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BLOW-UP PHENOMENA FOR LINEARLY PERTURBED
YAMABE PROBLEM ON MANIFOLDS WITH UMBILIC
BOUNDARY

MARCO GHIMENTI, ANNA MARIA MICHELETTI, AND ANGELA PISTOIA

ABsTrRACT. We build blowing-up solutions for linear perturbation of the Ya-
mabe problem on manifolds with umbilic boundary, provided the Weyl tensor
is nonzero everywhere on the boundary and the dimension of the manifold is
n>11.

1. INTRODUCTION

The well known Yamabe problem consists of finding a constant scalar curvature
metric which is pointwise conformal to a given metric g on an n-dimensional (n > 3)
compact Riemannian manifold M without boundary. From a PDE’s point of view,
this is equivalent to finding a positive solution to the semilinear elliptic equation

(1) Lou = kui=? in M
where & is a constant, Lyu = —Agu + ¢(n)R,u is the conformal Laplacian for g
with scalar curvature Ry and c¢(n) := 4(7;—:21). Indeed, if u is a positive solution of

(@), then the new metric g = w77 g has scalar curvature c(n)k.

This problem has been complete solved through the combined works of Yamabe
[28], Trudinger [27], Aubin [4] and Schoen [26]. The structure of the full set of
solutions of (I has also been completely understood. We quote the survey of
Brendle and Marques [6] for a complete overview on the compactness and non-
compactness results. A related issue is the compactness of linear or non-linear
perturbations of problem ([Il) which has been largely studied in the last few years

with contributions by several authors (see [8] [, 12| [13] 22, 23, 24 [25]).

An obvious extension of such problems is to consider manifolds with boundary.
The Yamabe problem on manifolds with boundary was initially investigated by
Escobar [I0, [IT]. In this case one would like to find a metric g on an n-dimensional
(n > 3) compact Riemannian manifold M with boundary M which has not only
constant scalar curvature but constant mean curvature as well. This problem is
equivalent to showing the existence of a positive solution to the boundary value
problem

2) { Lyu= muz_g in M

— _n
&,gu + "Tthu =cum2 on oM

where v, is the unit outer normal and hg is the mean curvature. If such a solution

exists, then the metric g = uns g has scalar curvature ¢(n)x and the boundary has
mean curvature c. Problem (2] has been solved starting from Escobar in [I0] [1T]
with contributions from several authors when either kK # 0 and ¢ = 0 or kK = 0
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and ¢ # 0 (see the recent paper by Disconzi and Khuri [7] for an exhaustive list of
references)

In this paper we will focus on the zero scalar curvature case, i.e. K = 0, so
problem () reduces to finding a positive solution to the boundary value problem
3 Lyu=20 in M
®) { du+ 52hgu = cun-2  on OM.

Solutions to (@) are critical points of the functional

J (IVul? + =25 Ry ) dvg + [ 252hgudo,
Q(u) = oM ,ue H

2(n—1) n=1
[ u| =2 do>
M

where dv, and do, denote the volume forms on M and OM, respectively, and the
space

H::{UEH;(M) cu#0ondM}.
Escobar in [I0] introduced the Sobolev quotient

@) QM. OM) = inf Qu),
which is conformally invariant and always satisfies
() Q(M,0M) < Q(B",0B"),

where B" is the unit ball in R"™ endowed with the euclidean metric go. Following
Aubin’s approach (see [4]), Escobar proved that if Q(M, OM) is finite and the strict
inequality in (&) holds, i.e.

(6) Q(M,0M) < Q(B",0B"),

then the infimum (@) is achieved and a solution to problem (@) does exist. In the
negative case, i.e. Q(M,0M) < 0, it is quite easy to prove that (B holds. The
positive case, i.e. Q(M,0M) > 0, is the most difficult one and the proof of the
validity of (@) required a lot of work. When (M, g) is not conformally equivalent
to (B™, go), (6) has been proved by Escobar in [10], by Marques in [19, 20] and by
Almaraz in [3].

Once the existence of solutions of problem (@) is settled, a natural question
concerns the structure of the full set of positive solutions of @)). If Q(M,0M) < 0
the solution is unique and if Q(M, M) = 0 the solution is unique up to a constant
factor. If Q(M,0M) > 0 the situation turns out to be more delicate. Indeed,
the round hemisphere provides the canonical example of non compactness, while
compactness was proved by Felli and Ould-Ahmedou in [14] when (M, g) is locally
conformally flat and 9M is umbilic and by Almaraz in [I], when n > 7 and the trace-
free second fundamental form of OM is non zero everywhere. Up to our knowledge,
the only non-compactness result is due to Almaraz in [2], where he constructs a
sequence of blowing-up conformal metrics with zero scalar curvature and constant
boundary mean curvature on a ball of dimension n > 25. It is unknown if the
dimension 25 is sharp for the compactness, namely if n < 24 the problem (@) is
compact or not.

The compactness issue is closely related to the existence of blowing-up solu-
tions for small perturbations of problem ([B]). In particular, we consider the linear
perturbation problem

ngvaLzl(’;—_fl)Rgv:O in M
5o+ "52hgv +eyu = (n—2)v7™F  on OM

(7)
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where ¢ is a small positive parameter and v is a given smooth function, and we
address the following question:

(Q) Does problem ([[) have a family of solutions which blows up at one point of
the manifold as € approaches zero?

A first positive answer was given by the authors in [16] when n > 7 and the
boundary is not umbilic. In the present paper, we give a positive answer when the
boundary is umbilic. Our main result reads as follows.

Theorem 1. Let (M, g) be a smooth, n-dimensional Riemannian manifold of pos-
itive type with regular umbilic boundary OM . Suppose that n > 11 and that the
Weyl tensor is not vanishing on OM. Let v : M — R a smooth function, v > 0 on
OM. Then, for e > 0 small there exists a positive solution v. of the problem ()
such that ve blows up at a suitable point qo € OM as € — 0.

Let us make some comments on our result.

(1) The proof relies on the classical finite dimensional Ljapunov-Schmidt pro-
cedure which has been successfully used in studying blowing-up phenomena
in Yamabe type problems. However, here the umbilicity of the boundary
forces us to deal with higher order terms in the expansion of the metric g,
which makes the proof of the result technically harder than the one in [16].

(2) Our theorem does not provide the precise location of the blow-up point,
because the explicit solution to linear problem (I9) is necessary and this is
far from being possible. Actually, it would be really interesting to detect the
geometric function whose critical points generate the blowing-up solutions.

