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Abstract

The existence of generalised global supersolutions with a control upon the total muss is established

for the parabolic-parabolic Keller-Segel system with logarithmic sensitivity for any space dimension.

It is verified that smooth supersolutions of this sort are actually classical solutions. Unlike the pre-

viously existing constructions, neither is the chemotactic sensitivity coefficient required to be small,

nor is it necessary for the initial data to be radially symmetric.
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1 Introduction

Coupled reaction-diffusion-transport PDEs are a standard tool in the mathematical modelling of cell
motility on the macroscale. Thereby, the diffusion-dominated systems are among the best studied an-
alytically. Standard theory (see, e.g., [12]) ensures the existence of bounded solutions to such systems.
Still, they are not always the optimal choice. Indeed, in many instances it is not the chaotic movement
but, rather, the active drift of the cells towards some substance which actually dominates the motion and,
as a result, may lead to a strong aggregation of the biomass density. The best known model example of
such a situation is provided by the celebrated Keller-Segel system for chemotaxis [10, 11]. This parabolic-
parabolic system and its parabolic-elliptic simplifications have been objects of extensive studies in recent
decades. It turned out that in higher spatial dimensions the solutions to such systems can exhibit a blow-
up in finite time which calls into question the global solvability. For certain parabolic-elliptic versions of
the classical Keller-Segel model on the plane one was able to extend the solutions which collapse into a
persistent Dirac-type singularity beyond a finite-time blow-up by constructing measure-valued continu-
ations [15, 20]. For a detailed overview of available results concerning boundedness/blow-up, as well as
other properties, of the Keller-Segel model the reader is referred to [2, 9].

Very recently a new solution concept was introduced [14] in the context of a version of the Keller-Segel
system with a signal-dependent chemotactic sensitivity:
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Btu “ ∇ ¨
´

∇u´ χ
u

v
∇v

¯

in R
` ˆ Ω,

Btv “ ∆v ´ v ` u in R
` ˆ Ω,

Bνu “ Bνv “ 0 in R
` ˆ BΩ,

up0, ¨q “ u0, vp0, ¨q “ v0 in Ω,

(1.1a)

(1.1b)

(1.1c)

(1.1d)

where Ω is a smooth bounded domain in R
n, n P N, with the corresponding outer normal unit vector ν on

BΩ, and χ is a positive number. In this model prototype the cells are assumed to respond to the changes
of the logarithm of the signal concentration thus following the Weber-Fechner law. Due to the saturation
effect upon the chemotactic sensitivity in the presence of high levels of signal concentration, the solutions
of both (1.1) and the corresponding parabolic-elliptic versions are less prone to the formation of strong
singularities, such as, e.g., Dirac measures, than those of the classical Keller-Segel model. In particular,
the global existence of bounded classical [2, 6–8, 13, 16, 17, 21, 23], weak [19, 21], and generalised [3, 14]
solutions was established for certain ranges of parameter χ which depend upon n and, also, on whether
the setting is radial-symmetric or not. On the other hand, it is known, for a parabolic-elliptic case at
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least [17] that blow-up solutions exist for n ě 3 and χ large enough. To the best of our knowledge, no
solution concept has as as yet been proposed for (1.1) which would allow to treat the general non-radial
symmetric setting and arbitrary large χ ą 0 if n ě 3. The present work aims to fill this gap.

In [14], the authors introduced the coupled quantity

F pu, vq “ upvq (1.2)

for
p, q P p0, 1q

and derived a variational inequality which it should satisfy provided that u and v solve (1.1) in the
classical sense. They showed that such inequality, when complemented by a control upon the total mass
and equation (1.1b) fulfilled in the usual weak sense, together comprise a reasonable concept of a global
solution to the full parabolic-parabolic system (1.1). This construction made it possible to extend the
range of χ’s for which (1.1) can be considered as globally solvable, namely:

0 ă χ ă

$

’

&

’

%

8 if n “ 2,?
8 if n “ 3,
n

n´2
if n ě 4

[14]. (1.3)

Indeed, previously available results on global solvability presupposed either a more restrictive condition
on χ [21], or the radial symmetry requirement [19]. The generalised solution from [14] is a limit of a
regularising sequence. Thanks to condition (1.3), the u-component of this sequence is uniformly integrable
over arbitrary finite time-space cylinders. An important consequence of the later is the fact that the
generalised solution satisfies equation (1.1b) in the usual weak sense. In this paper we further develop
the framework presented in [14]. The key idea is to replace (1.2) with

F pu, vq “ u´av´b (1.4)

where parameters a and b are assumed to satisfy

a ą 0 and b ą b`paq :“ 1 ` a

2

´

a

1 ` χ2a´ 1
¯

, (1.5)

so that clearly

b ą 0

as well. An advantage of switching to a negative power of u in (1.4) is that the imposed restriction on b
in (1.5) can be met for any χ ą 0. On the negative side is that the u-components of the approximation
sequence need no longer be locally in time uniformly integrable. As a result, the limit pair pu, vq, while
remaining a supersolution to (1.1b), may, however, fail to be its subsolution, even in the weak sense.
Thus, our approach to (1.1b) is to replace it by an identity which contains a certain nonnegative Radon
measure. Notwithstanding, thanks to a suitable mass control involving this measure and an accurate
description of the boundary conditions based on the concept of normal traces for divergence-measure
fields [5], our generalised supersolution coincides with a classical solution in the case of regular u and v.

