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A BEALS CRITERION FOR MAGNETIC PSEUDODIFFERENTIAL

OPERATORS PROVED WITH MAGNETIC GABOR FRAMES

HORIA D. CORNEAN, BERNARD HELFFER, AND RADU PURICE

Abstract. First, we give a new proof for the Beals commutator criterion for non-magnetic Weyl
pseudo-differential operators based on classical Gabor tight frames. Second, by introducing a
modified ’magnetic’ Gabor tight frame, we naturally derive the magnetic analogue of the Beals
criterion originally considered by Iftimie-Măntoiu-Purice.

1. Introduction and main results

1.1. Introduction. The Beals criterion [B] naturally characterizes pseudo-differential operators
by their commutation properties with fundamental objects like multiplication and differentiation
operators; the basics of Weyl pseudo-differential calculus can be found in e.g. [Hör3]. To the
best of our knowledge, all existent proofs of Beals’ criterion use in an essential way some special
properties of the Fourier transform and the translation invariance of the seminorms in S (R2d),
see for example Lemma 2.2 in [B97] or Proposition 8.2 in [Di-Sj].
In recent years it appeared useful to introduce a magnetic pseudo-differential calculus (see [IMP07,
IMP10, IP11] and references therein) which is adapted to the presence of long-rangemagnetic fields.
The main motivation behind this particular class of operators was the need of highlighting the
magnetic flux effects and building up a gauge covariant calculus. Therefore, it was natural to search
for a magnetic Beals-like criterion where the commutation with the plain momentum operators
should be replaced by the commutation with their magnetic counterparts. Such a criterion was
indeed proved by Iftimie-Măntoiu-Purice [IMP10] and one of the technically heavy points in that
work was the extension of Bony’s lemma to the magnetic case.
The main motivation of our paper is to propose an alternative proof of Beals’ classical criterion
based on the use of a normalized tight Gabor frame and to show how this approach can be quite
naturally extended to the magnetic case and recover the criterion established in [IMP10]. Note
that no a-priori knowledge of the magnetic calculus is needed in order to understand the current
manuscript.

1.2. The non-magnetic case. Let Xj be the multiplication operator by xj , 1 ≤ j ≤ d, while
Dj := −i∂xj

. We introduce Wk := Xk when 1 ≤ k ≤ d and Wk := Dk−d when d + 1 ≤ k ≤ 2d.

The operators Wk leave the Schwartz space S (Rd) invariant. Let us consider a bounded map
T : S (Rd) 7→ S

′(Rd). Seen as maps from S (Rd) to S
′(Rd), the following multiple commutators

[Wj1 , [Wj2 , ..., [Wjm , T ]]...] , m ≥ 1, jℓ ∈ {1, 2, ..., 2d}, (1.1)

are also bounded. Then the classical Beals criterion [B] reads as follows:

Theorem 1.1. Let us assume that both T and all possible commutators as in (1.1) can be extended
to bounded operators on L2(Rd). Then there exists a symbol a0(x, ξ) ∈ S0

0,0(R
2d) such that for

every Ψ,Φ ∈ S (Rd) we have:

〈Ψ, TΦ〉L2(Rd) = (2π)−d

∫

Rd

(
∫

R2d

eiξ·(x−x′)Ψ(x)a0((x+ x′)/2, ξ)Φ(x′)dxdx′
)

dξ,

i.e. T = Opw(a0) is the Weyl quantization of a0.

In this paper, the scalar product of L2(Rd) is linear in the second variable and we use the
standard notation for Hörmander type symbols (see Section 7.8 in [Hör1]).

