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RAPIDLY ROTATING STARS

WALTER A. STRAUSS AND YILUN WU

Abstract. A rotating star may be modeled as a continuous system of particles attracted
to each other by gravity and with a given total mass and prescribed angular velocity.
Mathematically this leads to the Euler-Poisson system. We prove an existence theorem
for such stars that are rapidly rotating, depending continuously on the speed of rotation.
This solves a problem that has been open since Lichtenstein’s work in 1933. The key tool
is global continuation theory, combined with a delicate limiting process. The solutions
form a connected set K in an appropriate function space. As the speed of rotation
increases, we prove that either the supports of the stars in K become unbounded or the

density somewhere within the stars becomes unbounded. We permit any equation of state
of the form p = ργ , 6/5 < γ < 2, so long as γ 6= 4/3. We consider two formulations, one
where the angular velocity is prescribed and the other where the angular momentum per
unit mass is prescribed.

1. Introduction

We consider a continuum of particles attracted to each other by gravity but subject to
no other forces. Initially they are static and spherical but then they begin to rotate around
a fixed axis after some perturbation and thereby flatten at the poles and expand at the
equator. This is a simple model of a rotating star or planet. It can also model a rotating
galaxy with its billions of stars. In this paper we permit fast rotations and look for steady
states of the resulting configuration. To find a family of states with a given mass is a highly
desirable property. We find a connected set of such states with constant mass.

This is a very classical problem that goes back to MacLaurin, Jacobi, Poincaré, Liapunov
et al., who assumed the density of the rotating fluid to be homogeneous or almost homo-
geneous, which is of course physically unrealistic. See Jardetzky [10] for a nice account
of the classical history of the problem. More realistic work for slow rotations was begun
by Lichtenstein [13] beginning in 1918 and by Heilig [8], who approached the problem of
slowly rotating stars by means of an implicit function theorem in function space. They
made realistic assumptions on the density but the mass of their solutions changes as the
body changes its speed of rotation. Recently Jang and Makino [9] studied the problem of
slowly rotating stars using a simpler implicit function approach in the case of the power law
p = Cργ and constant rotation speed. However, as in Lichtenstein and Heilig’s work, their
perturbation also does not keep the total mass constant and their analysis is restricted to
the range 6

5 < γ < 3
2 . In [18] we also constructed slowly rotating stars. We constructed

solutions with a given constant mass and permitted a general equation of state and a general
rotation speed (see Formulation 4 in Section 7).

A different approach was begun in 1971 by Auchmuty and Beals [3] using a variational
method with a mass constraint. The main difficulty in this approach is to prove that the
minimizing solution has compact support. Their approach was generalized and extended
by many authors, including Auchmuty [2], Caffarelli and Friedman [4], Friedman and Turk-
ington [6], Li [12], Chanillo and Li [5], Luo and Smoller [14], Wu [19], and Wu [20]. The
variational method has the major advantages that the rotation speed is allowed to be large
and that the mass is constant. However, there is no control on the nature of the compact
support of the star, it does not provide a continuous curve of solutions depending on the
angular velocity, and the equation of state is restricted to powers satisfying γ > 4

3 . This
1
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2 WALTER A. STRAUSS AND YILUN WU

variational method is the only one that has previously been used to prove the existence of
solutions that rotate rapidly.

In the present paper we extend the implicit function approach to construct solutions that
represent stars that rotate rapidly. We construct, for the first time, a connected set K of
solutions that is global. Keeping the mass constant is a key to our methodology, so that
there is no loss or gain of particles when the star changes its rotation speed. Furthermore,
we permit (a) the full range 6

5 < γ < 2, γ 6= 4
3 , (b) a non-uniform angular velocity, and (c) a

general equation of state p = p(ρ).
Now we describe our method. We begin with the steady compressible Euler-Poisson

equations (EP) for the density ρ ≥ 0, subject to the internal forces of gravity due to the
particles themselves. The speed ω(r) of rotation around the x3-axis is allowed to depend

on r = r(x) =
√
x2
1 + x2

2. The inertial forces are entirely due to the rotation. In the region

{x ∈ R
3
∣∣∣ ρ(x) > 0} occupied by the star, EP reduces to the equation

(1.1)
1

|x|
∗ ρ+ κ2

∫ r

0

sω2(s) ds− h(ρ) = constant,

where ω(r) is a given function, κ is a constant measuring the intensity of rotation, h is the

enthalpy defined by h′(ρ) = p′(ρ)
ρ with h(0) = 0, and p is the pressure. The constant of

gravity is assumed to be 1. The density must vanish at the boundary of the star. See the
end of this introduction for the derivation of (1.1).

So far this approach is standard. For simplicity in this introduction let us consider the
standard equation of state p(ρ) = Cργ . As a first attempt we take the inverse of h to
reformulate the problem as

(1.2) ρ(·) =

[
1

|·|
∗ ρ(·) + κ2

∫ r

0

sω2(s) ds+ α

]1/(γ−1)

+

,

∫

R3

ρ(x) dx = M,

where α is the negative of the constant that appears in (1.1), M is the given value of the mass,
and [z]+ = max(z, 0). This is reminiscent of the discussion of Auchmuty [2] and the method
of Jang and Makino [9]. Auchmuty [2] found rapidly rotating solutions that unfortunately
do not satisfy the physical boundary conditions but instead may have large density at the
boundary of the star. What is novel in our formulation is to force the total mass M to be
fixed and to introduce the constant α as a variable. The case γ = 4

3 is excluded because in
that case the constant mass condition introduces a nullspace of the linearized operator. If
the mass were allowed to vary, the nullspace would be trivial so that the implicit function
theorem would be applicable and 4/3 would be permitted. In Section 7 we compare our
approach (1.2) to several alternative mathematical approaches.