(3) We believe that the result holds true if v is positive somewhere (and not
necessarily positive everywhere in OM) as suggested by Remark [Tl where
we exhibit a smooth function v which is not necessarily everywhere positive,
for which problem (7)) has a family of blowing-up solutions. Actually, we
strongly believe that if v is negative everywhere there are no blowing-up
solutions as ¢ approaches 0, i.e. the problem (7)) is compact.

(4) Our ideas can be also applied to study the non-linear perturbation problem

{ —Agv+ 4(7;—:21)1%91) =0 in M

2 4 22 = (- 20 on O

(®)

In particular, we can extend the results of the authors in [I5] to the geo-
metric problem (8.

The proof of the result relies on a finite dimensional Ljapunov-Schmidt reduc-
tion, which is carried out as usual through different steps: first we find a good
approximated solution (Section [2]), next we reduce the problem to a finite dimen-
sional one (Section B]), then we study the reduced problem (Section [) and finally
we complete the proof of Theorem [Il (Section [H).

2. PRELIMINARIES AND VARIATIONAL FRAMEWORK

Notations. We collect here our main notations. We will use the indices 1 <
i, 7, k,m,p,r,.s <n—1and 1 < a,b,c,d < n. We denote by g the Riemannian
metric, by Rgpeq the full Riemannian curvature tensor, by R, the Ricci tensor and
by R, the scalar curvature of (M, g); moreover the Weyl tensor of (M, g) will be
denoted by W,.

Let (hi;),; (q) be the tensor of the second fundamental form in a point ¢ € 9M.
We recall that the boundary M is umbilic (i.e. composed only of umbilic points)
when, for all ¢ € OM, h;;(q) = 0 for all ¢ # j and hi;(q) = he(q), hge(g) being the
mean curvature of M at the point g.
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The bar over an object (e.g. W;) will mean the restriction to this object to the
metric of M. By —A, we denote the Laplace-Beltrami operator on (M, g) and we

will often use the common notation for conformal Laplacian L, = —Ag + 4(7;—:21)1%9
and the conformal boundary operator B, = % + "T_2hg, where v is the outward

normal to OM . When we derive a tensor, e.g. Tj;, with respect to a coordinate y;

we use the usual shortened notation 7;;; for aileiJ"
Remark 2. Since OM is umbilic for any ¢ € OM, there exists a metric §, = g,

4
conformal to g, §, = A¢ * g, such that

9) detgq(y)| =1+ O(|y[")
(10) |hij ()] = o(ly®))
~ij L5 2
(11)  g%(y) =0i; + gRikjlykyl + Rpinj Vi
1- 1
+ = Rikjt mYsYiYm + Roinj kV2yk + ngnj,nyi

| =

_ 1.
+ ORikjl,mp + 1_5Rikisjmsp) YeYtYmYp

+
NN

1 _
Rninj,kl + gSym” (Rikisnsnj)> yiykyl

1
Rninj,nkygyk + — (Rninj,nn + 8RninsRnsnj) yi + O(|y|5)

+ 12

?
S

(12 Ry, ) = O(1yl?) and 0% Ry, (a) = 5 W (a)

(13) Ryi1(q) = Run(q) = Ruk(q) =0

uniformely with respect to ¢ € M and y € T,(M). Also,we have Ay(¢) = 1 and
VA4(g) = 0. This results are contained in [I9, [1I7].

The conformal Laplacian and the conformal boundary operator transform under
a4

the change of metric g, = Ay * g, in the following way:

n+2

Lg, o= A;ELQ(Aq‘P)
Béq@ = A;mBg(Aq@)

by these transformations we can recast Problem (7)) as follows: v := Aju is a
positive solution of (), if and only if u is a positive solution of
Liu=0 in M
(14) _ .
By, u+elAg "*yu=(n—2)u"—=2 ondM

2
From now on we set 7 = A, " 2.

We want to find a solution u of problem (I4) by a finite dimensional reduction:
we will look for a solution of ([d) of the form u = Wy, + 6%Vs,, + ® where Wj,
and Vs 4 are functions depending only by ¢ € M and 6 > 0 which will be defined
in the following and ® is a suitable remainder term. So we will find a solution of
the original problem () of the type

v=ANg [Wsq+6*Vsq+@|.

In the following we simply use thﬁq, f/&q, P respectively for AWs.q, NV g, Ag®.
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If Q(M,0M) > 0, we can endow H, (M) = H'(M) with the following equivalent
scalar product

n—2 n—2
15 = VuV — Ryuv)d — hguvd
15) (o), = [ (V¥ s Ry + " [ o,
which leads to the norm || - |4 equivalent to the usual one. We remark also that A,

is an isometry in the sense that, by (&), for u,v € H*(M)
((Aqu, Aqu)),, = ((u,v)); and, consequently, [|Aqullg = [[ullg,-

Given ¢ € OM and z/an : R% — M the Fermi coordinates of M defined in a
neighborhood of ¢ we set

Waa(©) :=Us (02) " ©) x ((42) " ©))

1 Y 1
== U (§) X(4) = == U () x(57)
where y = (z,t), with z ¢ R" L and t > 0, dz =y = (1/12)71 (€) and x is a radial
cut off function, with support in ball of radius R, R being the injectivity radius for
the Fermi coordinates.
Here Us(y) = = U (%) is the one parameter family of solution of the problem
52

~AUs =0 R,
(16) { ’ o

——(n—2U7®  ondR",

[e5)
HQLQ

that is U(z,t) := is the standard bubble in R}.

n—2

[(L+1)2+ 27 >
Now, if we consider the linearized problem

—-Ap=0 on R,
(17) % | pUn2¢ =0 on IR,
¢ € H (R?).
we have that every solution of (I7) is a linear combination of the functions j1, ..., jx
defined by
ou n—2 "\ U
18 = i=1,..n—1 .= U —
(18) Ji= g n j U+ ;y o

(for a proof of this result, see, for instance, [I6, Lemma 6]). By means of functions
i we define we define, for b=1,...,n

24,6 = = (507 ©) 1 () ©)
and we decompose H'(M) in the direct sum of the following two subspaces
Ksq=Span (A Z5 ..., Ny Z3 )
Kt ={pc H'(M) : ((p.AZ8,), =0, b=1,....n}
and we define the projections
Il =H'(M) = Ksq and ITI" = H' (M) — Kj,.
Given ¢ € OM we also define in a similar way

Vagl6) = 5£q <§ ()" (5)) (@) ©)
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and .
Y
(vg)s () = (Sn?”q (5) ;
here v, : R%} — R is the solution of the linear problem

{ —Av = [FRigk(@)ysy + Boing ()y3] 05U on RY

671 — n—2 n
Dy = nUn—2vp on OR"}

(19)

These solutions will be used in the blow up estimate in the next: indeed, by means of
the choice of v4 we will be able to cancel the first order term in the following formula
@BI) and to have the correct size of the remainder term in the finite dimensional
reduction (Lemma [4]).

