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REMARKS ON SCATTERING MATRICES FOR

SCHRÖDINGER OPERATORS WITH CRITICALLY

LONG-RANGE PERTURBATIONS

SHU NAKAMURA

Abstract. We consider scattering matrix for Schrödinger-type operators on
R

d with perturbation V (x) = O(〈x〉−1) as |x| → ∞. We show that the scatter-
ing matrix (with time-independent modifiers) is a pseudodifferential operator,
and analyze its spectrum. We present examples of which the spectrum of
the scattering matrices have dense point spectrum, and absolutely continuous
spectrum, respectively.

1. Introduction

In this note, we consider the scattering matrices for Schrödinger-type operators

H = H0 + V on H = L2(Rd),

where H0 = p0(Dx) is a Fourier multiplier, and V = V W (x,Dx) is a long-range
perturbation of H0. We will explain the general setup in the next section, and
here we present our main results for the standard Schrödinger operators with
potential perturbations, i.e., H0 = −1

2△, and V = V (x). We say the potential
V (x) is a long-range perturbation, if V (x) is a real-valued smooth function, and
there is µ ∈ (0, 1] such that for any multi-index α ∈ Z

d
+,

∣

∣∂αxV (x)
∣

∣ ≤ Cα〈x〉−µ−|α|, x ∈ R
d,

with some Cα > 0, where 〈x〉 = (1 + |x|2)1/2. We consider the case µ ∈ (0, 1) in
another paper [10], and we concentrate on the case µ = 1 in this paper. Namely,
we suppose

Assumption A. V (x) ∈ C∞(Rd;R), and for any α ∈ Z
d, there is Cα > 0 such

that
∣

∣∂σxV (x)
∣

∣ ≤ Cα〈x〉−1−|α|, x ∈ R
d.

At first, we show the scattering matrix is a pseudodifferential operator, and
compute the principal symbol.
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Theorem 1.1. Under Assumption A, for any λ > 0, the scattering matrix S(λ) ∈
B(L2(Sd−1)) is a pseudodifferential operator on Sd−1, and the principal symbol

is given by

s0(λ, x, ξ) = exp

(

−i
∫ ∞

−∞
(V (x+ t

√
2λξ)− V (t

√
2λξ))dt

)

,

for ξ ∈ Sd−1, x ∈ T ∗
ξ S

d−1 ≃ ξ⊥. More precisely, if we write the symbol of S(λ) by

s(λ, x, ξ), then s(λ, ·, ·) ∈ Sδ1,0(T
∗Sd−1), and s(λ, ·, ·)−s0(λ, ·, ·) ∈ S−1+δ

1,0 (T ∗Sd−1)
with any δ > 0.

Remark 1.1. This is essentially a refined version of a result by Yafaev [13] for
the case µ = 1, and our proof for generalized model follows the argument of
Nakamura [8] for short range perturbations. This argument works for µ > 1/2,
as in the paper [13] , though we have more precise results if we employ Fourier
integral operator formulation as in [10], unless µ = 1. Thus one of the purpose
of this note is to fill a gap left in [10].

Remark 1.2. By a simple change of integration variable, we have

s0(λ, x, ξ) = exp

(

−i(2λ)−1/2

∫ ∞

−∞
(V (x+ tξ)− V (tξ))dt

)

,

though the expression in Theorem 1.1 might be more natural since
√
2λξ is the

velocity corresponding to ξ ∈ Sd−1 at the energy λ. If we write

ψ(x, ξ) =

∫ ∞

−∞
(V (x+ tξ)− V (tξ))dt, ξ ∈ Sd−1, x ∈ T ∗

ξ S
d−1 ≃ ξ⊥,

then it is easy to see that ψ satisfies

∣

∣∂αx ∂
β
ξ ψ(x, ξ)

∣

∣ ≤
{

Cαβ〈log〈x〉〉, if α = 0,

Cαβ〈x〉−|α|, if α 6= 0,

for any α, β ∈ Z
d−1
+ in a local coordinate. Thus we learn

s0(λ, x, ξ) = exp(−i(2λ)−1/2ψ(x, ξ)) ∈ Sδ1,0(T
∗Sd−1)

with any δ > 0.

Next, we consider the spectral properties of S(λ) using the above representa-
tion.

Theorem 1.2. Suppose Assumption A, and suppose V is rotation symmetric

and

|x · ∂xV (x)| ≥ c|x|−1 for |x| ≥ R,

with some c,R > 0. Then for any λ > 0 the scattering matrix has dense pure

point spectrum on the whole unit circle.

For the moment, we need the rotation symmetry to show the pure pint spec-
trum, but we can show the absence of absolutely continuous spectrum under
weaker assumptions. We discuss these in Section 3.
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Theorem 1.3. Suppose d = 2, and let

V (x) = a
x1
〈x〉2 , x = (x1, x2) ∈ R

2,

with a 6= 0. Then, σess(S(λ)) = {eiθ | |θ| ≤ |a|π(2λ)−1/2}, and S(λ) has abso-

lutely continuous spectrum on S1 \ {e±iaπ(2λ)−1/2}, except for possibly discrete

eigenvalues. The eigenvalues may accumulate only at e±iπa(2λ)
−1/2

.

The absolutely continuous spectrum is relatively stable under small perturba-
tions, and we have the same properties if we add lower order perturbations.

There is extensive literature concerning the two-body long-range scattering.
We refer textbooks, Reed-Simon Volume 3 [11] §X1-9, Yafaev [14] Part 2, [15]
Chapter 10, Dereziński-Gérard [1], and references therein. About the scattering
matrix for long-range scattering, there are detailed analysis by Yafaev, especially
[13]. Our approach is closely related to his result, though our formulation is more
general and the proof is substantially different. Actually it is a direct extension
of a previous paper by the author [8]. In particular, this argument is easily gener-
alized to discrete Schrödinger operators with long-range perturbations ([7], [12]).
Our example of scattering matrix with pure point spectrum is discussed in §9.7
in Yafaev [14], though in a different manner, and we also discuss generalizations.
Thus the author feel it would be useful to include an independent proof.

Theorems 1.2 and 1.3 are proved in Section 3, and Section 4, respectively. In
Sections 4 we use functional calculus of unitary pseudodifferential operators, and
for the completeness we give a proof the functional calculus in Appendix A. A
construction of approximate logarithm of unitary pseudodifferential operators is
discussed in Appendix B, and a simple result of trace-class scattering theory for
unitary operators is discussed in Appendix C.

In the following, we use the Weyl quantization of a symbol a ∈ C∞(R2d):

Op(a)ϕ(x) = (2π)−d
∫∫

ei(x−y)·ξa(x+y2 , ξ)ϕ(y)dydξ, ϕ ∈ S(Rd).

