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An operator algebra associated with a pair of

intersecting manifolds

D.A. Loshchenova, A.Yu. Savin, B.Yu. Sternin

Abstract

Given a pair of smooth transversally intersecting manifolds in some ambient
manifold, we construct an operator algebra generated by pseudodifferential
operators and the (co)boundary operators associated with the submanifolds.
We show that this algebra has 18 types of additive generators. Then we
define the symbols of the operators in this algebra and obtain the composition
formula.

1 Introduction

Let X0 be a closed smooth manifold and X1, X2 be its submanifolds of arbitrary
dimensions with a nonempty intersection. We consider a natural class of boundary
value problems associated with this geometry. Namely, we consider operators with
boundary conditions posed on X1 and X2. These problems were studied, e.g., in the
works [1–3] (see also [4,5]), where the Fredholm property for some problems of such
type was obtained, index formulas were proved (these formulas involve contributions
of X1 and X2 considered as strata of the manifold with singularities X1∪X2). Later
these results and methods were applied to study nonlocal problems with boundary
conditions on a smooth submanifold (see [6, 7]).

In the present paper, we study several algebraic aspects of this theory. More
precisely, we consider an operator algebra multiplicatively generated by pseudodif-
ferential operators (ψDOs) on the ambient manifold and on the submanifolds, and
the (co)boundary operators associated with the submanifolds (by a boundary op-
erator we mean the restriction operator to a submanifold, and by a coboundary
operator we mean its dual, that is, an operator which extends functions on a sub-
manifold to distributions on the ambient manifold). We show that this algebra has
18 types of additive generators, and general elements in this algebra can be written
as the following 3× 3 matrices

D =













D0 +G1 +G2 +M0 C1 + C ′

1 C2 + C ′

2

B1 +B′

1 D1 +M1 T12

B2 +B′

2 T21 D2 +M2













: H −→ H′, (1.1)

where H,H′ stand for direct sums of Sobolev spaces on X0, X1, X2 (of some orders
for each of the manifolds). The entries in (1.1) are of the following types:
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• D0, D1, D2 are ψDOs on X0, X1, X2, respectively;

• B1, B2 and C1, C2 are boundary and coboundary operators (see [8]), localized
at X1, X2;

• G1, G2 are Green operators (see, e.g., [9–11]), localized at X1, X2;

• M0,M1,M2 are Mellin operators (see, e.g., [5]), localized at X1 ∩X2;

• T12, T21 are translators (see [2]), localized at X1 ∩X2;

• B′

1, B
′

2 and C ′

1, C
′

2 are boundary and coboundary operators, localized at the
intersection X1 ∩X2.

We note that while these operators were considered in the literature individually, our
approach allows one to study them from a unified point of view, and this considerably
simplifies the theory. Moreover, our classification of operators (1.1) is carried out in
terms of the strata on which these operators are localized at. We also define symbols
of these operators and establish the composition formula.

The work is partially supported by RFBR grants №16-31-00176 and 16-01-00373.

2 Statement of the problem

Let X0 = Rn with the standard coordinates x1, . . . , xn. We consider two coordinate
subspaces X1, X2 ⊂ X0 such that dimXk < dimX0, k = 1, 2, and dim(X1∩X2) > 0.
We will take appropriate components of the coordinates x1, . . . , xn on the ambient
space as coordinates on Xk, k = 1, 2.

For k = 1, 2 denote nk = codimXk
(X1 ∩ X2), νk = codimX0

Xk. Also denote
ν3 = codimX0

(X1 ∩X2).
We associate the following operators with the triple (X0, X1, X2):

1. Pseudodifferential operators (ψDOs) on X0, X1, X2:

Ak : H
s(Xk) −→ Hs−m(Xk), k = 0, 1, 2. (2.1)

Hereinafter we consider only ψDOs (2.1) with compactly supported Schwartz
kernels.