1

http://arxiv.org/abs/1804.05220v2


2 H.D. CORNEAN, B. HELFFER, AND R. PURICE

1.3. The magnetic case. Let d ≥ 2. Consider a 2-form B(x) =
∑

1≤j,k≤dBjk(x)dxj ∧dxk where

Bjk = −Bkj are in BC∞(Rd) (i.e. the space of C∞ bounded functions together with all their
derivatives). We assume that the form is ”magnetic” , i.e. that ∂jBkℓ + ∂kBℓj + ∂ℓBjk ≡ 0 holds.
This simply expresses that the 2-form is closed. Given any fixed y ∈ Rd one can construct a 1-form
A(·, y) such that B = dA(·, y) and

Aj(x, y) = −
d

∑

k=1

∫ 1

0

s (xk − yk) Bjk(y + s(x− y))ds. (1.2)

We observe that Aj(x, y) grows at most linearly in |x − y|, and this fact remains true for all its
derivatives in x. Let Γy,x denote the straight oriented segment joining y with x. Since A(·, 0) −
A(·, y) is closed and exact, we have the identity

Aj(x, 0)−Aj(x, y) = ∂xj
ϕ(x, y), 1 ≤ j ≤ d , (1.3)

ϕ(x, y) =

∫

Γy,x

(A(·, 0)−A(·, y)) =
∫

Γy,x

A(·, 0) . (1.4)

Here A(·, y) does not contribute to the integral because it is ”orthogonal” to the integration
path. The same orthogonality property allows us to identify ϕ(x, y) with the circulation of A(·, 0)
on the oriented triangle generated by the origin, y and x. Stokes’ theorem implies that ϕ(x, y) is
equal with the magnetic flux through this triangle.

We denote the magnetic flux through the oriented triangle ∆(u, v, w) having vertices at u, v, w ∈
Rd as:

f(u, v, w) :=

∫

∆(u,v,w)

B , f(x, y, 0) = ϕ(x, y).

We note the identities

ϕ(x, y) = −ϕ(y, x) and ϕ(u, v) + ϕ(v, w) − ϕ(u,w) = f(u, v, w). (1.5)

Now we can formulate the magnetic version of Beals’ criterion as stated in Theorem 1.1 of
[IMP10]. Let Πj := Dj −Aj(·, 0) be the ”magnetic” momenta which also leave S (Rd) invariant.
We denote by Wk either Xk if 1 ≤ k ≤ d, or Πk−d if d+ 1 ≤ k ≤ 2d. Let us consider a bounded
map T : S (Rd) 7→ S ′(Rd) and all possible commutators as in (1.1) but with the new Wk’s. Here
is the magnetic Beals criterion:

Theorem 1.2. Let us assume that both T and all the ”magnetic” commutators as in (1.1) can
be extended to bounded operators on L2(Rd). Then there exists a symbol a0(x, ξ) ∈ S0

0,0(R
2d) such

that for every Ψ,Φ ∈ S (Rd) we have:

〈Ψ, TΦ〉L2(Rd) = (2π)−d

∫

Rd

(
∫

R2d

eiϕ(x,x′)eiξ·(x−x′)Ψ(x)a0((x+ x′)/2, ξ)Φ(x′)dxdx′
)

dξ .

The rest of this manuscript is as follows: in Section 2 we construct a family of tight frames
which generalizes the classical Gabor case, in Section 3 we give the proof of Theorem 1.1, and in
Section 4 we prove Theorem 1.2.

2. A magnetic normalized Gabor tight frame

Let g ∈ C∞
0 (Rd;R) such that supp g ⊂ (−1, 1)d and

gγ(x) := g(x− γ),
∑

γ∈Zd

g2γ(x) = 1 , ∀x ∈ R
d . (2.1)

Let ψm(x) := eim·x, for any m ∈ Zd. Denote by
(

τzf
)

(x) := f(x − z) the translation with

z ∈ Rd.
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Lemma 2.1. The functions
{

Gϕ
γ,m(x) := (2π)−d/2eiϕ(x,γ)(τγgψm)(x) : γ,m ∈ Z

d
}

, (2.2)

with ϕ defined in (1.4), satisfy the identity

f(x) =
∑

γ,m

Gϕ
γ,m(x)〈Gϕ

γ,m, f〉L2(Rd) , ∀f ∈ S (Rd) , (2.3)

where the series is absolutely convergent. In particular, these functions generate a normalized tight
frame in L2(Rd) (see [Gr, Ch]).