Nonetheless, even with this method there is still no way to guarantee that ρ has compact
support because the expression inside [. . . ]+ could be positive for large |x|. We get the
support to be compact by artificially forcing the parameter α to be sufficiently negative (see
Lemma 3.1). Then we begin the construction of rotating star solutions in the standard way
by continuation from a non-rotating solution (κ = 0). It is in this first step that we require
6
5 < γ < 2, γ 6= 4

3 , and we refer to [18] for some lemmas and details.
Letting κ increase, we continue the construction by applying the global implicit func-

tion theorem, which is based on the Leray-Schauder degree (see Lemma 5.1). Later on, in
Theorem 5.2 we obtain the whole global connected set K of solutions by allowing α to in-
crease. The most novel and intricate part of our proof occurs here. Our main result, stated
somewhat informally, is as follows. See Theorem 5.2 below for a completely precise version.

Theorem 1.1. Let M be the mass of the non-rotating solution. Assume the pressure p(·)
and the angular velocity ω(·) satisfy (2.2)-(2.4), (2.7)-(2.9), (3.2)-(3.3). By a “solution” of
the problem, we mean a triple (ρ, κ, α), where ρ is an axisymmetric function with mass M
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that satisfies (1.1) and κ refers to the intensity of rotation speed. Then there exists a set K
of solutions satisfying the following three properties.

• K is a connected set in the function space C1
c (R

3)× R× R.
• K contains the non-rotating solution.
• either

sup{ρ(x)
∣∣∣ x ∈ R

3, (ρ, κ, α) ∈ K} = ∞

or

sup{|x|
∣∣∣ ρ(x) > 0, (ρ, κ, α) ∈ K} = ∞.

The last statement means that either the densities become pointwise unbounded or the sup-
ports become unbounded.

There is another formulation that is popular in the astronomical literature where the
angular velocity ω is replaced by the angular momentum L per unit mass. Our results in
the latter formulation are entirely analogous, as we describe in Section 6.

We end this introduction by describing how EP reduces to (1.1). The compressible Euler-
Poisson equations (EP) are

(1.3)





ρt +∇ · (ρv) = 0,

(ρv)t +∇ · (ρv ⊗ v) +∇p = ρ∇U,

U(x, t) =
∫
R3

ρ(x′,t)
|x−x′| dx

′.

The first two equations hold where ρ > 0, and the last equation defines U on the entire R3. To
close the system, one prescribes an isentropic equation of state p = p(ρ). To model a rotating
star, one looks for a steady axisymmetric rotating solution to (1.3). That is, we assume ρ is

symmetric about the x3-axis and v = κω(r)(−x2, x1, 0), where r = r(x) =
√
x1
1 + x2

2 with
a prescribed function ω(r). With such specifications, the first equation in (1.3) concerning
mass conservation is identically satisfied. The second equation in (1.3) concerning momentum
conservation simplifies to

(1.4) − ρ κ rω2(r)er +∇p = ρ∇

(
1

|·|
∗ ρ

)
, er =

1

r(x)
(x1, x2, 0).

The first term in (1.4) can be written as −ρ∇
(∫ r

0 ω2(s)s ds
)
. Introducing the specific en-

thalpy h as above, (1.4) becomes

(1.5) ∇

(
1

|·|
∗ ρ+ κ

∫ r

0

ω2(s)s ds− h(ρ)

)
= 0,

which is the same as (1.1).

2. Properties of Non-rotating Solutions

In this section, we summarize some properties of the non-rotating radial (spherically
symmetric) solutions to the semilinear elliptic equation

(2.1) ∆u+ 4πh−1(u+) = 0 in R
3.

Such radial solutions will be the starting point of the global set of axisymmetric solutions
we will construct.

We make the following assumptions on the equation of state p(s):

(2.2) p(s) ∈ C2
loc(0,∞), p′(s) > 0.

There exists γ ∈ (1, 2) such that

(2.3) lim
s→0+

s2−γp′′(s) = c0 > 0.

There exists γ∗ ∈ (65 , 2) such that

(2.4) lim
s→∞

s1−γ∗

p′(s) = c1 > 0.
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As shown in Lemma 3.1 of [18], these assumptions imply that the enthalpy h, defined by
h′(ρ) = p′(ρ)/ρ, h(0) = 0, is a one-to-one map from [0,∞) to [0,∞). Its inverse h−1 is
locally C1,β on [0,∞), with h−1(0) = (h−1)′(0) = 0 and

(2.5) lim
s→∞

h−1(s)

s
= ∞, lim

s→∞

h−1(s)

s5
= 0.

It follows that for all R0 > 0, equation (2.1) has a positive radial (spherically symmetric)
solution u0 ∈ C2(BR0) with zero boundary values on ∂BR0 = {x : |x|= R0} (see Lemma 3.2
in [18]). Thus ρ0 := h−1(u0) belongs to C1,β(R3) when extended to be zero outside BR0 (see
Lemma 3.3 in [18]). Radial solutions of (2.1) solve the ODE

(2.6) u′′ +
2

|x|
u′ + 4πh−1(u+) = 0,

where ′ denotes the radial derivative. We denote by u(|x|; a) the solution of (2.6) satisfying
u(0; a) = a, u′(0; a) = 0. (In [18], u(|x|; a) is denoted by v(r; a).) For a > 0, there are only
two possibilities for the behavior of u(|x|; a):

(i) There exists a unique R(a) > 0 such that u(R(a); a) = 0.
(ii) u(|x|; a) > 0 for all |x|≥ 0.

Let us denote by A the set of all a’s such that possibility (i) holds. Note that u0(0) ∈ A.
Furthermore, A is an open set, as is easily seen by considering the fact that for a0 ∈ A we
have u(R(a0); a0) = 0 and u′(R(a0); a0) 6= 0. The implicit function theorem implies that
u(R(a); a) = 0 has a solution R(a) for all a sufficiently near a0.

Now for a ∈ A, we can define the physical mass of the compactly supported radial solution
[u(|x|; a)]+ as

(2.7) M(a) =

∫

BR(a)

h−1(u(|x|; a)) dx =

∫ R(a)

0

4πh−1(u(r; a))r2 dr.

Note that M(a) > 0 and M(·) is differentiable on (0,∞). Throughout this paper we make
the following assumptions on the function M(a):

(2.8) M ′(u0(0)) 6= 0

and

(2.9) M(a) 6= M(u0(0)) , ∀a ∈ A, a 6= u0(0).