The rest of the paper is organised in the following way. In Section 2 we introduce and discuss
the assumptions on the initial data, the proposed supersolution concept (cl. Definition 2.2), and two
main results: Theorem 2.6 deals with existence of such supersolutions, while Theorem 2.7 establishes a
connection to the classical solvability. In Section 3 we prepare some ingredients which are necessary to
our proof of Theorem 2.6 in Section 4. Theorem 2.7 is proved in the closing Section 5. Finally, Appendix
A contains some facts on the divergence-measure fields which we use in this paper.

2 Generalised supersolutions to (1.1)

We assume throughout that the initial data satisfies the following assumptions:

0 ă u0, v0 P L1pΩq (2.1)

and

u´a
0 v´b

0 P L1pΩq for some a, b ą 0. (2.2)
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Remark 2.1 (Initial conditions).

1. Conditions (2.1)-(2.2) are to be compared to (1.7) in [14]. We impose less regularity for u0 and v0,
as well as allow, e.g., v0 to touch zero at some points in Ω. Yet, since we deal with negative powers
of u0, we cannot consider general u0 ě 0 which vanish on sets of non-zero Lebesgue measure.

2. In our existence result, Theorem 2.6 below, we require (1.5) to hold in addition. Observe that b`

is a strictly increasing function, and one readily sees that

b`paq Ñ
aÑ0

0.

Hence, given any small b, we only need to satisfy a P
`

0, pb`q´1pbq
˘

, so that a can be chosen
arbitrary small as well. On the whole, this makes it easier to satisfy (1.5).

Motivated by an idea from [14] we introduce the following concept of a generalised supersolution with
a mass control:

Definition 2.2 (Generalised supersolution). Let pu0, v0q satisfy conditions (2.1) and (2.2). We call a
pair of measurable functions pu, vq : R`

0 ˆ Ω Ñ R
` ˆ R

` a generalised supersolution to system (1.1) if

(i) u P L8pR`;L1pΩqq, v P L1
locpR`

0 ;W
1,1pΩqq, v´1 P L8

locpR` ˆ Ωq;

(ii) u´ a
2 v´ b

2 P L2
locpR`

0 ;H
1pΩqq X L8

locpR`
0 ;L

2pΩqq, u´ a
2 v´ b

2
´1∇v P L2

locpR`
0 ;L

2pΩqq,
u´a`1v´b´1 P L1

locpR`
0 ;L

1pΩqq;

(iii)
ş8

0
ψ
`

∇
`

u´av´b
˘

` χau´av´b´1∇v
˘

ds,
ş8

0
ψ∇v ds P DMppΩq for all ψ P C1

0 pR`
0 q for some p P

´

1, n
n´1

¯

;

(iv) for all 0 ď ϕ P C1pΩq and 0 ď ψ P C1
0 pR`

0 q it holds that

´
ż 8

0

Btψ
ż

Ω

u´av´bϕdxdt ´ ψp0q
ż

Ω

u´a
0 v´b

0 ϕdx

ď ´ 4

ż 8

0

ψ

ż

Ω

ˆ

a` 1

a

ˇ

ˇ

ˇ
∇
´

u´ a
2 v´ b

2

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a` 1

2

˙

∇
´

u´ a
2 v´ b

2

¯

¨ u´ a
2 v´ b

2
´1∇v

` 1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u´ a

2 v´ b
2

´1∇v
ˇ

ˇ

ˇ

2
˙

ϕdxds

´
ż 8

0

ψ

ż

Ω

`

∇
`

u´av´b
˘

` χau´av´b´1∇v
˘

¨ ∇ϕdxds

`
ż 8

0

ψ

ż

Ω

`

bu´av´b ´ bu´a`1v´b´1
˘

ϕdxds; (2.3)

(v) there exists some non-negative Radon measure µ in R
`
0 ˆ Ω, s.t. for all 0 ď ϕ P C1pΩq and

0 ď ψ P C1
0 pR`

0 q it holds that

´
ż 8

0

Btψ
ż

Ω

vϕ dxds ´ ψp0q
ż

Ω

v0ϕdx “
ż 8

0

ψ

ż

Ω

´∇v ¨ ∇ϕ ` p´v ` uqϕdxds `
ż 8

0

ψ

ż

Ω

ϕdµps, xq,
(2.4)

and
ż 8

0

ψ}upt, ¨q}L1pΩq ds `
ż 8

0

ψ

ż

Ω

dµps, xq ď }u0}L1pΩq}ψ}L1pR`q; (2.5)

(vi) for all ψ P C1
0 pR`

0 q it holds that

ż 8

0

ψ
`

∇
`

u´av´b
˘

` χau´av´b´1∇v
˘

ds ¨ ν|BΩ “ 0 in W´ 1

p
,ppBΩq, (2.6)

ż 8

0

ψ∇v ds ¨ ν|BΩ “ 0 in W´ 1

p
,ppBΩq. (2.7)

Several remarks are in order.
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Remark 2.3 (Boundary conditions). The variational reformulations (2.6)-(2.7) of the boundary condi-
tions (1.1c) are consistent with the regularity assumptions in (iii), cl. [5, Theorem 2.1]. Some necessary
facts on the spaces DMppΩq are recalled for the reader’s convenience in Appendix A.