Lemma 3. There exists a unique vy : R — R solution of the problem (I4) L'(R?)-

ortogonal to j, for allb=1,...,n. Moreover the function q — v, is C*(OM) and
it holds

(20) V70 (y)] < CA+[y)* 7" for 7=0,1,2,
(21) / Uﬁ(t, 2)vg(t, 2)dz =0
OR?
and
(22) / vg(t, 2)Avy(t, z)dz <0,
R

where y € R, y = (t,2) witht >0 and z € R"~1.

The proof of this result is postponed to Appendix.
We have the well know maps:

ig :H' (M) — L'(OM)
it LY (OM) — HY (M)
for1 <t< % (and for 1 <t < % the embedding 7 is compact).

Given f € L= (OM) there exists a unique v € H(M) such that

(23) v=1i,(f) = ((v,cp}}g/aMfgado for all
—Agv+ 2=2Rv =0 on M;
<:>{ g—”—l—&hl)vif on OM
v 2 9 '

The functional defined on H'(M) associated to (7)) is

1 n—2 n—2
Jegv) =< y |V gul* + 1 Ryv?dug + T /aM hgv?do,

2 (n—1)

1 / 9 (n—2)? / 4 20D
+ = eyvidog — —= vT) "% doy.
2 Jom 20 -1) Jou () J

Notice that, if we define

= 1 9 n—2 9 n—2 9
JEaQq(”) i 2 /M |v9qu| + 4(71 _ 1)quu dﬂgq + 4 /E)M hgqu dagq
1

- (n—2)° 2ot
+ —/ 57u2d0~q - ut) " doy,
2 Jom ! 2(n—1) Jom ( )

(24) Jeg(Aqu) = Jeg, (u)

then we have
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3. THE FINITE DIMENSIONAL REDUCTION

Solving problem (7)) is equivalent to find v € H*(M) such that

v = i5(f(v) — o)
where

fv) = (n—2) (v*)7"

2(n—1)

We remark that, if v € Hy (M), then f(v) € L
We look for a positive solution of (7)) in the form

(OM).

v=Au=W;s,+06Vs,+d

(we recall that, if f: M — R, we use the notation fi= Aqf). Thus we can rewrite,
in light of the previous orthogonal decomposition, Problem (7)) as

(25)
i {VVM 0Py B i {f(W(;,q +6%Vs,q + ®) — eyWs g + 62Vs 4 + é” =0

(26)
(o P55 5708 e 0,8} 0

Now we define the linear operator L : f(iq — [(5%(; as

(27) L(®) =1t {é — (f’(m,q + 52175,(1)[&])} ,

we define a nonlinear term N(®) and a remainder term R as
(28)
N(@) =T {i (F(Waq + 02Vsg + ®) = F(Wag +02Vs) = [ (W +02V5,)(]) }
(29)
R =11 {iy (F(Wag + 8Vs0) ) = Wag = 62Va }

so equation (26]) becomes

L(®) = N(®) + R — T+ {Z-; (m(mq +82Vsg + <i>>)} .
Lemma 4. Assume n > 10, then it holds

Ry =0 (g6 + 53)
CO-uniformly for g € OM.

Proof. We recall that there is a unique I" such that
I'=i, (f(W&q + 52‘7541)) 3
that is, according to (23]) equivalent to say that there exists a unique I' solving

—A T+ M’:}—:Q”Rgf =0 on M,
O+ 25200 = (n = 2) (Wsy + 0°V5)" )

n

n—2

on OM.
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By definition of i, we have that
IR|| =[IT = W54 — 8* Vs qll7
:/ - {LQ(F - Wé,q - 52‘7541)} (F - W&q - 52‘7541)dﬂg
M
+ / {BQ(F - W&q - 52‘7541)} (F - Wt5,q - 52%,q)dag
oM
:/ | Ly (Waq + 62V5.4)| Relpg
M
+ / |By(T) = By(Way + 62Vsq)| R,
oM
_ / [~ L, (W g+ 02Vs )] A7 Rdpis,
M
- / (B3, (A7 'T) — By, (Ws,q +6°Vs,)] Ay Rdog,
oM

We estimate

/M [83,(Waq +8Va.0)] Ay Rpig, < [18g,(Wog +8°Vso)ll 22, o 1A Rll5,
< O8Il
In fact, recalling the expression fot Laplace Beltrami operator in local charts
Afyq = Acuc + [gzj (y) - 61]]812]
~ij az =13 an ~ 1
gy (y~) lngl (y) o, + nglz (y) o,
19412 (y) 19412 (y)

where i,k =1,...,n — 1 and Ag, is the euclidean Laplacian, by () and (II) and
since AeycU = 0, in variables y = dx we have

1 1
§"2° 3

11, _ )
73 (Riijiwi + Rigjiz + 60(|z]?)) 0; (U (x)x(6x))
2

- 820(ja ), (U (2)x(62))

995 (y) +

+ 1 q

A5 Wsq = (Rirjiziy + Ryinjza + 00(|z[*)) ain (U(x)x(6z))
+
(30)

We remark that, by symmetry, Riiji = 0 and by [19, Prop 3.2 (2)] also Rikji =
—Rji, = 0. Now, the definition of v, (I9) is crucial to get

1 52
52A§qV57q = (Sn?Aeuc (vg(x)x(0z)) + o= (O(|x|2)8ijvq + O(|z])9;vq)
1 1,=-
— (=5 (R + Rong) 0 (Ua)x(60) + 600l )
Thus, this term cancels the first order term in B0) and we get
nt2 1
BY 1A Wit Vo)l =0 (575 —50) =006

Also we have

/ Ry, (Wi g+ 02Vs )AT Rapu < ¢ Ry, (Wag + 02Vs )l 2 [IASLR]
M

2n
L2 (M,gg) " 1 Ln=2(M,gq)

(32) < o(8*)|| Rll,
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In fact, since Ry, (q) = Rg,.i(q) = R,.+(q) = 0 (see [19]), by the decay of U and
since |v4(y)| < Cly|*~™ we have, in local coordinates

n+2
~ 2 : ~ o
125, (Wo.q + 0" Vool 2 ) o < O0 ){/M (R, (0y)U (y)x(3y)] dy}
n2+2
+0(5%) {/R [Rs, (0y)vq(y)x(6y)] "2 dy}
+ n s

2n 2n

wAyﬂ%%dy} +0(8%)

= 0(6%) {/R

For the boundary term we have

[2U ()] dy} +0(5%) {/R

n n
+ +

= 0(0®) since n > 10.