Proof. We have

〈Gϕ
γ,m, f〉L2(Rd) = (2π)−d/2

∫

{maxd
j=1

|xj−γj |≤1}
g(x− γ)e−im·(x−γ)e−iϕ(x,γ)f(x) dx

= (2π)−d/2

∫

{maxd
j=1

|xj|≤1}
e−im·xg(x)

(

τ−γe
−iϕ(·,γ)f

)

(x) dx

=: F
(

gτ−γe
−iϕ(·,γ)f

)

(m) (2.4)

where gτ−γe
−iϕ(·,γ)f ∈ C∞

0

(

(−1, 1)d
)

may be naturally considered, via its (2πZ)d-periodic exten-

sion to Rd, as a function in C∞(Td), and where the right hand side of (2.4) is nothing but the
m’th Fourier coefficient of gτ−γe

−iϕ(·,γ)f .
Integrating by parts in (2.4), using (1.3) and the fact that f is a Schwartz function, then given

any N ≥ 1 we may find a constant Cf,N such that for every m and γ we have:

|〈Gϕ
γ,m, f〉L2(Rd)| ≤ Cf,N < γ >−N< m >−N . (2.5)

By the Fourier inversion formula and (2.4) we obtain:

gτ−γe
−iϕ(·,γ)f = (2π)−d/2

∑

m∈Zd

ψm〈Gϕ
γ,m, f〉L2(Rd)

where the series converges absolutely due to (2.5) where we fix for example N ≥ 2d. Translating
by γ ∈ Zd we obtain:

gγ(x)f(x) = (2π)−d/2
∑

m∈Zd

eiϕ(x,γ)(τγψm)(x)〈Gϕ
γ,m, f〉L2(Rd),

which coupled with (2.1) leads to:

f =
∑

γ∈Zd

gγ(gγf) =
∑

γ∈Zd

∑

m∈Zd

Gϕ
γ,m〈Gϕ

γ,m, f〉L2(Rd).

This proves (2.3). �

3. Proof of Theorem 1.1

In order to simplify notation, in the non-magnetic case (ϕ ≡ 0) we denote the Gabor frame by
Gγ,m. By assumption, T can be extended to a bounded operator on L2(Rd) with norm ‖T ‖, thus:

Tγ,γ′;m,m′ :=
〈

Gγ,m, TGγ′,m′

〉

,
∣

∣Tγ,γ′;m,m′

∣

∣ ≤ (2π)−d‖g‖2L2(Rd) ‖T ‖ . (3.1)

For every N ∈ N, an application of the form

S (Rd)× S (Rd) ∋ (Φ,Ψ) 7→
∑

max(|γ|,|m|,|γ′|,|m′|)≤N

Tγ,γ′;m,m′〈Ψ, Gγ,m

〉

L2(Rd)
〈Gγ′,m′ ,Φ

〉

L2(Rd)

defines a tempered distribution on Rd×Rd. Then the distribution kernel of the bounded operator
T : L2(Rd) → L2(Rd) is given by the series

T̊ = lim
Nր∞

∑

max(|γ|,|m|)≤N

∑

max(|γ′|,|m′|)≤N

Tγ,γ′;m,m′

(

Gγ,m ⊗Gγ′,m′

)

, (3.2)

where each finite sum belongs to BC∞(Rd×Rd) and converges weakly in the space of the tempered

distributions on Rd ×Rd. If we restrict the distribution T̊ to a compact in Rd ×Rd there exists a
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finite number of non-zero contributions from the series in γ and γ′, but generally, the series in m
and m′ are not absolutely convergent. In order to remedy that difficulty, we make a regularization
and define for ε > 0:

T̊ε(x, x
′) := (2π)−d

∑

γ,γ′

∑

m,m′

Tγ,γ′;m,m′gγ(x)gγ′(x′)e−ε(|m|2+|m′|2)eim·(x−γ)e−im′·(x′−γ′) . (3.3)

Due to (3.1), it is not difficult to see that for a fixed ε > 0 the function T̊ε is jointly continuous.
We will later see that it is much more regular. We start by proving an estimate which is stronger
than (3.1).

