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ON THE NUMBER OF HARD BALL COLLISIONS

KRZYSZTOF BURDZY AND MAURICIO DUARTE

Abstract. We give a new and elementary proof that the number of elastic collisions
of a finite number of balls in the Euclidean space is finite. We show that if there are
n balls of equal masses and radii 1, and at the time of a collision between any two
balls the distance between any other pair of balls is greater than n

−n, then the total
number of collisions is bounded by n

(5/2+ε)n, for any fixed ε > 0 and large n. We also
show that if there is a number of collisions larger than n

cn for an appropriate c > 0,
then a large number of these collisions occur within a subfamily of balls that form a
very tight configuration.

1. Introduction

The purpose of this paper is to
(i) give an “elementary” or “conceptual” proof of the claim that the number of elastic

collisions of a finite number of balls in the Euclidean space is finite,
(ii) give a quantitative estimate for the time when some subfamilies of the original

family of balls stop to interact,
(iii) give an explicit upper bound for the total number of collisions that is lower than

the best known bound but requires extra assumptions, and
(iv) prove that if the number of collisions is very large then the balls have to form a

tight configuration for an interval of time holding many collisions.

1.1. Review of existing results. The question of whether a finite system of hard
balls in Rd can have an infinite number of elastic collisions was posed by Ya. Sinai. It
was answered in negative in [Vas79]. For alternative proofs see [Ill89, Ill90, CI04]. The
papers [BFK98c, BFK98b, BFK00, BFK02, BFK98a] were the first to present universal
bounds on the number of collisions of n hard balls in any dimension. It was proved in
[BFK98c] that a system of n balls in the Euclidean space undergoing elastic collisions
can experience at most

(
32

√
mmax

mmin

rmax

rmin
n3/2

)n2

(1.1)

collisions. Here mmax and mmin denote the maximum and the minimum masses of the
balls. Likewise, rmax and rmin denote the maximum and the minimum radii of the
balls. The following alternative upper bound for the maximum number of collisions,
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not depending on the radii, appeared in [BFK98a],
(
400

mmax

mmin
n2

)2n4

.(1.2)

No improved universal bounds were found since then, as far as we know. We conjecture
that the bounds in (1.1)-(1.2) are not sharp.
Let K(n, d) be the maximum number of elastic collisions that n balls in Rd, of equal

radii and masses, can undergo. It is easy to see that K(n, 1) = n(n−1)/2 for n ≥ 2, and
thatK(n, d) is a non-decreasing function of d (see [BD18]). Hence, K(n, d) ≥ n(n−1)/2
for all n ≥ 2 and d ≥ 1. Intuition may suggest that K(n, d) = n(n − 1)/2 for every
d ≥ 1 because the balls are “most constrained” in one dimension; see [MC00] for a
historical review related to this point. It turns out that this intuition is wrong. It
is known that K(3, 2) = 4 > 3(3 − 1)/2. An example showing that K(3, 2) ≥ 4 was
found by J.D. Foch and published in [MC00]. The proof that K(3, 2) < 5 was given in
[MC93].
It has been proved in [BD18] that if the balls have equal radii and masses then,

K(n, d) ≥ K(n, 2) > n3/27 for n ≥ 3, d ≥ 2.(1.3)

There is a huge gap between the best known upper bounds in (1.1)-(1.2) and the best
known lower bound in (1.3). This gap provides motivation for the present article.

1.2. New results. Our intention is to add some new methods to the existing techniques
for proving finiteness of the number of collisions and for proving upper bounds for the
number of collisions. Papers [Vas79, Ill89, Ill90, CI04] analyze a certain functional of the
configuration but that analysis becomes qualitative at a certain point. We will develop
a quantitative version of that method. The authors of [BFK98c, BFK98b, BFK00,
BFK02, BFK98a] translated the problem into the language of geometry of spaces with
non-positive curvature (CAT(0) spaces).
First, in Theorem 2.1, we will give an “elementary” or “conceptual” proof of the

claim that the number of elastic collisions of a finite number of balls in the Euclidean
space is finite (the balls may have different masses and different radii). The new proof
is based on simple properties of energy, momentum and elastic collisions so it is based
more on physical intuition than on mathematical properties of the evolution. The proof
contains almost no calculations. The main idea is that, for any fixed half-space, the
component orthogonal to the half-space boundary of the total momentum of the family
of balls that happen to be in the half-space at time t is a monotone function of t. As
a result, balls become “ordered” according to their velocities and some subfamilies of
balls stop interacting. Our rigorous implementation of the idea departs somewhat from
the above informal description.
Let the initial position of the k-th ball be denoted xk(0) ∈ R

d and let x(0) =
(x1(0), . . . , xn(0)) ∈ Rnd. Our second main result is the following.

Theorem 1.1. Consider n balls of equal masses and radii 1. Assume that the total
momentum of the balls is 0 and their total energy is 1. The family of all n balls can be
partitioned into two non-empty subfamilies such that no ball from the first family will
ever collide with a ball in the second family after time 100n3|x(0)|.
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The above result transforms some qualitative arguments originally developed in
[Vas79, Ill89, Ill90] into a quantitative estimate. As a corollary, we will obtain the
following.

Theorem 1.2. Consider n balls of equal masses and radii 1. Suppose that at the time
of a collision of any two balls, the distance between any other pair of balls is greater
than n−n. Then, for any ε > 0, the total number of collisions is bounded by n5n/2+εn,
for large n.

We will also use Theorem 1.1 to derive the following result. Suppose that a very large
number of collisions occur. Then a smaller but also a very large number of collisions
will have to occur in an interval of time during which a subset of the balls form a very
tight configuration. The main assumption of the theorem is that there are more than
ncn collisions for an appropriate constant c. This assumption might be void, that is, it
is possible (we would even say likely) that the number of collisions is never that high.
However, the theorem in the present form may be a precursor to a non-void result, with
less stringent assumptions on the number of collisions. The theorem also gives moral
support to the “pinned billiards model” investigated in a forthcoming paper [ABD18].
Consider n balls Bk in Rd of equal masses and radii 1, colliding elastically. For a

fixed ρ > 0, let Γρ(t) be the graph whose vertices are balls B1, B2, . . . , Bn. Two vertices
Bj and Bk are connected by an edge in Γρ(t) if and only if |xj(t)− xk(t)| ≤ 2 + ρ.
We will say that a subfamily {Bi1 , Bi2, . . . , Bik} of balls is ρ-connected in [s, u] if for

every t ∈ [s, u], all balls {Bi1, Bi2 , . . . , Bik} belong to a connected component of Γρ(t)
(the connected component may depend on t ∈ [s, u]).

Theorem 1.3. Let ρ ≤ n−n and N > 1 be such that log(Nρ) > (3/2 + ε)n logn for
some ε > 0 independent of n. If the total number of collisions is greater than or equal to
N then there exist n0, a family B := {Bi1 , Bi2, . . . , Bik} of balls and an interval [t1, t2]
such that B is ρ-connected in [t1, t2] and there are more than Nρn−(3/2+o(1))n collisions
among balls in B on [t1, t2], for n ≥ n0.

Corollary 1.4. If the total number of collisions is greater than or equal to n(5/2+ε)n

for some ε > 0 then there exist n0, a family B := {Bi1, Bi2 , . . . , Bik} of balls and an
interval [t1, t2] such that B is n−n-connected in [t1, t2] and there are more than nεn/2

collisions among balls in B on [t1, t2], for n ≥ n0.

Corollary 1.5. If the total number of collisions is greater than or equal to nnα

for some
α ∈ (1, 2] then there exist n0, a family B := {Bi1, Bi2 , . . . , Bik} of balls and an interval

[t1, t2] such that B is n− 1

3
nα

-connected in [t1, t2] and there are more than n
1

3
nα

collisions
among balls in B on [t1, t2], for n ≥ n0.