By, (A;'T) — By, (Wsq + 67V )

= = oV,
{(0=2) (¥ + %5, ) 7 = (02 (wi,) ™ - 20502

nes OWs, n—2
- () - T - P (W + 20,

Since the boundary is umbilic, we have hg, (q) = hg,.i(q) = hg,.ix(q) = 0 so we
estimate

/ hg,(Wsq +6°Vs o)A, ' Rdog, < cllhg,Wsq+6Vig)ll 20— [|A;'Rl|5,
oM L n+2 (M,gq)

(33) = O(6") IRl

Indeed, as in (32

(34)
||h§q (Wé,q+52V57q) HLﬂ;_*ll

2 (0M,gq)

SHhéqW&qH 2(n—1) - +52||V57q| 2(n—1) ~
L n+2 (0M.gq) L n+2 (0M,3q)

n+2
2(n=1) 2(n—1)
:{/ W%@ﬁ@wanwﬁ@szd%
Rn—1

n+2
2(n-1) n-1)
52{/ [15,(0,62)v4(0, 2)x(0,62)] dz}
Rn—1

2(n—1)

2(7:1,71)
_ 3 2 nt2 4 3
— o(6% {/R [22U(0, 2)] dz} 00" (0. )] e |+ 0(6?)

= 0(6*) since n > 10.

Here we considered y = (t,2) with t > 0 and z € R"*~ 1.
Easily we get

s 0
(n— 2>W57,1}; - %WM = 0(53)

2(n—1)
L™ n (M)

since U solves (I6).
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For the last term we estimate

_n_ _n_ Vs
2 e = 20Vs, -1
/6M{(n_2) |:((W(5,q+6 ‘/5711)—’_) : _W57q2i| -0 8—1;1}Aq Rdo‘f]q
n_ n_ OV
<cl|(n—2) [((W&q +0%V54)T) "7 - Wa?,f} - 52% 2n-1) [R]lg
P CLY A
and, by Taylor expansion and by definition of the function v, (see (I9) )
2 n—2 28
(n_2) [((W57q+6 ‘/61q) ) Wziq } —0 81/ 2(n—1
L™ (0M,3q)
Ov
2 _n 2 9% 3
<=2 [(U +80) ") ™ —U7=] +6 - ﬁ%*ww>+d5)
+
2 v
<8 |In (U +06%0y) ") "2 vy + =2 ) + 0(6%)
( ! oot || (ORT)
= 527”LH((U+952vq)+)ﬁ — U 20g|| 2t )(6R . + 0(6%).

We observe that, chosen a large positive R, we have U + 65%v, > 0 in B(0, R) for
some 4. Moreover, on the complementary of this ball, we have = < U(y) <

|n > and |vg| < ‘(;: + for some positive constants ¢, C, Cy. So it is possible to

Tyl"=2
prove that, for o small enough, U + 66%v, > 0 if |y| < 1/§. At this point

) , 2(n—1)
| (@ o)™ v
aR™
2(n—1)
s ]
U+06vy>0
, 2(n—1)
N 2
U+05v,<0
. —2(n—1)(n—4) n—
=5 [ ete) T s
U+466vy>0
4(n 2(71. 1)
+/ Unn= 5 [vg] dz
U+66v,<0
—2(n—1)(n—4) 4(71, 1)

4(n—1)

<6 n / (U +610%vg) "9 |y dz
U+606vy>0

4(n—1) 2(n 1)
+ U ntn=2) || dz
21> %

—2(n—1)(n—4) 4(n—1)

and, since n > 10 one can check that [, o5 o (U +6018%v,) "7 Jug| "~ dz
q

is bounded and that

Aln=1) 1 1
/ Urn=2 / 4(n 1) 2(n—1)(n—4) dz
2> 1 |=1>3 |z] EI—

SC/7f%i:O@W?ﬂ:df%%

5
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n7l2 nzZ 9 .q —
thus H(n—2) [((W&ﬁa%qﬁ)* -y }52 gt | sy = OO
and
/ (n—2) [((Wg +82V5) )T W } =5 Waa |\ -1 gy,
o q g d,q ay q 9q
< O(Y||R|l,-
0

At this point we can can use the same strategy of proposition 11 of [I6] to prove
the following result

Proposition 5. There exists a positive constant C such that for €, small, for any
q € OM there exists a unique ® = <I)E 5.q € K§ which solves [20) such that

I12[ly = [[A®]ly < C(e6 +6°).

4. THE REDUCED FUNCTIONAL

In this section we perform the expansion of the functional with respect to the
parameter ¢, .

Lemma 6. Assume n > 10. It holds
JegWag +82Vsq +®) = oy (Waq + Vi) = O (6 +20)|| Bl + | 8112
O_uniformly for ¢ € OM.

The proof of this Lemma is postponed to the appendix.
We recall here an useful result contained in [19].

Remark 7. It holds

t2 4(n—2
Il Z:/ P dtdz = MIQ
2 (L0242 ntl

t2 4
/ 2 s
(1+1)2+2]?)

t4]2)? 12
—dtdz = ———— ]
rr (L+10)2+2P) n—2)(n+1)"7

2%
—dtdz
re ((1+1)2 +2]2)

and

2,4 1222 2 3
35 L —dtdz = 3 —dtdz = ——1I5.
(#) /ueg((1+t)2+|2|2) : / (1+1)2 +|| ST R

Lemma 8. It holds

(36) JegWsq +6°Vsq) = A+267(q) B + 6*¢(q) + O(e5%) + O(5)
where
1 (n—2)(n—28) n—2  _ 5
o) =3 [ vt + P R W~ g W@

the constants I, Iy are defined in Remark[d and

1 —92)2 e 1
A= —/ IVU(t, 2)| dtdz—(i)/ U(0,2) =2 dz, B = _/ U(0, 2)%dz
2 ( - 1) Rn—1 2 Rn—1
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Here W (q) is the Weyl tensor restricted to boundary and we consider the local
coordinates y = (t,2) with t >0 and 2 € R"71.
Moreover

(37) w(q) <0 for any g € OM.