Lemma 3.1. Given any pair N,M ≥ 1, there exists a constant CN,M such that

|Tγ,γ′;m,m′ | ≤ CN,M < γ − γ′ >−N< m−m′ >−M . (3.4)

Proof. The decay in γ−γ′ is a consequence of the fact that all commutators of T with the position
operators are bounded, see (1.1). For example:

(γ1 − γ′1)Tγ,γ′;m,m′ = (2π)−d
〈

(γ1 −X1)gγψm(· − γ), T gγ′ψm′(· − γ′)
〉

+(2π)−d
〈

gγψm(· − γ), [X1, T ]gγ′ψm′(· − γ′)
〉

+(2π)−d
〈

gγψm(· − γ), T (X1 − γ′1)gγ′ψm′(· − γ′)
〉

.

The decay in m −m′ is due to the boundedness of the commutators of T with the momentum
operators (one has to integrate by parts). For example:

(m1 −m′
1)Tγ,γ′;m,m′ = (2π)−d

〈

m1gγψm(· − γ), T gγ′ψm′(· − γ′)
〉

−(2π)−d
〈

gγψm(· − γ), Tm′
1gγ′ψm′(· − γ′)

〉

= (2π)−d
〈

gγ(Dx1
ψm)(· − γ), T gγ′ψm′(· − γ′)

〉

−(2π)−d
〈

gγψm(· − γ), T gγ′(Dx1
ψm′)(· − γ′)

〉

= (2π)−d
〈

(Dx1
g)γψm(· − γ), T gγ′ψm′(· − γ′)

〉

−(2π)−d
〈

gγψm(· − γ), T (Dx1
g)γ′ψm′(· − γ′)

〉

+(2π)−d
〈

gγψm(· − γ), [Dx1
, T ]gγ′ψm′(· − γ′)

〉

.

�

The next Lemma will show that the approximating kernel T̊ε has a fast off-diagonal decay.

Lemma 3.2. Let ε > 0. Then for every fixed t ∈ Rd, the function

R
d ∋ s 7→ T̊ε(t+ s/2, t− s/2) ∈ C

belongs to S (Rd).

Proof. Given x and x′, the only γ’s and γ′’s contributing to (3.3) must obey the conditions

|x− γ| ≤
√
d and |x′ − γ′| ≤

√
d. Given t = (x+ x′)/2, the only γ’s and γ′’s contributing to (3.3)

must also obey |(γ + γ′)/2− t| ≤
√
d. Thus:

T̊ε(t+ s/2, t− s/2) =
∑

|(γ+γ′)/2−t|≤
√
d

(2π)−d
∑

m,m′

Tγ,γ′;m,m′g(t+ s/2− γ)g(t− s/2− γ′)

× e−ε(|m|2+|m′|2)eim·(t+s/2−γ)e−im′·(t−s/2−γ′) . (3.5)

The series in m and m′ are absolutely convergent due to the regularizing Gaussians, while the sum
in the direction of γ − γ′ is convergent due to (3.4). We can also differentiate as many times as
we want with respect to s in (3.5), and the series remain absolutely convergent. Given s = x− x′,
the only γ’s and γ′’s contributing to (3.5) must obey |(γ − γ′)− s| ≤ 2

√
d, thus when we estimate

sαDβ
s T̊ε(t + s/2, t− s/2) we may replace |s| with |γ − γ′| + 2

√
d and obtain something bounded

(actually independent of t). More precisely, given multi-indices α and β, there exists a constant
C(α, β, ε) such that, for any t ∈ R,

sup
s∈Rd

|sαDβ
s T̊ε(t+ s/2, t− s/2)| ≤ C(α, β, ε).