Assumptions (2.8) and (2.9) are used in Lemmas 4.3 and 5.1, respectively. Now we provide
two examples of equations of state that satisfy both of these assumptions.

Lemma 2.1. Suppose that either one of the following conditions holds for the equation of
state p(s):

(a) p(s) = sγ , where γ ∈ (65 , 2), γ 6= 4
3 .

(b) p(s) satisfies (2.2), (2.3), (2.4), and

(2.10) p′(s) < h(s) ≤ 2p′(s) for s > 0.

Then A = (0,∞), and (2.8) and (2.9) are satisfied.

Proof. First, if p(s) = sγ , then h−1(s) =
(

γ−1
γ s
)1/(γ−1)

. By the scaling symmetry of (2.6)

for this function h−1, we have

(2.11) u(|x|; a) =
a

a0
u
(
(a/a0)

(2−γ)/(2γ−2) |x|; a0
)
.

Thus A = (0,∞). It follows from (2.11) and (2.7) that

(2.12) M(a) =

(
a

a0

)(3γ−4)/(2γ−2)

M(a0)

for a, a0 > 0. It is now obvious that both (2.8) and (2.9) are satisfied if γ ∈ (65 , 2), γ 6= 4
3 .
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Secondly, suppose (b) is satisfied. The condition h(s) ≤ 2p(s) in (2.10) implies that
h(s) ≤ 2sh′(s) by definition of h. Thus with t = h(s) we have

(2.13) t(h−1)′(t) ≤ 2h−1(t) for t > 0.

Integration of this inequality yields

(2.14) h−1(t) ≥
h−1(1)

t2
for 0 < t < 1.

Thus the integral
∫ 1

0
h−1(t)t−4 dt diverges. So by Theorem 1 in [15], no solution to (2.6)

can stay positive for all |x|. This means that A = (0,∞), so that the physical mass M(a) is
defined for all a ∈ (0,∞).

Now if u(|x|; a) is supported on the ball of radius R(a), then ũ(|x|) = u(R(a)|x|; a) is
supported on B1 and satisfies

ũ′′ +
2

|x|
ũ′ + h̃−1(ũ+) = 0

where h̃−1 = R2(a)h−1 satisfies the same kind of inequality as h−1. Replacing u by ũ and

h−1 by h̃−1, we can therefore assume without loss of generality that u(|x|; a) is supported
on B1. Now the proof of Lemma 4.3 in [18] (without specializing the value of a) shows that
M ′(a) = −u′

a(1; a). The subscript denotes the derivative with respect to a, while the prime
denotes the derivative with respect to |x|. Letting w = |x|u and g(w, |x|) = 4πrh−1(w/|x|),
we have u′

a(1; a) = w′
a(1; a) − wa(1; a). Thus the conclusion of Lemma 4.9 in [18] implies

that u′
a(1; a) < 0. Therefore both (2.8) and (2.9) are satisfied. �

3. Formulation by Angular Velocity

For simplicity of notation we assume R0 = 1 for the solution ρ0 in Section 2 from now on.
Let M =

∫
B1

ρ0(x) dx and

(3.1) j(x) =

∫ r(x)

0

s ω2(s) ds.

We will sometimes abuse notation and write j(x) as j(r(x)). We assume that the rotation
speed satisfies

(3.2) sω2(s) ∈ L1(0,∞), ω2(s) is not compactly supported,

and

(3.3) lim
r(x)→∞

r(x)(sup
x

j − j(x)) = 0.

This means that ω(r) decays to zero sufficiently fast as r → ∞. It does not really matter
because our purpose is to construct stars that have compact support, but it is a convenient
assumption that was also made in [3] for instance.

We define the operators

F1(ρ, κ, α) = ρ(·)− h−1

([
1

|·|
∗ ρ(·) + κ2j(·) + α

]

+

)
,

F2(ρ) =

∫

R3

ρ(x) dx−M,

and the pair
F(ρ, κ, α) = (F1(ρ, κ, α),F2(ρ)).

It is not hard to see that a solution to F(ρ, κ, α) = 0 with ρ ∈ Cloc(R
3) ∩ L1(R3) will give

rise to a solution of (1.5) with mass M . Indeed, on the set where ρ is positive, one has

1

|·|
∗ ρ(x) + κ2j(x)− h(ρ(x)) + α = 0,
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which is the same as (1.5). For fixed constants s > 3, we define the weighted space

Cs =
{
f : R3 → R

∣∣∣ f is continuous, axisymmetric, even in x3, and ‖f‖s< ∞
}
,

where

‖f‖s=: sup
x∈R3

〈x〉s|f(x)|< ∞.

We also define for N > 0,

(3.4) ON =

{
(ρ, κ, α) ∈ Cs × R

2
∣∣∣ α+ κ2 sup

x
j(x) < −

1

N

}
.

We are looking for solutions of F(ρ, κ, α) = 0. We will find them by a continuation
argument starting from the non-rotating solution, which satisfies F(ρ0, 0, α0) = 0. A key
device in our proof is to control the supports of the stars. We begin with the following
simple, but important, observation.

Lemma 3.1. For all (ρ, κ, α) ∈ ON , the expression
[

1
|·| ∗ ρ(·) + κ2j(·) + α

]
+

is supported

in the ball {x ∈ R
3 : |x|≤ C0N‖ρ‖s}, where C0 is an absolute constant.

Proof. First we note that
∣∣∣ 1|·| ∗ ρ(·)(x)

∣∣∣ ≤ C0‖ρ‖s
1
〈x〉 because s > 3. Hence for |x|> C0N‖ρ‖s,

[
1

|·|
∗ ρ(·)(x) + κ2j(x) + α

]
≤ C0‖ρ‖s

1

〈x〉
−

1

N
< 0

since (ρ, κ, α) ∈ ON . Therefore its positive part vanishes for such x. �

4. Basic Properties

Lemma 4.1. F maps ON into Cs×R. It is C1 Fréchet differentiable, with Fréchet derivative
given by

(4.1)
∂F

∂(ρ, κ, α)
(δρ, δκ, δα) =

(
δρ− L(δρ, δκ, δα),

∫

R3

δρ(x) dx

)
,

where

(4.2) L(δρ, δκ, δα) = (h−1)′

([
1

|·|
∗ ρ(·) + κ2j(·) + α

]

+

)(
1

|·|
∗ δρ+ 2κ(δκ)j + δα

)
.

