ΩR of the neghbourhood Ω with the closure
of any canonical domain R. Now take Ω to be the union of all ΩR.
This is a neghbourhood of Z that belongs to Ω0. Let us prove that its
boundary components satisfy the Boundary Lemma.
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By construction, ∂Ω is a C1-smooth one-dimensional compact sub-
manifold of the sphere. Hence it is a finite union of topological circles.
Consider an arbitrary connected component ϕ of ∂Ω.

If ϕ intersects a canonical region R of case 1), 2), or 3), then it
belongs entirely to R and is of Type 1 or 3 as proved in Section 10.3.

4
4

Z

Z

Figure 18. Boundary component of Type 2 without
contact (dashed) in the union of two canonical regions of
case 4) (shadowed). Boundaries of canonical regions are
shown in thick

Suppose that ϕ intersects canonical regions of case 4) only. Then
it has no contacts with v, see Fig. 18, i.e. is transversal. Assume
that it is outgoing. All future semi-orbits of v that start on ϕ do
not intersect Ω and have the same ω-limit set, which is clear for the
orbits located inside each canonical region of case 4). Let R be any
canonical region that contains a subarc of ϕ; then ϕ intersects the first
or the last separatrices in boundary chains of R, so ϕ intersects at
least one separatrix of v|Ω. Hence ϕ is a boundary component of Type
2 transversal to v.

Suppose that ϕ intersects at least one canonical region of case 5),
see Fig. 19. Then it has at least one point of outer quadratic tangency
with v (thus it has at least two tangency points). Let β be a transversal
arc of ϕ between two such points. Then

β = β′ ∪
k−1⋃
i=1

ϕ(Ri) ∪ β′′

where Rj are regions of case 4) and β′, β′′ are subarcs of ϕ(R0), ϕ(Rk);
here R0, Rk are canonical regions of case 5). Subarcs β′, β′′ contain the
endponts of β.
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Z

5

44

Figure 19. Boundary component of Type 2 (dashed)
with two contact points in the union of one canonical
region of case 5 (shadowed) and two canonical regions
of case 4. Boundaries of canonical regions are shown in
thick

As before, all the orbits of v|Ω∩Rj
that start at ϕ(Rj) or at β′, β′′,

stay in Ω and have the same ω-limit set. Since the arcs ϕ(Ri), ϕ(Ri+1)
have common endpoints, this holds for the whole arc β too.

Finally, β is crossed by the first or the last separatrices of the bound-
ary chains of the corresponding canonical domains. They are separa-
trices of v|ΩR

, due to the description of boundaries of canonical regions.
Hence ϕ is a boundary component of type 2, with at least two outer

tangency points with v. This completes the proof of the Boundary
lemma.

11. Images of boundary components of U

Here we prove Lemma 7.8, Lemma 7.9 and Lemma 7.11. As before,
we assume that U , Ũ± are chosen as in Proposition 7.7 (recall that
this proposition only uses Boundary lemma, and this lemma is already
established).

11.1. Canonical regions for vector fields in open domains on
the sphere. We will need the generalizations of Propositions 3.2, 3.5
to the case of vector fields on subdomains of S2.
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Take an open set D ⊂ S2 such that ∂D is a union of finitely many
continuous curves homeomorphic to S1 and having finitely many topo-
logical tangencies with v. We assume that singular points, limit cycles
and monodromic polycycles that belong to D also belong to D.

Definition 11.1 (Canonical regions in domains). For a vector field
v ∈ V ect∗ S2 and an open set D ⊂ S2 as above, let S(v,D) be the
union of all singular points, separatrices and limit cycles of v|D, and
let Tang(v,D) be the union of trajectories under v|D of topological
tangency points of v with ∂D. A canonical region of v|D is a connected
component of D \ (S(v,D) ∪ Tang(v,D)).

Proposition 11.2. For a vector field v ∈ V ect∗ S2 and an open set
D ⊂ S2 as above, all points of the same canonical region of v|D

• either have the same ω-limit set under v inside D, and their
future semi-trajectories stay in D;
• or their future semi-trajectories under v|D terminate on the

same connected component of ∂D.