�
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Let us consider the symbol associated by the Weyl quantization with the distribution kernel T̊ǫ:

aε(t, ξ) :=

∫

Rd

e−iξ·sT̊ε(t+ s/2, t− s/2) ds. (3.6)

Due to Lemma 3.2, for fixed t ∈ Rd and ε > 0, the function ξ 7→ aε(t, ξ) is a Schwartz function.

Lemma 3.3. The function aε(t, ξ) converges uniformly on compact sets of R2d to a smooth func-
tion a0(t, ξ). More precisely:

sup
t∈Rd

sup
ξ∈Rd

|Dα
t D

β
ξ aε(t, ξ)| ≤ C(α, β), ∀α, β ∈ N

d, ε ≥ 0 ,

and given any compact K ⊂ R
2d we have

lim
εց0

sup
(t,ξ)∈K

|Dα
t D

β
ξ {aε(t, ξ)− a0(t, ξ)}| = 0 , ∀α, β ∈ N

d.

In particular, a0 ∈ S0
0,0(R

2d).

Remark. Before proving the lemma, let us show how we can conclude the proof of Theorem 1.1.
If Ψ,Φ ∈ C∞

0 (Rd) we have:

〈Ψ, TΦ〉 = lim
εց0

∫

R2d

Ψ(x)T̊ε(x, x
′)Φ(x′)dxdx′

= (2π)−d lim
εց0

∫

Rd

(
∫

R2d

eiξ·(x−x′)Ψ(x)aε((x + x′)/2, ξ)Φ(x′)dxdx′
)

dξ

= (2π)−d

∫

Rd

(
∫

R2d

eiξ·(x−x′)Ψ(x)a0((x+ x′)/2, ξ)Φ(x′)dxdx′
)

dξ ,

where the last equality follows from the Lebesgue dominated convergence theorem applied to the
ξ integral, for which we use Lemma 3.3. Then the identity can be extended to S (Rd) because
a0 ∈ S0

0,0(R
2d).

Proof of Lemma 3.3. Let us introduce the notation

κ := (γ + γ′)/2 ∈
(

2−1
Z
)d
, κ′ := γ − γ′ ∈ Z

d, n := (m+m′)/2 ∈
(

2−1
Z
)d
, n′ := m−m′ ∈ Z

d.

Using (3.3) and (3.5) we obtain

aε(t, ξ) =(2π)−d
∑

|κ−t|≤
√
d

∑

κ′

∑

n,n′

∫

Rd

e−i(ξ−n)·sg(t− κ+ (s− κ′)/2)g(t− κ− (s− κ′)/2)ds

× ein
′·te−i(n·κ′+n′·κ)e−ε(2|n|2+|n′|2/2)Tκ,κ′;n,n′ ,

where in order to simplify notation we write Tκ,κ′;n,n′ instead of Tγ,γ′;m,m′ . The estimate (3.4)
insures a strong localization in both the κ′ and n′ series. The only series which apparently still
needs ε > 0 in order to converge, is the series in n.

Define

F (t− κ, ξ − n, κ′) := (2π)−d

∫

Rd

e−i(ξ−n)·sg(t− κ+ (s− κ′)/2)g(t− κ− (s− κ′)/2)ds (3.7)

so that

aε(t, ξ) =
∑

|κ−t|≤
√
d

∑

κ′

∑

n,n′

ein
′·tF (t− κ, ξ − n, κ′)e−i(n·κ′+n′κ)e−ε(2|n|2+|n′|2/2)Tκ,κ′;n,n′ .

