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Abstract

In this paper, we prove the output feedback stabilization for the linearized Korteweg-de Vries (KdV) equation posed on a
finite domain in the case the full state of the system cannot be measured. We assume that there is a sensor at the left end
point of the domain capable of measuring the first and second order boundary traces of the solution. This allows us to design
a suitable observer system whose states can be used for constructing boundary feedbacks acting at the right endpoint so that
both the observer and the original plant become exponentially stable. Stabilization of the original system is proved in the
L2-sense, while the convergence of the observer system to the original plant is also proved in higher order Sobolev norms. The
standard backstepping approach used to construct a left endpoint controller fails and presents mathematical challenges when
building right endpoint controllers due to the overdetermined nature of the related kernel models. In order to deal with this
difficulty we use the method of [18] which is based on using modified target systems involving extra trace terms. In addition,
we show that the number of controllers and boundary measurements can be reduced to one, with the cost of a slightly lower
exponential rate of decay. We provide numerical simulations illustrating the efficacy of our controllers.

Key words: Korteweg-de-Vries equation; backstepping; feedback stabilization; and boundary controller

1 Introduction

In this paper, we study the output feedback stabilization
of the linearized Korteweg-de Vries (KdV) equation on a
bounded domain Ω = (0, L) ⊂ R. The linearized version
of the model under consideration is given by

ut + ux + uxxx = 0 in Ω× (0, T ),

u(0, t) = 0, u(L, t) = U(t), ux(L, t) = V (t),

u(x, 0) = u0(x) in Ω,

(1)

whereas the nonlinear version of this model is written
with the main equation replaced by

ut + ux + uxxx + uux = 0. (2)

In (2), u = u(x, t) can for example model the evolution
of the amplitude of a surface water wave in a finite length
channel where energy to the system is put from the right
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end and left end of the system is free. The inputs U(t)
and V (t) at the right end point of the boundary are feed-
back controllers to be constructed. The initial-boundary
value problems (1) and (2) with homogeneous boundary
conditions (U = V ≡ 0) are both dissipative, since their
solution satisfies d

dt‖u(t)‖2L2(Ω) ≤ 0. However, this does

not always guarantee exponential decay. It is well-known
that for some special domain lengths (so called critical
lengths for KdV) the solution does not need to decay to
zero at all. For example if L = 2π, u = 1 − cos(x) is a
(time independent) solution of (1) on Ω = (0, 2π), but
its L2−norm is constant in t. Therefore, introducing a
stabilizing effect into the system is essential if one desires
to steer the solution to zero. See also [6] and [24] for a
detailed discussion of the relationship between stability
and domain length.

If the state of the system can be measured at all times,
one can attempt to construct exponentially stabilizing
backstepping controllers for (1) and (2). A backstepping
controller is generally constructed by using a transfor-
mation given by w(x, t) = u(x, t) −

∫ x
0
k(x, y)u(y, t)dy,

where k is a kernel function which is chosen in such a way
that the solution of (1) can be mapped to the solution
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of the following problem (so called “target system”):
wt + wx + wxxx + λw = 0 in Ω× R+,

w(0, t) = w(L, t) = wx(L, t) = 0 in R+,

w(x, 0) = w0(x) ≡ u0 −
∫ x

0
k(x, y)u0(y)dy in Ω.

The reason is that the solution of the above PDE model
readily decays to zero, and if one can also show that the
inverse of the backstepping transformation is bounded,
then the decay of w becomes equivalent to the decay of
u. Finding a suitable kernel which serves this purpose
is the crucial step. However, such an attempt to control
from the right endpoint, when only one boundary condi-
tion is specified at the left, brings serious mathematical
challenges since then the kernel is forced to satisfy the
overdetermined PDE model given by

kxxx + kyyy + ky + kx = −λk, y ∈ [0, x], x ∈ [0, L]

k(x, x) = k(x, 0) = ky(x, 0) = 0, (3)

kx(x, x) =
λ

3
x.

Unfortunately, the above PDE model does not have
smooth solutions (see [18] for a detailed discussion of
this issue). This problem is not present if one controls
the system from the left endpoint [4] or alternatively
controls from the right with two boundary conditions
specified at the left. The latter approach was used for
instance in [25] and [26] where the controller acted from
the right boundary condition while two (mixed type)
boundary conditions were specified at the left. However,
usually the boundary conditions are determined by the
intrinsic nature of the physical model, and one may not
be able to choose the number of boundary conditions at
a particular endpoint. The novelty of the present article
is that we are able to construct boundary feedback sta-
bilizers acting from the opposite of the endpoint where
only one boundary condition is specified.