The same alternative holds for α-limit sets and past semi-trajectories.

Proof. Let R be a canonical region of v|D. Consider a set G of points
in R such that their trajectories stay in D and have one and the same
ω-limit set A under v. The set A is inside D, thus inside D, due to our
assumptions on D.

The set G is open; the proof is similar to that in Proposition 3.2.
The only new argument to be added is, that if the trajectory of a point
stays in D and has its ω-limit set inside D, then the trajectories of
close points also stay in D.

Now, consider a set G of points in R such that their future semi-
trajectories under v|D terminate on one and the same connected com-
ponent of ∂D. We will prove that the set G is also open. Let x ∈ G,
and y ∈ ∂D be the endpoint of its future semi-trajectory under v|D. In
a sufficiently small flow-box around y, ∂D is a continuous curve that
intersects all trajectories of v; this follows from the fact that ∂D has
only finitely many tangencies with v and y is not an inner tangency
point itself.

Now it suffices to notice that each future semi-trajectory of v that
starts near x eventually reaches the flow-box of y, thus intersects the
same connected component of ∂D.

Finally, since R cannot be a union of several open disjoint sets, it
coincides with one of the sets above: either all its points have the same
ω-limit set under v inside D, and their future semi-trajectories stay in
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D; or their future semi-trajectories terminate on the same connected
component of ∂D. �

Proposition 11.3. For a vector field v ∈ V ect∗ S2 and an open set
D ⊂ S2 as above, each canonical region of v|D is parallel, i.e. equivalent
to a strip flow or a spiral flow.

Proof. The proof is the same as for the case of D = S2, see [4, Propo-
sition 1.42, p. 34] for omitted details. Namely, the quotient space
obtained by collapsing orbits of v|R into points is a (Hausdorff) con-
nected one dimensional manifold (i.e. S1 or R), and the natural pro-
jection of R to this quotient space is a locally trivial fibering. So it
can be homeomorphic to R × R → R (then we have a strip flow), or
S1 × R → R (spiral flow), or R × S1 → R (annular flow. However in
this case, v has infinitely many periodic orbits which is impossible for
v ∈ V ect∗ S2). �

11.2. Images of Type 2 boundary components. The following
proposition is the main part of the proof of Lemma 7.9.

Figure 20. Canonical region of an outer topological
tangency point of v0. The sets A,B are located inside
the domains with the dotted boundaries, and not shown
on the figure.

Proposition 11.4. Under assumptions of the Main theorem and Propo-
sition 7.7, for sufficiently small ε, for each outer topological tangency
point of ∂Hε(U) with wh(ε), its trajectory under wh(ε) belongs to S2 \
Hε(U

∗).

Proof. Let q be an outer tangency point of a boundary component
ϕ ⊂ ∂U∗. Let β ⊂ ϕ be an outgoing transversal arc with the endpoint
q. Consider a canonical region R of v0 that contains q. Recall that A :=
ωv0(q) and B := αv0(q) do not intersect LBS∗(V ), and β intersects
separatrices of v0|U , due to the Boundary lemma. So R cannot contain
the whole arc β: ∂R contains an intersection of a separatrix of v0|U with
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(a) (b)

Figure 21. Canonical region of outer tangency points
a) for w0 b) for wh(ε). On this figure, the objects with

tilde are the images under Ĥ of the corresponding ob-
jects without tilde. The sets Ã, B̃ are located inside the
domains with the dotted boundaries, and not shown on
the figure.

β. Thus ∂R contains a singular point P ∈ LBS∗(V ), the α-limit set of
this separatrix; P ∈ LBS∗(V ) due to No-entrance lemma. Finally, R
is of case 5) according to the classification introduced in the proof of
the Boundary lemma: α(R) and ω(R) do not intersect LBS∗(V ), and
∂R contains a point P ∈ LBS∗(V ) on its boundary (see Fig. 20).

Similarly, if R contains two outer tangency points with U∗, then it
contains points P1, P2 ∈ LBS∗(V ) on both its side boundaries ν1(R), ν2(R).