We denote the Kohn-Nirenberg symbol class in ξ-space by Smρ,δ, i.e., a ∈ Smρ,δ if

a ∈ C∞(R2d) and for any α, β ∈ Z
d
+ there is Cαβ such that

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣ ≤ Cαβ〈x〉m−ρ|α|+δ|β|, x, ξ ∈ R
d.

We also use the Hörmander S(m, g) symbol class notation [4], but we will use
it for specific metrics g and g̃, and we explain later. For a symbol class Σ, we
denote the corresponding operator set by OpΣ =

{

Op(a)
∣

∣ a ∈ Σ
}

. We refer
Hörmander [4], Dimassi-Sjöstrand [2] and Zworski [16] for the pseudodifferential
operator calculus.

2. Representation formula of the scattering matrix

Here we define long-range wave operators and scattering operators using time-
independent modifiers originally dues to Isozaki and Kitada [5, 6]. We follow the
formulation of Nakamura [8], and sketch the proof of Theorem 1.1 in a generalized
setting.
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Assumption B. Let p0(ξ) ∈ C∞(Rd;R) and elliptic in the following sense: There

is ν > 0 such that p0 ∈ Sν , i.e., ∂αξ p0(ξ) = O(〈ξ〉ν−|α|) for any α ∈ Z
d
+, and

p0(ξ) ≥ c0〈ξ〉ν − c1, ξ ∈ R
d,

with some c0, c1 > 0. Let I ⋐ R be a compact interval. We suppose there is
c0 > 0 such that

∣

∣∂ξp0(ξ)
∣

∣ ≥ c0 for ξ ∈ p−1
0 (I).

We set
H0 = p0(Dx) = F

∗p0(·)F,
where F is the Fourier transform, and we also write the free velocity by

v(ξ) = ∂ξp0(ξ), ξ ∈ R
d.

We suppose the perturbation V is a symmetric pseudodifferential operator with
the real-valued Weyl symbol V (x, ξ), i.e.,

V ϕ(x) = (2π)−d
∫∫

ei(x−y)·ξV (x+y2 , ξ)f(y)dydξ, ϕ ∈ S(Rd).

We denote the metric g = dx2/〈x〉2+dξ2, and the symbol class S(m, g) is defined
as follows: a ∈ S(m, g) if and only if a ∈ C∞(R2d) and

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣ ≤ Cαβm(x, ξ)〈x〉−|α|, x, ξ ∈ R
d

for any α, β ∈ Z
d
+, with some Cαβ > 0.

Assumption C. V (x, ξ) is real valued and V ∈ S(〈x〉−1〈ξ〉ν , g).
We write

H = H0 + V = p0(Dx) + V W (x,Dx)

be our Hamiltonian, and we suppose:

Assumption D. H is essentially self-adjoint on Hν(Rd).

We write the symbol of H by

p(x, ξ) = p0(ξ) + V (x, ξ).

Remark 2.1. It might be natural to assume the ellipticity:

|p(x, ξ)| ≥ c0〈ξ〉ν − c1, for x, ξ ∈ R
d.

It implies the self-adjointness on Hν(Rd), but it is not essential in the following
argument.

For ε > 0, we denote

Ωε± =
{

(x, ξ) ∈ R
2d

∣

∣ ± cos(x, v(ξ)) > −1 + ε, |x| ≥ 1, p0(ξ) ∈ I
}

.

As well as in [8] Section 3, we can construct symbols a± ∈ S(1, g) such that

HOp(a±)−Op(a±)H0 ∼ 0

in the formal symbol sense as |x| → ∞ in Ωε±. a± have the form:

a±(x, ξ) ∼ eiψ±(x,ξ)
(

1 + a±1 (x, ξ) + a±2 (x, ξ) + · · ·
)

where

ψ±(x, ξ) =

∫ ±∞

0
(V (x+ tv(ξ), ξ)− V (tv(ξ), ξ))dt.
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We note ψ±(x, ξ) /∈ S(1, g) (on Ωε±) in general, but for any α, β ∈ Z
d
+,

∣

∣∂βξ ψ±(x, ξ)
∣

∣ ≤ Cβ〈log〈x〉〉,
and if α 6= 0,

∣

∣∂αx∂
β
ξ ψ±(x, ξ)

∣

∣ ≤ Cαβ〈x〉−|α|

on Ωε±. We note ψ± satisfies

v(ξ) · ∂xψ±(x, ξ) + V (x, ξ) = 0

as well as in the short-range case (see [8] Section 3).
We introduce a new metric g̃ by

g̃ = 〈x〉−2dx2 + 〈log〈x〉〉2dξ2 on R
2d.

Then the corresponding symbol class S(m, g̃) is defined as follows: a ∈ S(m, g̃)
if and only if, for any α, β ∈ Z

d
+,

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣ ≤ Cαβm(x, ξ)〈x〉−|α|〈log〈x〉〉|β|

with some Cαβ > 0. We note, hence, for any δ > 0, S(m, g̃) ⊂ S(m〈x〉δ , g).
By the same construction of a±j as in [8], Section 3, and direct computations,

we can easily show a±j ∈ S(〈x〉−j〈log〈x〉〉j , g̃) on Ωε±. Hence, a±, which is an

asymptotic sum of {a±j }, is an element of S(1, g̃) ⊂ S(〈x〉δ , g), with any δ > 0 on

Ωε±. We also note a± − 1 ∈ S(〈x〉−1〈log〈x〉〉, g̃) ⊂ S(〈x〉−1+δ , g) on Ωε±.
We choose smooth cut-off functions χ, ζ and η such that: χ ∈ C∞

0 (I) with
χ(λ) = 1 on I ′ ⋐ I; ζ(x) = 0 in a neighborhood of 0 and supp[1− ζ] ⊂ {|x| ≤ 2};
and η(σ) = 1 if σ > −1 + 2ε and η(σ) = 0 if σ ≤ −1 + ε with sufficiently small
ε > 0. With these cut-off functions, we set

ã±(x, ξ) = χ(p0(ξ))ζ(|x|)η(± cos(x, v(ξ)))a±(x, ξ).

Then we have symbols ã± ∈ S(1, g̃). We set

J± = Op(ã±).