Remark 2.4 (Coupled quantities).

1. One of the well-known difficulties to be faced while dealing with a system like (1.1) in higher
dimensions is the generally poor regularity of variable u. The reason lies in a comparative weakness
of linear diffusion which often fails to compensate the aggregation due to taxis. At the same time,
variable v is much better-behaved. Our previous studies of highly-degenerate haptotaxis systems
[22, 24] suggest that it can be helpful to introduce a quantity which involves both variables and
possesses an integrable gradient. Thereby, the choice of such coupled quantity depends to a large
extent upon estimates one is able to derive for a given system. In particular, in the present case it
turns out to be fruitful to study the term u´ a

2 v´ b
2 and to include its gradient into the supersolution

concept.

2. Since u´ a
2 v´ b

2 P L2
locpR`

0 ;H
1pΩqq, we have due to the weak chain rule and the Hölder inequality

that u´ a
2 v´ b

2 P L1
locpR`

0 ;W
1,1pΩqq. On the whole, the regularity imposed by (i)-(iii) ensures that

all integrals in the variational formulations (2.3)-(2.7) do make sense.

Remark 2.5 (Comparison with the solution concept from [14]). The main difference between our con-
struction and the generalised solution concept in [14] is the presence of a nonnegative and, in general,
nonzero measure µ on the right-hand side in the weak formulation (2.4). This means that the pair pu, vq
is actually a weak supersolution of (1.1b) but may, however, fail to be its subsolution. In particular, even
if both u and v are smooth functions, the variational properties (2.3)-(2.4) do not on their own imply
that pu, vq is a supersolution to (2.3). Fortunately, as it turns out, this property can be saved by taking
into account the the boundary conditions in form of (2.6)-(2.7), see the proof of Theorem 2.7 below.

Our result on existence now reads:

Theorem 2.6 (Existence of generalised supersolutions). Let χ be any positive number. Let the initial
conditions u0 and v0 satisfy (2.1)-(2.2) for some constants a and b which fulfil (1.5). Then there exists
a generalised supersolution pu, vq in terms of Definition 2.2.

The proof of this theorem is based on a suitable regularisation and a series of priori estimates in
Section 3 leading into a limit procedure in Section 4.

Our interest in the introduced concept of generalised supersolutions is supported by the following
result:

Theorem 2.7 (Classical solutions). Let a pair pu, vq be a supersolution in terms of Definition 2.2.
Assume in addition that

u, v P C1,2pR`
0 ˆ Ωq

and

u

v
P L8

locpR`
0 ˆ Ωq. (2.8)

Then pu, vq solves (1.1) in the classical sense.

The proof of Theorem 2.7 is given in Section 5.

Remark 2.8 (Notation). We make the following useful convention: For any index i, a quantity Ci

denotes a positive constant or, alternatively, a positive function, which is non-decreasing in each of its
arguments. Moreover, dependence upon such parameters as: the space dimension n, domain Ω, constants
a, b, χ, as well as the structure of the initial data u0, v0, is mostly not indicated in an explicit way.

3 Smooth regularisations for (1.1)

Let

2 ď k P N.
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Following [14], we consider the a family of regularisations of system (1.1):

$
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Btuk “ ∇ ¨
ˆ

∇uk ´ χ
uk

vk
∇vk

˙

in p0, T q ˆ Ω,

Btvk “ ∆vk ´ vk ` uk

1 ` 1
k
uk

in p0, T q ˆ Ω,

Bνuk “ Bνvk “ 0 in p0, T q ˆ BΩ,
ukp0, ¨q “ uk0, vkp0, ¨q “ vk0 in Ω.

(3.1a)

(3.1b)

(3.1c)

(3.1d)

Thereby, we choose the regularised initial data uk0 and vk0 so as to satisfy

0 ă uk0, vk0 P W 1,8pΩq, (3.2)

as well as to be suitable approximations to the original starting values, u0 and v0, see next sequel.
Classical theory for upper-triangular systems (see, e.g., [1]) implies that (3.1) possesses a unique global
classical solution puk, vkq. Moreover, due to the maximum principle, both solution components are strictly
positive in R

`
0 ˆ Ω. These solutions are studied in Subsections 3.2-3.4.

3.1 Approximation of initial data

Apart from being smooth, we assume that uk0 and vk0 fulfil the following conditions: for all k P N it
holds that

uk0 Ñ
kÑ8

u0 in L1pΩq and a.e. in Ω, (3.3)

vk0 Ñ
kÑ8

v0 in L1pΩq and a.e. in Ω, (3.4)

u´a
k0 v

´b
k0 Ñ

kÑ8
u´a
0 v´b

0 in L1pΩq and a.e. in Ω. (3.5)

Let us check that these conditions can be met. First, we observe that since u0, v0 P L1pΩq, there exist
some sequences uk0 and vk0 which satisfy (3.2) and (3.3)-(3.4), as well as

uk0 ě
#

max
!

k´ b
a , u0

)

for u0 ă k,

k for u0 ě k,
(3.6)

vk0 ě
#

max
 

k´ a
b , v0

(

for u0 ă k,

k for v0 ě k.
(3.7)

Using (3.6)-(3.7), we compute that

u´a
k0 v

´b
k0 ďmax

 

u´a
0 v´b

0 , 1
(

a.e. in Ω. (3.8)

Combining (2.2), (3.3)-(3.4), and (3.8) with the dominated convergence theorem we obtain (3.5).