2. Elementary boundary operators corresponding to Xk, k = 1, 2:

ik : Hs(X0) −→ Hs−νk/2(Xk), u(y, z) 7−→ u(y, 0), s− νk/2 > 0, (2.2)

where (y, z) are the coordinates on X0 such that Xk = {y = 0}.

3. Elementary coboundary operators corresponding to Xk, k = 1, 2:

ik : H
−s+νk/2(Xk) −→ H−s(X0), u(z) 7−→ u(z)⊗δ(y), s−νk/2 > 0, (2.3)

where δ(y) stands for the Dirac delta function, and the coordinates (y, z) are
chosen as above.
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Below we always assume that all operators act between Sobolev spaces of some
fixed orders (we will denote these spaces by H(Z), where Z ⊂ X0 is a manifold,
omitting the order from the notation). Moreover, for compositions D1D2 we assume
that the domain of D1 is equal to the range of D2, that is, the corresponding Sobolev
spaces are the same.

Now, for any k, l ∈ {0, 1, 2}, consider the linear space Mork,l which consists of
operators H(Xl) → H(Xk) of some fixed order and is multiplicatively generated by
the operators (2.1), (2.2), and (2.3). More precisely, an element of Mork,l is a finite
sum of operators of the form

Dkl = Dk,i1Di1,i2 . . .DiN ,l : H(Xl) −→ H(Xk), (2.4)

where Dα,β : H(Xβ) → H(Xα) is a composition of ψDOs and the elementary bound-
ary operator (when Xα ⊂ Xβ) or the elementary coboundary operator (when Xβ ⊂
Xα). Now denote by Mor the direct sum

Mor =
⊕

k,l=0,1,2

Mork,l .

Elements of this space are called morphisms (cf. [1]).
Further, for simplicity we consider only morphisms of order zero in the spaces

H =

2
⊕

k=0

Hsk(Xk) (2.5)

for some fixed sk ∈ R. By construction such morphisms form an algebra with respect
to the operator composition (we denote this algebra also by Mor).

It is an interesting problem to study operators (morphisms) from the algebra
Mor. More precisely, it is necessary to examine the structure of these operators,
define their symbols and the notion of ellipticity, establish the Fredholm property
of elliptic operators (the finiteness theorem) and obtain the index formula.

In this paper, we carry out a classification of morphisms, define their symbols
and determine the composition formula (the symbol homomorphism). Fredholm
property and index theorem will be studied elsewhere.

3 Classification of morphisms

The union X1 ∪X2 is a stratified manifold with singularities in X0. Let us classify
the elements of Mor by means of the strata they are localized at. First, we introduce
the corresponding concept.

Note that the space H (see (2.5)) is a C∞

c (X0)-module with respect to the mul-
tiplication by functions in C∞

c (X0) and their restrictions to X1 and X2.

Definition 3.1. A morphism D : H → H is localized at a submanifold Z ⊂ X0 if
compositions ϕD or Dϕ are operators of order ≤ ordD for any ϕ ∈ C∞

c (X0 \ Z).

One can easily show that the elementary boundary and coboundary operators are
localized at the submanifolds they are associated with. This implies the following

Lemma 3.2. The composition (2.4) is localized at the intersection

Xk ∩Xi1 ∩ · · · ∩XiN ∩Xl. (3.1)
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Lemma 3.2 allows us to classify compositions (2.4) into four classes, accord-
ing to the intersection (3.1): this intersection is equal to one of the submanifolds
X0, X1, X2, and X1∩X2. Let us examine the form of the operators from each of the
four classes.

From now on, we represent the morphisms from Mor as 3 × 3 matrix operators
acting in H → H.

1. The intersection (3.1) is equal to X0. Clearly, this is the case if and only if

Xk = Xi1 = · · · = XiN = Xl = X0.

Thus, we have a ψDO on X0. The corresponding matrix operator is





D 0 0
0 0 0
0 0 0



 : H −→ H.