Now, R̃ = Ĥ(R) is a canonical region for w0, its α-, ω-limit sets

Ã := Ĥ(A), B̃ := Ĥ(B) do not belong to LBS∗(W ), and it has a

singular point P̃ := Ĥ(P ) ∈ LBS∗(W ) on its boundary, see Fig. 21a.
It also contains trajectories that do not intersect Ũ∗+ (see Remark
10.8; it is applicable because Ũ∗+ satisfies Boundary lemma, due to
Proposition 7.7).

Take an arc I ⊂ R̃ transversal to w0, such that the trajectory of
one of its endpoint under w0 does not visit Ũ+∗ (this is possible due
to Remark 10.8), and the trajectory of another its endpoint is close

to Ĥ(P ), so visits Ũ−∗, see Fig. 21a. Both trajectories connect Ĥ(A)

to Ĥ(B). The same holds for the trajectories of the endpoints of I
under wh(ε) with small ε. Namely, both of them connect transversal

loop around Ĥ(A) and Ĥ(B); one of them intersects Hε(ϕ), and the
other does not. Due to the continuity of orbits of wh(ε) with respect to

the initial conditions, and the fact that Ũ−∗ ⊂ Hε(U
∗) ⊂ Ũ∗+, there

exists a point in I whose trajectory under wh(ε) visits Hε(U∗) and does
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not visit Hε(U
∗). This trajectory contains one or several topological

tangency points of Hε(U) with wh(ε) (see Fig. 21b).
Finally, if R contains a point of outer tangency of ∂U with v0, then

Ĥ(R) contains at least one point of outer tangency of Hε(U) with wh(ε).
If R contains two points of outer tangency of U (i.e. points of LBS(V )
on both boundaries), then the same construction yields at least two

tangency points in Ĥ(R).
Let the total number of outer tangency points of ∂U with v0 be N .

The construction above yields at least N topological outer tangency
points of Hε(U) with wh(ε), and their trajectories under wh(ε) do not
visit Hε(U).

On the other hand, the total number of outer tangency points of
Hε(U) with wh(ε) is N , because Hε identifies outer tangency points of
U and Hε(U). So we have found all of them. Hence trajectories of all

outer tangency points of Hε(U) with wh(ε) stay in S2 \Hε(U∗).
�

Proof of Lemma 7.9. Let β, β̃ε and l̃ be the same as in Lemma 7.9. Ob-
viously β̃ε is topologically transversal to wh(ε). Trajectories of its points
under wh(ε)|S2\Hε(U∗) are not trajectories of outer tangency points due
to Proposition 11.4, and none of them are separatrices of wh(ε)|S2\Hε(U),

due to No-entrance lemma 4.10 (applied to Ũ+ ⊃ Hε(U) and the family

W ). Due to Definition 11.1 of canonical regions in domains, β̃ε belongs
to one canonical region of wh(ε)|S2\Hε(U∗).

Let us prove that all trajectories of this canonical region cross l̃; this
will imply that the Poincare map P̃ε is defined. Due to Proposition 11.2,
it is sufficient to prove this statement for one trajectory. By assumption
of Lemma 7.9, β is a maximal transversal arc of a boundary component
of U of Type 2. Hence, there exists a separatrix γ of v0 that crosses β.
Let r = γ ∩ β.

Proposition 11.5. Let γ, β, and r be the same as above. Then the
trajectory of Hε(r) ∈ β̃ε under wh(ε)|S2\Hε(U∗) crosses l̃ for small ε, and

the intersection point is close to p := Ĥ(γ) ∩ l̃ for small ε.