The paper consists of five more sections. Section 2 contains a new proof that the
number of collisions is finite. Section 3 collects notation and assumptions for the re-
maining part of the paper. Section 4 is devoted to the analysis of some functionals. A
new upper bound for the number of collisions is given in Section 5. Section 6 contains
the proof that balls form a tight configuration when a very large number of collisions
occur. An essential difference between Section 2 and the sections following it is that
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the balls may have arbitrary masses and radii in Section 2 but they are assumed to
have identical masses and radii 1 in Sections 3-6.

2. The number of collisions is finite

We will consider n ≥ 2 hard balls Bk in Rd, for d ≥ 1, colliding elastically. In this
section, the balls may have different masses and different radii.
We say that a “simultaneous collision” occurs at time t if there is a collection of balls

{Bi1, Bi2 , . . . , Bik} for some k ≥ 3, such that for any two balls Biℓ and Bip in the family,
there exist j1 = iℓ, j2, . . . , jm−1, jm = ip such that Bjr is in contact with Bjr+1

at time t
for all r = 1, . . . , m−1. For example, if a ball B1 touches B2 at time t and balls B3 and
B4 also touch at time t but none of the balls from the first pair touches a ball from the
second pair, we do not call t a simultaneous collision time. This type of simultaneous
occurrence of two collisions does not present any technical difficulties.
It is known that the set of vectors in the phase space of positions and velocities that

lead to simultaneous collisions has measure zero (see [Ale76]).
If there are infinitely many collisions on a finite time interval then it is easy to see,

using continuity of ball trajectories, that there exists a simultaneous collision. We will
assume that there are no simultaneous collisions so the number of collisions will be
finite on every finite time interval.
It should be pointed out that evolutions with simultaneous collisions are “degener-

ate” in the sense that the usual laws of physics (conservation of energy, momentum
and angular momentum) do not uniquely determine the outgoing velocities (see, for
example, [Vas79]).
We will assume that the momentum of the system is zero. We can make this assump-

tion because the number of collisions is the same in all inertial frames of reference. Since
the total momentum is zero, the center of mass of all balls is constant, so it can and
will be assumed to be at origin.
Consider two moving balls B1 and B2 with centers x1(t) and x2(t), and velocities v1(t)

and v2(t). Suppose that the balls collide at time t. Let P be the hyperplane tangent
to the balls at the point of collision. Let v1(t−) = ṽ1(t−) + v̂1(t−), where ṽ1(t−) is
orthogonal to P and v̂1(t−) is parallel to P . We decompose v2(t−) in an analogous
way as v2(t−) = ṽ2(t−) + v̂2(t−). The components v̂1(t−) and v̂2(t−) of the velocities
will not change at the time t of the collision. Let eP = x1(t)− x2(t). For the collision
to take place we must have (ṽ1(t−)− ṽ2(t−)) · eP < 0. It is easy to see that at the time
of the collision ṽ1 · eP will have a positive jump and ṽ2 · eP will have a negative jump.

Theorem 2.1. ([Vas79]) The number of elastic collisions of a finite number of balls in
the Euclidean space is finite, assuming no simultaneous collisions.

Proof. If the total energy of the balls is zero, the balls are not moving and there will
be no collisions. So let us assume that the total energy of the balls is strictly positive.
Step 1. We will consider n ≥ 2 hard balls Bk in Rd, for d ≥ 1, colliding elastically.

The evolution will occur over the time interval [0,∞). The center and velocity of the
k-th ball will be denoted xk(t) and vk(t), for k = 1, 2, . . . , n. We will write xk(t) =
(xk

1(t), x
k
2(t), . . . , x

k
d(t)) and vk(t) = (vk1 (t), v

k
2(t), . . . , v

k
d(t)).
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We define “order statistics” (y1j (t), y
2
j (t), . . . , y

n
j (t)) for the centers of the balls in the

direction of the j-th basis vector ej as the unique rearrangement of the numbers in the
sequence (x1

j (t), x
2
j(t), . . . , x

n
j (t)) such that y1j (t) ≤ y2j (t) ≤ · · · ≤ ynj (t).

Fix some j ∈ {1, . . . , d}. Let T be the set of all times t ≥ 0 such that there is a tie
among ykj (t)’s, i.e., y

k
j (t) = yk+1

j (t) = · · · = yrj (t) for some k and r > k.
The following is an implicit definition of m(k, t). Let B′

k(t) be the ball Bm(k,t) such

that x
m(k,t)
j (t) = ykj (t). If t ∈ T then we label the balls B′

k(t), . . . , B
′
r(t) in such a way

that m(k, t) < m(k + 1, t) < · · · < m(r, t).
Let wk(t) = (wk

1(t), . . . , w
k
d(t)) = vm(k,t)(t), i.e., wk(t) denotes B′

k’s velocity at time t.

Step 2. We will show that F r(t) :=
∑r

k=1w
k
j (t) is a non-increasing function of t for

every r = 1, . . . , n.
Suppose that (t1, t2) ∩ T = ∅ and there are no collisions in (t1, t2). Then for every

k, the function t → m(k, t) is constant on (t1, t2) and so is the function wk
j (t). Hence

t →∑r
k=1w

k
j (t) is constant on (t1, t2) for every r.

Consider a t ∈ T such that no balls collide at t. First suppose that there are only two
balls B′

k(t) and B′
k+1(t) such that ykj (t) = yk+1

j (t). Then there is ε > 0 such that there

are no collisions in (t, t + ε) and yrj (t) < yr+1
j (t) for all r 6= k. If wk

j (t) ≤ wk+1
j (t) and

since these velocities are not going to change in (t, t + ε), we will have x
m(k+1,t)
j (s) ≥

x
m(k,t)
j (s) for s ∈ (t, t + ε). Hence, we will have wk

j (s) ≤ wk+1
j (s) for s ∈ (t, t + ε).

Similarly, if wk
j (t) ≥ wk+1

j (t) then x
m(k+1,t)
j (s) ≤ x

m(k,t)
j (s) for s ∈ (t, t+ ε). Once again,

wk
j (s) ≤ wk+1

j (s) for s ∈ (t, t+ ε).

We now use time reversibility of the evolution to claim that wk
j (s) ≥ wk+1

j (s) for

s ∈ (t, t − ε1), for some ε1 > 0. Combining this with the claim that wk
j (s) ≤ wk+1

j (s)

for s ∈ (t, t+ ε), we conclude that wk
j (t+) = min

{
wk

j (t−), wk+1(t−)
}
, and wk+1

j (t+) =

max
{
wk

j (t−), wk+1(t−)
}
. This shows that for r 6= k, the function F r(·) is constant in a

neighborhood of t, and that F k(·) is non-increasing on (t− ε1, t+ ε) for some ε, ε1 > 0.

Step 3. Consider a t /∈ T such that some balls collide at t. First suppose that there
are only two balls B′

k(t) and B′
r(t) that collide at time t. If r = k+1 and ykj (t) = yk+1

j (t)
then the tangent plane P at the collision point contains the basis vector ej . The j-th
components of the velocities of the two balls will not change at the moment of the
collision and so the argument given in Step 2 applies and yields the same conclusion.
Next suppose that ykj (t) < yrj (t). Let wk(t−) = w̃k(t−) + ŵk(t−), where w̃k(t−) is

orthogonal to P and ŵk(t−) is parallel to P . We decompose wr(t−) in an analogous
way as wr(t−) = w̃r(t−) + ŵr(t−). Then the components ŵk(t−) and ŵr(t−) of the
velocities will not change at the time t of the collision. Let eP be the unit vector
orthogonal to P such that eP · ej > 0. For the collision to take place we must have
(w̃k(t−) − w̃r(t−)) · eP > 0 because we assumed that ykj (t) < yrj (t) and, therefore,

(ykj (t) − yrj (t)) · eP < 0. At the time of the collision w̃k(t) · eP will have a negative

jump and w̃r(t) · eP will will have a positive jump, so the same applies to w̃k(t) · ej and
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w̃r(t) · ej . This implies that F ℓ(t) =
∑ℓ

i=1w
i
j(t) will have a non-positive jump at time

t for every ℓ.
Extending the argument to the case when different pairs of balls have collisions at

the same time, or the case when some collisions take place at a time t ∈ T, does not
pose any conceptual problems so it is left to the reader.

