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Abstract

We describe a construction of Stein kernels using moment maps, which

are solutions to a variant of the Monge-Ampère equation. As a conse-

quence, we show how regularity bounds in certain weighted Sobolev spaces

on these maps control the rate of convergence in the classical central limit

theorem, and derive new rates in Kantorovitch-Wasserstein distance in

the log-concave situation, with explicit polynomial dependence on the di-

mension.

1 Introduction

Stein’s method is a set of techniques introduced by Stein [38, 39] to estimate
distances between probability measures. We refer to the survey [35] for an
overview. We shall be interested in one particular way of implementing Stein’s
method in the Gaussian setting, based on the notion of Stein kernels. Let µ be
a probability measure on Rd. A matrix-valued function τµ : Rd −→ Md(R) is
said to be a Stein kernel for µ (with respect to the standard Gaussian measure
γ on Rd) if for any smooth test function f taking values in Rd, we have

∫

x · fdν =

∫

〈τµ,∇f〉HSdν. (1)

For applications, it is generally enough to consider the restricted class of test
functions f satisfying

∫

(|f |2 + ‖∇f‖2HS)dµ < ∞, in which case both integrals
in (1) are well-defined as soon as τµ ∈ L2(µ), provided µ has finite second
moments.

The motivation behind the definition is that, since the Gaussian measure is
the only probability distribution satisfying the integration by parts formula

∫

x · fdγ =

∫

div(f)dγ, (2)

a Stein kernel τµ coincides with the identity matrix, denoted by Id, if and only if
the measure µ is equal to γ. Hence, the Stein kernel can be used to control how
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far µ is from being a standard Gaussian measure in terms of how much it violates
the integration by parts formula (2). It appears implicitly in many works on
Stein’s method, and has recently been the topic of more direct investigations
[1, 32, 33, 26, 25, 11]. The one-dimensional case, where Stein kernels can be
explicitly constructed from the density, has been extensively studied [29]. It has
applications to central limit theorems [31], concentration inequalities [34, 26, 37]
and random matrix theory [10].

A related quantity is the Stein discrepancy

S(µ)2 := inf
τ

∫

|τ − Id |2dµ

where the infimum is taken over all possible Stein kernels for µ, since they may
not be unique. This quantity has two main interesting properties: it controls
the L2 Kantorovitch-Wasserstein distance to the Gaussian [26], and is monotone
along the central limit theorem [11].

The aim of this work is to describe how we can construct Stein kernels using
a correspondence between centered measures and convex functions, known as
the moment measure problem, or moment map problem, which we shall describe
in Section 2.1. The main motivation was to give a construction of Stein kernels
using optimal transport maps, of which these moment maps can be viewed as
a variant. The Stein kernels we shall build have several nice properties that do
not seem to be necessarily satisfied by previous constructions. Most notably
they shall always takes values that are symmetric, nonnegative matrices. As an
application, we shall derive in Section 3 new bounds on the rate of convergence
in the multi-dimensional central limit theorem when the random variables are
log-concave, with explicit dependence on the dimension. Their main interest is
that the dependence on the dimension will improve on a more general result
of Bonis [7] in the particular case of log-concave measures. In particular, we
shall derive the sharp dependence on the dimension in the uniformly log-concave
setting. In section 4, we shall discuss a multi-dimensional generalization of a
result of Saumard [37] on weighted Poincaré inequalities involving Stein kernels,
and in Section 5 we shall briefly point out a construction of Stein kernels with
respect to non-Gaussian reference measures.

2 Stein kernels and moment maps

2.1 Moment maps

In [12] (revisited in [36], and following earlier works [41, 14, 4, 28]), the following
theorem was established:

Theorem 2.1 (Cordero-Erausquin and Klartag 2015). Let µ be a centered mea-
sure, with finite first moment and that is not supported on a hyperplane. Then
there exists a convex function ϕ such that µ is the pushforward of the probability
measure with density e−ϕ by the map ∇ϕ. This function ϕ is called the moment
map of µ.
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This result can be seen as a variant of the optimal transport problem, where
instead of specifying two measures, we fix a target measure, and look for both
an original measure and a transport map while imposing the constraint that the
map should be the gradient of the potential of the measure. Indeed, here ∇ϕ is
also the Brenier map from optimal transport theory [40] sending e−ϕ onto µ.