Proof. The future semi-trajectory of Ĥ(r) under w0 (i.e. the part of the

separatrix Ĥ(γ)) crosses l̃ at the point p; it does not visit Hε(U) ⊂ Ũ+∗

due to No-entrance lemma 4.10 applied to the family W and Ũ+∗.
Since H is continuous on Sep v0 (see Requirement 5 of Definition 2.11

of moderate equivalence), the point Hε(r) is close to Ĥ(r). Since wh(ε)

is close to w0, the trajectory of Hε(r) under wh(ε) intersects l̃ and does

not visit Ũ+∗. The intersection point is close to p. �
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We showed that one trajectory starting at β̃ε does not visit Ũ+∗ and
crosses l̃. Since β̃ε belongs to one canonical region, the same holds for
all trajectories of β̃ε (Proposition 11.2), and the Poincare map P̃ε is

well-defined. Proposition 11.5 also implies that P̃ε(β̃ε) contains a point

close to p ∈ P̃0(β̃0). Since p is the inner point of P̃0(β̃0), we conclude

that for small ε, P̃ε(β̃ε) intersects P̃0(β̃0). This completes the proof.
�

11.3. Images of Type 1 boundary components.

Proof of Lemma 7.8. Let ϕ be the same as in Lemma 7.8. Let C be a
connected component of S2 \Hε(U) adjacent to Hε(ϕ). Clearly, Hε(ϕ)
is a union of two topologically transversal arcs to wh(ε). The endpoints
of these arcs are points of inner topological tangency of Hε(ϕ) with
wh(ε) (here ”inner” means ”inner with respect to Hε(U)”). Let p be
one of these endpoints.

Consider the canonical region R of wh(ε)|C that contains p on its
boundary. Let us prove that it contains Hε(ϕ) and coincides with C.
By contraposition, suppose that the intersection R∩Hε(ϕ) is a proper
subarc of Hε(ϕ).

Consider an endpoint q of this arc. By Definition 11.1 of canonical
regions, q either belongs to an orbit tangent to ∂C, or belongs to a
separatrix of wh(ε)|C . The second option (see Fig. 22a)is impossible

due to No-entrance lemma 4.10 applied to W and Ũ+. Prove that the
first option is also impossible.

First, it is not possible that the point q is itself a point of tangency
of wh(ε) and Hε(ϕ) whose orbit locally belongs to C (see Fig. 22b).
Indeed, all orbits of points of ϕ under vε enter U either in the positive,
or in the negative time. So do the orbits of the points of Hε(ϕ) under
wh(ε). Hence, none of these orbits locally belong to C.

q
p

C

Hε(U)Hε(  )

(a)

C

Hε(U)q
p

Hε(  )

(b)

C

Hε(U)q
p

Hε(  )

Hε(U)

(c)

Figure 22. Images of Type 1 components; all three pic-
tures are impossible
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Second, it is not possible that the orbit of q under wh(ε)|C contains
another point of outer tangency with ∂Hε(U) – say, with some con-
nected component of Hε(U) that belongs to C, see Fig. 22c. Here
“outer” is understood as “outer with respect to Hε(U)”. Indeed, by
Proposition 11.4, the orbit of this outer tangency point must stay in the
complement of Hε(U), and thus cannot reach any point q ∈ ∂Hε(U).

The contradiction obtained proves that the canonical region of wh(ε)|C
that contains p must contain the whole Hε(ϕ), thus coincides with C.
Due to Proposition 11.3, this canonical region is parallel. This com-
pletes the proof. �

11.4. Images of Type 3 boundary components.

Proof of Lemma 7.11 (see Fig. 23). In what follows, the open annulus
between two curves γ1, γ2 is denoted by A(γ1, γ2). We also use this
notation for the annulus between a polycycle or a singular point and
its transversal loop.

c

U

Hε(c)
c

+

-

Hε(  )

U+~
U-~

H(  )^

A

~

𝛺

Figure 23. Images of Type 3 components

Recall that ϕ is a boundary component of Type 3, i.e. a transversal
loop of some singular point, limit cycle, or polycycle c of v0. Consider
the corresponding object c̃ := Ĥ(c) of w0. Let D be a disc bounded

by c̃ that contains Ĥ(ϕ). Since Ũ+, Ũ− satisfy Boundary lemma, they
contain Type 3 boundary components ϕ± that correspond to c̃ and are
in D. So ϕ± are two transversal loops of c̃. Let D+ (D−) be a disc
bounded by ϕ+ (ϕ−) and containing c̃.