Step 4. We have shown that
∑r

k=1w
k
j (t) is a non-increasing function of t for every

r = 1, . . . , n.
We apply the claim with r = 1 to see that t → w1

j (t) is non-increasing. Hence,

w1
j (∞) := limt→∞w1

j (t) exists. The limit must be finite because all speeds are bounded
since the energy of the system is constant.
Suppose that, for some r < n, we have shown that wk

j (∞) := limt→∞wk
j (t) exists

and is finite for k = 1, . . . , r. This and the fact that t →∑r+1
k=1w

k
j (t) is non-increasing

imply that wr+1
j (∞) := limt→∞ wr+1

j (t) exists. The limit is finite for the same reason

as in the case of w1
j (∞). By induction, we conclude that wk

j (∞) := limt→∞ wk
j (t) exists

and is finite for all k = 1, . . . , n.
We will argue that wk

j (∞) ≤ wk+1
j (∞) for all k = 1, . . . , n − 1. Suppose otherwise.

Let k be such that wk
j (∞) > wk+1

j (∞). The functions t → m(r, t) are not necessarily

continuous but, despite that, the functions t → x
m(r,t)
j (t) are. The derivative of t →

x
m(r,t)
j (t) exists and is equal to wr

j (t) for all except a countable number of t. The

assumption that wk
j (∞) > wk+1

j (∞) implies that, for some ε > 0, wk
j (t) > wk+1

j (t) + ε

for large t and, therefore, x
m(k,t)
j (t) > x

m(k+1,t)
j (t) + 1 for large t. This contradicts the

definition of x
m(r,t)
j (t) so the claim that wk

j (∞) ≤ wk+1
j (∞) for all k = 1, . . . , n− 1 has

been proved.
Recall that we have assumed that the total momentum is zero and, therefore, the

center of mass is not moving. This implies that we cannot have w1
j (∞) > 0 because then

we would have wk
j (t) > 0 for all k and sufficiently large t, contradicting the assumption

that the center of mass is not moving. For a similar reason, we must have wn
j (∞) ≥ 0.

It is possible that

w1
j (∞) = w2

j (∞) = · · · = wn
j (∞) = 0.(2.1)

For example, the centers of balls may move in the hyperplane orthogonal to ej . But
(2.1) cannot hold for all j = 1, . . . , d simultaneously because that would imply that
for all j = 1, . . . , d, every ε > 0, every k = 1, . . . , n and all sufficiently large t, we
would have |wk

j (t)| < ε. This would contradict the assumption that the total energy is
constant and strictly greater than zero.
We see that there must exist j such that w1

j (∞) < wn
j (∞). Thus for some k and j,

wk
j (∞) < wk+1

j (∞).

Step 5. We have shown that there exist j, k and δ > 0 such that wk
j (∞) + 3δ <

wk+1
j (∞). It follows that there exist a ∈ R and s < ∞ such that wr

j (t)+δ < a < wℓ
j(t)−δ

for all r ≤ k, ℓ ≥ k+1 and t ≥ s. We can and do change the inertial frame of reference
so that a = 0 and, hence, wr

j (t) + δ < 0 < wℓ
j(t)− δ for all r ≤ k, ℓ ≥ k + 1 and t ≥ s.
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Let a1, a2 > 0 be larger than the maximum of the radii of the balls. Recall that the

functions t → x
m(i,t)
j (t) are continuous for all i and j. Moreover, their derivatives are

equal to wi
j(t) for all except a countable number of t. It follows that for some s1 < ∞,

we will have x
m(r,t)
j (t) < −2a1 and x

m(ℓ,t)
j (t) > 2a2 for all r ≤ k, ℓ ≥ k + 1 and t ≥ s1.

This implies that for all t ≥ s1, some ball centers will satisfy xi
j(t) < −2a1, some of

them will satisfy xi
j(t) > 2a2, and none of them will satisfy −2a1 < xi

j(t) < 2a2. The

balls move continuously, so none of the balls Bi with xi
j(s1) < −2a1 will ever collide

with a ball Bℓ with xℓ
j(s1) > 2a2 after time s1. Hence, the original family of balls can

be decomposed into two non-empty collections of balls with the property that no ball
from one subfamily will collide with a ball in the other subfamily after time s1.

Step 6. Since the original family of balls can be decomposed into two non-empty
collections of balls with the property that no ball from one subfamily will collide with
a ball in the other subfamily after some time, the same reasoning can be applied to
each of the subfamilies. Proceeding by induction, we will find a time s∗ < ∞ such that
we can decompose the family of n balls into n subfamilies of balls, each one containing
only one ball, with the property that no ball from one subfamily collides with a ball
in the other subfamily after time s∗. Recall from the introduction to this section that
there are no accumulation points in [0, s∗] for the collision times. It follows that the
number of collisions must be finite. �

3. Upper bound: assumptions and notation

The following notation and assumptions will remain in force for the rest of the paper.
We will consider n ≥ 3 hard balls in Rd, for d ≥ 2, colliding elastically, on the time

interval (−∞,∞). If there are only two balls, they can collide at most once.
A crucial difference between Section 2 and the remaining part of the paper is that

from now on we will assume that the balls have equal masses and their radii are 1.
The center and velocity of the k-th ball will be denoted xk(t) and vk(t), for k =

1, 2, . . . , n. We will say that the j-th and k-th balls collide at time t if |xj(t)−xk(t)| = 2
and their velocities change at this time.
The velocities are constant between collision times. The norm of velocity will be

called speed (as is done in physics). We will write x(t) = (x1(t), . . . , xn(t)) ∈ Rdn and
v(t) = (v1(t), . . . , vn(t)) ∈ R

dn. Note that v(t) is well defined only when t is not a
collision time, but both v(t−) and v(t+) are well defined for all times.
Recall that all balls have the same mass. This implies that the velocities change at

the moment of collision as follows. Suppose that the j-th and k-th balls collide at time
t. This implies that the velocities vj(t−) and vk(t−) (i.e., the velocities just before the
collision) satisfy

(vj(t−)− vk(t−)) · (xj(t)− xk(t)) < 0.(3.1)

Let xjk(t) = (xj(t) − xk(t))/|xj(t) − xk(t)|. Then the velocities just after the collision
are given by

vj(t+) = vj(t−) + (vk(t−) · xjk(t))xjk(t)− (vj(t−) · xjk(t))xjk(t),(3.2)
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vk(t+) = vk(t−) + (vj(t−) · xjk(t))xjk(t)− (vk(t−) · xjk(t))xjk(t).(3.3)

In other words, the balls exchange the components of their velocities that are parallel
to the line through their centers at the moment of impact. The other components of
velocities remain unchanged. It easily follows form (3.2), (3.3), and (3.1) that

x(t) · (v(t+)− v(t−)) = −(vj(t−)− vk(t−)) · (xj(t)− xk(t)) > 0,(3.4)

that is, x(t) · v(t+) > x(t) · v(t−) when there is a collision at time t.

We will make the following assumptions.
(A1) The balls have equal masses and all radii are equal to 1.
(A2) We will assume that there are no simultaneous collisions. See the beginning of

Section 2 for the discussion of this assumption.
(A3) We will assume that the momentum of the system is zero, i.e.,

∑n
j=1 v

j(t) = 0
for all t. We can make this assumption because the number of collisions is the same in
all inertial frames of reference. Since the total momentum is zero, the center of mass of
all balls is constant, so it can and will be assumed to be at the origin. This, together
with the fact that all masses are equal, implies that

∑n
j=1 x

j(t) = 0.

(A4) We will assume without loss of generality that the total “energy” is equal to 1,
i.e., |v(t+)|2 = 1 for all t. If the total initial energy is equal to zero then the balls are
not moving and there will be no collisions. If the initial energy is not zero then we can
multiply all velocity vectors by the same scalar constant so that the energy is equal to
1. If all velocities are changed by the same multiplicative constant then the balls will
follow the same trajectories at a different rate and hence there will be the same total
number of collisions.
(A5) The problem of the number of collisions is invariant under time shifts. In

Remark 4.3, we will choose a specific time in the evolution process to play the role of
time 0.