The convex function given by this theorem may well not be smooth, most
notably when µ is a combination of Dirac masses. For example, if µ is the
uniform measure on {−1,+1}, viewed as a subset of R, the convex function is
ϕ(x) = |x| on R, which is not smooth at the origin. This will cause some issues
later on. We can however assume it satisfies some weak continuity property
on the boundary of its support (the notion of essential continuity, which is
described in [12]). A smooth version of this theorem, under extra assumptions,
was previously obtained by Berman and Berndtson [4], with earlier results due
to Wang and Zhu [41] and Donaldson [14]:

Theorem 2.2 (Berman and Berndtson 2013). Assume that µ is supported on
a compact, open convex set, and that it has a smooth density ρ on its support.
Assume moreover that C ≥ ρ ≥ C−1 on the whole support, for some positive
constant C. Then the convex function ϕ of Theorem 2.1 is smooth and supported
on the whole space Rd.

In this result (which is based on Caffarelli’s regularity theory for Monge-
Ampère PDEs), the convexity of the support plays an essential role to guarantee
smoothness of the map.

We can reformulate those statements as pertaining to solutions of the PDE

e−ϕ = ρ(∇ϕ) det(∇2ϕ). (3)

This PDE is a variant of the Monge-Ampère equation, sometimes called the
toric Kähler-Einstein equation. It has been studied in complex geometry, where
it is related to the construction of differential structures with specific properties
on toric varieties (i.e. quotients of the complex space (C∗)n). More recently, it
has been studied in [19, 20, 23, 24], where it was used to establish functional
inequalities for log-concave measures.

A relevant remark to the connection with Stein’s method that we shall de-
scribe in the next section is that the standard Gaussian measure is the only fixed
point of the map µ → e−ϕ, where ϕ is the moment map of µ. So in some sense
the moment map already contains some information on how far the measure is
from being Gaussian.

In general, unless the dimension is 1, solutions to (3) are not explicit. One
particular case where it can be determined is for the uniform measure on the unit

cube [−1, 1]d, where the moment map is of the form ϕ(x) =
d
∑

i=1

2 log cosh(xi/2)+

C. This can be generalized to uniform measures on centered parallelipipeds by
composing this function with the appropriate linear map.
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2.2 The connection with Stein kernels

For now, assume that µ has a density with respect to the Lebesgue measure
which is strictly positive on its support, and is such that the convex function
ϕ given by Theorem 2.1 is C2. There exists an optimal transport map sending
µ onto e−ϕ, which is necessarily ∇ϕ∗, where ϕ∗ is the Legendre transform of
ϕ. ϕ∗ is then also C2: since ∇ϕ∗ is the inverse of ∇ϕ (this is a property of
the Legendre transform) and Hessϕ is strictly positive on the whole space, ∇ϕ∗

inherits C1 regularity from ∇ϕ.

Theorem 2.3. If µ has a density ρ with respect to the Lebesgue measure, and
the solution ϕ to the PDE (3) is C2 and supported on the whole space Rd, then
Hessϕ(∇ϕ∗) is a Stein kernel for µ. Moreover, the Stein discrepancy satisfies

S(µ)2 ≤
∫

|Hessϕ− Id |2HSe
−ϕdx.

In particular, if µ is supported on a compact, convex set and has density
bounded from above and below by positive constants, this result applies.

The regularity assumptions can be weakened, indeed if
∫

|Hessϕ− Id |2HSe
−ϕdx

is finite and µ has a continuous density, then the result will still hold. For gen-
eral measures with density and full support, the moment map is only in W 2,1

loc

in the interior of its support [13], which is not enough to make the proof work.
But this is not surprising, since for heavy-tailed random variables the CLT may
fail, and this would rule out existence of a Stein kernel belonging to L2(µ).
For background on regularity theory for Monge-Ampère PDEs, we refer to the
lecture notes [16].

Remark 2.1. An interesting byproduct of this result is that the Stein kernel
obtained in this way takes values that are symmetric and positive matrices. In
particular, this explains why the explicit formula for Stein kernels in dimension
one defines a nonnegative function. This remark will play an important role
later on, notably in Section 4.

Remark 2.2. The Stein kernel constructed this way seems to be in general
different from the one constructed in [11]. Since when the density is supported
on a compact, convex set and has density bounded from above and below by
positive constants a Poincaré inequality holds, existence of a Stein kernel in
that situation was already proven in [11]. It is the particular structure of the
kernel we obtain here that makes it interesting, as we will see when obtaining
new rates of convergence in the CLT.