We note the principal symbols of J∗
±J± are

∣

∣χ(p0(ξ))ζ(|x|)η(± cos(x, v(ξ))
∣

∣

2
, and

the remainder terms are in S(〈x〉−1+δ , g). Hence J± are bounded in L2, and we
can utilize standard pseudodifferential operator calculus as if they are in S(1, g).
We call J± the time-independent modifiers, or the Isozaki-Kitada modifiers [5, 6].
By the construction,

EssSupp[a±] ⊂ {p0(ξ) ∈ I \ I ′} ∪ {± cos(x, v(ξ)) ∈ [−1 + ε,−1 + 2ε]} ∪ {|x| ≤ 2},
where EssSupp[·] denotes the essential support of the symbol. Using this fact
and the standard non-stationary phase argument, we can show the existence of
modified wave operators:

W±EI′(H0) = s-lim
t→±∞

eitHJ±e
−itH0EI′(H0)

where EI(A) denotes the spectral projection. We recall W± has the intertwining
property:

HW±EI′(H0) =W±EI′(H0)H0.

We set the (modified) scattering operator S by

SEI′(H0) = (W+EI′)
∗W−EI′(H0),
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and then SEI′(H0) is a unitary operator on EI′(H0)H. By the above intertwining
property, S commutes with H0.

We now define the scattering matrix S(λ) for λ ∈ I ′. We denote the energy
surface with the energy λ ∈ I by

Σλ =
{

ξ ∈ R
d
∣

∣ p0(ξ) = λ
}

= p−1
0 ({λ}).

We note Σλ is a smooth hypersurface by the above assumption. Let

mλ = |p0(ξ)|−1dS(ξ)

be a measure on Σλ, where dS(ξ) is the surface measure on Σλ, so that
∫

ϕdξ =

∫

I

(
∫

Σλ

ϕ
∣

∣

Σλ
dmλ

)

dλ

for ϕ ∈ C∞
0 (p−1

0 (I)). Hence we have the integral decomposition

L2(p−1
0 (I), dξ) ≃

∫ ⊕

I
L2(Σλ,mλ)dλ.

Since S commutes with H0, the operator FSEI′(H0)F
∗ commutes with p0(ξ)·,

and hence it is decomposed to operators on L2(Σλ,mλ):

FSEI′(H0)F
∗ ≃

∫ ⊕

I′
S(λ)dλ on

∫ ⊕

I′
L2(Σλ,mλ)dλ.

The family of operators {S(λ)}λ∈I′ is called the scattering matrix.
Given the above construction, we can prove the following theorem in exactly

the same argument as in [8] (see also [10]). We note the microlocal resolvent
estimate, which is crucial in the proof, is proved in [9] under our setting.

Theorem 2.1. Let λ ∈ I ′ \ σp(H). Then S(λ) is a pseudodifferential operator

on Σλ. If we denote the symbol by s(λ, x, ξ), then it satisfies for any α, β ∈ Z
d−1
+ ,

∣

∣∂αx ∂
β
ξ s(λ, x, ξ)

∣

∣ ≤ Cαβ〈x〉−|α|〈log〈x〉〉|β|

for ξ ∈ Σλ, x ∈ T ∗
ξ Σλ. Moreover, the principal symbol is given by

s0(λ, x, ξ) = exp

(

−i
∫ ∞

−∞
(V (x+ tv(ξ), ξ) − V (tv(ξ), ξ))dt

)

,

i.e., s(λ, ·, ·) − s0(λ, ·, ·) ∈ S(〈x〉−1+δ , g) with any δ > 0.

3. Scattering matrix with pure point spectrum

We first note that, if H0 = −1
2△, and if the perturbation is rotation symmetric,

then the scattering matrix is also rotation symmetric. Then we can easily show
that such operator has pure point spectrum. This model is also discussed in [14]
§9.7.
Lemma 3.1. Suppose U is a rotation symmetric bounded pseudodifferential op-

erator on Sd−1, then the spectrum is pure point.

Proof. In the geodesic local coordinate with the center at ξ0, the symbol of the
operator U has the form u(ξ0, |x|2) by virtue of the symmetry (with respect the
rotation around ξ0). Then, again by the symmetry, the symbol is independent
of ξ0, i.e., the symbol has the form u(ξ, |x|2) = g(|x|2) in the geodesic local
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coordinate. This implies U = g(−△), where △ is the Laplace-Beltrami operator
on Sd−1. Since the spectrum of −△ is pure point, the spectrum of U = g(−△)
is also pure point. �

We now observe the spectrum of the scattering matrix tends to cover the whole
unit circle.

Lemma 3.2. Suppose V = V (x) is a rotationally symmetric potential and satis-

fies Assumption A. Suppose, moreover, V satisfies

|x · ∂xV (x)| ≥ c|x|−1, |x| ≥ R,

with some c > 0 and R > 0. Then for any λ > 0, σ(S(λ)) = S1 = {z ∈ C | |z| =
1}.
Proof. We suppose x ·∂xV (x) ≥ c0|x|−1 for large x. Let θ0 ∈ [0, 2π] be fixed, and
we show e−iθ0 ∈ σ(S(λ)). We write V (x) = g(|x|).

We write, for ξ ∈ Sd−1, x ⊥ ξ and |x| ≥ R,

ψ(x, ξ) =

∫ ∞

−∞
(V (x+ tξ)− V (tξ))dt,

=

∫ ∞

−∞

(
∫ 1

0
x · ∂xV (sx+ tξ)ds

)

dt.(3.1)

We note, since V (x) is rotationally symmetric, we have

x · ∂xV (x) = |x|g′(|x|) ≥ c0|x|−1,

and hence

x · ∂xV (sx+ tξ) = x · sx+ tξ

|sx+ tξ|g
′(|sx+ tξ|)

=
s|x|2

|sx+ tξ|g
′(|sx+ tξ|) ≥ c0s|x|2

〈sx+ tξ〉3 .

Thus we have

ψ(x, ξ) ≥
∫ ∞

−∞

(
∫ 1

0

c0s|x|2
〈sx+ tξ〉3ds

)

dt

=

∫ 1

0

(
∫ ∞

−∞

c0s|x|2
(s2|x|2 + t2 + 1)3/2

dt

)

ds

= 2c0

∫ 1

0

s|x|2
s2|x|2 + 1

ds = 2c0

∫ |x|

0

sds

s2 + 1
= 2c0 log〈x〉.