3.2 Basic properties of (3.1)

Integrating equations (3.1a) and (3.1b) over Ω and using the boundary conditions and partial integration
we obtain the following information about the total masses: for all t ě 0

}ukpt, ¨q}L1pΩq “ }uk0}L1pΩq, (3.9)

}vkpt, ¨q}L1pΩq ď
`

1 ´ e´t
˘

}uk0}L1pΩq ` e´t}vk0}L1pΩq. (3.10)

Due to (3.9)-(3.10) and a classical result based on duality (see, e.g., the proof of Lemma 5 in [4, Appendix
A]) we have for all

pr, sq P
„

1,
n ` 2

n

˙

ˆ
„

1,
n ` 2

n ` 1

˙

that

tpvk,∇vkqukPp0,1s is precompact in Lrpp0, T q ˆ Ωq ˆ Lspp0, T q ˆ Ωq. (3.11)
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Further, using the maximum principle and the strict positivity of the Neumann heat kernel, we
conclude from (3.1b) and (3.4) that vk can be controlled from below in the following way:

inf
pτ,T qˆΩ

vk ě inf
pτ,T qˆΩ

e´tet∆vk0

ěC1pτ, T q}vk0}L1pΩq

ěC2pτ, T q ą 0 for all 0 ă τ ă T ă 8. (3.12)

3.3 A variational formulation for (3.1)

Let F P C1pR` ˆR
`q. Multiplying (3.1a) and (3.1b) by BuF puk, vkq and BvF puk, vkq, respectively, adding

the results together, and using the chain rule where necessary, we compute that

BtF puk, vkq

“ ´
ˆ

∇uk ´ χ
uk

vk
∇vk

˙

pBuuF puk, vkq∇uk ` BuvF puk, vkq∇vkq ` ∇ ¨
ˆ

BuF puk, vkq
ˆ

∇uk ´ χ
uk

vk
∇vk

˙˙

´ ∇vk ¨ pBuvF puk, vkq∇uk ` BvvF puk, vkq∇vkq ` ∇ ¨ pBvF puk, vkq∇vkq

` BvF puk, vkq
ˆ

´vk ` uk

1 ` 1
k
uk

˙

“ ´
ˆ

BuuF puk, vkq|∇uk|2 ` 2

ˆ

BuvF puk, vkq ´ χ

2

uk

vk
BuuF puk, vkq

˙

∇uk ¨ ∇vk

`
ˆ

BvvF puk, vkq ´ χ
uk

vk
BuvF puk, vkq

˙

|∇vk|2
˙

` ∇ ¨
ˆ

BuF puk, vkq∇uk `
ˆ

BvF puk, vkq ´ χ
uk

vk
BuF puk, vkq

˙

∇vk

˙

` BvF puk, vkq
ˆ

´vk ` uk

1 ` 1
k
uk

˙

.

(3.13)

Now we choose F as in (1.4). Using the chain rule where necessary, one easily verifies that

∇uk “ ´2

a
u

a
2

`1

k v
b
2

k

ˆ

∇
´

u
´ a

2

k v
´ b

2

k

¯

` b

2

´

u
´ a

2

k v
´ b

2
´1

k ∇vk

¯

˙

, (3.14)

∇vk “ u
a
2

k v
b
2

`1

k

´

u
´ a

2

k v
´ b

2
´1

k ∇vk

¯

. (3.15)

Plugging (3.14)-(3.15) into (3.13) we arrive, after some computation, at the following identity:

Bt
`

u´a
k v´b

k

˘

“ ´ 4

ˆ

a ` 1

a

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a ` 1

2

˙

∇
´

u
´ a

2

k v
´ b

2

k

¯

¨ u´ a
2

k v
´ b

2
´1

k ∇vk

`1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

` ∇ ¨
`

∇
`

u´a
k v´b

k

˘

` χau´a
k v´b´1

k ∇vk
˘

` bu´a
k v´b

k ´ b
u´a`1
k

1 ` 1
k
uk
v´b´1
k . (3.16)

Multiplying (3.16) by an arbitrary function ψ P C1
0 pR`

0 q and integrating by parts w.r.t. t yields for all
x P Ω that

´
ż 8

0

u´a
k v´b

k Btψ dt ´ u´a
k0 v

´b
k0 ψp0q

“ ´ 4

ż 8

0

ˆ

a` 1

a

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a` 1

2

˙

∇
´

u
´ a

2

k v
´ b

2

k

¯

¨ u´ a
2

k v
´ b

2
´1

k ∇vk

`1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

ψ dt

` ∇ ¨
ż 8

0

`

∇
`

u´a
k v´b

k

˘

` χau´a
k v´b´1

k ∇vk
˘

ψ dt `
ż 8

0

ˆ

bu´a
k v´b

k ´ b
u´a`1
k

1 ` 1
k
uk
v´b´1
k

˙

ψ. (3.17)