It is important to remember that in the integral of (3.7), the integrand is different from zero only

if s is of the order of κ′, i.e. |s− κ′| ≤ 2
√
d. By differentiating F with respect to ξ we produce a

polynomial growth in s which can be traded off with a growth in |κ′|. Also, by standard partial
integration with respect to s we can generate a strong localization in |ξ − n|. In conclusion, one
can prove the following statement: given any two multi-indices α, β ∈ Nd, there exists a constant
C(α, β) <∞ such that

|Dα
t D

β
ξ F (t− κ, ξ − n, κ′)| ≤ C(α, β) < ξ − n >−2d< κ′ >|β| . (3.8)
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The growth in κ′ is controlled by the decay of the matrix element Tκ,κ′;n,n′ , while due to (3.8) the
series in n converges absolutely without any help from the ε-dependent Gaussian.

Now we can take ε to zero and define

a0(t, ξ) :=
∑

|κ−t|≤
√
d

∑

κ′

∑

n,n′

ein
′·tF (t− κ, ξ − n, κ′)e−i(n·κ′+n′κ)Tκ,κ′;n,n′ .

The limit can be taken uniformly on compacts in R2d, and remains valid for all possible derivatives
with respect to both ξ and t. This concludes the proof of the lemma.

�

4. Proof of Theorem 1.2

This time we let ϕ 6= 0 in (2.2) and have

Gϕ
γ,m(x) = g(x− γ)eiϕ(x,γ)(2π)−d/2ψm(x− γ), γ,m ∈ Z

d.

Then (3.2) reads as:

T̊ (x, x′) =
∑

γ,γ′

∑

m,m′

Gϕ
γ,m(x)Gϕ

γ′,m′(x′)T ϕ
γ,γ′;m,m′ , T ϕ

γ,γ′;m,m′ :=
〈

Gϕ
γ,m, TG

ϕ
γ′,m′

〉

. (4.1)

Let us prove that T ϕ
γ,γ′;m,m′ obeys exactly the same type of localization as in (3.4). The localization

in γ−γ′ follows just like before from the boundedness of commutators with the position operators,
while the localization in m − m′ is obtained by integration by parts and the use of the gauge
covariance (1.3). For example, we have

(m1 −m′
1)T ϕ

γ,γ′;m,m′ = (2π)−d
〈

m1e
iϕ(·,γ)gγψm(· − γ), T gγ′eiϕ(·,γ′)ψm′(· − γ′)

〉

−(2π)−d
〈

gγe
iϕ(·,γ)ψm(· − γ), Tm′

1gγ′eiϕ(·,γ′)ψm′(· − γ′)
〉

= (2π)−d
〈

gγe
iϕ(·,γ)(Dx1

ψm)(· − γ), T gγ′eiϕ(·,γ′)ψm′(· − γ′)
〉

−(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), T eiϕ(·,γ′)gγ′(Dx1
ψm′)(· − γ′)

〉

= (2π)−d
〈

eiϕ(·,γ)(Dx1
g)γψm(· − γ), T eiϕ(·,γ′)gγ′ψm′(· − γ′)

〉

−(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), T eiϕ(·,γ′)(Dx1
g)γ′ψm′(· − γ′)

〉

+(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), (−i∂x1
− ∂x1

ϕ(·, γ))T eiϕ(·,γ′)gγ′ψm′(· − γ′)
〉

−(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), T (−i∂x1
− ∂x1

ϕ(·, γ′))eiϕ(·,γ′)gγ′ψm′(· − γ′)
〉

= (2π)−d
〈

eiϕ(·,γ)(Dx1
g)γψm(· − γ), T eiϕ(·,γ′)gγ′ψm′(· − γ′)

〉

−(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), T eiϕ(·,γ′)(Dx1
g)γ′ψm′(· − γ′)

〉

+(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), [Dx1
−A1(·, 0), T ] eiϕ(·,γ′)gγ′ψm′(· − γ′)

〉

−(2π)−d
〈

eiϕ(·,γ)A1(·, γ))gγψm(· − γ), T eiϕ(·,γ′)gγ′ψm′(· − γ′)
〉

+(2π)−d
〈

eiϕ(·,γ)gγψm(· − γ), T eiϕ(·,γ′)A1(x, γ
′)gγ′ψm′(· − γ′)

〉

.