Proof. F2 is very simple so we concentrate on F1. We need to show that F1 ∈ Cs. By
Lemma 3.1, we may focus on the ball |x|≤ C0N‖ρ‖s. Since h−1 is increasing, we have

sup
x∈R3

〈x〉s h−1

([
1

|·|
∗ ρ(·)(x) + κ2j(x) + α

]

+

)

≤ sup
|x|≤C0N‖ρ‖s

〈x〉s h−1

(
C0‖ρ‖s

1

〈x〉

)

≤ 〈C0N‖ρ‖s〉
sh−1 (C0‖ρ‖s) .(4.3)

This shows that F1(ρ, κ, α) ∈ Cs. In order to prove the Fréchet differentiability, we again use

Lemma 3.1 to deduce that
[

1
|·| ∗ (ρ+ δρ)(·) + (κ+ δκ)2j + α+ δα

]
+

is supported in some

fixed ball BR for fixed (ρ, κ, α) ∈ ON and sufficiently small (δρ, δκ, δα). Note that for u ∈ Cs
supported in BR, ‖u‖s≤ 〈R〉s‖u‖C0(BR). Now we only need to recognize the obvious fact that

u 7→ h−1(u+) as a mapping from C0(BR) to itself is differentiable with derivative (h−1)′(u+).
Equation (4.2) follows by the chain rule. The continuity of the Fréchet derivative follows in
a similar way, as u 7→ (h−1)′(u+) is continuous on C0(BR). �

Lemma 4.2. For each (ρ, κ, α) ∈ ON , ∂F
∂(ρ,α) (ρ, κ, α) is a Fredholm operator on Cs × R.
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Proof. By (4.1), we only need to show L(·, 0, ·) is compact. By Lemma 3.1, L(·, 0, ·) is
supported in BR with R depending only on (ρ, κ, α). It is obvious that δρ 7→ 1

|·| ∗ δρ(·) is

compact from Cs to C0(BR). This implies the Fredholm property. �

Lemma 4.3. Let (ρ0, 0, α0) be the non-rotating solution. If (2.8) is true, then the nullspace
of the linear operator ∂F

∂(ρ,α) (ρ0, 0, α0) is trivial. Therefore this operator is an isomorphism.

Proof. From F(ρ0, 0, α0) = 0 we get

ρ0 − h−1

([
1

|·|
∗ ρ0 + α0

]

+

)
= 0.

Denoting u0 = h(ρ0) as in Section 2, we have

(4.4) u0 =

[
1

|·|
∗ ρ0 + α0

]

+

.

We also note the relation

(4.5) ρ′0 = (h−1)′(u0) · u
′
0.

From ∂F
∂(ρ,α) (ρ0, 0, α0)(δρ, δα) = 0, we get

(4.6) δρ− (h−1)′(u0)

(
1

|·|
∗ δρ+ δα

)
= 0,

(4.7)

∫

R3

δρ(x) dx = 0.

Since ρ0 and u0 are supported on B1, (4.6) implies that δρ is also supported on B1. Define
w = 1

|·| ∗ δρ + δα. By (4.6), δρ is Hölder continuous on R
3. Thus ∆w = −4πδρ. By (4.5)

and (4.6), we have

(4.8) ∆w =

{
−4π

ρ′

0

u′

0
w if |x|≤ 1,

0 if |x|> 1.

Using spherical coordinates, we may regard w as a function on S
2 × R

+. Multiplying (4.8)
by the non-radial (l ≥ 1) spherical harmonic Ylm and integrating over S2, we can write

(4.9) ∆wlm −
l(l + 1)

|x|2
wlm =

{
−4π

ρ′

0

u′

0
wlm for 0 < |x|≤ 1,

0 for |x|> 1,

where wlm = 〈w, Ylm〉S2 . The same argument as in the proof of Lemma 4.5 of [18] (where
wlm is called ϕlm) will give us wlm = 0. There is a technical point in that argument which

requires lim|x|→0+
wlm(|x|)
u′

0(|x|)
= 0, or equivalently lim|x|→0+

wlm(|x|)
|x| = 0. In fact, this is true

because ∣∣∣∣
wlm(|x|)

|x|

∣∣∣∣ =
∣∣∣∣
∫

S2

w(|x|ω)

|x|
Ylm(ω) dω

∣∣∣∣ =
∣∣∣∣
∫

S2

w(|x|ω) − w(0)

|x|
Ylm(ω) dω

∣∣∣∣
≤ C sup

|y|≤|x|

|∇w(y)|

The last quantity tends to 0 as |x|→ 0+, because w ∈ C1, and ∇w(0) = 0 by the symmetry
of δρ.

We have now proven that w must be a radial function. Integrating ∆w = −4πδρ over B1,
using (4.7), and using the fact that δρ is supported on B1, we get w′(1) = 0. Thus w solves
the boundary value problem

(4.10) ∆w + 4π
ρ′0
u′
0

w = 0, w′(1) = 0
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on B1. By Lemma 4.3 of [18], w vanishes in B1. Thus δρ = 0 on R
3. Equation (4.6) now

implies δα = 0. This means that the nullspace is trivial. �

Lemma 4.4. The nonlinear operator (ρ, κ, α) 7→ h−1

([
1
|·| ∗ ρ(·) + κ2j(·) + α

]
+

)
is compact

from ON into Cs.

Proof. Following Nirenberg [16], a continuous map f is called compact if f(K) is a compact
set for every closed bounded setK. Now by Lemma 3.1, if (ρ, κ, α) is bounded, the support of[

1
|·| ∗ ρ(·) + κ2j(·) + α

]
+
is contained in some ball BR. The map is obviously compact from

ON to C0(BR). Using again the trivial bound ‖u‖Cs≤ 〈R〉s‖u‖C0(BR) for u ∈ Cs supported

in BR, we obtain the compactness of this mapping into Cs. �

5. Global continuation

We now use the following form of the Global Implicit Function Theorem.