Here we have used the formula:
∫∞
0 (a2 + t2)−3/2dt = a−2, a > 0. In particular

ψ(x, ξ) → ∞ as |x| → ∞, and hence, for any N > 0 we can find (xN , ξN ) such
that |xN | ≥ N and ψ(xN , ξN ) ≡ λθ0 mod (2πZ). We set

ϕN (ξ) = cN exp(ixN · (ξ − ξN )− |ξ − ξN |2/|xN |)
in a neighborhood inside a local coordinate of ξN , where cN is chosen so that
‖ϕN‖ = 1. Then ϕN is supported essentially in

{(x, ξ) | |x− xN | = O(〈xN 〉1/2), |ξ − ξN | = O(〈xN 〉−1/2}.
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We also recall e−i(2λ)
−1/2ψ(x,ξ) is the principal symbol of S(λ), and ∂xψ(x, ξ) =

O(|x|−1), ∂ξψ(x, ξ) = O(log〈x〉) as |ξ| → ∞. These imply

〈ϕN , S(λ)ϕN 〉 − e−iθ0‖ϕN‖2 = O(〈xN 〉−1/2 log〈xN 〉) → 0 as N → ∞,

and we may assume {ϕN} are asymptotically orthogonal (since they have es-
sentially disjoint supports in the phase space). Then by the Weyl’s criterion
([11] Theorem VII.12), we conclude eiθ ∈ σess(S(λ)). The proof for the case
x · ∂xV (x) ≤ −c0|x|−1 (|x| ≥ R) is essentially the same. �

Theorem 1.2 follows immediately from the above two lemmas.
We now consider slightly more general potentials. We write

∂rf(x) = x̂ · ∂xf(x), x̂ =
x

|x| ,

and

∂⊥r f(x) = ∂xf(x)− ∂rf(x)x̂ = (E − x̂⊗ x̂)∂xf(x),

for f ∈ C1(Rd).

Theorem 3.3. Suppose V satisfies Assumption A, and there are constants c1, c2, R >
0 such that c1 > c2 and

(3.2)
∣

∣∂rV (x)
∣

∣ ≥ c1
|x|2 ,

∣

∣∂⊥r V (x)
∣

∣ ≤ c2
|x|2 , if |x| ≥ R.

Then σ(S(λ)) = S1, and S(λ) has no absolutely continuous spectrum for λ > 0.

Remark 3.1. Suppose V (x) = −f(θ)/r, x = (r cos θ, r sin θ) ∈ R
2 for |x| ≥ R,

f(θ) > 0. Then the condition (3.2) is equivalent to

inf
θ
f(θ) = c1 > c2 = sup

θ
|f ′(θ)|.

Lemma 3.4. Suppose V satisfies (3.2), then there is c3 > 0 such that

ψ(x, ξ) ≥ 2(c1 − c2) log |x| − c3, ξ ∈ Sd−1, x ⊥ ξ.

Proof. Here we suppose ∂rV (x) ≥ c1/|x|2. The other case is considered similarly.
We may suppose |x| ≥ R without loss of generality. We recall (3.1). We write
y = sx+ tξ, and compute

x · ∂xV (y) = ∂rV (y)(x · ŷ) + x · ∂⊥r V (y).

At first, we note

x · ŷ =
x · (sx+ tξ)

|sx+ tξ| =
s|x|2

(s2|x|2 + t2)1/2
.

We also note

(E − ŷ ⊗ ŷ)x = x− (x · ŷ)ŷ = x− s|x|2(sx+ tξ)

s2|x|2 + t2

=
(s2|x|2 + t2)− s2|x|2

s2|x|2 + t2
x− s|x|2t

s2|x|2 + t2
ξ

=
t2x− st|x|2ξ
s2|x|2 + t2

,
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and thus

∣

∣(E − ŷ ⊗ ŷ)x
∣

∣ =
(t4|x|2 + s2t2|x|4)1/2

s2|x|2 + t2
=

|t||x|
(s2|x|2 + t2)1/2

.

Hence we learn
∫ ∞

−∞
∂rV (y)(x · ŷ)dt ≥

∫ ∞

−∞

c1
|sx+ tξ|2 · s|x|2

(s2|x|2 + t2)1/2
dt

=

∫ ∞

−∞

c1s|x|2dt
(s2|x|2 + t2)3/2

=
2c1s|x|2
s2|x|2 =

2c1
s
,

provided s|x| ≥ R. Similarly, we learn
∫ ∞

−∞

∣

∣x · ∂⊥r V (y)
∣

∣dt ≤
∫ ∞

−∞

c2
|sx+ tξ|2 · |t||x|

(s2|x|2 + t2)1/2
dt

=

∫ ∞

−∞

c2|x||t|dt
(s2|x|2 + t2)3/2

=
2c2|x|
s|x| =

2c2
s
,

if s|x| ≥ R. Here we have used the formula:
∫∞
0 t(a2 + t2)−3/2dt = a−1. Thus we

have
∫ 1

R/|x|

(
∫ ∞

−∞
x · ∂xV (sx+ tξ)dt

)

ds ≥
∫ 1

R/|x|

2(c1 − c2)

s
ds

= 2(c1 − c2) log(|x|/R) = 2(c1 − c2) log |x| − 2(c1 − c2) logR.

On the other hand, if s|x| ≤ R, we use
∣

∣x · ∂xV (sx+ tξ)
∣

∣ ≤ C|x|〈tξ〉−2 = C|x|〈t〉−2,

with some C > 0, which follows directly from Assumption A. Hence, we learn

∫ R/|x|

0

(
∫ ∞

−∞

∣

∣x · ∂xV (sx+ tξ)
∣

∣dt

)

ds ≤ C|x| · R|x|

∫ ∞

−∞
〈t〉−2dt = CπR.

Combining these, we obtain
∫ 1

0

(
∫ ∞

−∞
x · ∂xV (sx+ tξ)dt

)

ds ≥ 2(c1 − c2) log |x| − c3,

where c3 = 2(c1 − c2) logR+ CπR. �

Proof of Theorem 3.3. The claim σ(S(λ)) = S1 is proved exactly as in the proof
of Lemma 3.2 using Lemma 3.4.

By Theorem B.1 in Appendix B, we learn there is a real-valued symbol Ψ ∈
S(〈log〈x〉〉, g) such that S(λ) ≡ exp(−i(2λ)−1/2Op(Ψ)) modulo S(〈x〉−∞, g), where
g = dx2/〈x〉2 + dξ2. Moreover, the principal symbol of Ψ is ψ computed above,
i.e., Ψ−ψ ∈ S(〈x〉−1+δ , g) with any δ > 0. Then, by Lemma 3.4, Op(Ψ) has dis-

crete spectrum, and hence exp(−i(2λ)−1/2Op(Ψ)) has pure point spectrum. Now

we note K = S(λ) − exp(−i(2λ)−1/2Op(Ψ)) ∈ OpS(〈x〉−∞, g) is a trace class
operator, and we can apply the scattering theory for trace class perturbation (see
Appendix C) to conclude σac(S(λ)) = σac(exp(−i(2λ)−1/2Op(Ψ))) = ∅. �
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4. Scattering matrix with absolutely continuous spectrum

Here we suppose d = 2, and consider the potential

V (x) = a
x1
〈x〉2 , x = (x1, x2) ∈ R

2.