Here the last formula was obtained by integration by parts. We also used (1.3) for writing
∂x1

ϕ(x, γ) = A1(x, 0) − A1(x, γ) and the fact that on the support of gγ the function A(·, γ) is
bounded uniformly in γ.

We now regularize the distributional kernel in (4.1) and introduce:

Tϕ
ε

(

t+
s

2
, t− s

2

)

:= (2π)−d
∑

γ,γ′

∑

m,m′

gγ(t+ s/2)eiϕ(t+s/2,γ)e−iϕ(t−s/2,γ′)gγ′(t− s/2)

× ei(m−m′)·tei(m+m′)·s/2e−im·γeim
′·γ′

e−ε(|m|2+|m′|2)T ϕ
γ ,γ′;m,m′ . (4.2)

This function has a rapid decay in s and is smooth in both t and s when ε > 0. Using twice the
second identity of (1.5) we obtain:

ϕ(t+ s/2, t− s/2) = ϕ(t + s/2, γ) + ϕ(γ, t− s/2)− f(t+ s/2, γ, t− s/2)

= ϕ(t+ s/2, γ) + ϕ(γ, γ′) + ϕ(γ′, t− s/2)− f(γ, γ′, t− s/2)− f(t+ s/2, γ, t− s/2). (4.3)

Let us introduce the quantity (we use (4.3) in the second equality):
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aε(t, ξ) :=

∫

Rd

e−iϕ(t+s/2,t−s/2)e−iξ·sTϕ
ε (t+ s/2, t− s/2)ds (4.4)

=(2π)−d
∑

|(γ+γ′)/2−t|≤
√
d

e−iϕ(γ,γ′)

×
∑

m,m′

∫

Rd

eif(γ,γ
′,t−s/2)eif(t+s/2,γ,t−s/2)e−i[ξ−(m+m′)/2]·sgγ(t+ s/2)gγ′(t− s/2)ds

× ei(m−m′)·te−im·γeim
′·γ′

e−ε(|m|2+|m′|2)T ϕ
γ,γ′;m,m′ .

As in the non-magnetic case, the only series which apparently poses convergence problems is
the one with respect to the ”direction” (m +m′)/2. It turns out (as in the non-magnetic case)
that the integral:

∫

Rd

eif(γ,γ
′,t−s/2)eif(t+s/2,γ,t−s/2)e−i[ξ−(m+m′)/2]·sgγ(t+ s/2)gγ′(t− s/2)ds

is the one which insures decay in that direction. In order to prove it, let us notice that the fluxes
f(t + s/2, γ, t − s/2) and f(γ, γ′, t − s/2) grow like the area of the corresponding triangle, hence
only like |γ − γ′| because both t + s/2 − γ and t − s/2 − γ′ have a length of order one on the
joint support of gγ and gγ′ ; the same is true for their derivatives with respect to both t and s.
Integrating by parts with respect to s we can generate a decay of the type < ξ− (m+m′)/2 >−2d

at the price of a polynomial growth in |γ − γ′|, a growth which is taken care of by the decay of
the matrix element T ϕ

γ,γ′;m,m′ .
Thus the same strategy which was used in the previous section concerning the limit εց 0 can

be repeated. We conclude that aε(t, ξ) ∈ S0
0,0(R

d) uniformly in ε ≥ 0 and thus the symbol we are
looking for is:

a0(t, ξ) =
∑

|(γ+γ′)/2−t|≤
√
d

e−iϕ(γ,γ′)

×
∑

m,m′

∫

Rd

eif(γ,γ
′,t−s/2)eif(t+s/2,γ,t−s/2)e−i[ξ−(m+m′)/2]·sgγ(t+ s/2)gγ′(t− s/2)ds

× ei(m−m′)·te−im·γeim
′·γ′T ϕ

γ,γ′;m,m′ .

�
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