On the other hand, multiplying (3.16) by an arbitrary function ϕ P C1pΩq and integrating by parts w.r.t.
x and using the boundary conditions where necessary yields that

ż

Ω

Bt
`

u´a
k v´b

k

˘

ϕ “ ´ 4

ż

Ω

ˆ

a` 1

a

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a` 1

2

˙

∇
´

u
´ a

2

k v
´ b

2

k

¯

¨ u´ a
2

k v
´ b

2
´1

k ∇vk
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` 1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

ϕds

´
ż

Ω

`

∇
`

u´a
k v´b

k

˘

` χau´a
k v´b´1

k ∇vk
˘

¨ ∇ϕds

`
ż

Ω

`

bu´a
k v´b

k ´ bu´a`1
k v´b´1

k

˘

ϕds. (3.18)

Finally, if we multiply (3.16) by the product ψϕ and integrate by parts w.r.t. t and x, then we arrive at
the following variational reformulation of (3.16):

´
ż 8

0

Btψ
ż

Ω

u´a
k v´b

k ϕdxdt ´ ψp0q
ż

Ω

u´a
k0 v

´b
k0 ϕdx

“ ´ 4

ż 8

0

ψ

ż

Ω

ˆ

a ` 1

a

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a` 1

2

˙

∇
´

u
´ a

2

k v
´ b

2

k

¯

¨ u´ a
2

k v
´ b

2
´1

k ∇vk

` 1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

ϕdxds

´
ż 8

0

ψ

ż

Ω

`

∇
`

u´a
k v´b

k

˘

` χau´a
k v´b´1

k ∇vk
˘

¨ ∇ϕdxds

`
ż 8

0

ψ

ż

Ω

`

bu´a
k v´b

k ´ bu´a`1
k v´b´1

k

˘

ϕdxds. (3.19)

For equation (3.1b) a standard procedure yields the following reformulations: for all 0 ď ϕ P C1pΩq and
0 ď ψ P C1

0 pR`
0 q it holds that

´
ż 8

0

vkBtψ ds ´ ψp0qvk0 “ ∇ ¨
ż 8

0

ψ∇vk dt`
ż 8

0

ˆ

´vk ` uk

1 ` 1
k
uk

˙

ψ dt. (3.20)

and

´
ż 8

0

Btψ
ż

Ω

vkϕdxds ´ ψp0q
ż

Ω

vk0ϕdx “
ż 8

0

ψ

ż

Ω

´∇vk ¨ ∇ϕ `
ˆ

´vk ` uk

1 ` 1
k
uk

˙

ϕdxds. (3.21)

3.4 Further uniform estimates for (3.1)

Choosing ϕ ” 1 in (3.18) yields that

d

dt

ż

Ω

u´a
k v´b

k dx “
ż

Ω

´4

ˆ

a` 1

a

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˆ

b

a
` χ

a` 1

2

˙

∇
´

u
´ a

2

k v
´ b

2

k

¯

¨ u´ a
2

k v
´ b

2
´1

k ∇vk

`1

4

ˆ

b2

a
` b` χb

˙

ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

` bu´a
k v´b

k ´ b
u´a`1
k

1 ` 1
k
uk
v´b´1
k dx.

(3.22)

Due to the key assumption (1.5) it holds that

0 ą
ˆ

b

a
` χ

a` 1

2

˙2

´ a ` 1

a

ˆ

b2

a
` b ` χb

˙

“ χ2 pa ` 1q2
4

´ pb` a ` 1qb
a

ôχ2 ă 4
pb` a` 1qb
apa` 1q2 . (3.23)

Thus, the quadratic form

QpU, V q :“ 4

ˆ

a ` 1

a
|U |2 `

ˆ

b

a
` χ

a` 1

2

˙

U ¨ V ` 1

4

ˆ

b2

a
` b` χb

˙

|V |2
˙

(3.24)

is strictly convex and satisfies

QpU, V q ě C3

`

|U |2 ` |V |2
˘

for all U, V P R
n. (3.25)

Then, due to (3.25), we have with (3.22) that

d

dt

ż

Ω

u´a
k v´b

k dx`
ż

Ω

C3

ˆ

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

` b
u´a`1
k

1 ` 1
k
uk
v´b´1
k dx ďb

ż

Ω

u´a
k v´b

k dx.

(3.26)
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Applying Gronwall’s lemma to the differential inequality (3.26) we arrive at

ż

Ω

u´a
k v´b

k dx`
ż t

0

ż

Ω

C3

ˆ

ˇ

ˇ

ˇ
∇
´

u
´ a

2

k v
´ b

2

k

¯ˇ

ˇ

ˇ

2

`
ˇ

ˇ

ˇ
u

´ a
2

k v
´ b

2
´1

k ∇vk

ˇ

ˇ

ˇ

2
˙

` b
u´a`1
k

1 ` 1
k
uk
v´b´1
k dxds

ďebt
ż

Ω

u´a
k0 v

´b
k0 dx

ďC4pT q. (3.27)

Integral inequality (3.27) yields the following set of estimates:

›

›

›
∇
´

u
´ a

2

k v
´ b

2

k

¯›

›

›

L2pp0,T qˆΩq
ď C5pT q, (3.28)