4. Functionals of motion

In this section we analyze x(t) and v(t). Some of our proofs are based on ideas
originally developed in [Vas79, Ill89, Ill90].

Definition 4.1. For u ∈ R, let

xu(t) =

{
x(t) for t < u,

x(u) + (t− u)v(u+) for t ≥ u,

and let vu(t+) be the right derivative of xu(t).

Let TC denote the set of collision times. We will use ∠ to denote the unsigned angle
between vectors, i.e.,

∠(w1, w2) = arccos

(
w1

|w1|
· w2

|w2|

)
∈ [0, π]

for any non-zero vectors w1, w2.
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Lemma 4.2. Consider any u ∈ R. The function α(t) := ∠(xu(t),vu(t+)) is strictly
decreasing. The function t → ∠(x(t),v(t+)) is also strictly decreasing.

Proof. Let s < t be times in R\TC . We will show that α(s) > α(t) by induction on the
number of collisions in (s, t). Assume there are no collisions in [s−ε, t+ε] for some ε > 0.
It follows that vu(r) = vu(s) for all r ∈ [s, t]. Consider the triangle with vertices 0, xu(s)
and xu(t). It is easy to see that ∠(xu(s)−0,xu(t)−xu(s)) > ∠(xu(t)−0,xu(t)−xu(s)).
This implies that

α(s) = ∠(xu(s),vu(s)) = ∠(xu(s)− 0, (t− s)vu(s)) = ∠(xu(s)− 0,xu(t)− xu(s))

> ∠(xu(t)− 0,xu(t)− xu(s)) = ∠(xu(t), (t− s)vu(t)) = ∠(xu(t),vu(t))

= α(t).

Assume that the claim is true when there are j collisions in (s, t). If there are j + 1
collisions, and t∗ is the first collision in (s, t), then, by the first part of the proof,
α(t∗−) ≤ α(s). Formula (3.4) implies that α(t∗+) < α(t∗−). It follows from this and
the induction assumption that α(t∗−) > α(t∗+) ≥ α(t). We conclude that α(s) > α(t).
Suppose that s < t are arbitrary, i.e., s, t ∈ R, and they may belong to TC . Then

the inequality α(s) > α(t) follows from the previous case and right continuity of α(·).
If u is greater than the time of the last collision then xu ≡ x, and the second claim

of the lemma follows from the first one. �

Remark 4.3. Let ℓ be the time of the last collision. For t > ℓ we have x(t) · v(t) =
x(ℓ)·v(ℓ+)+(t−ℓ), from which it easily follows that limt→∞ α(t) = 0. By time reversal,
we have limt→−∞ α(t) = π. This, and the previous lemma show that there is a unique
t0 ∈ R such that α(t) > π/2 for t < t0, and α(t) < π/2 for t > t0. Right continuity
yields α(t0) ≤ π/2. Since the total number of collisions of a family of balls is invariant
under time translation, we can and will assume from now on that t0 = 0.

Lemma 4.4. For all times 0 ≤ u < w and t ∈ R we have,

∠ (xw(t),vw(t+)) ≤ ∠ (xu(t),vu(t+)) ,(4.1)

∠ (x(t),v(t+)) ≤ ∠ (xu(t),vu(t+)) .(4.2)

Proof. We will proceed by induction on the number of collisions in the interval (u, w].
If no collisions occur in this interval then xw(t) = xu(t) for all t ∈ R, and (4.1) is
obviously true.
Assume that (4.1) is true when k collisions occur in (u, w]. If there are k+1 collisions

in (u, w], say, at times u < t1 < t2 < · · · < tk+1 ≤ w, then there are only k collisions in
(t1, w] so, by the induction assumption, for all t,

∠ (xw(t),vw(t+)) ≤ ∠ (xt1(t),vt1(t+)) .

To finish the proof of (4.1), it will suffice to show that

∠ (xt1(t),vt1(t+)) ≤ ∠ (xu(t),vu(t+))(4.3)

for all t. For t < t1 we have xt1(t) = xu(t), hence (4.3) is satisfied.
Suppose that t ≥ t1. Note that xt1(t1) = xu(t1) = x(t1). We have

∠ (xt1(t),vt1(t+)) = ∠ (x(t1) + (t− t1)v(t1+),v(t1+)) ,(4.4)
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∠ (xu(t),vu(t+)) = ∠ (x(t1) + (t− t1)v(t1−),v(t1−)) .(4.5)

Let

β(λ) = arccos

(
λ+ (t− t1)√

|x(t1)|2 + 2(t− t1)λ+ (t− t1)2

)
.

It follows from (4.4)-(4.5) that

∠ (xt1(t),vt1(t+)) = β(x(t1) · v(t1+)),(4.6)

∠ (xu(t),vu(t+)) = β(x(t1) · v(t1−)).(4.7)

Differentiation of β(λ) shows that it is a decreasing function of λ for λ ≥ 0 and t ≥ t1.
By Lemma 4.2, Remark 4.3 and since u ≥ 0, we have

∠(x(t1),v(t1+)) ≤ ∠(x(t1),v(t1−)) ≤ ∠(x(u),v(u+)) ≤ π/2.

This and (4.6)-(4.7) imply that, for t ≥ t1,

∠ (xt1(t),vt1(t+)) = β(x(t1) · v(t1+)) ≤ β(x(t1) · v(t1−)) = ∠ (xu(t),vu(t+)) .

This completes the proof of (4.3) and, consequently, proves (4.1).
If we take w greater than the time of the last collision then xw ≡ x, so (4.2) follows

from (4.1). �

Lemma 4.5. If 0 ≤ u < w then for all t ∈ R,
|xu(t)| ≤ |xw(t)|,(4.8)

|xu(t)| ≤ |x(t)|.(4.9)

Proof. If there are no collisions in (u, w] then xu(t) = xw(t) for all t ∈ R. Assume that
there is exactly one collision in (u, w], say, at time t1. For t ≤ t1, we have xu(t) = xw(t).
For t > t1, we have

xw(t) = xt1(t) = x(t1) + (t− t1)v(t1+),

xu(t) = x(t1) + (t− t1)v(t1−),

from which it follows that

|xw(t)|2 − |xu(t)|2 = 2(t− t1)x(t1) · (v(t1+)− v(t1−)).

Now (4.8) follows from (3.4).
Let u < t1 < t2 < · · · < tm+1 ≤ w be all collision times in (u, w]. Then, for all t ∈ R,

|xu(t)| ≤ |xt1(t)| ≤ |xt2(t)| ≤ · · · ≤ |xtm+1
(t)| ≤ |xw(t)|.

If we take w greater than the time of the last collision then xw ≡ x, and (4.9) follows
from (4.8). �

Lemma 4.6. If 0 ≤ u < w then for all s, t ≥ u,

∠ (xw(s),xw(t)) ≤ ∠ (xu(s),xu(t)) .(4.10)

The inequality also holds when we replace xw by x.
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Proof. Without loss of generality, assume that u ≤ s < t. First, we prove (4.10) when
there are no collisions in (s, t). We proceed by induction on the number of collisions in
(u, w]. If there are no collisions in (u, w], the inequality holds because xu = xw.
Assume that the result holds when there are m collisions in (u, w]. If there are m+1

collisions in (u, w], say, at times u < t1 < t2 < · · · < tm+1 ≤ w, then we have only m
collisions in (t1, w]. Therefore, for s, t ≥ t1,

∠(xw(s),xw(t)) ≤ ∠(xt1(s),xt1(t)).(4.11)

We have assumed that there are no collisions in (s, t). Hence, it will suffice to consider
the following two cases: (i) u ≤ s, t ≤ t1, and (ii) s, t ≥ t1.
If u ≤ s, t ≤ t1 then xw(s) = xu(s) and xw(t) = xu(t), from which (4.10) follows.
Next consider the case when s, t ≥ t1. By the law of sines for the triangle with

vertices 0,xt1(s) and xt1(t),

sin∠(xt1(s),xt1(t))

t− s
=

sin∠(xt1(t),vt1(t1+))

|xt1(s)|
=

sin∠(xt1(t),vt1(t+))

|xt1(s)|
.