We proceed in the following steps.
Step 1: Hε(ϕ) belongs to A := D+ \ D− for any small ε (in-

cluding ε = 0).
Since Ũ− ⊂ Hε(U) ⊂ Ũ+ (see Proposition 7.7), we have ∂Hε(U) ⊂

Ũ+ \ Ũ−. In particular, Hε(ϕ) ⊂ Ũ+ \ Ũ−. However it is not clear why
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this curve belongs to A and not to another connected component of
Ũ+ \ Ũ−.

Step 1.1: Hε(ϕ) belongs to D+

Take a small neighborhood Ω of c̃ that belongs to Ũ−. Take ε so small
that Hε(c) ⊂ Ω; this is possible because Hε(c) is close to H0(c) = c̃, see
Definition 2.11 of moderate equivalence. Let Dε be the disc bounded by
Hε(c) that contains ϕ− and ϕ+; this disc is close to D, and D4Dε ⊂ Ω.

Let Uc be the connected component of Ũ+ that contains c̃; then
Uc ⊂ D+. The annulus Hε(A(c, ϕ)) ⊂ Hε(U) is connected, belongs to
Ũ+ and contains Hε(c) ⊂ Ω, thus has a non-empty intersection with
Uc. Hence it belongs to Uc, therefore to D+. Finally, Hε(ϕ) ⊂ D+.

Step 1.2: Hε(ϕ) belongs to Dε

If c is a singular point, this is clear because S2\Dε is one point Hε(c).
Let c be a limit cycle or a monodromic polycycle. Consider the time
orientation on it. Without loss of generality, we may assume that ϕ is
to the left with respect to this orientation of c. The maps Hε, H0 induce
an orientation on Hε(c), H0(c) = c̃. With this orientation, H0(ϕ) is to
the left with respect to c̃, thus ϕ± are to the left of c̃.

The curve Hε(c) is close to c̃ by Definition 2.11 of moderate equiva-
lence. Hence, the curves ϕ± lie to the left of both Hε(c) and c̃; therefore,
the disc Dε is to the left of Hε(c).

On the other hand, as Hε preserves the orientation, and ϕ is to
the left of c, we conclude that Hε(ϕ) is to the left of Hε(c). Finally,
Hε(ϕ) ⊂ Dε, q.e.d.

Step 1.3: Hε(ϕ) does not intersect D− ∩ Dε (thus does not
intersect D−). Indeed, D ∩ D− = A(c, ϕ−) ⊂ Ũ− and D 4 Dε ⊂
Ω ⊂ Ũ−. So D− ∩Dε ⊂ Ũ−, and the curve Hε(ϕ) ⊂ Ũ+ \ Ũ− cannot
intersect this set.

We conclude that Hε(ϕ) ⊂ D+ \D− = A.
Step 2: The curve Hε(ϕ) is non-contractive in the annulus

A
Indeed, this annulus is between two transversal loops of c̃, thus is sat-

urated by trajectories of w0 and by trajectories of a close vector field
wh(ε). Since Hε preserves topological transversality, Hε(ϕ) is topologi-
cally transversal to wh(ε), thus is non-contractive in A.

Step 3: The curves H0(ϕ) and Hε(ϕ) are homotopic in A
Recall that we orient ϕ so that U is to the left with respect to it.

Both curves H0(ϕ) and Hε(ϕ) are non-contractive in A and oriented
so that H0(U), Hε(U) are to the left with respect to them, i.e. ϕ− is to
the left of them. So they are oriented in the same way, thus homotopic
in A as oriented curves.
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Step 4: End of the proof
Recall that each singular point and each limit cycle of wh(ε) either

belongs to Ũ− ⊂ Hε(U), or is close to a hyperbolic singular point or a
cycle of w0 (thus does not intersect Ũ+ ⊃ Hε(U)), see Proposition 4.11.
Also, LBS(W ) ⊂ Ũ−. In the previous step, we have proved that H0(ϕ)
and Hε(ϕ) are homotopic in A ⊂ Ũ+ \ Ũ−. So they are homotopic in
a larger domain S2 \ (LBS(W ) ∪ Singwh(ε) ∪ Perwh(ε)), q.e.d.

�

Thus all the auxiliary lemmas are proved. Together with them, the
Main Theorem is proved too.
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