›

›

›
u

´ a
2

k v
´ b

2
´1

k ∇vk

›

›

›

L2pp0,T qˆΩq
ď C5pT q, (3.29)

›

›

›
u

´ a
2

k v
´ b

2

k

›

›

›

L8p0,T ;L2pΩqq
ď C5pT q, (3.30)

›

›

›

›

u´a`1
k

1 ` 1
k
uk
v´b´1
k

›

›

›

›

L1pp0,T qˆΩq

ď C5pT q. (3.31)

Due to a Sobolev-type inequality (see, e.g., [12, Chapter II §3 (3.4)]), estimates (3.28) and (3.30) imply
that

›

›u´a
k v´b

k

›

›

L
1` 2

n pp0,T qˆΩq
ďC6pT q. (3.32)

Thanks to estimates (3.28) and (3.32) and the Hölder inequality we obtain that

›

›∇
`

u´a
k v´b

k

˘›

›

L
n`2

n`1 pp0,T qˆΩq
ď C7pT q. (3.33)

Similarly, estimates (3.29) and (3.32) and the Hölder inequality imply that

›

›u´a
k v´b´1

k ∇vk
›

›

L
n`2

n`1 pp0,T qˆΩq
ď C8pT q. (3.34)

Combining (3.33)-(3.34) we conclude that

›

›∇
`

u´a
k
v´b
k

˘

` χau´a
k
v´b´1
k

∇vk
›

›

L
n`2

n`1 pp0,T qˆΩq
ď C9pT q. (3.35)

Thanks to (3.28)-(3.31) and (3.35) we deduce from (3.18) that

›

›Bt
`

u´a
k v´b

k

˘›

›

L1p0,T ;pW 1,n`2pΩqq˚q
ď C10. (3.36)

Further, due to (3.5) and (3.28)-(3.31) we deduce from (3.17) that for all ψ P C1
0 pR`

0 q it holds that

›

›

›

›

∇ ¨
ż 8

0

ψ
`

∇
`

u´a
k v´b

k

˘

` χau´a
k v´b´1

k ∇vk
˘

dt

›

›

›

›

L1pΩq

ď C11pψq. (3.37)

Similarly, using (3.4) and (3.9)-(3.10) we deduce from (3.20) that

›

›

›

›

∇ ¨
ż 8

0

ψ∇vk dt

›

›

›

›

L1pΩq

ď C12pψq. (3.38)

Remark 3.1 (Sign of b). Condition (3.23) would also be satisfied if

b ă b´paq :“ ´1 ` a

2

´

a

1 ` χ2a ` 1
¯

.

However, in this case

b ă 0,

which implies that the sign of the last term on the left-hand side of (3.26) is positive. Consequently, the
immediate control upon this term is lost. Similar to the analysis [14] one would then be forced to impose
restrictions upon χ and the space dimension n in order to be able to bind it by means of others terms.
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4 Convergence to a generalised supersolution of (1.1): proof of

Theorem 2.6

Throughout this sequel we assume that

0 ď ϕ P C1pΩq, 0 ď ψ P C1
0 pR`

0 q,

and are arbitrary.
Based on the properties established in Section 3 we conclude that a subsequence km and measurable

functions u, v : r0,8q ˆ Ω Ñ R
` exist, such that:

due to (3.11),

vkm
Ñ

mÑ8
v in Lr

locpR`
0 ˆ Ωq and a.e. in R

` ˆ Ω, (4.1)

∇vkm
Ñ

mÑ8
∇v in Ls

locpR`
0 ˆ Ωq and a.e. in R

` ˆ Ω; (4.2)

due to (3.12) and (4.1), for all 0 ă τ ă T ă 8

ess inf
pτ,T qˆΩ

v ě C2pτ, T q ą 0, (4.3)

so that v´1 P L8
locpR` ˆ Ωq;

due to (3.33), (3.36), and the Lions-Aubin lemma [18, Corollary 4],

u´a
km
v´b
km

Ñ
mÑ8

η in L1
locpR`

0 ˆ Ωq and a.e. in R
` ˆ Ω; (4.4)

due to (4.1) and (4.4),

u´1
km

“
`

u´a
km
v´b
km

˘

1

a v
b
a

km

Ñ
mÑ8

η
1

a v
b
a P r0,8q a.e. in R

` ˆ Ω; (4.5)

due to (4.5),

ukm
Ñ

mÑ8
η´ 1

a v´ b
a “: u P p0,8s a.e. in R

` ˆ Ω; (4.6)

due to (3.9), (4.6), and Fatou’s lemma,

ukm
Ñ

mÑ8
u P p0,8q a.e. in R

` ˆ Ω, (4.7)

and u P L8pR`;L1pΩqq;
due to (4.1), (4.4), (4.7),

u´a
km
v´b
km

Ñ
mÑ8

u´av´b in L1
locpR`

0 ˆ Ωq and a.e. in R
` ˆ Ω; (4.8)

due to (3.29), (4.1), (4.2), (4.7), and the Lions lemma,

u
´ a

2

km
v

´ b
2

´1

km
∇vkm

á
mÑ8

u´ a
2 v´ b

2
´1∇v in L2

locpR`
0 ˆ Ωq; (4.9)