By the law of sines for the triangle with vertices 0,xu(s) and xu(t),

sin∠(xu(s),xu(t))

t− s
=

sin∠(xu(t),vu(u+))

|xu(s)|
=

sin∠(xu(t),vu(t+))

|xu(s)|
.

Therefore,

sin∠(xt1(s),xt1(t))

sin∠(xu(s),xu(t))
=

sin∠(xt1(t),vt1(t+))

sin∠(xu(t),vu(t+))
· |xu(s)|
|xt1(s)|

.(4.12)

Our choice of t0 = 0 in Remark 4.3 shows that ∠(x(0),v(0+)) ≤ π/2, so, by Lemmas
4.2 and 4.4,

∠(xt1(t),vt1(t+)) ≤ ∠(x0(t),v0(t+)) ≤ ∠(x0(0),v0(0+)) = ∠(x(0),v(0+)) ≤ π/2.

We can prove in the same way that ∠(xu(t),vu(t+)) ≤ π/2. The sine function is
increasing on [0, π/2], so the estimates on the angles that we have just obtained and
Lemma 4.4 show that

sin∠(xt1(t),vt1(t+))

sin∠(xu(t),vu(t+))
≤ 1.

This and the bound |xu(s)|/|xt1(s)| ≤ 1, derived from Lemma 4.5, show that the right
hand side of (4.12) is bounded above by 1. Hence the left hand side is bounded by 1
as well, i.e.,

sin∠(xt1(s),xt1(t)) ≤ sin∠(xu(s),xu(t)).

When combined with (4.11), this yields

sin∠(xw(s),xw(t)) ≤ sin∠(xu(s),xu(t)),

and this completes the proof of (4.10) in the case when there are no collisions in (s, t).
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Next we prove the result for any number of collisions in (s, t). Let {t1, . . . , tm} be all
collision times in (s, t). We have, by the previous case,

∠(xw(s),xw(t)) ≤ ∠(xw(s),xw(t1)) +

m−1∑

i=1

∠(xw(ti),xw(ti+1)) + ∠(xw(tm),xw(t))

≤ ∠(xu(s),xu(t1)) +

m−1∑

i=1

∠(xu(ti),xu(ti+1)) + ∠(xu(tm),xu(t))

= ∠(xu(s),xu(t)),

where the last equality holds because the velocity of xu is constant in (s, t).
Finallly, if w is larger than the last collision time, then xw ≡ x, so the result is also

valid for x. �

Lemma 4.7. The function t 7→ |x(t)| is increasing on [0,∞), and decreasing on
(−∞, 0]. In particular, |x(0)| ≤ |x(t)| for all t ∈ R.
Proof. The function t 7→ |x(t)|2 is differentiable at all but finitely many times. It follows
that for t > s ≥ 0,

|x(t)|2 = |x(s)|2 +
∫ t

s

2x(u) · v(u+)du ≥ |x(s)|2,

because x(u) · v(u+) ≥ 0 for u ≥ 0, by Remark 4.3. This shows that t 7→ |x(t)| is
increasing in [0,∞). The second claim of the Lemma follows by time reversal, and the
third claim follows easily from the first two. �

5. Number of collisions

The following is our key technical estimate.

Theorem 5.1. The family of n balls can be partitioned into two non-empty subfamilies
such that no ball from the first family collides with a ball in the second family after time
100n3|x(0)|.
Proof. Let T = 18

√
n(n−1)|x(0)|. The speed of the moving point x0(t) in R

dn is equal
to 1 because we assumed that |v(0+)|2 = 1. This and an elementary application of the
law of sines, left to the reader, shows that for any t ≥ T ,

∠(x0(t),v(0+)) ≤ 2
|x(0)|

t
≤ 1

9
√
n(n− 1)

.(5.1)

This and (4.2) imply that,

∠(x(T ),v(T+)) ≤ ∠(x0(T ),v0(T+)) = ∠(x0(T ),v(0+)) ≤ 1

9
√
n(n− 1)

≤ π/2.

Hence, in view of Remark 4.3, we can apply Lemma 4.6 to the trajectory {x(t), t ≥ T}.
Thus, for any s, t ≥ T , ∠(x(s),x(t)) ≤ ∠(xT (s),xT (t)). This and a simple analysis of
the triangle with vertices 0,xT (s) and xT (t)) show that, for t > s ≥ T ,

∠(x(s),x(t)) ≤ ∠(xT (s),xT (t)) = ∠(xT (s)− 0,xT (t)− 0)
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≤ ∠(xT (s)− 0,xT (t)− xT (s)) = ∠(xT (s),vT (s+)).

We combine this with Lemma 4.4 and (5.1) to obtain for t > s ≥ T ,

∠(x(s),x(t)) ≤ ∠(xT (s),vT (s+)) ≤ ∠(x0(s),v0(s+))(5.2)

= ∠(x0(s),v0(0+)) ≤ 1

9
√
n(n− 1)

.

This, Lemma 4.4, and (5.1) imply that for any t > s ≥ T ,

∠(v(s+),v(t+)) ≤ ∠(v(s+),x(s)) + ∠(x(s),x(t)) + ∠(x(t),v(t+))

≤ ∠(x0(s),v(0+)) + ∠(x(s),x(t)) + ∠(x0(t),v(0+)) ≤ 1

3
√
n(n− 1)

.

Hence, for all s, t ≥ T and k = 1, . . . , n,

|vk(s+)− vk(t+)| ≤ |v(s+)− v(t+)| ≤ ∠(v(s+),v(t+)) ≤ 1

3
√
n(n− 1)

.(5.3)

Since |v(T+)|2 = 1, there exists k1 such that |vk1(T+)| ≥ 1/
√
n. The total momen-

tum of the system is zero, so

1√
n
≤ max

1≤k≤n
|vk(T+)| ≤ max

1≤i,j≤n
|vi(T+)− vj(T+)|.(5.4)

Let i∗ and j∗ realize the maximum on the right hand side of (5.4). We will argue that
we can partition {1, 2, . . . , n} into two non-empty families N1 and N2 such that

|vℓ(T+)− vk(T+)| ≥ 1√
n(n− 1)

(5.5)

for all ℓ ∈ N1 and k ∈ N2. This is possible because otherwise there would be a sequence
j1, j2, . . . , jm such that m ≤ n, j1 = i∗, jm = j∗ satisfying |vji−1(T+) − vji(T+)| <
1/((n− 1)

√
n) for all i, which, by the triangle inequality, would contradict (5.4).

Next we will show that two balls, one with index in N1 and the other one with index
in N2, will not collide after time T∗ := T + 3CT

√
n(n − 1), where C is to be chosen

later. Consider ℓ ∈ N1, k ∈ N2, and t ≥ T∗. Writing xi(t) = xi(T ) + vi(T+)(t− T ) +∫ t

T
(vi(s+)− vi(T+))ds, for i = k, ℓ, we obtain

|xk(t)− xℓ(t)| ≥
∣∣vk(T+)− vℓ(T+)

∣∣ (t− T )−
∣∣∣∣
∫ t

T

(vk(s+)− vk(T+))ds

∣∣∣∣

−
∣∣∣∣
∫ t

T

(vℓ(s+)− vℓ(T+))ds

∣∣∣∣− |xk(T )− xℓ(T )|.

Using estimates (5.5) and (5.3), we obtain

|xk(t)− xℓ(t)| ≥ t− T

3
√
n(n− 1)

− |xk(T )− xℓ(T )| ≥ CT − |xk(T )− xℓ(T )|.

Since |v(s+)| = 1 for all s,

|xk(T )− xℓ(T )| ≤
√
2|x(T )| ≤

√
2

(
|x(0)|+

∫ T

0

|v(u+)|du
)
=

√
2(|x(0)|+ T ).
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We have T = 18
√
n(n− 1)|x(0)| ≥ 18

√
2(2− 1)|x(0)| = 18

√
2|x(0)|, so

|xk(t)− xℓ(t)| ≥ (C −
√
2)T −

√
2|x(0)| ≥

(
18
√
2(C −

√
2)−

√
2
)
|x(0)|.