Proof. First of all, we point out that the last claim (B7) immediately follows by
22) and by the identity Ry nn = —2R2,, . (see [19, Prop. 3.2 (7)]).
Now, let us prove that (38) holds. We have

- N 1 n—
Jeig(Wog +0%Viy) =3 /M IV, (W g + 82Vs g)[*dpg, + S=1D) /M R, (Ws g + 6%V 4)*dpg,
1 _ 2
+ 56/{9]\4 Ag "Py(Ws g+ 52V57q)2dagq
(n—2)° oy 2eop
- 2(TL _ 1) oM ((Wé,q + 52%,q)+) 2 - W&q da’gq
(n—2)° = n—2 / 2 2
- W, "% do; hs (W, 6“Vs o) dos
2(n—1) Jour 20 7% T oM (W 07Vs0)"dos,

=:A; + Ay + A3+ Ay + As + As.

We use the change of variables y = dx = (0t,02) € R} with ¢t > 0 and z € R™1L,
On 9R"} also we use y = (0,()

n—2
4

-2 1 2 L
== /R 5273,(0,0) (U (0, g) + 6%, (o, g)) X% (0,0)1Gql7 (0, )y

_ 2 1
=20 [ 0, 0.02) (U (0,2)+ 820, 0.2)) 20,62)1,] 0. 02)d
Rn—l

As

/ hgq (W(Saq + 62‘/57‘1)2d0-.‘~7q
oM

4

In light of (), by Taylor expansion of hg, (0,dz), since by symmetry the first term
is zero and n > 10, we have

n—2

Ag = 1

5 / By, (@)zi252U (0,2)2d= + O(6%) = O(8%)
Rn—1

In a similar way, expanding Ry, we get, by (I2),

-2 1
Ay = h 6% Ry, (62) (U + 62U v, + 602) x> (62) |G| * (67)dee
(n—1) R
n—2

R e ¥ 2 ) ) s
T 16(n — 1)5 - 0% Rs, () zezpU?dz + O(8)

By symmetry reasons, and recalling (I2)), we have

-2 2U2(z,t
Ay = b [aizﬁgq(q) [ D s s a) [ e azar| + o)
Ry T R?
(38)
—9 _
Sy (S 2/ 2U2(2, t)dzdt
se =W @ [ U0
e n—2

2 2772 5
T6(n = 1)8“qu Rit U?(z,t)dzdt + O(8°).
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Analogously we have, since Aq4(q) = 1,

Ay = %55 /RM A, 2 AU2(0, 2)dz + O(e6%)
= 2eh(@) /R | UA(0,2)dz + O(e)
Also, by @)
ho= =02 [ 00200825 10.52) b
_ _% /RH U(0,2) 5 dz + 0(8”).

For A4, expanding twice by Taylor formula, and since [, _, U(0, z)%vq (0,2)dz =
0, we have

Ay =— (n—2)8> /}RW1 [U(O,z)ﬁvq] dz
-5 /RH [(U0.2) +05%0)) 77 0] dz + 0(a")
(39) =— 354 /]Rni1 [U(O,z)%vlﬂ dz + o(6%).

Concerning the gradient term we have
1 2 2 g 2
Al =5 |v§qW51q| d'u’gq + Y vqu‘qu ’ v‘/(Squugq + 5 |V§q‘/5vq| dﬂgq
2 M 2 Ju
= L1 + LQ + Lg.

We have, by ([@) and (1)) and integrating by parts

54 iy _ 1
Ly=5 | (35 (62)y, (vq(2)x(02)) D, (vq (2)x(82)) + (D, (vg ()X (62)))? ] |gq(d) | = dy
+
54
= — |Vog > dz + O(6).
o 54 0 5
= —? Ri ’UqA’quZdt + 5 S vq%quzz + O((S )
(40)
(54 n 2
=3 vgAvgdzdt + 545 / U2 vgdz + 0(8%)
Rn—1

RY

In light of (I6) and 2I) we have

/ VUVv4dzdt = f/
n R

:f(n—Q)/ Un=2v,dzdt = 0
R

n—1
+

AUvqdzdt +/ ngqdzdt
T Ryt OV
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So we have

(41) Ly =6? / VUVv,dzdt
R

n
+

+54/

Ry

:54/
RZ

At this point we can calculate A4 + Lo + L3. By (B9), (@0), (@) and by definition
of vy (I9) we get, integrating by parts
4

0
Ay + Lo+ Ly =— — vgAvgdzdt + 54/
2 Jrn R

1-
(gRikﬂzkzlainazj Vg + Rpinjt*0.,U0., uq) dzdt + O(5%)

1_
<§Rikjlzkzlain82j Vg + Rm'nth(?Zi Uazj vq> dzdt + 0(55>

1.
. (gRiklekzl + Rm-njt2> 821 Uazj quzdt + 0(55>
+
54
=-3 vgAvgdzdt — 54/

R7 R

_54/
K7

1.
+ 64 / (gRiklekzl + Rninjt2> 00z, Uvjdzdt + O(8°)
oR"

1.
82]. <§Rikjlzkzl + Rm-njt2) 0z, U’quzdt

n
+

1-
(gRikﬂzkzl + Rm'njﬁQ) azjain’quzdt

(42)
54 5
=3 vgAvgdzdt + O(6°)
R%
since v; =0 for all j =1,...,n —1, and by the symmetries of the curvature tensor

and by (I3) we have

1-
/R 0 (ng-kﬂzkzl + Rm-njt?) 0., Uv,dzdt
"

1_
= §Rikﬂ/ 82]. (Zkzl)azi U’quzdt
Ry

1_
= -R;
3 Z/R

Finally we have, by (@) and (IIl) and since the terms of odd degree disappear by
symmetry

1.
20;,Uvqdzdt + §Rikjj / 2105, Uvgdzdt = 0.
¥ R

L =5 [ 5(62)(0n,(UX), 01, (UX) + 0, (Ul
;