Theorem 5.1. Let X and Z be Banach spaces and let U be an open subset of X × R. Let
F : U → Z be a C1 mapping in the Fréchet sense. Let (ξ0, κ0) ∈ U such that F (ξ0, κ0) = 0.
Assume that the linear operator ∂F

∂ξ (ξ0, κ0) is bijective from X × R to Z. Assume that the

mapping (ξ.κ) → F (ξ, κ)− ξ is compact from U to X. Let S be the closure in X × R of the

solution set {(ξ, κ)
∣∣∣ F (ξ, κ) = 0}. Let K be the connected component of S to which (ξ0, κ0)

belongs. Then one of the following three alternatives is valid.

(i) K is unbounded in X × R.
(ii) K\{(ξ0, κ0)} is connected.
(iii) K ∩ ∂U 6= ∅.

Proof. This is a standard theorem basically due to Rabinowitz, Theorem 3.2 in [17] in the
case that U = X × R and under some extra structural assumption. A more general version
also appears in Theorem II.6.1 of [11]; its proof is easy to generalize to permit a general open
set U . The case of a general open set U also appears explicitly in [1]. �

Lemma 5.1. There is a connected set KN of solutions for which

• either the solutions are unbounded in Cs × R
2

• or they approach the boundary of ON .

Proof. We apply Theorem 5.1 with X = Z = Cs × R, U = ON and ξ = (ρ, α). The starting
point is κ0 = 0, ξ0 = (ρ0, α0). The second alternative from that theorem is that it forms a
“loop”, but we exclude the case of a loop as follows.

Suppose there were a loop. This means that KN\(ρ0, 0, α0) is connected. Since KN

is connected and the operator is even in κ, it follows that KN\(ρ0, 0, α0) must contain a
different point with κ = 0, say (ρ1, 0, α1) 6= (ρ0, 0, α0). For this new point, κ = 0 means
there is no rotation. Defining U1 = 1

|x| ∗ ρ1, we have

∆U1 = −4πρ1 = −4πh−1([U1 + α1]+) := f(U1).

This function f is C1. Of course, ρ1 ≥ 0 so that U1 > 0 in R
3. So we can apply Theorem 4

in [7] to deduce that ρ1 is radial (spherically symmetric). Letting u1 = U1 + α1, we get

(5.1) u′′
1 +

2

|x|
u′
1 + 4πh−1([u1]+) = 0, u′

1(0) = 0.

Also by Lemma 3.1, [u1]+ is compactly supported. If u1(0) 6= u0(0), then by (2.9) we would
have

∫
R3 ρ1(x) dx 6=

∫
R3 ρ0(x) dx = M . This would violate the equation F2 = 0. Thus

u1(0) = u0(0). By uniqueness of solutions to the initial value problem of equation (2.6), we
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infer that u1 = u0. It follows that ρ1 = ρ0, α1 = α0, which is a contradiction. So there is no
loop. We deduce that either (i) or (iii) is valid; that is, either

sup
KN

(‖ρ‖s+|κ|+|α|) = ∞

or

inf
KN

∣∣∣∣κ
2 sup

x
j(x) + α+

1

N

∣∣∣∣ = 0.

In other words, we have either unboundedness or approach to the boundary. �

Theorem 5.2. Define the connected set K =
⋃∞

N=1 KN . Uniformly along K, either ρ is
unbounded in L∞ or the support of ρ is unbounded.

Proof. Because the sets KN are nested, K is also connected and one of the following state-
ments is true:

(a) supK (‖ρ‖s+|κ|+|α|) = ∞.
(b) infK |κ2 supx j(x) + α|= 0.

In order to prove the theorem, we argue by contradiction. Suppose that both supK supx∈R3 ρ(x) <

∞ and R∗ =: supK sup{x ∈ R
3
∣∣∣ ρ(x) 6= 0} < ∞. We will first prove that (a) is true.

Suppose that (a) is false. Then (b) is true and supK (‖ρ‖s+|κ|+|α|) < ∞. Since |x− y|≤
|x|+R∗ for all y in the support of ρ, we have

(
1

|·|
∗ ρ

)
(x) =

∫
1

|x− y|
ρ(y)dy ≥

M

|x|+R∗
.

We may now write

(5.2)
1

|·|
∗ ρ(x) + κ2j(x) + α ≥

M

|x|+R∗
− κ2(sup

x
j − j(x)) + (κ2 sup

x
j(x) + α).

Let κ0 = supK|κ|. Let us consider a point x in the plane x3 = 0, whence |x|= r(x). By (3.3),

supx j − j(x) = o
(

1
|x|

)
as |x|→ ∞. Thus by (5.2),

(5.3)
1

|·|
∗ ρ(x) + κ2j(x) + α ≥

M

|x|+R∗
− o

(
κ2
0

|x|

)
+ (κ2 sup

x
j(x) + α).

Choosing |x|> R∗ sufficiently large, we can make the sum of the first two terms on the right
side of (5.3) positive. Because of (b), there exists a solution (ρ, κ, α) ∈ K such that the right
side of (5.3) is positive. Due to F1(ρ, κ, α) = 0, we have ρ(x) > 0. This contradicts the
assumption that the support of ρ is bounded by R∗.

Thus (a) must be true. Since ρ is pointwise bounded and its support is also bounded all
along K, it follows that ρ is also bounded in the space Cs. Because of (a), we know that
|κ|+|α| must be unbounded. From the definition of ON , we know that α < 0. In case κ were
bounded, it would have to be the case that α → −∞ along a sequence. Then the equation
F1 = 0 would imply that ρ ≡ 0, which contradicts the mass constraint.

It follows that κn → ∞ for some sequence (ρn, κn, αn) ∈ K with αn < 0. For each n, let
us choose any point xn such that ρn(xn) > 0. By (3.2), we may choose a point y0 such that
r(y0) > R∗ and j(y0) > j(R∗). Since ρn(y0) = 0 and ρn(xn) > 0, we have

0 ≥

[
1

|·|
∗ ρn(·) + κ2

nj(·) + αn

]
(y0) ≥

[
1

|·|
∗ ρn(·) + κ2

nj(·) + αn

] ∣∣∣∣
y0

xn

.