By choosing C = 1.61 we ensure that the right hand side above is greater than
(5/2)

√
2|x(0)|.

Since all balls have radii 1 and cannot overlap, we must have |x1(0)| + |x2(0)| ≥ 1.
Hence, |x(0)| ≥ (|x1(0)|2 + |x2(0)|2)1/2 ≥

√
2/2. It follows that for t ≥ T∗,

|xk(t)− xℓ(t)| > (5/2)
√
2|x(0)| ≥ (5/2)

√
2 ·

√
2/2 = 5/2,(5.6)

so balls k and ℓ do not collide after time T∗. It is easy to check that T∗ < 100n3|x(0)|,
assuming that C = 1.61. �

We will need the following quantitative version of Theorem 5.1.

Corollary 5.2. The family of n balls can be partitioned into two non-empty subfamilies
N1 and N2 such that if ℓ ∈ N1, k ∈ N2, and t ≥ 100n3|x(0)| then |xk(t)− xℓ(t)| > 5/2.

Proof. The claim has been proved in (5.6). �

Corollary 5.3. Let T = inf{t ≥ 0 : |x(t)| ≥ (1 + 100n3)|x(0)|}. The family of n balls
can be partitioned into two non-empty subfamilies such that no ball from the first family
collides with a ball in the second family after time T .

Proof. The speed |v(t)| of the trajectory x(t) in Rnd is equal to 1 because we assumed
that |v(0)|2 = 1 and, therefore, by the conservation of energy, |v(t)|2 = 1 for all t ≥ 0.
Since |x(T ) − x(0)| ≥ 100n3|x(0)|, we conclude that T ≥ 100n3|x(0)|. The corollary
follows from this and Theorem 5.1. �

Theorem 5.4. Suppose that at the time of collision of any two balls, the distance
between any other pair of balls is greater than δ ∈ (0, 1). Then the total number of
collisions is bounded by 73n(n!)3/2(log(5n))nδ−1, for all n ≥ 3.

Proof. Fix δ ∈ (0, 1), and let Kδ(n) be the maximum possible number of collisions
among n balls if the assumption of the theorem is satisfied. We will use induction to
estimate Kδ(n). Obviously, Kδ(2) = 1.
By Theorem 5.1, the family of n balls can be partitioned into two non-empty sub-

families such that no ball from the first family collides with a ball in the second family
after a finite time given by T = 100n3|x(0)|. The total number of collisions within each
subfamily is bounded by Kδ(n− 1). Hence, the total number of collisions for the whole
family of n balls is bounded by 2Kδ(n− 1) on the interval [T,∞).
To estimate the number of collisions in [0, T ), we will split the argument into two

parts, depending on the value of |x(0)|. Let R = 6n3/2.

Step 1. In this step of the proof, we will assume that |x(0)| ≤ R. Suppose that
balls Bj and Bk collide at a time t ∈ [0, T ). These balls will not collide again until the
trajectory of at least one of them is changed. Hence, there will be no collisions after t
until some other pair of balls (one of which can be Bj or Bk) collide. Since the distance
between any pair of balls, except (Bj , Bk), is bounded below by δ at time t and all
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speeds are bounded by 1, there will be no collisions in the time interval (t, t+ δ/2). We
let Jm = [(m− 1)δ/2, mδ/2) for m ≥ 1. The argument given above shows that there is
at most one collision in Jm, and thus the number of collisions in [0, T ) is at most

T

δ/2
+ 1 =

100n3|x(0)|
δ/2

+ 1 = 200n3|x(0)|δ−1 + 1 ≤ 200n3Rδ−1 + 1(5.7)

≤ 200n36n3/2δ−1 + 1 ≤ 1201n9/2δ−1 ≤ 1224n9/2δ−1.

The reader may be puzzled by the last inequality. Later, in (5.18), we will factor 1224
into the product of 72 and 34, to have a more elegant formula.

Step 2. Next suppose that |x(0)| > R. By Lemma 4.7, we have |x(t)| > R for all
t ≥ 0. Let D(t) = max1≤i,j≤n |xi(t)− xj(t)|. We have assumed in (A3) that the center
of mass is at the origin. Hence, |xk(t)| ≤ D(t) for all k and t. There must exist k such
that |xk(t)| ≥ D(t)/2. It follows that for all t,

D(t)/2 ≤ |x(t)| ≤
√
nD(t).(5.8)

Consider any s ∈ [0, T ). There exist k1 and k2 such that

|xk1(s)− xk2(s)| = D(s) ≥ |x(s)|n−1/2 ≥ |x0(s)|n−1/2,

where in the last inequality we have used (4.9).
We will argue that one can partition {1, 2, . . . , n} into two non-empty families N1(s)

and N2(s) such that

|xj(s)− xk(s)| ≥ |x0(s)|n−3/2(5.9)

for all j ∈ N1(s) and k ∈ N2(s). This is possible because otherwise there would be
a sequence j1, j2, . . . , jm such that m ≤ n, j1 = k1, jm = k2 and |xji−1(s) − xji(s)| <
|x0(s)|n−3/2 for all i = 2, . . . , m, and, by the triangle inequality, this would contradict
the fact that |xk1(s)− xk2(s)| ≥ |x0(s)|n−1/2.
For any s ≥ 0 we have

|x0(s)|2 = |x(0)|2 + 2sv(0+) · x(0) + s2 ≥ |x(0)|2,(5.10)

because we chose t0 = 0 in Remark 4.3 and, therefore, v(0+) · x(0) ≥ 0.
The maximum speed of any ball is 1 so (5.9) and (5.10) imply that for all j ∈ N1(s),

k ∈ N2(s) and t ∈ [s, s+ |x0(s)|n−3/2/4],

|xj(t)− xk(t)| ≥ |x0(s)|n−3/2 − 2|x0(s)|n−3/2/4 = |x0(s)|n−3/2/2(5.11)

≥ |x(0)|n−3/2/2 ≥ Rn−3/2/2 ≥ 6n3/2n−3/2/2 = 3 > 2.

This implies that there are no collisions of balls belonging to different subfamilies N1(s)
and N2(s) in the interval [s, s + |x0(s)|n−3/2/4]. The total number of collisions within
each subfamily is bounded by K(n − 1). Hence, the total number of collisions for the
whole family of n balls is bounded by 2K(n− 1) on the interval [s, s+ |x0(s)|n−3/2/4].
Let s0 = 0 and sj+1 = sj + |x0(sj)|n−3/2/4 for j ≥ 0. It follows from (5.10) that

|x0(s)| ≥
√
|x(0)|2 + s2 ≥ (|x(0)| + s)/

√
2. It is straightforward to show by induction
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that

sj ≥ |x(0)|
((

1 +
1

4
√
2n3/2

)j

− 1

)
.

Let j∗ = min{j : sj ≥ T}. The argument in the previous paragraph shows that in
each of the j∗ intervals [sj , sj+1) that cover [0, T ) there are at most 2Kδ(n−1) collisions.
We obtain that there are no more than 2j∗Kδ(n− 1) collisions in [0, T ).
We will show that

j∗ ≤ 18n3/2 log(5n).(5.12)

The definition of j∗ implies that

log(1 + 100n3) ≥ (j∗ − 1) log

(
1 +

1

4
√
2n3/2

)
≥ (j∗ − 1)

(
1 + 4

√
2n3/2

)−1

,

where we used the well known inequality log(1 + x−1) ≥ (1 + x)−1, for x > 0. This
implies that

j∗ ≤ 1 + (1 + 4
√
2n3/2) log(1 + 100n3).(5.13)

For n ≥ 3,

18n3/2 log(5n) ≥ 18 · 33/2 log(15) > 250,(5.14)

(1 + 4
√
2n3/2)/(4

√
2n3/2) = 1 + 1/(4

√
2n3/2) ≤ 1 + 1/(4

√
2 · 33/2) < 1.04,(5.15)

log(1 + 100n3) = 3 log(5n) + log(0.8 + 1/(125n3))(5.16)

≤ 3 log(5n) + log(4/5 + 1/(125 · 33)) < 3 log(5n).