,1/

5 1 = 1 = _
+ - _Rikjl mp + _Rikisjmsp ZkZlZmZpazi Uaszzdt
2 Jay \20 NPT TS ;

|VU *dzdt + 52/

Rn

1.
<§Rikjlzkzl + Rm'nth) 8in82j Udzdt

&4 1 1 _
+ E - (§Rninj,kl + gSme (Riksl Rnsnj)) tzzkzlazi UGZj Udzdt
+

54 1 1
+ E - (aninj,nkt3Zk + E (Rninj,nn + 8annsRnsn]) t4> ainazj Udzdt
¥

(43) +0(5%).
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Now we prove that all the terms of order 62 vanish. Since 8,,U = (an)m

we have

1 _
/ (gRikﬂzkzl + Rm'njt2> aZanzj Udzdt
n

(TL — 2)2 / P, ZERIZiZg 2/ tQZiZj
= — 0 RZ j nd dt+(n—2 an nd dt.
5 e WA O ey ) (T N P K

By symmetry reasons and by ([3)) we have

t22;2; 1 2|22
Rying = —d dt:—Rnn/ —dzdt = 0.
/i A Z+ DT T =1 Jay (T 02+ 2P

Moreover, by symmetry the integrals [o,, %dzzdt are non zero only when

i=j=k=li=j#k=1i=k#j=1landi=1+#j=k. Since R;;; =0 for
all i, j we get

/ Rikjl EREZi Tk 3 =dzdt
T

14+t)2+1z)?)
2222 _ 2222
- Rzkzk Lok dZdt+ Rikki Uil ndzdt =0
; (L+8)2+[27)" % R (L+18)* +2[*)

By the symmetries of the curvature tensor (see [19, page 1614, formula C|) we get

1
(44) G = / <20Rzkjl mp + Rzkisjm5p> 21 212m2p02, U0, Udzdt = 0

Moreover, using that Ry, n, = —2R2,, ., we get

1
Gy = 3" L Rusnin + 8Roine B / 410, U 2dzdt

12 n
(n—2)? > / t]z]?
= ) (R + S8R, rdzdi
12— ) (Fomnn ¥ 8Fnins) [ Gty oy
n—2 6(n —2)
4 = nn,nn 2 s) [o = ——R?
( 5) ng 1 (R , + 8anns) 2 TL2 anns

It remains

) t2zpz12:i2
Gy = (n—2)2/ . (QRW,M + 5 Symy zkélR"“”)) T+ et

Again, by symmetry reasons, we have only to consider the cases i = j = k = [,
i=j#k=1i=k#j=1landi=1%#j =k. Then it is easy to see that the
Symbol term gives no contribution.
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Finally, we have, by (3]

22,2122 1224
GQ = ann j,kl ! ndZdt = Rnini,ii/ ! ndzdt
e (S N R Z re ((1+1)%+ [2]?)
122222

+ Z 7kk+z 75t +Z 753 /]R" ((1+t)2—|—|z|2) z

i#k i#] 1#]

1
=3 Z Ryini,ii + Z Ryini ke + Z Rying,ij + Z Boning ji | —3—712
( i#k i#] i#]

1
= | 3" Ruiniek + Y Ruingig + > Ruingji | —5—1
— nznz,kk+ — nzn],z]+ — ningj,ji n2 —1 2
7‘1 9. 9,

By [19, Proof of proposition 3.2, page 1609] we know Ry, xx = 0 for all k =
1,...,n — 1, so finally we have

(n—2)
Collecting all the terms, by (@), [{@3), @8], we have
1 o
(47) h:§/|wmwﬁ+3«h+@+cg
Rﬂ.
1

=—/ |VU |*dzdt+
2 Jgn

54 6(n—2) (n—2)?
# 5 (g s + S R ) + 06,

By (38) and {T)), and by Remark [7] we have

1 n—2 -
Ay + Ly == Uldzdt — 0* ————— |W 2/ 2U?(2,t)dzdt
2t L=y [, VUPdzdt= 8 S [ P0G 0
5 (=22, 6m=2) , | (n—2)
*55@@iﬂ%%ﬂ‘ﬁ?T&w+2Z7RWM)
1 n—2 -
== UPdzdt — 0* ———— |W 2/ 2U?(2,t)dzdt
2/Rn VU dz 96(n—1)2| @ R [0z, D)=
5 (n —2) (n—2)
o) ( 5 0B, + 6B s + (1= 2) Ruini | +0(0")
:1/ VUPdedt - 5* "2 |W(q)|2/ 12|20 (2, t)dzdt
2 Jan 96(n — 1) ® ’

"
3*(n —2)(n - 8) 2
- 2 LR? . 5.

In this computation we used the following formula [19, Formula (3.11) and Propo-
sition 3.2 (5)]

0% Rg, = —2Rninjij — 2R0 ;-
This ends the proof. (I

5. PROOF OF THEOREM [I COMPLETED

First of all, we choose § = A\e3 with A € [a, 8] compact subset of (0,+00) (so
that the second order term in the expansion of (36]) have the same rate with respect
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to €). Thus, summarizing the result of Section Bl we have that, for £ small, for any
q € OM, for any A € [a, ], there exists a unique ® = &, , , € K-, which solves

Ae3 q
([26) such that
1]y = [Aq®lg < Ce.

Moreover

2 = ~ 2 ~
Jeg(W, 4+ A3V + @) =Je, o (W 3 +)‘253V/\e%,q)+0(55/3)

1
Ae3 q Ae3 g ’ Ae3 g

=A+e3 (M (q)B + Ao(g)] + O (55/3)

CP-uniformly for ¢ € OM and X € [a, 3], where A, B, ¢ are defined in Lemma
Now, setting

L.\ q) == Jo (W + A2 %f/ L+ )

1
Ae3 ,q €3,q

and we can achieve the last part of our Theorem.

Lemma 9. If (), q) € (0,400) x OM is a critical point for the reduced functional
I.(\, q), then the function W)“E +A2e3V. 1+ ® is a solution of (4).