Two approaches were proposed in order to overcome
the difficulty associated with the overdetermined kernel
model. Coron & Lü [8] replaced (3) posed on a triangle
with an equivalent PDE model posed on the rectangle
[0, L] × [0, L] and showed that this kernel PDE model
has a rough (H1) solution. However, their result relies
on the exact controllability of the linear KdV equation,
which does not hold on domains of critical lengths. They
managed to get high decay rates for domains of uncrit-
ical lengths. The second approach due to [18] is a di-
rect method which does not rely on any controllability
result. It is based on constructing a backstepping con-
troller which uses a modified kernel model disregarding
one of the boundary conditions in (3):

kxxx + kyyy + ky + kx = −λk, y ∈ [0, x], x ∈ [0, L]

k(x, x) = k(x, 0) = 0, (4)

kx(x, x) =
λ

3
x.

In [18] it is proven that the exponential stability can still
be achieved by using such a kernel with the cost of a
low exponential rate of decay. The slower decay is due
to the fact that disregarding a boundary condition from
(3) changes the target system in such a way that its main
equation involves a trace term which depends on the ker-
nel. Although this trace term badly affects the decay, its
effect can be eliminated by choosing λ sufficiently small
in which case one can still obtain an exponential decay
but not with an arbitrarily large rate. For more details
see [18, Section 2.1]. This approach has the advantage
that it is independent of whether the domain length is
critical or not. The existence as well as the smoothness
of the kernel k satisfying (4) was previously proved in
[18, Lemma 2.1]:

Lemma 1 ([18]) There exists a C∞-function k that
solves the boundary value problem (4).

The proof of the above lemma was done in [18] in two
steps. The first step was to show that k solves (4) if and
only if G = G(s, t) solves the integral equation

G(s, t) =
λ

3
st

+
1

3

∫ t

0

∫ s

0

∫ ω

0

(−Gttt+3Gstt−Gt−λG)(ξ, η)dξdωdη,

(5)

where t ≡ y, s ≡ x − y, and G(s, t) ≡ k(x, y). The
second step was to obtain the smooth solution of (5)
via a successive approximation technique and uniform
boundedness analysis of the subsequent series.

In both [8] and [18], it was assumed that the state of the
system could be measured at all times. Unfortunately,
this is not always the case. For instance, if one has no
access to the medium, a controller that requires mea-
surement of the full state of the original system may not
be constructed. In such a case, one generally first con-
structs an observer system that estimates the plant if
some partial information such as a boundary measure-
ment is available. The advantage is that the observer
can be controlled since its full state is available unlike
the original plant. This implies that the original plant
can be stabilized by the same controller applied to the
boundary of the observer. From the mathematical point
of view, the question is the following.

Problem 2 Can you write a boundary feedback system
with exponential stability, say with the unknown û, such
that this system (observer) estimates the solution of the
original plant with the same controller which uses the
states of the observer?

In this paper, we will assume that there are sensors at
the left end point of the channel capable of measuring
the boundary traces ux(0, t) and uxx(0, t). In order to
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answer Problem 2, we introduce and stabilize the follow-
ing observer system whose boundary feedback will also
be applied to the original plant:
ût + ûx + ûxxx + P1(x) (ux(0, t)− ûx(0, t))

+P2(x) (uxx(0, t)− ûxx(0, t)) = 0, in Ω× (0, T ),

û(0, t) = 0, û(L, t) = U(t), ûx(L, t) = V (t), in (0, T ),

û(x, 0) = û0(x), in Ω.

(6)
Note that the error ũ = û − u satisfies the PDE model
given by

ũt + ũx + ũxxx

= P1(x)ũx(0, t) + P2(x)ũxx(0, t) in Ω× (0, T );

ũ(0, t) = 0, ũ(L, t) = 0, ũx(L, t) = 0 in (0, T );

ũ(x, 0) = u0(x)− û0(x) in Ω.