Proof. Since ϕ is smooth, we have the Stein equation
∫

∇ϕ · fe−ϕdx =

∫

Tr(∇f)e−ϕdx.

There is no boundary term remaining when integrating by parts because ϕ grows
at least linearly at infinity, since it is convex and

∫

e−ϕdx < ∞ (see for example
Lemma 2.1 in [18]).
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Fix g a smooth function, and take f(x) = g(∇ϕ(x)) in the above equation.
We get

∫

∇ϕ(x) · g(∇ϕ(x))e−ϕdx =

∫

〈Hessϕ,∇g(∇ϕ)〉e−ϕdx.

Applying the change of variable y = ∇ϕ∗(x), which sends µ onto e−ϕ, we obtain
∫

x · g(x)dµ =

∫

〈Hessϕ(∇ϕ∗),∇g〉dµ

which ensures that Hessϕ(∇ϕ∗) = (Hessϕ∗)−1 is indeed a Stein kernel for µ.
The bound on the Stein discrepancy is an immediate consequence of the

change of variable: since Hessϕ(∇ϕ∗) is a Stein kernel, by definition of the
Stein discrepancy we have

S(µ)2 ≤
∫

|Hessϕ(∇ϕ∗)− Id |2HSdµ =

∫

|Hessϕ− Id |2HSe
−ϕdx.

The well-known Caffarelli contraction theorem [9] states that the Brenier
map sending the standard Gaussian map onto a uniformly log-concave measure
is Lipschitz. Klartag [19] proved an analogous estimate for moment maps, which
leads to the following bound on Stein kernels in that setting:

Corollary 2.4. Assume that µ is uniformly convex, that is it is of the form
e−V dx with HessV ≥ ǫ Id for some ǫ > 0. Then there exists a Stein kernel with
values that are positive symmetric matrices, and which is uniformly bounded,
that is ||τ ||op ≤ ǫ−1.

In dimension one, this result was pointed out in [37]. Such pointwise esti-
mates can be used to derive properties of the density and concentration inequal-
ities [34] and isoperimetric inequalities [37].

Proof. The Stein kernel described in this statement is the one built in Theorem
2.3, all that we need to do is to prove the uniform bound on its operator norm.
In [19], it was shown that under the uniform convexity assumption, the moment
map indeed satisfies the uniform bound ||Hessϕ||op ≤ ǫ−1, and the conclusion
follows.

It would also be possible to build a Stein kernel using the construction of
[10, 32] and the optimal transport map sending the standard Gaussian measure
onto µ. Existence could be proved in the same setting, but there would be
two main downsides: we do not have an analogue to Proposition 3.2 below for
those maps, so we would only get a useful quantitative estimate in the uniformly
convex setting, and due to the particular form of the construction of [10], even
in the latter setting the quantitative estimates would get worse. But we would
still get existence of a Stein kernel that is bounded for uniformly log-concave
measures.
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3 Application to rates of convergence in the cen-

tral limit theorem

We now show how the construction of Stein kernels discussed in the previous
section leads to new estimates on the rate of convergence in the central limit
theorem. The family of distances we shall consider to estimate the distance
in the CLT are the Kantorovitch-Wasserstein distances from optimal transport
theory, defined as

Wp(µ, ν) := inf
π

∫

||x− y||p2π(dx, dy)

where the infimum runs over all couplings of the measures µ and ν. We refer to
the textbook [40] for background on optimal transport.

The following statement is a variant of a result of [26] on how Lp bounds on
a Stein kernel control Wasserstein distances to the standard Gaussian measure,
which we shall prove in Section 3.2:

Proposition 3.1. Let τ be a Stein kernel for the probability measure µ on Rd.
Then for any p ≥ 2 we have

Wp(µ, γ) ≤ Cp

(∫

||τ − Id ||pHSdµ

)1/p

with Cp =
(∫

|x|pdγ1
)1/p

The original result of [26] bounds the Wasserstein distance of order p by
∫
∑

i,j

|τij − δij |pdµ, but with an extra prefactor that depends on the dimension.

We shall use the above variant instead because it leads to a better dependence
on the dimension for the quantitative CLT we shall later obtain. The prefactor
Cp behaves like O(p).