)\ad,q

Proof. Set q = q(y) = 7,/)?(3;). Since (X, q) is a critical point for the I.()\,q) and

since & is a solution of (28) we have, for h = 1,...,n — 1, that there exists ¢ € R
such that
0 _
Yh y=0
T (TR 2,217 5 i i 2,27 &
—((J&g(W:\E%’q(y) FAEL O ) ayh( Aed g T Ae Vs 5.a(y) M
SN g2ty 2, 4d
_Z;ca (w25t 4 Fgn Wackaw et g T Mo o
:ica a2y v ),
T T ) Oy A )
+5%X2ica (Mg Z° Oy,
—~ £ q(y) )\83 Jaly 7ayh Xe3,q(y) g =0
>t (o (s ) B
= Oy Xe3q(y) =0
using that
J = 0 “ ~
(a2 B0 = U (M 22y ) ) B

since ® € K+, for any y.
Ae3,q(y)

Arguing as in Lemma 6.1 and Lemma 6.2 of [21] we have

1 0 1
—O _— —W_ 1 =0 =
() Hay sebaw|, (1)

0(_11).
AEs

H AYn /\63 ,a(y)

H 8yh Aad »a(y)
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For the first term we have

a T a 0
<<Aq(y)Z5\8§’q(y)v a—thXE%ﬂ g o = <<Aq(y)Z;8%7q(y)aAq(y)a—thj\a%,q»g o
o 0
+ <<Aq(y)Z}5%,q(y)’Wﬁa%,q6—yh a))g o
SO we get
({(Ay(nZ2 A 0 W )
-1 5 = Vs 1
1MW “5% () q(y)ayh Xed g gy:O
_ 1 a h _ din
= gy 2y Mg oll) = £+ o)
And, by change of variables, that
0
ANy 22 W. —A =0(1
( a(y) e q(w) /\Eéﬂayh g o (1)
Similarly for the other terms we get
(a2 oV < A2 9y P
1733 4w)’ Dyp AeSa(v) gy:o_ W53 () o 119Yn Aet a(y) gi A
o . .
T Ay 2 d <Ay, 20 H@H: 1).
<<5yh ( ) AE%M‘I(ZU)) >>g y=0 - H a(y) )\s%,q('g) g g O( )

So we conclude that

0= )\i i c2 (6 + O(1))

9
=1

Analogously we proceed for &I (), (j)|>\:5\, proving the claim. O

a
which implies ¢ =0fora=1,...,n
ax e (

For the sake of completeness, we recall the definition of C9-stable critical point
before proving Theorem [1l

Definition 10. Let f : R® — R be a C! function and let K = {£ € R™ : Vf(¢) =0}.

We say that & € R" is a C%-stable critical point if {; € K and there exist { neigh-
borhood of & with 902N K = () and a n > 0 such that for any g : R” — R of class
C" with [lg = fllco@) <1 we have a critical point of g near Q.

We can complete now the proof of Theorem[Il By Lemmal[@and by the definition
of C%-stable critical point, we have to show that the function

G(\ q) :== [M(q)B + X¢(q)]

where B and ¢ are defined in Lemma[8] admits a C%-stable critical point. We know
that B > 0 by computation, and that v > 0 and ¢ < 0 by the hypothesis of Th. [1
Thus, one can check that there exists 0 < a < 8 such that any critical point (), ¢) €
(0, +00) x OM of G lies indeed in (av, B) x OM, because 9& = Bv(q) +4X\>p(q) and
%€ (X, q) = 0 if and only if \*> = —v(q)/(q) > 0.

Moreover for any number L < 0 there exists A > 0 such that G()\, ¢
any A > X and ¢ € M. Thus there exists a maximum point (g, q) € (o
which is C-stable, and we can conclude the proof.

) < L for
. B) x OM

Remark 11. We give another example of function y(g) such that problem (7)) admits
a positive solution. Let ¢y € M be a maximum point for ¢. This point exists
since OM is compact. Now choose v € C?(OM) such that v has a positive local

1

3

W=

)
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maximum in gg. Then the pair (Ag,qo) = ( 2/ f«Z((g:)) qo) is a CP-stable critical
point for G(}, q).

In fact, we have

VaaG = (By(q) +4X¢(q), A\BV 7(q) + A V4(q))

which vanishes for (Ao, qo0) = ( 3 fg((gé’)) qo) Moreover the Hessian matrix is

" _( 2¢(qo) 0
Gx,q()\mqo)—( 0 X7y (q0) + Mgl (q0)

which is negative definite. Thus (Mg, q0) = (f Y fg((;?)) ,qo) is a maximum, C°-
stable, point for G(\, q).

6. APPENDIX

Here we collect the proofs of the technical lemmas we claimed before.

Proof of Lemma[3. We follow the strategy of [I, Prop 5.1]. To prove the existence of
a solution of ([9) we have to show that the given term [%Rijkl (@)ze21 + Ruing (q)t?] 8ij
is L (OR"} )-orthogonal to the functions ji,...,j,. Forl=1,...,n — 1 we have

1.
/n [gRijkl(Q)Zkzl + Ryinj(q)t ] U j
"

1.
= / [ng‘jkl (9)zk21 4 Rning (@)t* | 05U Udzdt = 0
n

by symmetry, since the integrand is odd with respect to the z variables.
For the last term, since when i # j we have
n(n —2)zz;

GijU: B)
(1 +1)2 +]22)"F

and since when i = j we have Ry = 0 and, by ([3), Ruini = Rnn = 0 we have
1=
/ [—Rijkl(q)zkzl + Rping (q)tQ] a?jUUdZdt
"

3
“E L[ [t R | L

i#j k

and since i # j, by symmetry all the terms containing ¢?z;z; vanish and the others
terms are non zero only when ¢ = k£ and j = or when j = k and ¢ = [, thus

1.
/ |:§Rijkl (q)zkzl + Rm‘nj (q)tﬂ (912] UUdzdt

+

2,2

_ 1= 1= n(n —2)z;z
= zk:/Ri |:§Rklkl(Q) + glekl(Q)] (« b

1+t)2422)7"
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since Rklkl (q) = *lekl(q» Moreover

1 -
/ [gRijkl(q)zkzl + Rnin]( )ﬁ2:| 82 Uyr,opUdtz

2z (zs2s + (1 + 1))
n(2 —n) / [ ikl (@) 2621 + Ruing tQ] J
122 @2t B O | (el

o LR (Tt )
=n(2 );/i |:3Rklkl(q> + 3lekl(Q)} (242

Then there exists a solution. Also there exists a unique solution v, which is
Ly (OR" )-orthogonal to jy, for b=1,--- ,n.

To prove the estimates (ZI) and ([22) we use the inversion F' : R} — B™ \
{(0,...,0 — 1)} where B™ C R" is the closed ball centered in (0,...,0,—1/2) and
radius 1/2. The explicit expression for F' is

(ylv"'vynflvyn“i»l)
. / =4 (0,...,0— 1),
Y+t Y+ (yn + 1)

F(yla"'vyn):

We set

) =[S R an + Roins | 0306075 ).