At first we compute the principal part of ψ(x, ξ) =
∫∞
−∞(V (x+ tξ)− V (tξ))dt

for |ξ| = 1, x ⊥ ξ. We use the standard coordinate for S1: We denote a point
ξ ∈ S1 by θ ∈ T = R/2πZ such that

ξ = (cos θ, sin θ), θ ∈ [0, 2π) ≃ T.

The cotangent space at θ is identified with the orthogonal space at θ, i.e.,

x = (−ω sin θ, ω cos θ), ω ∈ R.

We use (θ, ω) ∈ T× R as the coordinate system of T ∗S1. As in the last section,
we write

ψ(x, ξ) =

∫ ∞

−∞
(V (x+ tξ)− V (tξ))dt

so that exp(−i(2λ)−1/2ψ(x, ξ)) is the principal symbol of S(λ).

Lemma 4.1. Let V and the coordinate of T ∗S1 as above. Then

ψ(x, ξ) = −aπ sin θ ω

〈ω〉 , (θ, ω) ∈ T ∗S1.

Proof. We again recall (3.1) and we compute

∂xV (x) =

(

a

〈x〉2 , 0
)

+ a

(−2x21
〈x〉4 ,

−2x1x2
〈x〉4

)

=

(

a

〈x〉2 , 0
)

− 2ax1
〈x〉4 x.

Then we have

x · ∂xV (sx+ tξ) =
ax1

〈sx+ tξ〉2 − 2a
sx1 + tξ1
〈sx+ tξ〉4x · (sx+ tξ)

=
ax1(s

2|x|2 + t2 + 1)− 2as2x1|x|2
(s2|x|2 + t2 + 1)2

− 2as|x|2ξ1t
(s2|x|2 + t2 + 1)2

= ax1
t2 − s2|x|2 + 1

(s2|x|2 + t2 + 1)2
− 2as|x|2ξ1t

(s2|x|2 + t2 + 1)2
.

Now we note
∫ ∞

−∞

2s|x|2ξ1t
(s2|x|2 + t2 + 1)2

dt = 0

since the integrand is odd. We also note, since

d

dt

(

t

b2 + t2

)

=
b2 − t2

(b2 + t2)2
, b > 0,

we have
∫ ∞

−∞

b2 − t2

(b2 + t2)2
dt = lim

T→∞

[

t

b2 + t2

]T

−T

= 0.
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Using this, we learn
∫ ∞

−∞

t2 − s2|x|2 + 1

(s2|x|2 + t2 + 1)2
dt =

∫ ∞

−∞

(

t2 − s2|x|2 − 1

(s2|x|2 + t2 + 1)2
+

2

(s2|x|2 + t2 + 1)2

)

dt

=

∫ ∞

−∞

2

(s2|x|2 + t2 + 1)2
dt = π(s2|x|2 + 1)−3/2.

Here we have used the well-known formula:
∫∞
−∞(b2 + t2)−2dt = π/(2b3). Com-

bining these, we learn

ψ(θ, ω) = aπ

∫ 1

0

x1
〈sx〉3ds = aπ

x1
|x|

∫ |x|

0

du

〈u〉3 = aπ
x1
|x| ·

|x|
〈x〉 = aπ

x1
〈x〉 .

We then substitute x1 = −ω sin θ and |x| = |ω| to conclude the assertion. �

Then the essential spectrum of S(λ) is easy to locate using the Weyl theorem:

Lemma 4.2. For the above Hamiltonian, we have

σess(S(λ)) =
{

eiτ
∣

∣ |τ | ≤ |a|π(2λ)−1/2
}

, λ > 0.

In particular, if |a| ≥
√
2λ then the essential spectrum is the whole circle.

Now we construct a simple scattering theory to show that the essential spec-
trum is absolutely continuous. We set

q(θ, ω) = sgn(a) cos θ〈ω〉, (θ, ω) ∈ T ∗S1,

and we define an operator Q on L2(S1) by

Q = Op(q) ≡ sgn(a) cos θ〈−Dθ〉 mod Op(S0
1,0).

We note, since we are working in θ-space, it is convenient to quantize function
a(x, ξ) as a(−Dθ, θ). We may assume Q is formally self-adjoint, since we may
quantize it, for example, by

Qf(θ) =
1

2π

∫∫

e−i(θ−τ)ωη(θ − τ)q(θ+τ2 , ω)f(τ)dτdω,

where η ∈ C∞(T) such that η(τ) = 1 if |τ | ≤ 1/8; = 0 if |τ | ≥ 1/4, and
f ∈ C∞(T), and this Q is formally self-adjoint.

Lemma 4.3. Q is essentially self-adjoint on H1(T).

Proof. We set N = 〈Dθ〉 on L2(T). Then it is easy to see N is self-adjoint with
D(N) = H1(T) and N ≥ 1. Moreover, by symbol calculus, it is easy to see Q

and [N,Q] are bounded from H1/2(T) to H−1/2(T), since the symbols of Q and
[N,Q] are in S1

1,0. Hence, by the commutator theorem ([11] Theorem X.36), Q is

essentially self-adjoint on H1(T). �

Now we note, [Q,S(λ)], [Q, [Q,S(λ)]], etc., are bounded in L2(T) since symbols
of these operators are in S0

1,0. Namely, S(λ) is Q-smooth in the sense of the
Mourre theory.

Lemma 4.4. Suppose I ⊂ S1 be a compact interval such that I∩{e±iaπ(2λ)−1/2} =
∅. Then there is c > 0 and a compact operator K(λ) such that

EI(S(λ))S(λ)
∗[Q,S(λ)]EI(S(λ)) ≥ cEI(S(λ)) +K(λ), λ > 0,

where EI(S) denotes the spectral projection for a unitary operator S.
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Proof. For simplicity, we suppose a > 0. The other case is similar.
Let f ∈ C∞

0 (S1). Then using the functional calculus of unitary pseudodifferen-
tial operators, Theorem A.4, we learn the principal symbol of f(S(λ))S(λ)∗[Q,S(λ)]f(S(λ))
is given by

i(f ◦ s0(λ; ·))2s0(λ; ·)∗{q, s0(λ; ·)} = −(f ◦ s0(λ; ·))2{q, aπ(2λ)−1/2 sin θ(ω/〈ω〉)},
where {·, ·} denotes the Poisson bracket. By direct computations, we have

−{cos θ〈ω〉, sin θ(ω/〈ω〉)} = sin θ〈ω〉 · sin θ〈ω〉−3 + cos θω〈ω〉−1 · cos θω〈ω〉−1

=
sin2 θ

〈ω〉2 + cos2 θ
ω2

〈ω〉2 ≥ cos2 θ
ω2

〈ω2〉 ,

and hence

−{q, aπ(2λ)−1/2 sin θ(ω/〈ω〉)} ≥ aπ(2λ)−1/2 cos2 θ
ω2

〈ω〉2 .