These results mean that if we get estimates on Hessϕ, averaged out against
e−ϕ, we can deduce estimates on transport distances. It turns out that when µ
is log-concave and compactly supported, such an estimate was already obtained
by Klartag [19]:

Proposition 3.2. Let µ be a log-concave probability measure, supported on an
open bounded convex set, and with a density bounded from above and below.
Then the essentially-continuous convex function ϕ for which µ is the moment
measure is C2 and satisfies for any p ≥ 1 and any θ ∈ Sd−1

∫

|〈Hessϕ(∇ϕ∗)θ, θ〉|pdµ ≤ 8pp2p
(∫

(x · θ)2dµ
)p

.

We shall give a proof of Klartag’s estimate in Section 3.1. It will be the same
proof as in [19], reformulated in a different language, which may be of interest
to some readers.
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Remark 3.1. The results of [19] assume C∞ smoothness, relying on a result of
[4] to deduce C∞ smoothness of ϕ. Since we actually only need C2 smoothness
of ϕ, it turns out we only need continuity of the density.

Combining our construction of Stein kernels, Klartag’s estimate and basic
arguments from Stein’s method, we get the following application to rates of
convergence in the CLT:

Theorem 3.3. Let µ be an isotropic log-concave probability measure with strictly

positive and continuous density on its support. Let µn be the law of n−1/2
n
∑

i=1

Xi, where the Xi are i.i.d. random variables with law µ. Then for any p ≥ 2
we have

Wp(µn, γ) ≤ C̃(p)
d

n1/2

with C̃(p) is a constant that depends only on p (and which grows like p4). In
particular, this estimate does not depend on µ.

In the case p = 2, the main result of [11] combined with the best currently-
known estimate on the Poincaré constant of log-concave measures [27] leads to a
rate of convergence of the form Cd3/4n−1/2, which is better than the one we ob-
tain here. The Kannan-Lovasz-Simonovits conjecture predicts that the Poincaré
constant of isotropic log-concave measures is bounded by some universal con-
stant, independently of the dimension, so we expect a rate of order

√

d/n. In
a far more general setting, Bonis [7] proved the sharp rate of convergence for
measures with moments of order p+ 2, and with a prefactor behaving like d5/4

for general isotropic log-concave measures. In dimension one, Bobkov [5] also
obtained the sharp rate for measures with finite moment.

In the situation where µ is uniformly log-concave, the uniform estimate on
the operator norm of our Stein kernel leads to an improved dependence on the
dimension:

Theorem 3.4. Let µ = e−V be an isotropic probability measure with strictly
positive and continuous density on its support, and assume that HessV ≥ ǫ Id
for some ǫ > 0. Then for any p ≥ 2 we have

Wp(µn, γ) ≤ C(p)

√
d

ǫn1/2
.

In this result, the dependence on the dimension is actually sharp, since it
cannot be improved for product measures. It extends a result of [11] for p = 2
to all p ≥ 2. Once again, the constant C(p) we obtain grows like p4.

Proof of Theorem 3.3. We first work in the situation where µ has a compact
support and a density bounded away from zero. Let τ = (∇2ϕ∗)−1, which we

know is a Stein kernel for µ. Then as is standard, τn(x) := E

[

1
n

n
∑

k=1

τ(Xi) | 1√
n

n
∑

k=1

Xi = x

]
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is a Stein kernel for µn. See for example the proof of Theorem 3.2 in [11] for a
proof of this statement. Applying Jensen’s inequality, we have

∫

|τn − Id |pHSdµn ≤
∫
∣

∣

∣

∣

1

n

∑

τ(xi)− Id

∣

∣

∣

∣

p

HS

dµ⊗n(x1, .., xn),

and Rosenthal’s inequality for sums of independent random variables [17] yields
∫

|τn − Id |pHSdµn ≤ Kp
pn

−p/2

∫

|τ − Id |pHSdµ

with Kp = O(p) the best constant in the Rosenthal inequality. This argument
was already used in the discussion below Theorem 2.8 in [26]. We then have,
given an orthonormal basis (θ1, .., θd) of R

d,
∫

(

∑

|τij − δij |2
)p/2

dµ ≤ 2p
(

dp/2 +

∫

(

∑

|τij |2
)p/2

dµ

)

≤ 2p

(

dp/2 +

∫

(

∑

i

〈τθi, θi〉
)p

dµ

)

≤ 2p
(

dp/2 + d(p−1)
∑

∫

〈τθi, θi〉pdµ
)

≤ 2pdp(1 + 8pp2p).

Hence
∫

|(τn)ij − δij |pHSdµn ≤ Kpn
−p/22pdp(1 + 8pp2p), (4)

and therefore

Wp(µn, γ) ≤ 2Kp(1 + 8pp2p)1/pCp
d

n1/2
.