By direct computation we have |f;(F(y))| < C(1 + |y|)*, so we have

(48) )l <c (1 ; é) < Cm

So it is possible to smoothly extend f; to the whole B™, and it turns out that if v,
solves (), then v, := (U~ 1v,) o F~! solves

—-Av = f, on B"
(49) { 68771 +20=0 on OB"

Then existence and uniqueness of ¥, are standard. To prove the decadence esti-
mates, fixed w € B™, consider the Green’s function G(¢, w) with boundary condi-
tion (% +2) G = 0. Then by Green’s formula and by ([@J) we have

0 8
W) = [ clewsn©+ [ age-cin=—[ aewrne
and, in light of (48]) we have

w1 <C [ le—uP )

and by |5, Prop 4.12 page 108] that |7,(¢)| < C (14 |¢])~* and by the definition of
v, we deduce
log(@)l < C(L+Jy)

The estimates on the first and the second derivatives of vy can be achieved in a
similar way.

It remains to prove [2I) and ([22). Notice that, changing of variables and pro-
ceeding as at the beginning of this proof, we have

n+2

(3 Rijrt (Qyryr + Ruing(@)ya] 05U (y)U ™72 (y)
R Wi+ +yn g+ (n+1)2)"
So we have, using (@9) and integrating by parts, that

0
(50) 0= fq:—/ Ay, = — —aq:—/ 27,
Bn Bn apn OV aBn

fa(€)d = dy = 0.
Bn
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and, changing variables again,

2(n—1)

0= [ wm@da s = [ U WU W dyo
aBn oR™

= / U2 (y)vg(y)dys - . . dyn—1.
oR™:

It is known (see [I]), that it holds, on H!(B™),

\v4 2
inf an' 9l =

= =2
faBn ¢=0 faBn |¢|2

Since, by (B0), we know that [, 74 = 0, we get

2 [ w< [ vap,
oB™ Bn

so, integrating by parts

—/ @A@:/ |Vz7q|272/ o, > 0.
Bn Bn aB‘n

By the properties of the inversion F' (see [I} formula (5.10)]) we have also

—/ VqAvg = _/Rn Vg Avg.

+

Finally, we want to prove that v, € C?(OM). Let go € OM. If ¢ € OM is sufficiently
close to qp, in Fermi coordinates we have ¢ = q(n) = exp,, 1, with n € R™ 1. So
Vg = Vexp,, n and we define

0

Fi = —ayl ’Uequo n

n=0

We prove the result for 'y, being the other cases completely analogous. By (I9) we
have that I'y solves

ATy = |3 2 (Rigula®)| i+ 5 (Buingaw)| |30 on R
Ui y=0 R n y=0
I 4 pU»2T1 =0 on OR’.

and, since 6;’7@” (q) = 0 (see [19, Prop 3.2 (4)]), we can proceed as at the beginning

of this proof to show that I'y exists. Analogously we get the claim for the second
derivative.
That concludes the proof. ([



22 MARCO GHIMENTI, ANNA MARIA MICHELETTI, AND ANGELA PISTOIA

Proof of Lemmal@. By ([24) we estimate, for some 6 € (0,1)
JeguWisg +02Vsg + ®) — Jo g, (Wa g+ 6°Vs ) = JL 5 (W g + 6%V ) [®]

1 -
+ §Jgj§q (Ws.q + 0°Vs 4 + 009)[®, ®]

n—2

2
mem (Wsq + 6°Vs q) dpg,

_ / (V3. W g +02V5,Vsg) Vi ® +
M
+ / ey (Wig + 6%Vs,q) @dog, — (n — 2)/ ((W(s,q + (5V57q)+) n-z ®dog,
oM oM
n—2
+—/ hgq (W5q+5 %q) Ddog,
oM
1
/ V3, @2 + ——< Ry, ®*dug, + = / ey ®%doy
q ) q 2 6M q

n—2
+

/ hgqq)?dagq -z / ((W&q +6Vsg + 9@)*) " B2y, .
oM 2 Jom

Immediately we have, by Holder inequality,

-9 ~
/ V3, @I 1 )R <I>2dugq+/6M (m+ ”Thgq) P2do < C||q>||gq = C||®|2;

n —
/ 2 quW57q¢dugq < C||W57q|
M

— 0, 2y, < CENBl

2 (M,3q) Ln=2(M

6 /M aVsq@dpg, < C8|VsqllrzargnI®lzacag,) < OOl g;

|1®] 201

(0M,gq) L n=2 (0M,jq)

/ (W5q+5 ng) ®doy, <C€|\W5q+5V5qH 2(n—1)
oM

< Ced| 2|l

/ (Wi + 0Vs + 62)* ) ? 9%doy, <c<||w5q+5wq+9q>|n >| |2,
oM =y (8M,3q)

<C| e[
By integration by parts we have

/ (V3,Ws,q +6°V5,Vs4) Vi, Pdpg, = — / Ay, (Wsq+8°Vsq) ®dug,
M M

0 5 0
+/6M <6VW5Q+5 En V&q> (I)dagq.

and, as in (BI) we get

[, (Wag o 82Vig) g, < 185, (Wo Vsl 2,y 18], = OB,
Moreover, by Holder inequality,

[ vaatdng, <0 | Vi J0] sy = O],
o O a ov L2 o5, L n=2 (8M,gq)

Since OM is umbilic, proceeding as in (B33)) (B4]), we get

| b3, (Wi, + 8°Vs) g, = 05181,
oM
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In the end we need to verify that

n

=0
/BM {(n =2) (Waq+0%Vsg) ") = %WM] ®do,

) 0
n—2 (Wgﬁ Jr(SQV& +) *—W& Q| 2m-1)
(n=2) (Woq + Vi) A I L JEe
= o(6%)[|l,

In fact, by ([I8) and by taylor expansion we have

2(n—1)
n

0

/6M |:(n — 2) ((Wé,q + (52‘/;5,q)+) B - $W5,q:| do’gq

<

2(n—1)
- 4(n—1)

< /aRi [(n -2) ((U5 + 52 (Uq)6)+)m N %U(;] m Gt o5 )

2(n—1)
" 4(n—1) 4(n—1)

52(vq)5] dz+o(0" " )=o0(6" " ),

2

/aRi {n ((Us+66% (1)) ")

which concludes the proof. [l
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