2. The intersection (3.1) is equal to X1. This is the case if and only if all the
submanifolds in (3.1) are equal to either X0 or X1. Thus, we deal with a composition
of ψDOs on X0 and X1 with (at least one) the elementary boundary or coboundary
operators i1, i

1. The corresponding matrix operator is





G1 C1 0
B1 D1 0
0 0 0



 : H −→ H.

Here D1 is always a ψDO on X1 because the composition i1Ai1, where A is a ψDO
on X0, is a ψDO on X1 (see [8, 12]). Next, B1 is equal to

A1 i
1A0, (3.2)

where A1, A0 are ψDOs on X1, X0, respectively. Note that “long” compositions

A1 i
1A0 i1A

′

1 i
1A′

0,

where A′

1, A
′

0 are ψDOs on X1, X0, respectively, can always be represented as
in (3.2), since, as noted above, i1A0i1 is a ψDO on X1. The operator B1 is a
boundary operator localized at X1. In a dual manner, C1 is

A0 i1A1.

It is a coboundary operator localized at X1. Finally, we have

G1 = A0 i1A1 i
1A′

0,

where A0, A
′

0 are ψDOs on X0, and A1 is a ψDO on X1. This operator is called
Green operator localized at X1.

3. The intersection (3.1) is equal to X2. This case is analogous to the previous
one. One obtains matrix operators





G2 0 C2

0 0 0
B2 0 D2



 : H −→ H,
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where D2 is a ψDO on X2; B2 and C2 are boundary and coboundary operators
localized at X2, respectively; G2 is a Green operator localized at X2.

4. The intersection (3.1) is equal to X1 ∩ X2. In this case, one obtains matrix
operators





M0 C ′

1 C ′

2

B′

1 M1 T12
B′

2 T21 M2



 : H −→ H.

Each term in this matrix is a composition with at least one (co)boundary operator
for X1 and at least one (co)boundary operator for X2. The operators M0, M1, M2

are called Mellin operators localized at X1 ∩ X2; the operators B′

1, B
′

2 and C ′

1, C
′

2

are called boundary and coboundary operators localized at X1 ∩X2; the operators
T12, T21 are called translators between X1 and X2 (see [2]).

The operators of the above four classes constitute the set of additive generators
of the algebra Mor. Therefore, a general morphism is of the form

D =













D0 +G1 +G2 +M0 C1 + C ′

1 C2 + C ′

2

B1 +B′

1 D1 +M1 T12

B2 +B′

2 T21 D2 +M2













: H −→ H. (3.3)

It follows that the algebra Mor has 18 types of additive generators.

4 Symbols of morphisms

4.1 Symbols of ψDOs and (co)boundary operators

In this section, we define symbols of general morphisms in Mor. First, we define
symbols of the generators on various submanifolds.

1. Symbols for ψDOs. Let A be a ψDO on X0 and Z be a stratum in X0.
Denote by (y, z) the coordinates on X0 such that Z = {y = 0}. Denote by (η, ζ) the
corresponding coordinates in the fibers of the bundle T ∗X0. The principal symbol
of A is denoted by A(y, z, η, ζ). Now, the symbol σZ(A) of A on Z is defined as the
following operator-function

σZ(A)(z, ζ) = A

(

0, z,−i
∂

∂y
, ζ

)

: H(Rk
y) −→ H(Rk

y), (z, ζ) ∈ T ∗

0Z. (4.1)

Note that (4.1) is obtained by freezing the coefficients of A at a point on Z and
applying the Fourier transform with respect to the tangent variables.