On the right side, the αn cancels. Due to our assumption that the values of ρn and the
supports of ρn are uniformly bounded, we deduce that

0 ≥ κ2
n[j(r(y0))− j(r(xn))]− C,

where C is a fixed constant . Thus j(r(xn)) → j(r(y0)) since κn → ∞. But r(xn) ≤ R∗ <
r(y0) and j is an increasing function of r, so that j(r(xn)) ≤ j(R∗) < j(r(y0)). This is the
desired contradiction. �
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6. Formulation by Angular Momentum

A different formulation of the rotating star problem that is popular in the literature (see
[3]) is to prescribe the angular momentum per unit mass L(m) instead of the angular velocity
ω(r). Under this formulation the velocity field is determined by the function L(m) and the
density ρ(x) in the following way. One first defines the mass within a cylinder by

(6.1) mρ(r) =

∫

x2
1+x2

2≤r2
ρ(x) dx.

Then the function L is related to the angular velocity ω(r) by

(6.2) L(mρ(r)) = r4ω2(r).

In other words, L is the square of r|v|, the angular momentum per unit mass. In this section
we will entirely eliminate consideration of ω(r), and replace it by L(m).

We make the following assumptions on the function L(m):

(6.3) L ≥ 0, L ∈ C1,δ
loc ([0,∞)), L(0) = L′(0) = 0

for some 0 < δ < 1. The Euler–Poisson equations are reformulated as

(6.4) F(ρ, κ, λ) = (F1(ρ, κ, α),F2(ρ)) = 0,

where

(6.5) F1(ρ, κ, λ)(x) = ρ(x)− h−1

([
1

|·|
∗ ρ(x)− κ2

∫ ∞

r(x)

L(mρ(s))s
−3 ds+ λ

]

+

)
,

and

(6.6) F2(ρ) =

∫

R3

ρ(x) dx−M.

Here λ plays a similar role as α did in the earlier formulation but it is not the same constant.
We define Cs as above, and define

(6.7) O∗
N =

{
(ρ, κ, λ) ∈ Cs × R

2 | λ < −
1

N

}
.

Lemma 6.1. The analogues of Lemmas 4.1-4.4 and 5.1 are true.

Proof. By the same argument as in Lemma 3.1, there is a bound on the support of

[
1

|·|
∗ ρ(x) − κ2

∫ ∞

r(x)

L(mρ(s))s
−3 ds+ λ

]

+

.

We also obtain Lemma 4.1, with L replaced by

L(δρ, δκ, δα)(x) = (h−1)′

([
1

|·|
∗ ρ(x) − κ2

∫ ∞

r(x)

L(mρ(s))s
−3 ds+ λ

]

+

)
·

[
1

|·|
∗ δρ(x)− κ2

∫ ∞

r(x)

L′(mρ(s))mδρ(s)s
−3 ds

− 2κ(δκ)

∫ ∞

r(x)

L(mρ(s))s
−3 ds+ δλ

]
.(6.8)
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The key to justifying the Fréchet derivative is the estimate
∣∣∣∣∣

∫ ∞

r(x)

[L(mρ+δρ(s))− L(mρ(s)) − L′(mρ(s))mδρ(s)] s
−3 ds

∣∣∣∣∣

≤

∫ ∞

r(x)

∫ mδρ(x)

0

|L′(mρ(s) + t)− L′(mρ(s))| dt s
−3 ds

≤ ‖L‖C1,δ([0,A])

∫ ∞

r(x)

[mδρ(s)]
1+δs−3 ds.(6.9)

where A = 2‖ρ‖L1. Using the simple fact that

(6.10) mδρ(r) ≤ C‖δρ‖s min(1, r2),

we see that (6.9) is uniformly bounded on compact sets by a constant multiple of ‖δρ‖1+δ
s .

Lemma 4.2 and Lemma 4.3 only involve the κ = 0 case, thus they are valid without change.
To prove Lemma 4.4, we must show that a subsequence of jn(x) =

∫∞

r(x) L(mρn
(s))s−3 ds

converges uniformly on compact sets if {ρn} is bounded in Cs. In fact, using (6.10) again as
above, we see that jn(x) is uniformly bounded on a finite ball BR. To obtain the equiconti-
nuity of jn(x), we estimate

∫ r(y)

r(x)

L(mρn
(s))s−3 ds

≤ ‖L‖C1,δ([0,C‖ρn‖s])

∫ r(y)

r(x)

(mρn
(s))1+δs−3 ds

≤ C‖L‖C1,δ([0,C‖ρn‖s])‖ρn‖
1+δ
s

∫ r(y)

r(x)

s2δ−1 ds

≤ C‖L‖C1,δ([0,C‖ρn‖s])‖ρn‖
1+δ
s |x− y|min(2δ,1).

We can now prove Lemma 5.1 in a similar way as before, thereby deducing that there is a
connected set K∗ ⊂

⋃∞
N=1 O

∗
N of solutions to (6.4) such that at least one of the following

statements is true:

(a) supK(‖ρ‖s+|κ|+|λ|) = ∞.
(b) supK λ = 0.

�

We are now ready to prove

Theorem 6.1. Along the connected set K∗, either ρ is unbounded in L∞ or the support of
ρ is unbounded.

Proof. Arguing by contradiction, we suppose that supK‖ρ‖L∞< ∞ and R∗ =: supK sup{x ∈
R

3 | ρ(x) 6= 0} < ∞.
Suppose also that (a) is false. Then (b) is true and supK(‖ρ‖s+|κ|+|α|) < ∞. We argue

as in the proof of Theorem 5.2. We pick an x on the x3 = 0 plane and such that |x|> R∗ is
sufficiently large. Thereby we obtain the following estimate instead of (5.3):

1

|·|
∗ ρ(x) − κ2

∫ ∞

r(x)

L(mρ(s))s
−3 ds+ λ

≥
M

|x|+R∗
− κ2

0

∫ ∞

r(x)

L(M)s−3 ds+ λ

≥
M

|x|+R∗
−

Cκ2
0L(M)

r(x)2
+ λ(6.11)
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We have used the fact that mρ(s) = M because r(x) > R∗. Then the sum of the first two
terms in (6.11) is positive. We now use (b) and choose a solution along K∗ so that λ is
sufficiently close to zero to make (6.11) positive. Hence for this solution, and this point x,
we have ρ(x) > 0, contradicting the definition of R∗.