For the general case, when the support of µ is not necessarily compact, we
can take a sequence of compact sets Fℓ that converge to the support of µ, and
apply our results to the restriction of µ to Fℓ (renormalized to remain a centered,
isotropic probability measure, so that Fℓ has to be modified to take this into
account, but this modification will remain convex and compact). The estimate
on the Wasserstein distance does not depend on Fℓ, so that we can let ℓ go to
infinity and the result remains valid.

The proof of Theorem 3.4 follows the exact same argument except that we
use the improved bound of Corollary 2.4, so we omit it.

3.1 Proof of Proposition 3.2

We shall now give a proof of Proposition 3.2, omitting many computations taken
from [22, 20]. While it is not written in the same way as in [19], it is the same
proof, and we stress it is not due to us. We describe it in this form so that it is
more easily readable for people with a knowledge of Bakry-Emery calculus
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Proof of Proposition 3.2 . We introduce the Hessian metric on Rd given by the
Riemannian metric tensor g = ∇2ϕ. A result of Kolesnikov [22] asserts that
when µ is log-concave and satisfies the regularity conditions of Theorem 2.2,
then the metric-measure space M = (Rd, g, e−ϕ) has Ricci curvature bounded
from below by 1/2. Moreover, if we consider the Laplacian on M , which is given
by the formula

Lϕf = Tr(∇2f(∇ϕ)−1) +∇ log ρ(∇ϕ) · ∇f

then one can check that

Lϕ∂eϕ = −∂eϕ; Γ(∂eϕ) = ∂2
eeϕ;

where Γ is the squared norm of the gradient with respect to the metric g. These
computations can be found in [22, 20]. We can then use tools from Bakry-Émery
theory to obtain estimates on eigenfunctions of the Laplacian for spaces with
positive curvature to deduce the desired bound. Indeed, if we denote by Pt the
semigroup acting on functions induced by Lϕ, we have for any locally-lipschitz
function f

Γ(Ptf) ≤
1

2(et − 1)
Pt(f

2),

see Theorem 4.7.2 in [2]. Taking f = ∂eϕ, since it is an eigenfunction of Lϕ

associated to the eigenvalue 1, we have Pt∂eϕ = e−t∂eϕ. Therefore Γ(Ptf) =
e−2t∂2

eeϕ and for any t > 0 and p ≥ 1 we have

e−2pt(∂2
eeϕ)

p ≤
(

1

2(et − 1)

)p

(Pt((∂eϕ)
2))p ≤

(

1

2(et − 1)

)p

Pt((∂eϕ)
2p).

Hence after integrating, for any t > 0 we have
∫

(∂2
eeϕ)

pe−ϕdx ≤
(

e2t

2(et − 1)

)p ∫

(∂eϕ)
2pe−ϕdx.

Taking t = ln 2, the result then follows from the bound

||f ||2p,e−ϕ ≤ 2p||f ||2,e−ϕ

for any eigenfunction of Lϕ associated with the eigenvalue −1, when a logarith-
mic Sobolev inequality with constant 1/2 holds, see Section 5.3 of [2].

3.2 Proof of Proposition 3.1

Following the argument at the start of the proof of Proposition 3.4 in [26],
if we consider X a random variable distributed according to µ, Z a standard
Gaussian random variable independent of X , and Xt := e−tX +

√
1− e−2tZ,

we have when p ≥ 2

Wp(µ, γ) ≤
∫ ∞

0

e−2t

√
1− e−2t

E














E







d
∑

i=1





d
∑

j=1

(τij(X)− δij)Zj





2

| Xt













p/2








1/p

dt.
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Applying Jensen’s inequality, this is bounded by

∫ ∞

0

e−2t

√
1− e−2t

E















d
∑

i=1





d
∑

j=1

(τij(X)− δij)Zj





2






p/2








1/p

dt.

We can integrate in time, and we obtain

Wp(µ, γ) ≤ E[||(τ − Id)Z||p]1/p

Since for a standard Gaussian random variable on R
d and a symmetric matrix

A, we have E[||AZ||p] ≤ Cp
p ||A||pHS , this implies the desired bound. This mo-

ment bound can be proved by considering the case where A is diagonal and
applying the lower bound in the Marcinkiewicz-Zygmund inequality for sums
of independent random variables with its sharp constant for symmetric random
variables [15].