due to (3.28), (4.8), and the Banach-Alaoglu theorem,

∇
´

u
´ a

2

km
v

´ b
2

km

¯

á
mÑ8

∇
´

u´ a
2 v´ b

2

¯

in L2
locpR`

0 ˆ Ωq; (4.10)

due to (3.33), (4.8), and the Banach-Alaoglu theorem,

∇
`

u´a
km
v´b
km

˘

á
mÑ8

∇
`

u´av´b
˘

in L
n`2

n`1

loc pR`
0 ˆ Ωq; (4.11)

due to (3.34), (4.1), (4.2), (4.7), and the Lions lemma,

u´a
km
v´b´1
km

∇vkm
á

mÑ8
u´av´b´1∇v in L

n`2

n`1

loc pR`
0 ˆ Ωq; (4.12)
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due to (4.11)-(4.12),

∇
`

u´a
km
v´b
km

˘

` u´a
km
v´b´1
km

∇vkm
á

mÑ8
∇
`

u´av´b
˘

` u´av´b´1∇v in L
n`2

n`1

loc pR`
0 ˆ Ωq; (4.13)

due to (4.1) and (4.7),

u´a`1
km

1 ` 1
km
ukm

v´b´1
km

Ñ
mÑ8

u´a`1v´b´1 a.e. in R
` ˆ Ω; (4.14)

due to (3.31), (4.14), and Fatou’s lemma,

lim inf
mÑ8

ż 8

0

ψ

ż

Ω

u´a`1
km

1 ` 1
km
ukm

v´b´1
km

ϕdxds ě
ż 8

0

ψ

ż

Ω

u´a`1v´b´1ϕdxds, (4.15)

and u´a`1v´b´1 P L1
locpR`

0 ;L
1pΩqq;

due to (4.7),

ukm

1 ` 1
km
ukm

Ñ
mÑ8

u a.e. in p0, T q ˆ Ω; (4.16)

due to (3.3), (3.9), and the Banach-Alaoglu theorem, there exists some µ P MpR`
0 ˆ Ωq s.t.

lim
mÑ8

ż 8

0

ψ

ż

Ω

ukm

1 ` 1
km
ukm

ϕdxds “
ż 8

0

ψ

ż

Ω

uϕdxds `
ż 8

0

ψ

ż

Ω

ϕ dµpt, xq; (4.17)

due to (4.16) and Fatou’s lemma,

lim
mÑ8

ż 8

0

ψ

ż

Ω

ukm

1 ` 1
km
ukm

ϕdxds ě
ż 8

0

ψ

ż

Ω

uϕdxds; (4.18)

due to (4.17) and (4.18),

ż 8

0

ψ

ż

Ω

ϕ dµpt, xq ě 0,

so that µ is a non-negative measure;
due to (3.3) and (3.9),

ż 8

0

ψ

ż

Ω

ukm

1 ` 1
km
ukm

dxds ď
ż 8

0

ψ ds

ż

Ω

ukm
dx

“
ż 8

0

ψ ds

ż

Ω

ukm0 dx

Ñ
mÑ8

ż 8

0

ψ ds

ż

Ω

u0 dx; (4.19)

due to (4.17) (set ϕ ” 1) and (4.19), u satisfies (2.5) follows;
due to (4.9), (4.10), and the convexity of Q (was defined in (3.24)), for all 0 ď ϕ P Cpr0, T s ˆ Ωq

lim inf
mÑ8

ż T

0

ż

Ω

ϕQ
´

∇
´

u
´ a

2

km
v

´ b
2

km

¯

, u
´ a

2

km
v

´ b
2

´1

km
∇vkm

¯

dxds

ě
ż T

0

ż

Ω

ϕQ
´

∇
´

u´ a
2 v´ b

2

¯

, u´ a
2 v´ b

2
´1∇v

¯

dxds; (4.20)

due to (3.37), (4.13), and the Banach-Alaoglu theorem,

∇ ¨
ż 8

0

ψ
`

∇
`

u´a
km
v´b
km

˘

` χau´a
km
v´b´1
km

∇vkm

˘

dt

˚á
mÑ8

∇ ¨
ż 8

0

ψ
`

∇
`

u´av´b
˘

` χau´av´b´1∇v
˘

dt in MpΩq, (4.21)
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and
ż 8

0

ψ
`

∇
`

u´av´b
˘

` χau´av´b´1∇v
˘

ds P DM
n`2

n`1 pΩq;

due to (A.2), (3.1c), (4.13), and (4.21), pu, vq satisfies (2.6);
due to (3.38), (4.2), and the Banach-Alaoglu theorem,

∇ ¨
ż 8

0

ψ∇vkm
dt

˚á
mÑ8

∇ ¨
ż 8

0

ψ∇v dt in MpΩq, (4.22)

and
ż 8

0

ψ∇v ds P DMspΩq;

due to (A.2), (3.1c), (4.2), and (4.22), v satisfies (2.7).
Altogether, combining (3.5), (4.8), (4.15), (4.20), and (4.21), we deduce from (3.19) for k “ km by

taking limit superior asm Ñ 8 that pu, vq satisfies (2.3). Finally, passing to the limit in (3.21) for k “ km
as m Ñ 8, and using (4.1), (4.2), and (4.17), we find that pu, vq satisfies (2.4). Theorem 2.6 is proved.