Thus (a) must be true. Since we assume that ρ is bounded in L∞ and R∗ < ∞, it follows
that ‖ρ‖s is also bounded. Suppose |κ| is bounded. Then |λ| must be unbounded. Since
λ < 0 for solutions in

⋃∞
N=1 O

∗
N , it must be true that λ → −∞ along a sequence. However

in this case the equation F1 = 0 would imply that ρ ≡ 0 for λ sufficiently negative, which
contradicts the mass constraint.

It follows that |κn|→ ∞ and λn → −∞ along some sequence (ρn, κn, λn) ∈ K∗. Arguing
as in the proof of Theorem 5.2, we choose any point y0 such that r(y0) > R∗, and any point
xn such that ρn(xn) > 0. So r(xn) < R∗. It follows that

0 ≥

[
1

|·|
∗ ρn(·)− κ2

n

∫ ∞

r(·)

L(mρn
(s))s−3 ds+ λn

]
(y0)

≥

[
1

|·|
∗ ρn(·)− κ2

n

∫ ∞

r(·)

L(mρn
(s))s−3 ds+ λn

] ∣∣∣∣
y0

xn

≥ κ2
n

∫ r(y0)

r(xn)

L(mρn
(s))s−3 ds− C ≥ κ2

n

∫ r(y0)

R∗

L(M)s−3 ds− C

≥
κ2
nL(M)

2

(
1

R2
∗

−
1

r2(y0)

)
− C.

The desired contradiction follows because |κn|→ ∞. �

7. Comparison between Different Angular Velocity Formulations

The rotating star problem appears in several different formulations in the literature. Al-
though these formulations are not equivalent, all of them produce rotating star solutions
to the Euler–Poisson equations under certain circumstances. Here we provide a comparison
of the formulations in the case of prescribed angular velocity ω(r). The case of prescribed
angular momentum per unit mass can be discussed in a similar way. In our discussion the
density function ρ is assumed to be an axisymmetric function on R

3, ω(r) is a continuous
function on [0,∞), and h(s) is a strictly increasing continuous function from [0,∞) onto
[0,∞). The inverse of h is denoted by h−1. The original Euler–Poisson equation (1.1) is
made precise as follows.

Formulation 1. Let ρ be a non-negative function in Cloc(R
3) ∩ L1(R3). It is a called a

rotating star solution under Formulation 1 if there exists a real number α such that the
equation

(7.1)
1

|·|
∗ ρ(x) +

∫ r(x)

0

sω2(s) ds− h(ρ(x)) + α = 0

is valid on the positivity set {x ∈ R
3 | ρ(x) > 0},

Note that 1
|·| ∗ ρ(x) is defined and continuous because ρ ∈ Cloc(R

3)∩L1(R3). The second

formulation is basically the approach taken in this paper.

Formulation 2. Let ρ ∈ Cloc(R
3) ∩ L1(R3). It is called a rotating star solution under

Formulation 2 if there exists a real number α such that

(7.2) ρ(x) = h−1

([
1

|·|
∗ ρ(x) +

∫ r(x)

0

sω2(s) ds+ α

]

+

)

for all x ∈ R
3.
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The third formulation is basically the one used by Auchmuty in [2] and is closely related
to the one used by Jang and Makino in [9].

Formulation 3. Let ρ ∈ C(BR) for some ball BR of radius R centered at the origin. Extend
it to be zero outside BR. Then ρ is called a rotating star solution under Formulation 3 if
there exists a real number α such that (7.2) is true for all x ∈ BR.

The fourth formulation is used by the authors in [18]. The density is explicitly designed
to be a mass-invariant perturbation of a non-rotating solution. An earlier precursor of this
formulation was used by Lichtenstein [13] and Heilig [8]; however, their version did not keep
the mass invariant.

Formulation 4. Let ρ0 be a radial (spherically symmetric) continuous function on R
3 that

is positive in a ball BR0 centered at the origin, vanishes in its complement, and solves the
equation

(7.3)
1

|·|
∗ ρ0(x) − h(ρ0(x)) + α0 = 0

for some real number α0 and all x ∈ BR0 . Let ζ : BR0 → R be an axisymmetric continuous
function vanishing at the origin to sufficiently high order such that

(7.4) gζ(x) = x

(
1 +

ζ(x)

|x|2

)

is a homeomorphism from BR0 to gζ(BR0). Define

(7.5) ρζ(x) =

∫
BR0

ρ0(x) dx
∫
gζ(BR0)

ρ0(g
−1
ζ (x)) dx

ρ0(g
−1
ζ (x))

for x ∈ gζ(BR0) and extend it to be zero elsewhere. The function ζ is said to give rise to a
rotating star solution ρζ if there exists a real number α such that

(7.6)
1

|·|
∗ ρζ(x) +

∫ r(x)

0

sω2(s) ds− h(ρζ(x)) + α = 0

for all x ∈ gζ(BR0).

Note that the L1 norm (mass) of ρζ is designed to be the same as that of ρ0. Moreover, if
one can find a ζ that gives rise to a rotating star solution, one not only obtains some solution,
but in fact the solution ρζ is created by a simple deformation along radial directions from the
non-rotating one ρ0. Thus a solution under Formulation 4 reveals deeper structure about
its relationship to a non-rotating star.

As alluded to earlier, the above formulations are not equivalent, at least as the definitions
explicitly allow. We begin by stating how the other formulations imply Formulation 1.

Proposition 7.1. The following implications hold.

(a) Formulation 2 implies Formulation 1.
(b) Formulation 3, together with the condition ρ(x) = 0 for all x ∈ ∂BR, implies Formula-

tion 1.
(c) Formulation 4 implies Formulation 1.