Now we choose I ′ ⋐ S1 so that I ⋐ I ′ and I ′ ∩ {e±iaπ(2λ)−1/2} = ∅, and then
choose f ∈ C∞(T;R) such that f = 1 on I and supp[f ] ⊂ I ′. Then, by this

condition, aπ(2λ)−1/2 sin θ 6= ±aπ(2λ)−1/2 on the support of f ◦ s0, and hence

| sin θ| ≤ (1− ε2)1/2 with some ε > 0, i.e., cos2 θ ≥ ε2. Thus we learn

i(f ◦ s0(λ; ·))2s0(λ; ·)∗{q, s0(λ; ·)} ≥ ε2(f ◦ s0(λ; ·))2
ω2

〈ω〉2 ,

and this implies

f(S(λ))S(λ)∗[Q,S(λ)]f(S(λ)) ≥ ε2f(S(λ))2 +K1(λ)

with some compact operator K1(λ) on L
2(S1). Then, multiplying EI(S(λ)) from

the both sides, we arrive at the assertion. �

Then, by the Mourre theory for unitary operators (see, e.g., Fernández-Richard-
Tiedra [3]), we have the following result:

Theorem 4.5. Let H and S(λ) be as above, and let λ > 0. Let Γ be the set

of eigenvalues of S(λ). Then Γ can accumulate only at {e±iaπ(2λ)−1/2}. For

ξ ∈ S1 \ {Γ ∪ {e±iaπλ}}, the limits

lim
ε↓0

〈Q〉−1(S(λ)− (1± ε)ξ)−1〈Q〉−1 = 〈Q〉−1(S(λ)− (1± 0)ξ)−1〈Q〉−1

exist. Hence, in particular, σsc(S(λ)) = ∅ and the spectrum of S(λ) is absolutely

continuous on S1 \ Γ.
Theorem 1.3 follows immediately from the above theorem. �

Appendix A. Functional calculus of unitary pseudodifferential

operators

In Appendices A and B, we consider pseudodifferential operators on R
d, but

it can be generalized easily to pseudodifferential operators on manifolds. We
restrict ourselves to the R

d case mostly to simplify notations related to Beal’s
characterization of pseudodifferential operators.

Let δ ∈ [0, 1), and we consider a unitary operator U on L2 with the sym-
bol u ∈ ⋂

δ>0 S
δ
1,0. We consider operators on R

d, or in a local coordinate in a
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d-dimensional manifold. We show that f(U), the function of U , is a pseudodif-
ferential operator, and compute the principal symbol. At first we note

Lemma A.1. Suppose a ∈ S1
1,0, and the symbol is bounded. Then Op(a) is

bounded in L2.

Proof. The proof is essentially the same as the G̊arding inequality. Without loss
of generality, we may suppose a is real valued, and we write A = Op(a). Let

M > sup |a|. We set b(x, ξ) = (M2 − a(x, ξ)2)1/2 ∈ S1
1,0, and B = Op(b). Then

by the symbol calculus, we learn

R = A∗A+B∗B −M2 ∈ Op(S0
1,0).

Hence

‖Au‖2 ≤ ‖Au‖2 + ‖Bu‖2 ≤M2‖u‖2 + ‖Ru‖‖u‖ ≤ C‖u‖2
since R is bounded in L2. �

Lemma A.2. Suppose U = Op(u) is unitary with u ∈ Sδ1,0, δ ∈ [0, 1). Then for

any s ∈ R,

∥

∥Uk
∥

∥

Hs→Hs ≤ Cs〈k〉|s|/(1−δ), k ∈ Z.

Proof. We let ν = 1− δ ∈ (0, 1], s = Nν, and show
∥

∥Uk
∥

∥

HNν→HNν ≤ C〈k〉N , k ∈ Z.

We first suppose k > 0. We consider the commutator:

[〈Dx〉ν , Uk] =
d−1
∑

j=1

U j[〈Dx〉ν , U ]Uk−1−j .

Since the symbol of the operator [〈Dx〉ν , U ] is in S0
1,0, it is bounded in L2, and

hence
∥

∥[〈Dx〉ν , Uk]
∥

∥ ≤ C〈k〉. This implies ‖Uk‖Hν→Hν ≤ C〈k〉.
More generally, we compute

[〈Dx〉Nν , Uk] =
k−1
∑

j=1

U j[〈Dx〉Nν , U ]Uk−1−j

=

k−1
∑

j=1

N−1
∑

ℓ=0

U j〈Dx〉ℓν [〈Dx〉ν , U ]〈Dx〉(N−1−ℓ)νUk−1−j.

Now we use the induction in N . Suppose the claim holds for N ≤ N0. Then we
have

[〈Dx〉N0ν , Uk]〈Dx〉−N0ν

=

k−1
∑

j=1

N0−1
∑

ℓ=0

U j〈Dx〉ℓν [〈Dx〉ν , U ]〈Dx〉(N0−1−ℓ)νUk−1−j〈Dx〉−N0ν

=
k−1
∑

j=1

N0−1
∑

ℓ=0

U j(〈Dx〉ℓν [〈Dx〉ν , U ]〈Dx〉−ℓν)×

× (〈Dx〉(N0−1)νUk−1−j〈Dx〉−(N0−1)ν)〈Dx〉−1.
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By the induction hypothesis and the fact [〈Dx〉ν , U ] is bounded in Hℓν , each term

in the sum is bounded in L2, and the norm is O(〈k〉(N0−1)ν). By summing up
these norms, we arrive at the claim with N = N0. For k < 0, we use the same
argument for U−1 = U∗. Then the assertion for general s ∈ R follows by the
interpolation and the duality argument. �

Now we consider functional calculus of a unitary operator U . For f ∈ C∞(S1),

we write the Fourier series expansion by f̂ [k], i.e.,

f̂ [k] =
1

2π

∫ 2π

0
e−ikθf(eiθ)dθ, k ∈ Z,

and hence

f(eiθ) =
∑

k∈Z

f̂ [k]eikθ, θ ∈ [0, 2π).

We recall f̂ [n] is rapidly decreasing in n. Then we write

f(U) =
∑

k∈Z

f̂ [k]Uk ∈ B(L2).

It is well-known that f(U) is the same function of U defined in terms of the
spectral decomposition. We show f(U) is a pseudodifferential operator using the
Beals characterization of pseudodifferential operators.