5 Classical solutions to (1.1): proof of Theorem 2.7

In this final section we prove Theorem 2.7. Thus, we assume now that u and v are smooth and satisfy
(2.8) and verify that in this case pu, vq is, in fact, a classical solution to (1.1).

Since v is smooth, the weak boundary condition (2.7) implies that Bνvpt, ¨q vanishes on the boundary
of BΩ for all t ą 0. Further, since both u and v are smooth, the weak boundary condition (2.6) takes the
form

Bν
`

u´av´b
˘

` χau´av´b´1Bνv “ 0 for all pt, xq P p0, T q ˆ BΩ.

This means that

´au´a´1v´b
´

Bνu´ χ
u

v
Bνv

¯

´ bu´av´b´1Bνv “ 0 for all pt, xq P p0, T q ˆ BΩ. (5.1)

Dividing (5.1) by ´au´a´1v´b and plugging the boundary condition for v, we conclude that Bνupt, ¨q
vanishes on BΩ for all t ą 0 as well.

Next, exploiting the smoothness of u and v, we integrate by parts in (2.3) w.r.t. t and x and then
apply the Du Bois-Reymond lemma. This results in the differential inequality

´

´au´a´1v´b
´

Btu´ ∇ ¨
´

∇u´ χ
u

v
∇v

¯¯¯

´ bu´av´b´1 pBtv ´ p∆v ´ v ` uqq ď 0 in R
` ˆ Ω.

(5.2)

Similarly, (2.4) implies that µ “ ξ dxdt for some smooth density function ξ ě 0 and

Btv “ ∆v ´ v ` u` ξ in R
` ˆ Ω. (5.3)

Dividing (5.2) by ´au´a´1v´b and making use of (5.3) we deduce that

Btu´ ∇ ¨
´

∇u´ χ
u

v
∇v

¯

ě ´ b

a

u

v
ξ in R

` ˆ Ω. (5.4)

Integrating (5.4) by parts over Ω thereby using the boundary conditions and, subsequently, integrating
over p0, tq for any t ą 0 we then have that

}upt, ¨q}L1pΩq ě}u0}L1pΩq ´ b

a

ż t

0

ż

Ω

u

v
ξ dxds. (5.5)

On the other hand, due to the Du Bois-Reymond lemma inequality (2.5) is equivalent to the following:

}upt, ¨q}L1pΩq ` }ξpt, ¨q}L1pΩq ď }u0}L1pΩq for all t ě 0. (5.6)
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Thus, combining (5.5)-(5.6) with (2.8) we conclude that

}ξpt, ¨q}L1pΩq ď b

a

ż t

0

ż

Ω

u

v
ξ dxds

ďC13pT q
ż t

0

}ξps, ¨q}L1pΩqds for all 0 ď t ď T ă 8

which yields that

ξ ” 0 (5.7)

due to the Gronwall lemma. Plugging (5.7) into (5.3), (5.4), and (5.6) immediately yields that (1.1b) is
satisfied in the classical sense, and it holds that

Btu´ ∇ ¨
´

∇u´ χ
u

v
∇v

¯

ě 0 in R
` ˆ Ω (5.8)

and

}upt, ¨q}L1pΩq “}u0}L1pΩq for all t ě 0. (5.9)

Since (5.8) is subject to the no-flux boundary conditions, (5.8) and (5.9) imply that equality holds in
(5.8). Thus, equation (1.1a) is satisfied in the classical sense, and Theorem 2.7 is proved.

Appendix A Divergence-measure fields and their normal traces

In this section we collect some facts concerning the divergence-measure fields.
Let MpΩq denote the space of Radon measures in Ω. We recall the definition of the Banach space of

divergence-measure fields [5] and its norm:

DMppΩq :“ tF P pLppΩqqn| ∇ ¨ F P MpΩqu,
}F }DMppΩq :“ }F }pLppΩqqn ` }∇ ¨ F }

MpΩq.

Thereby we assume that p P
´

1, n
n´1

¯

, which is sufficient for our needs. Following [5] we introduce a

generalisation of the normal trace over the boundary of BΩ which automatically satisfies a Gauss-Green
formula:

〈F ¨ ν|BΩ, ϕ〉 :“
ż

Ω

F ¨ ∇pEϕq dx `
ż

Ω

pEϕq dp∇ ¨ F q for all ϕ P W 1

p
,

p

p´1 pBΩq. (A.1)

Here E : W
1

p
,

p

p´1 pBΩq Ñ W 1,
p

p´1 pΩq is a usual extension operator, i.e., a continuous right inverse of the

corresponding trace operator. It is known (see [5, Theorem 2.1]) that F ¨ ν|BΩ P W´ 1

p
,ppBΩq and doesn’t

depend upon the particular choice of E . Formula (A.1) ensures the following implication:

$

&

%

Fn á
mÑ8

F in pLppΩqqn,
∇ ¨ Fn

˚á
mÑ8

∇ ¨ F in MpΩq
ñ Fn ¨ ν|BΩ ˚á

mÑ8
F ¨ ν|BΩ in W´ 1

p
,ppBΩq. (A.2)
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