We divide (5.13) by 18n3/2 log(5n) and use (5.14)-(5.16) to get

j∗
18n3/2 log(5n)

≤ 1

18n3/2 log(5n)
+

4
√
2

6
· 1 + 4

√
2n3/2

4
√
2n3/2

· log(1 + 100n3)

3 log(5n)

< 0.004 + 0.943 · 1.04 · 1 < 1.

This completes the proof of (5.12).
We summarize this step by stating that, when |x(0)| > R, an upper bound for the

number of collisions in [0, T ) is

36n3/2 log(5n)Kδ(n− 1).(5.17)

Step 3. Estimates (5.7) and (5.17), and the argument given at the beginning of this
proof, give us a bound for the number of collisions in [0,∞). We apply time reversal
to double such bound and obtain a bound for the number of collisions on (−∞,∞).
Therefore, we have that Kδ(2) = 1, and

Kδ(n) ≤ 4Kδ(n− 1) + 72n3/2max
(
34n3δ−1, log(5n)Kδ(n− 1)

)
,(5.18)

for any n ≥ 3.
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Let ϕδ(n) = 73n(n!)3/2(log(5n))nδ−1. We will prove by induction that Kδ(n) ≤ ϕδ(n)
for all n ≥ 2. For n = 2, this is direct since Kδ(2) = 1, and δ < 1. Assume that
Kδ(n− 1) ≤ ϕδ(n− 1) for some n ≥ 3. We have

34 ≤ log(15) · 23/2(log 10)2 ≤ log(5n)((n− 1)!)3/2(log(5(n− 1)))n−1.

Note that n3 ≤ 73n−1 because log(n)/(n− 1) ≤ 1 < log(73)/3. From these inequalities,
it follows that

34n3δ−1 ≤ log(5n)ϕδ(n− 1).

We use this inequality, together with (5.18), and the induction hypothesis to obtain

Kδ(n) ≤ 4ϕδ(n− 1) + 72n3/2 log(5n)ϕδ(n− 1) ≤ 73n3/2 log(5n)ϕδ(n− 1)(5.19)

= 73n(n!)3/2(log(5n))nδ−1 = ϕδ(n).

This completes the proof. �

Proof of Theorem 1.2. Recall the definition of Kδ(n) from the proof of Theorem 5.4.
The bound n! ≤ enn+1/2e−n ≤ nn+1/2 is related to Stirling’s approximation. We use
this bound and (5.19) to obtain

logKδ(n) ≤ n log 73 +
3

2
log n! + n log log(5n) + log δ−1(5.20)

≤
(
log 73

logn
+

3

2

n+ 1
2

n
+

log log(5n)

log n

)
n log n+ log δ−1

=

(
3

2
+

log 73

log n
+

3

4n
+

log log(5n)

log n

)
n log n+ log δ−1.

We will next find a bound for the last three terms in the parenthesis in the last formula.
We first use the fact that for x ≥ 1, log(x) ≤ √

x, to obtain

√
log n

(
log 73

log n
+

3

4n
+

log log(5n)

log n

)
≤ log 73√

logn
+

3

4n3/4
+

√
log(5n)

log n

=
log 73√
log n

+
3

4n3/4
+

√
1 +

log 5

logn
.

By monotonicity, it follows that for n ≥ 3,

√
logn

(
log 73

log n
+

3

4n
+

log log(5n)

log n

)
≤ log 73√

log 3
+

3

4 · 33/4 +

√
1 +

log(5)

log(3)
< 6.

We combine this estimate with (5.20) to obtain

logKδ(n) ≤
(
3

2
+

6√
log n

)
n logn + log δ−1.

It follows that for n ≥ exp(36ε−2),

Kδ(n) ≤ δ−1n3n/2+εn.

By setting δ = n−n, we obtain the theorem. �
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6. Connected configurations

We recall some notation and definitions from Section 1. We assume that all balls
have radii equal to 1. Consider ρ > 0. Let Γρ(t) be the graph whose vertices are balls
B1, B2, . . . , Bn. Two vertices Bj and Bk are connected by an edge in Γρ(t) if and only
if |xj(t)− xk(t)| ≤ 2 + ρ.
We will say that a subfamily {Bi1 , Bi2, . . . , Bik} of balls is ρ-connected in [s, u] if for

every t ∈ [s, u], all balls {Bi1, Bi2 , . . . , Bik} belong to a connected component of Γρ(t)
(the connected component may depend on t ∈ [s, u]).

Proof of Theorem 1.3. Step 1. We will eventually use the assumption that ρ ≤ n−n,
but we start only assuming that ρ is a fixed number in (0, 1/4). Consider some s ≥ 0,
and 1 ≤ i, j ≤ n, i 6= j. Let τ ij0 (s) = s, and for k ≥ 0,

τ ij2k+1(s) = inf{u ≥ τ ij2k(s) : |xi(u)− xj(u)| ≤ 2 + ρ/2},
τ ij2k+2(s) = inf{u ≥ τ ij2k+1(s) : |xi(u)− xj(u)| > 2 + ρ},

with the convention that inf ∅ = ∞. For 0 ≤ s < t < ∞, let σij(s, t) be the largest
k such that τ ij2k(s) ≤ t, i.e., σij(s, t) is the number of upcrossings of the interval [2 +
ρ/2, 2 + ρ] by the function u → |xi(u) − xj(u)| on the interval [s, t]. Note that for
fixed s, this defines a non-decreasing function in t, which implies that σij(s,∞) :=
supt∈(s,∞) σ

ij(s, t) = limt→∞ σij(s, t) is well defined. Since there are only finitely many
upcrossings, the supremum in this definition can be replaced with the maximum.
For 0 ≤ s < t ≤ ∞, let S(s, t) =

∑
i<j σ

ij(s, t). Let Mρ(n) be the supremum of

S(0,∞) over all initial conditions for the family of n balls. We will use induction to
estimate Mρ(n). Obviously, Mρ(2) = 1.
By Corollary 5.2, the family of n balls can be partitioned into two non-empty sub-

families N1 and N2 such that if ℓ ∈ N1, k ∈ N2, and t ≥ T := 100n3|x(0)| then
|xk(t) − xℓ(t)| > 5/2. We have assumed that ρ < 1/4 so if ℓ ∈ N1 and k ∈ N2 then
σℓk(T,∞) = 0. Hence,

S(T,∞) =
∑

i<j; i,j∈N1

σij(T,∞) +
∑

i<j; i,j∈N2

σij(T,∞),(6.1)

and, therefore,

Mρ(n) ≤ supS(0, T ) + 2Mρ(n− 1) + n2,(6.2)

where the supremum is taken over all initial conditions. We added n2 to the right hand
side of (6.2) to account for the possibility that τ ij2k+1(0) < T < τ ij2k+2(0) for some i, j, k
(the number of pairs (i, j) is bounded by n2).

Step 2. To estimate S(0, T ), we will split the argument into two parts, depending on
the value of |x(0)|. Let R = 6n3/2.
First assume that |x(0)| ≤ R. The distance between any two balls cannot change

at a rate faster than 1 because we have assumed that |v(t)| = 1 for all t. Hence,
τ ij2(k+1)(s)−τ ij2k(s) ≥ ρ/2 for all k ≥ 1 such that τ ij2k(s) is finite. Also, τ

ij
2 (s)−τ ij0 (s) ≥ ρ/4

because it is possible that τ ij1 (s) = s.
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It follows that τ ij2k(0) ≥ (2k − 1)ρ/4. Thus,

σij(0, T ) ≤ 2T

ρ
+

1

2
=

200n3|x(0)|
ρ

+
1

2

≤ 200n3R

ρ
+

1

ρ
=

200n36n3/2

ρ
+

1

ρ
≤ 1201n9/2/ρ.