For an operator A, we write

KjA = i[Dxj , A], LjA = −i[xj , A], j = 1, . . . , d,

and multiple commutators by LαA, KβA, etc., for α, β ∈ Z
d
+. We recall A =

Op(a) with a ∈ Sδ1,0 if and only if KαLβA is bounded from L2 to H−δ+|β| for any

α, β ∈ Z
d
+ (cf. Dimassi-Sjöstrand [2], Zworski [16]). We compute

KαLβ(Uk) =
∑

α1+···+αN=α,
β1+···+βN=β,
αj+βj 6=0,

k1+···+kN+1=k

Uk1(Kα1

Lβ
1

U)Uk2(Kα2

Lβ
2

U)× · · ·

· · · × UkN (KαN
Lβ

N
U)UkN+1 .

Since Kαj
Lβ

j
U is bounded from Hs to H−δ+|βj |, we have, using Lemma A.2,

∥

∥KαLβ(Uk)
∥

∥

L2→H−N0δ+|β| ≤ C〈k〉N1 ,

where N0 = |α+ β|, N1 = (N0δ + |β|)/(1 − δ) +N0. Thus we learn

KαLβ(f(U)) ∈ B(L2,H−|α+β|δ+|β|),

and we have the following lemma: We write

S+0
1,0 =

⋂

δ>0

Sδ1,0.

Lemma A.3. Suppose U = Op(u) is unitary with u ∈ S+0
1,0 . Then f(U) is a

pseudodifferential operator with the symbol in S+0
1,0 .
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We then compute the principal symbol of f(U). If U = Op(u) is unitary with

u ∈ Sδ1,0, then the symbol of 1 = U∗U is 1 = |u(x, ξ)|2 modulo Sδ−1
1,0 . Thus we

may assume u0, the principal symbol of U modulo Sδ−1
1,0 , has modulus 1. This

implies, in particular, uj0 ∈ S0
1,δ for any j ≥ 0. We show f(U) has the principal

symbol f ◦ u0. We note

Uk −Op(uk0) =

k−1
∑

j=0

(U j+1Op(uk−j−1
0 )− U jOp(uk−j0 ))

=

k−1
∑

j=0

U j(U −Op(u0))Op(uk−j−1
0 )

−
k−1
∑

j=0

U j(Op(uk−j0 − u0#(uk−j−1
0 ))),

where a#b denotes the operator composition: Op(a#b) = Op(a)Op(b). By the

symbol calculus, we learn uk−j0 −u0#(uk−j−1
0 ) ∈ Sδ−1

1,δ , and each seminorm of it is

bounded by C〈k〉M with some M > 0. Thus, after direct computations, we learn

that Uk −Op(uk0) ∈ Sδ−1
1,δ and its seminorm is bounded by C〈k〉M with some M .

Hence we have the following claim: We note
⋂

δ>0 S
δ−1
1,0 =

⋂

δ>0 S
δ−1
1,δ .

Theorem A.4. Suppose U = Op(u) is unitary with u ∈ S+0
1,0 , and let u0 be

a principal symbol such that |u0(x, ξ)| = 1. Let f ∈ C∞(S1). Then f(U) is

a pseudodifferential operator with its symbol in S+0
1,0 and the principal symbol is

given by f ◦ u0 modulo Sδ−1
1,0 with any δ > 0.

Remark A.1. We can actually compute the asymptotic expansion of f(U) in terms
of derivatives of f ◦ u and derivatives of u. Thus, in particular, the support of
these terms are contained in the support of f ◦u, and hence the essential support
of the symbol of f(U) is contained in the support of f ◦ u.
Remark A.2. In our application, we consider the cace u ∈ S(1, g̃), i.e., for any
α, β ∈ Z+d,

∣

∣∂αx∂
β
ξ u(x, ξ)

∣

∣ ≤ Cαβ〈ξ〉−|β|〈log〈ξ〉〉|α|.
Then we can apply Theorem A.4 to learn f(U) is a pseudodifferential operator
with the symbol in S+0

1,0 . Moreover, since the principal symbol is f ◦ u ∈ S(1, g̃),

and the remainder is in S−1+δ
1,0 for any δ > 0, we actually learn the symbol is in

S(1, g̃).

Appendix B. Logarithm of unitary pseudodifferential operators

For notational convenience, we write ℓ(ξ) = 〈log〈ξ〉〉 for ξ ∈ R
d. We use the

following metrics on T ∗
R
d:

g = dx2 +
dξ2

〈ξ〉2 , g̃ = ℓ(ξ)2dx2 +
dξ2

〈ξ〉2 .

We recall, a ∈ S(m, g) if and only if, for any α, β ∈ Z
d, ∃Cαβ > 0 such that

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣ ≤ Cαβm(x, ξ)〈ξ〉−|β|, x, ξ ∈ R
d,
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and a ∈ S(m, g̃) if and only if, for any a β ∈ Z
d, ∃Cαβ > 0 such that

∣

∣∂αx ∂
β
ξ a(x, ξ)

∣

∣ ≤ Cαβm(x, ξ)ℓ(ξ)|α|〈ξ〉−|β|, x, ξ ∈ R
d.

Assumption E. Let ψ0 ∈ S(ℓ(ξ), g), real-valued, and ∂ξψ0 ∈ S(〈ξ〉−1, g). Let U

be a unitary pseudodifferential operator on L2(Rd) such that the principal symbol
is given by eiψ0 , i.e., U ∈ OpS(1, g̃) and U −Op(eiψ0) ∈ OpS(ℓ(ξ)/〈ξ〉, g̃).

We note eiψ0 ∈ S(1, g̃), and natural remainder terms are in the symbol class
S(ℓ(ξ)/〈ξ〉, g̃).

Theorem B.1. Suppose ψ0 and U as in Assumption E. Then there is ψ ∈
S(ℓ(ξ), g) such that U−exp(iOp(ψ)) ∈ OpS(〈ξ〉−∞, g), and ψ−ψ0 ∈ S(ℓ(ξ)/〈ξ〉, g̃).

Lemma B.2. Let ϕ ∈ S(ℓ(ξ), g), real-valued, and ∂ξϕ ∈ S(〈ξ〉−1, g). Then Op(ϕ)
is essentially self-adjoint and exp(itOp(ϕ)) ∈ OpS(1, g̃), t ∈ R. Moreover,

eitOp(ϕ) −Op(eitϕ) ∈ OpS(ℓ(ξ)/〈ξ〉, g̃),
and is uniformly bounded for t ∈ [0, 1].

Proof. The essential self-adjointness of Op(ϕ) follows by the commutator theorem
with an auxiliary operator N = 〈Dx〉.