The symbols of ψDOs on X1, X2, X1 ∩X2 are defined similarly.
2. Symbols of elementary boundary operators. The symbol σX1

(i1) of the operator
i1 on the stratum X1 is the operator-function

σX1
(i1)(z, ζ) : H(Rν1

y ) −→ C, u(y) 7−→ u(0), (z, ζ) ∈ T ∗

0X1,

where (z, y) are the coordinates on X0 such that X1 = {y = 0}. To define the
symbol of i1 on the stratum X1 ∩ X2, we choose the local coordinates (x, y, z) on
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X0 such that X1 = {y = 0}, and X1 ∩ X2 = {(x, y) = (0, 0)}. Then the symbol
σX1∩X2

(i1) is the operator-function

σX1∩X2
(i1)(z, ζ) : H(Rν3

x,y) −→ H(Rn1

x ), u(x, y) 7−→ u(x, 0),

where (z, ζ) ∈ T ∗

0 (X1 ∩X2).
The symbols σX2

(i2) and σX1∩X2
(i2) are defined along the same lines.

3. Symbols of coboundary operators. The symbol of the operator i1 is defined in
a dual manner to that of i1. More precisely, we set

σX1
(i1)(z, ζ) : C −→ H(Rν1

y ), q 7−→ q δ(y), (z, ζ) ∈ T ∗

0X1,

and
σX1∩X2

(i1)(z, ζ) : H(Rn1

x ) −→ H(Rν3
x,y), u(x) 7−→ u(x)⊗ δ(y),

where (z, ζ) ∈ T ∗

0 (X1 ∩X2).
The symbols σX2

(i2) and σX1∩X2
(i2) of i2 are defined similarly.

4.2 Symbols of general morphisms

Let Z be any of the strata X0, X1, X2, X1 ∩X2.

Definition 4.1. The composition

σZ(Dkl) = σZ(Dk,i1) σZ(Di1,i2) . . . σZ(DiN ,l), (4.2)

is called the symbol σZ(Dkl) of the morphism (2.4) on Z. Note that all the terms
σZ on the right hand side were defined above.

Therefore, the following symbols are defined for a general morphism (3.3).

1. The symbol on X0 is equal to the symbol of the ψDO component D0:

σX0
(D)(z, ζ) = σ(D0)(z, ζ) : C −→ C, (z, ζ) ∈ T ∗

0X0.

2. The symbol on X1 is the operator-function

σX1
(D)(z, ζ) =

(

σX1
(D0 +G1) σX1

(C1)

σX1
(B1) σ(D1)

)

(z, ζ), (z, ζ) ∈ T ∗

0X1

ranging in operators acting in the spaces

σX1
(D)(z, ζ) :

H(Rν1)
⊕
C

−→
H(Rν1)

⊕
C

.

3. The symbol on X2 is the operator-function

σX2
(D)(z, ζ) =

(

σX2
(D0 +G2) σX2

(C2)

σX2
(B2) σ(D2)

)

(z, ζ), (z, ζ) ∈ T ∗

0X2,

with values in operators acting in the spaces

σX2
(D)(z, ζ) :

H(Rν2)
⊕
C

−→
H(Rν2)

⊕
C

.
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4. Finally, the symbol on the intersection Z = X1 ∩X2 is the operator-function

σZ(D)(z, ζ) =

=









σZ(D0 + G0 +G1 +M0) σZ(C1 + C ′

1) σZ(C2 + C ′

2)

σZ(B1 +B′

1) σZ(D1 +M1) σZ(T12)

σZ(B2 +B′

2) σZ(T21) σZ(D2 +M2)









(z, ζ),

where (z, ζ) ∈ T ∗

0Z, with values in operators acting in the spaces

σZ(D)(z, ζ) :

H(Rν3)
⊕

H(Rn1)
⊕

H(Rn2)

−→

H(Rν3)
⊕

H(Rn1)
⊕

H(Rn2)

.

4.3 The composition formula

In this section we show that symbols of morphisms are well defined and establish the
corresponding composition formula. This is the main result of the present paper.