It follows that

S(0, T ) ≤
∑

i<j; 1≤i,j≤n

1201n9/2/ρ =

(
n

2

)
1201n9/2/ρ ≤ 601n13/2/ρ.(6.3)

Next suppose that |x(0)| > R. We will use the notation and estimates proved in Step
2 of the proof of Theorem 5.4.
Let s0 = 0 and sj+1 = sj + |x0(sj)|n−3/2/4 for j ≥ 0. It follows from (5.11) that for

each j ≥ 0, the family of n balls can be partitioned into two non-empty subfamilies N j
1

and N j
2 such that if ℓ ∈ N j

1 , k ∈ N j
2 , and t ∈ [sj , sj + |x0(sj)|n−3/2/4] then |xk(t) −

xℓ(t)| ≥ 3. A reasoning based on a formula similar to (6.1) yields S(sj, sj+1) ≤ 2Mρ(n−
1) for all j. Let j∗ = min{j : sj ≥ T}. In the following formula, we add n2 to the
estimate for the same reason as in (6.2). We use (5.12) to get,

S(0, T ) ≤
j∗∑

j=0

(
S(sj, sj+1) + n2

)
≤ j∗(2Mρ(n− 1) + n2)(6.4)

≤ 18n3/2 log(5n)(2Mρ(n− 1) + n2).

Step 3. We combine (6.2), (6.3) and (6.4) to obtain

Mρ(n) ≤ 2Mρ(n− 1) + n2 +max(601n13/2/ρ, 18n3/2 log(5n)(2Mρ(n− 1) + n2))(6.5)

for all n ≥ 3.
We will prove by induction that if we set ϕρ(n) = 38n(n!)3/2(log(5n))nρ−1 for n ≥ 2,

then

Mρ(n) ≤ ϕρ(n)−
(n+ 1)2

2
,(6.6)

for all n ≥ 2. For n = 2, the bound holds because Mρ(2) = 1 and ρ < 1. Assume that
Mρ(n−1) ≤ ϕρ(n−1)−n2/2 for some n ≥ 3. From (6.5) and the induction hypothesis,
we obtain

Mρ(n) ≤ 2ϕρ(n− 1) + max
(
601n13/2/ρ, 36n3/2 log(5n)ϕρ(n− 1)

)
.(6.7)

By the Stirling-type bound n! ≥
√
2πn(n/e)n, we have

36n3/2 log(5n)ϕρ(n− 1)ρ ≥ 36n(n!)3/2(log(5(n− 1)))n(6.8)

≥ 36n(
√
2πn(n/e)n)3/2(log(5(n− 1)))n

= (36e−3/2)n(2π)3/4n3n/2+3/4(log(5(n− 1)))n.
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We claim that the last expression is larger than 601n13/2 for all n ≥ 3. This can be
verified directly for n = 3. For n ≥ 4, note that 3n/2 + 3/4 ≥ 13/2, so the right hand
side of (6.8) is larger than

(36e−3/2)n(2π)3/4n13/2(log(5(n− 1)))n ≥ (36e−3/2)4(2π)3/4n13/2(log(15))4 ≥ 601n13/2.

Thus, (6.7) becomes

Mρ(n) ≤
(
2 + 36n3/2 log(5n)

)
ϕρ(n− 1).(6.9)

Before completing the proof, we will establish a simple inequality. For n ≥ 2, we
have 2n ≥ 22 ≥ (1 + 2/n)2, from which the inequality 2n3 ≥ (n + 2)2 follows. By the
change of variable, (n− 1)3 ≥ (n+ 1)2/2 for n ≥ 3. Since ρ < 1, it follows that

ϕρ(n) ≥ 38(n!)3/2 ≥ 38(n− 1)3 ≥ 19(n+ 1)2.(6.10)

Going back to (6.9), we compute

Mρ(n) ≤
(
2 + 36n3/2 log(5n)

)
ϕρ(n− 1) =

2 + 36n3/2 log(5n)

38n3/2 log(5n)
ϕρ(n)

≤ 37

38
ϕρ(n) = ϕρ(n)−

ϕρ(n)

38
≤ ϕρ(n)−

(n+ 1)2

2
,

where in the last inequality follows from (6.10). This completes the proof of (6.6).
It follows from (6.6) that

4n4Mρ(n) ≤ 4n4(ϕρ(n)− (n+ 1)2/2) ≤ 4n4ϕρ(n)(6.11)

= 4n438n(n!)3/2(log(5n))nρ−1 ≤ 4n438n(nn)3/2(log(5n))nρ−1

≤ ρ−1n(3/2+o(1))n.

Step 4. Let t1 ≤ t2 ≤ · · · ≤ tM−1 be all finite times of the form τ ij2k(0), for any i, j
and k > 1. Let t0 = 0 and tM = ∞. Note that we have Mρ(n) ≥ M − 1 ≥ M/2
for n ≥ 3. We have assumed in the theorem that the total number of collisions is not
smaller than N ≥ n(3/2+ε)nρ ≥ nn/2. By time reversal, we do not loose any generality
by assuming that there are at least N/2 collisions in [0,∞). It follows that there exists
j′ ∈ {0, . . . ,M − 1} such that the interval [tj′ , tj′+1) contains at least N/(2M) collision
times. Let ui, i = 1, . . . , i′ be times such that tj′ ≤ u1 < u2 < . . . ui′ < tj′+1 and ui’s are
the only times in [tj′, tj′+1) with the property that at time ui there is a collision of balls
which did not collide in [tj′, ui). There are

(
n
2

)
pairs of balls so i′ ≤ n2. Therefore, one

of the intervals [ui, ui+1) contains at least N/(2Mn2) collision times. Fix an interval
[ui, ui+1) with this property. Let J be the family of all pairs (k1, k2) such that balls
Bk1 and Bk2 collide in [tj′ , ui]. For 1 ≤ ℓ, j ≤ n, we say that ℓ ∼ j if there exist
k1 = ℓ, k2, . . . , km−1, km = j such that (kr, kr+1) ∈ J for all r. This is an equivalence
relation so it partitions J into equivalence classes J1, J2, . . . , Jm′. Note that m′ ≤ n2 so
there exists m∗ such that there were at least N/(2Mn4) collision times between balls
Bk1 and Bk2 with (k1, k2) ∈ Jm∗

in [ui, ui+1). For every (k1, k2) ∈ Jm∗
, there was a time

t ∈ [tj′, ui+1] such that |xk1(t)− xk2(t)| = 2. Since there are no times of the form τ ij2k(0)
in (tj′, tj′+1), there are no such times in (ui, ui+1) ⊂ (tj′, tj′+1). Hence |xk1(t)−xk2(t)| ≤
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2 + ρ for all t ∈ [ui, ui+1) and (k1, k2) ∈ Jm∗
. Let B := {Bi1 , Bi2, . . . , Bik} be the

family of all balls such that (iℓ, ir) ∈ Jm∗
for all ℓ and r. We have proved that B is

ρ-connected on [ui, ui+1) and there are at least N/(2Mn4) collisions between these balls
in this interval.
It follows from (6.11), and the assumptions of the theorem that

N/(2Mn4) ≥ N/(4Mρ(n)n
4) ≥ Nρn−(3/2+o(1))n .

We have shown that B is ρ-connected on [ui, ui+1) and there are at least Nρn−(3/2+o(1))n

collisions between these balls in this interval. �

Proof of Corollary 1.4. We apply Theorem 1.3 with N = n(5/2+ε)n and ρ = n−n. In this
case, we have log(Nρ) = (3/2 + ε)n logn, and thus, we obtain a family B of balls that
is ρ-connected on some interval [t1, t2], and the number of collisions among balls in B

on this interval is more than

Nρn−(3/2+o(1))n = n(5/2+ε−n−3/2+o(1))n = n(ε+o(1))n,

which is larger that nnε/2 for large n. �

Proof of Corollary 1.5. We set N = nnα

and ρ = n− 1

3
nα

. Since α > 1, we have ρ ≤ n−n,
and also log(Nρ) = 2

3
nα log n ≥ 2n logn for large enough n. An application of Theorem

1.3 yields a family B of balls that is n
1

3
nα

-connected on some interval [t1, t2], and the
number of collisions among balls in B on this interval is more than

Nρn−(3/2+o(1))n = n2nα/3−(3/2+o(1))n.

The right hand side is larger than n
1

3
nα

for large enough n. �
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