Proof. To prove (a), note that if ρ is a rotating star solution under Formulation 2, then
whenever ρ(x) > 0, the term in the square bracket of (7.2) must also be positive. Thus
in that region one can ignore the + subscript (the positive part of the square bracket),
so that (7.1) follows. Assertion (b) is proven in a similar way, once it is noticed that the
additional assumption ρ(x) = 0 on ∂BR guarantees that ρ ∈ Cloc(R

3) ∩ L1(R3). Assertion
(c) is obvious. �
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We now discuss the weaknesses of each formulation compared with the original Formu-
lation 1. The drawback of Formulation 2 is that it does not capture all the solutions to
Formulation 1. The reason is that Formulation 1 does not require equality of the two sides
of (7.2) when ρ(x) = 0, whereas Formulation 2 does. Formulation 2 requires the expression
U(x) in square brackets to be non-positive outside the support of ρ, but Formulation 1 does
not. Thus Formulation 2 misses many solutions which are valid according to Formulation 1,
especially if the term involving ω(s) grows positively at infinity. In that case, a valid solution
under Formulation 1 may make U(x) very big for large |x|, while the left side remains 0. In
fact, in order to actually work with Formulation 2, one requires the right side of (7.2) to
have enough decay near infinity, which is virtually impossible if the term involving ω(s) were
to grow near infinity.

Formulation 3 misses some solutions of Formulation 1 in the same way that Formulation 2
does, although it does avoid the difficulty at infinity by restricting to an artificially chosen
ball BR. However, it is in general difficult to prove that ρ(x) vanishes on the boundary of
BR. If one chooses BR larger than the support of a non-rotating solution, one can show
that sufficiently small perturbations of that non-rotating solution will remain zero on the
boundary of BR, However, as soon as one continues the solution branch to fast rotations,
nonzero boundary values may appear, which would violate the physical vacuum boundary
condition of a rotating star. Nor are we aware of a general mechanism that can force the
support to grow gradually until it hits the boundary of BR. In principle, the only physical
solutions one can get via this approach seem to be merely the very small perturbations of a
nonrotating star.

Formulation 4 has the advantage of enforcing an equation only where ρζ(x) > 0. It is
thus closer in spirit to Formulation 1. However, we are not aware of any evidence that large
deviations from a non-rotating solution will still have the structure of radial deformation
that appears in Formulation 4. Formulation 4 is also significantly more complicated than
the other formulations when it comes to the actual construction of the function ζ (see [18]),
especially with regard to the required compactness property, the analogue of Lemma 4.4.

Like Formulation 1, Formulation 4 does not require (7.2) on the set where ρ(x) = 0. Thus
it is not clear that Formulation 4 implies Formulation 2 or Formulation 3. However, in the
following special situation, a solution to Formulation 4 does indeed solve Formulation 3.
For a given ρ0 in Formulation 4, choose the ball BR in Formulation 3 to have a fixed
radius R > R0. Suppose the solution ρζ is sufficiently close to the radial solution ρ0 in

the sense that gζ(BR0) ⊂ BR, and ρζ and ρ0 are sufficiently close to each other in C(BR).

Furthermore, suppose that ω(r) is a smooth function with sufficiently small C(BR) norm.
Heuristically, the above conditions describe a small perturbation of the nonrotating solution
ρ0. Finally, assume the technical condition that rω(r) is non-decreasing. From (7.5) we see
that ρζ(x) > 0 for x ∈ gζ(BR0), and ρζ(x) = 0 for x ∈ BR \ gζ(BR0). To prove that ρζ is
also a solution to Formulation 3, it remains to prove that

(7.7) f(x) :=
1

|·|
∗ ρζ(x) +

∫ r(x)

0

sω2(s) ds+ α ≤ 0

for x ∈ BR \ gζ(BR0). In this “annular” region we have ∆f(x) = ∆
∫ r(x)

0
sω2(s) ds =

1
r (r

2ω2(r))′ ≥ 0. Hence we only have to show f(x) ≤ 0 on gζ(∂BR0) ∪ ∂BR. By (7.6) and
the continuity of ρζ , we obviously have f(x) = h(ρζ) = 0 for x ∈ gζ(∂BR0). It remains to
prove that f(x) ≤ 0 on ∂BR. For this purpose note that the function f0(x) :=

1
|·|∗ρ0(x)+α0 is

harmonic outside BR0 and that f0 = 0 and f ′
0 < 0 on ∂BR0 . It follows that f0(x) < 0 for |x|>

R0. Since f(x) is sufficiently close to f0(x) in supremum norm by the smallness assumptions,
we have f(x) < 0 on ∂BR. This shows that ρζ is also a solution to Formulation 3. Since
the typical construction of solutions via Formulation 3 guarantees local uniqueness, this
reasoning shows that the unique solution must have the structure detailed in Formulation 4.
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If the rotating star problem is treated as a classical free boundary problem, then a fifth
possible formulation emerges. Let us begin with Formulation 1 with a connected set Ω =
{ρ > 0}. Let q = h(ρ). Taking the Laplacian of (1.1), the function q satisfies the elliptic
equation

(7.8) ∆q = 4πh−1(q)− κ2∆j

in Ω with j defined by (3.1), together with the pair of boundary conditions

(7.9) q = 0 and
1

|·|
∗ h−1(q) + κ2j = constant on ∂Ω.

Now we use a transformation of hodograph type to convert Ω to a fixed domain. Using
standard spherical coordinates (s, θ, φ), we exchange independent and dependent variables
by defining

(7.10) s′ = 1− q(s, θ, φ) and w(s′, θ, φ) = s.

Then Ω goes into the unit ball while its boundary ∂Ω goes into the unit sphere ∂B1 = {s′ =
1}. The first boundary condition in (7.9) is automatically satisfied. The whole problem
is thereby transformed into a nonlinear elliptic equation for w(s′, θ, φ) in the unit ball B1

with a single nonlinear boundary condition. This is Formulation 5. We continue to assume
axisymmetry, which means that w does not depend on φ. This formulation has the primary
advantage that the domain is fixed. However it appears to be rather complicated to analyze
because both the equation and the boundary condition are highly nonlinear and have variable
coefficients. We refrain from providing the details.
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