Theorem 4.2. For any morphism D ∈ Mor, its symbol σZ(D) (see Definition 4.1)
on any stratum Z does not depend on the choice of representation of D in terms
of generators (2.1), (2.2), and (2.3) of the algebra Mor. Moreover, for any two
morphisms D1,D1 ∈ Mor the following composition formula holds

σZ(D1D2) = σZ(D1) σZ(D2). (4.3)

Proof. Note that (4.3) readily follows from Definition 4.1. Thus, we only have to
prove that the symbol is well-defined (that is, it does not depend on the choice of
representation of a morphism in terms of generators).

1. Define the following order reduction operators

(Λ0,Λ1,Λ2) :
⊕

k=0,1,2

Hsk(Xk) −→
⊕

k=0,1,2

L2(Xk),

where Λk is an elliptic ψDO on Xk of order sk. Now, we can reduce any morphism
D ∈ Mor to an operator acting in L2-spaces by multiplying it by appropriate powers
of order reduction operators. Then it suffices to prove the theorem for the resulting
operators; the general case easily follows.

Thus, we assume that D ∈ Mor acts in the spaces

D :
⊕

k=0,1,2

L2(Xk) −→
⊕

k=0,1,2

L2(Xk). (4.4)

2. Now, we show that symbols of the morphism (4.4) are well defined. We note
that our approach is based on the ideas described in [13] (for a smooth manifold
without boundary) and in [14] (for boundary value problems).

First, we introduce an auxiliary operator family. Namely, consider the space
Rk+ν with coordinates (z, y). Given a point (z0, ζ0) ∈ T ∗

0R
k, define the operator

family (cf. [14])
Rλ,z,y : L

2(Rk+ν
z,y ) −→ L2(Rk+ν

z,y ), λ > 0, (4.5)
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where
Rλ,z,y : u(z, y) 7−→ λk/4+ν/2 eiλzζ0 u

(

λ1/2(z − z0), λy
)

.

A straightforward computation shows that the operators (4.5) are unitary, and for
any u ∈ C∞

c (Rk+ν) the sequence of functions Rλ,z,yu tends to 0 weakly in L2(Rk+ν
z,y )

as λ→ ∞.
Let us return to the morphism (4.4). Consider its component

Dkl : L
2(Xl) −→ L2(Xk)

and its symbol σZ(Dkl) on some stratum Z ⊂ X1 ∪ X2. Choose the coordinates
(z, y) ∈ Rn+ν = Xk, (z, y

′) ∈ Rn+ν′ = Xl, such that Z is defined by the equations
Z = {(z, 0)} in Xk and in Xl. Here ν stands for the codimension of Z in Xk, and ν ′

is the codimension of Z in Xl.
The following lemma implies that the symbol σZ(Dkl) is well defined.

Lemma 4.3. For any two functions u ∈ C∞

c (Rn
z ), v ∈ C∞

c (Rν′

y′), and any point
(z0, ζ0) ∈ T ∗

0Z the following equality holds

lim
λ→∞

∥

∥R−1
λ,z,y DklRλ,z,y′(u⊗ v)− u⊗

[

σZ(Dkl)(z0, ζ0)
]

v
∥

∥

L2(Xk)
= 0. (4.6)

Proof. By linearity and multiplicativity of the expression under the norm sign in (4.6),
it suffices to prove that the limit is equal to zero in the following three special cases:

1. k = l, and Dkk is a ψDO of order zero;

2. l = 0, k > 0, and

Dk0 = Λk i
k Λ0 : L

2(X0) −→ L2(Xk),

where Λ0 and Λk are order reduction operators on X0 and Xk respectively.

3. k = 0, l > 0, and

D0l = Λ0 il Λl : L
2(Xl) −→ L2(X0),

where Λ0 and Λl are order reduction operators on X0 and Xl respectively.

For brevity, we omit the details of the corresponding verification and refer the
reader to [14] where a similar calculation is carried out.

Now, it follows from Lemma 4.3 that the symbol of (4.4) is well defined. In turn,
this implies that symbols of general morphisms are well defined.

The proof of Theorem 4.2 is now complete.
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