In order to show eitOp(ϕ) ∈ OpS(1, g̃), we use Beal’s characterization. Let
Kj and Lj (j = 1, . . . , d) as in Appendix A. We note, by a simple commutator
argument as in Appendix A, we can show, for any k, ℓ ∈ Z, T > 0,

sup
|t|≤T

∥

∥〈Dx〉kℓ(Dx)
ℓeitOp(ϕ)ℓ(Dx)

−ℓ〈Dx〉−k
∥

∥

L2→L2 <∞.

We compute, for example,

Lj [e
itOp(ϕ)] = i

∫ t

0
eisOp(ϕ)Lj[Op(ϕ)]ei(t−s)Op(ϕ)ds.

Since Lj [Op(ϕ)] = Op(∂ξjϕ) ∈ OpS(〈ξ〉−1, g), we learn 〈Dx〉Lj [eitOp(ϕ)] is bounded
in Hs with any s ∈ R. Similarly, since Kj [Op(ϕ)] = Op(∂xjϕ) ∈ OpS(ℓ(ξ), g),

we learn ℓ(Dx)
−1Kj[e

itOp(ϕ)] is bounded in Hs, ∀s ∈ R. Iterating this procedure,

we learn, for any α, β ∈ Z
d
+,

ℓ(Dx)
−|α|〈Dx〉|β|(KαLβ[eitOp(ϕ)]) : Hs → Hs, bounded,

with any s ∈ R. By Beal’s characterization, this implies eitOp(ϕ) ∈ OpS(1, g̃),
and bounded locally uniformly in t.

Then we show the principal symbol of eitOp(ϕ) is eitϕ. We have

eitOp(ϕ) −Op(eitϕ) =

∫ t

0

d

ds

(

eisOp(ϕ)Op(ei(t−s)ϕ)
)

ds

= i

∫ t

0
eisOp(ϕ)

(

Op(ϕ)Op(ei(t−s)ϕ)−Op(ϕei(t−s)ϕ)
)

ds

∈ OpS(ℓ(ξ)/〈ξ〉, g̃)
by the asymptotic expansion. �
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In particular, we have

Ue−iOp(ψ0) − 1 ∈ OpS(ℓ(ξ)/〈ξ〉, g̃),
and hence there is a real-valued symbol ψ1 ∈ S(ℓ(ξ)/〈ξ〉, g̃) such that

Ue−iOp(ψ0) −Op(eiψ1) ∈ OpS(ℓ(ξ)2/〈ξ〉2, g̃).
This implies,

(B.1) Ue−iOp(ψ0)e−iOp(ψ1) − 1 ∈ OpS(ℓ(ξ)2/〈ξ〉2, g̃).
We use the next lemma to rewrite e−iOp(ψ0)e−iOp(ψ1).

Lemma B.3. Let ϕ ∈ S(ℓ(ξ), g), real-valued, and ∂ξϕ ∈ S(〈ξ〉−1, g). Let η ∈
S(ℓ(ξ)k/〈ξ〉k, g̃), real-valued, with k ≥ 1. Then

eiOp(η)eiOp(ϕ) − eiOp(ϕ+η) ∈ OpS(ℓ(ξ)k+1/〈ξ〉k+1, g̃).

Proof. We have, for any self-adjoint operators A and B, at least formally,

ei(A+B)e−iAe−iB − 1 =

∫ 1

0

d

dt

(

eit(A+B)e−itAe−itB
)

dt

= i

∫ 1

0

(

eit(A+B)(A+B −A)e−itAe−itB − e−t(A+B)e−itABe−itB
)

dt

= i

∫ 1

0
eit(A+B)

[

B, e−itA
]

e−itBdt

= −
∫ 1

0

(
∫ t

0
eit(A+B)ei(t−s)A[A,B]e−isAe−itBds

)

dt.

This computation is easily justified when A = Op(ϕ) and B = Op(η), and since

[Op(ϕ),Op(η)] ∈ OpS(ℓ(ξ)k+1/〈ξ〉k+1, g̃), eitOp(ϕ) ∈ OpS(1, g̃), etc., we have

eiOp(ϕ+η)e−iOp(ϕ)e−iOp(η) − 1 ∈ OpS(ℓ(ξ)k+1/〈ξ〉k+1, g̃),

and this implies the assertion. �

Proof of Theorem B.1. Combining (B.1) with lemma B.3, we have

Ue−iOp(ψ0+ψ1) − 1 ∈ OpS(ℓ(ξ)2/〈ξ〉2, g̃).
We note ψ0+ψ1 ∈ S(ℓ(ξ), g)+S(ℓ(ξ)2/〈ξ〉, g̃) ⊂ S(1, g). Iterating this procedure,
we construct ψk ∈ S(ℓ(ξ)k/〈ξ〉k, g̃), real-valued, such that

Ue−iOp(ψ0+···+ψk) − 1 ∈ OpS(ℓ(ξ)k+1/〈ξ〉k+1, g̃).

for k = 2, 3, . . . . Then we choose an asymptotic sum: ψ ∼ ∑∞
k=0 ψk, i.e., ψ ∈

S(ℓ(ξ), g) and

ψ −
N
∑

k=0

ψk ∈ S(ℓ(ξ)N+1/〈ξ〉N+1, g̃)

for any N > 0. Then we have

Ue−iOp(ψ) − 1 ∈ OpS(〈ξ〉−∞, g̃) = OpS(〈ξ〉−∞, g),

and we complete the proof of Theorem B.1. �
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Appendix C. Trace class scattering for unitary operators

The next theorem, the unitary version of the Kuroda-Birman theorem, seems
well-known, but the author could not find an appropriate reference. Here we give
a proof for the completeness.

Theorem C.1. Let U1 and U2 be unitary operators on a separable Hilbert space,

and suppose U1 − U2 is a trace class operator. Then σac(U1) = σac(U2).

Proof. Since the eigenvalues of U1 and U2 are at most countable, we can find
θ ∈ R such that e−iθ is not an eigenvalue of both U1 and U2. Then, by replacing
U1 and U2 by e

iθU1 and e
iθU2, respectively, we may suppose 1 is not an eigenvalue

of both U1 and U2. Then we can define the Cayley transform of U1 and U2 by

Hj = i(Uj + 1)(Uj − 1)−1, j = 1, 2.

By the definition, we have

Uj = (Hj + i)(Hj − i)−1 = 1 + 2i(Hj − i)−1, j = 1, 2,

and hence

(H1 + i)−1 − (H2 + i)−1 =
1

2i
(U1 − U2),

is in the trace class. Thus we can apply the Kuroda-Birman theorem ([11],
Theorem XI.9) to learn σac(H1) = σac(H2). This implies the assertion since

σac(Uj) =
{

(s− i)(s + i)−1
∣

∣ s ∈ σac(Hj)
}

, j = 1, 2,

by the spectral decomposition theorem. �
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