4 A remark on the connection with weighted

Poincaré inequalities

The main result of [11] gives a construction of Stein kernels for measures satis-
fying a converse-weighted Poincaré, that is

inf
c∈R

∫

(f − c)2ωdµ ≤
∫

|∇f |2dµ

for some fixed weight function w : Rd −→ R∗
+, and all smooth scalar functions

f . This notion generalizes the classical Poincaré inequality, which correpsonds
to the case of constant weight function.

In [37], Saumard proved that in dimension one, the Stein kernel τ (if the
density is sufficiently nice) gives rise to the following weighted Poincaré inequal-
ity

Varµ(f) ≤
∫

τ(f ′)2dµ.

Of course, this inequality exploits the fact that the (unique) Stein kernel in
dimension one is nonnegative. Moreover Saumard showed that conversely the
argument of [11] could be modified to prove that if such an inequality holds for
some weight replacing τ , then a Stein kernel exists (although the argument seems
to guarantee the validity of the Stein identity for a possibly smaller class of test
functions, depending on the behavior of the weight). The proof of the weighted
Poincaré inequality makes use of the formula for Stein kernels in dimension one,
and does not seem to readily extend to higher dimension.

The Brascamp-Lieb inequality [8] asserts that for any strictly log-concave
probability measure ν = e−V , we have a weighted Poincaré-type inequality

Varν(f) ≤
∫

〈(HessV )−1∇f,∇f〉dν.
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This inequality has many connections with geometric and functional inequalities
(see for example [6]), and has found applications in the study of long-time
behavior of stochastic processes.

It turns out that, combined with our construction of Stein kernels, this
inequality immediately yields a multi-dimensional analogue of Saumard’s result,
at least as soon as the moment map is nice enough. Indeed, by taking ϕ the
moment map associated with a centered probability measure ν, setting τ =
Hessϕ(∇ϕ∗) as our Stein kernel, we have

Varν(f) = Vare−ϕ(f ◦ ∇ϕ)

≤
∫

〈(∇2ϕ)−1∇2ϕ∇f(∇ϕ),∇2ϕ∇f(∇ϕ)〉e−ϕdx

=

∫

〈∇f(∇ϕ),∇2ϕ∇f(∇ϕ)〉e−ϕdx

=

∫

〈τ∇f,∇f〉dν.

Hence we obtain a multi-dimensional generalization of Saumard’s result,
albeit for a specific choice of Stein kernel. Note that it is not clear at all that
we should expect general Stein kernels to take values that are positive matrices,
so a similar weighted Poincaré inequality for any kernel might not be true. In
particular, it is not clear at all that the Stein kernels constructed in [11] have
such a property. But in dimension one, since all possible Stein kernels match
when the measure has a density, this in particular gives an alternative proof of
Saumard’s result.

5 Transporting Stein kernels for other reference

measures

The abstract setup of Stein’s method can be generalized to cover non-gaussian
reference measures [3]. If we wish to compare some measure µ to a reference
measure µ0 = e−V dx, say for a smooth function V that is finite everywhere,
then µ0 is characterized by the integration by parts formula

∫

∇V · fdµ0 =

∫

Tr(∇f)dµ0

which leads to a definition of Stein kernel as a matrix-valued function such that
∫

∇V · fdµ =

∫

〈τ,∇f〉dµ. (5)

Assume that V is convex, C2 and that HessV > 0, and let µV be the push-
forward of µ by ∇V . Then for any vector-valued smooth function f , defining

11



g(x) = f(∇V ∗(x)), we have

∫

∇V (x) · f(x)dµ =

∫

∇V (x) · g(∇V (x))dµ

=

∫

x · g(x)dµV ,

so if we take τ̃V,γ to be a Stein kernel for µV with respect to the gaussian measure
(assuming for now it exists), we get

∫

∇V (x) · f(x)dµ =

∫

〈τ̃V,γ ,∇g〉dµV

=

∫

〈τ̃V,γ(∇V (x)),∇g(∇V (x))〉dµ

=

∫

〈τ̃V,γ(∇V (x)), (Hess V (x))−1∇f(x)〉dµ

=

∫

〈τ̃V,γ(∇V (x))(Hess V (x))−1,∇f(x)〉dµ

and therefore τ̃V,γ(∇V (x))(Hess V (x))−1 is a Stein kernel for µ relative to µ0.
To be valid, in addition to the regularity and convexity assumptions on V , this
arguments requires that τ̃V,γ exists. It is okay if it is only defined in the sense of
distributions (since ∇V is smooth and bijective, composing a distribution with
it is possible).
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