(7)

P1(x) and P2(x) are observer gains in (6) and (7), which
are chosen in such a way that the solution û of the esti-
mator can be later controlled and moreover the error is
enforced to go to zero as t gets larger (see Section 2.2).
In some sense, we want to control the error, too. This is
achieved by using a bounded invertible (backstepping)
transformation in the form

ũ(x, t) = w̃(x, t)−
∫ x

0

p(x, y)w̃(y, t)dy (8)

by mapping the error system to the (exponentially sta-
ble) target system given by

w̃t + w̃x + w̃xxx + λ̃w̃ = 0, in Ω× (0, T ),

w̃(0, t) = 0, w̃(L, t) = 0,

w̃x(L, t) =
∫ L

0
px(L, y)w̃(y, t)dy, in (0, T ),

w̃(x, 0) = w̃0(x), in Ω

(9)

where λ̃ > 0. Computing the relevant partial derivatives
of both sides of (8), applying integration by parts and
using the given boundary conditions, it can be shown
that the desired target system (9) is obtained if P1(x) :=
py(x, 0), P2(x) := −p(x, 0) and p(x, y) satisfies the fol-
lowing PDE model on ∆:

pxxx + pyyy + px + py = λ̃p,

p(L, y) = 0, p(x, x) = 0,

px(x, x) = − λ̃3 (x− L).

(10)

Existence of a solution to (10) as well as the exponential
decay of (9) are shown in Section 2.2 below.

1.1 A few more words on the literature

Recently, [16] proved the output feedback stabilization
of the Korteweg-de Vries equation subject to the bound-
ary conditions u(0, t) = U(t), ux(L, t) = uxx(L, t) = 0
by using the partial measurement y(t) = u(L, t) . Here
the left end boundary input U(t) is a controller (stabi-
lizer) obtained by using the backstepping method. This
controller uses only the state values of the observer.
Prior to this work, the same authors [15] proved the
output feedback stabilization of the Korteweg-de Vries
equation subject to the boundary conditions u(0, t) =
U(t), u(L, t) = ux(L, t) = 0 by using the partial mea-
surement y(t) = uxx(L, t). The same problem in the non-
linear case was studied by [11]. We should also mention
some important work related to the control and stabi-
lization of the KdV equation. Exact boundary control-
lability of the linear and nonlinear KdV equations with
the same type of boundary conditions as in (1) was stud-
ied by [22], [7], [27], [9], [3], [5], [23], and [10]. Stabiliza-
tion of solutions of the KdV equation with a localised
interior damping was achieved by [21], [20], [17], and [1].
There are also some results achieving stabilization of the
KdV equation by using predetermined local boundary
feedbacks, see for instance [13] and [12].

1.2 Preliminaries, notation, and main result

Before we state our main results, let us give some impor-
tant facts and notations that will be needed later. To this
end, let η be a C∞-function and Υη : H l(Ω) → H l(Ω)
(l ≥ 0) be the integral operator defined by (Υηϕ)(x) :=∫ x

0
η(x, y)ϕ(y)dy, where H l(Ω) denotes the L2−based

Sobolev spaces with H0(Ω) = L2(Ω). Then the follow-
ing result holds true [14], [18]:

Lemma 3 I − Υη is invertible with a bounded inverse
fromH l(Ω)→ H l(Ω) (l ≥ 0). Moreover, (I−Υη)−1 can
be written as I + Φ, where Φ is a bounded operator from
L2(Ω) into H l(Ω) for l = 0, 1, 2 and from H l−2(Ω) into
H l(Ω) for l > 2.

For a given function ϕ, we say it satisfies the (higher
order) compatibility conditions (see e.g., [2, Definition
1.1]) if

ϕ(x̄) = ϕ′′′(x̄) + ϕ′(x̄) = 0, x̄ = 0, L. (11)

We also set Xs
T = C([0, T ];Hs(Ω)) ∩ L2(0, T ;Hs+1(Ω))

for representing solution spaces for s ≥ 0. In what fol-
lows, we will write A . B to denote an inequality A ≤
cB where c > 0 may only depend on the fixed param-
eters of the problem under consideration which are not
of interest. The main result of the paper is stated in the
following theorem:

Theorem 4 Let T > 0, u0, û0 ∈ H6(Ω) with u0(0) =
u0(L) = 0, p and k be the smooth kernels solving (10) and
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(4), respectively. Let also (I −Υp)
−1ũ0 = w̃0 satisfy the

compatibility conditions (11). Then, the plant-observer-
error (POE) system given in (1), (6), (7) has a solution
(u, û, ũ) ∈ X3

T ×X3
T ×X6

T with right endpoint boundary
controllers

U(t) := [Υkû](L, t) and V (t) := [Υkx û](L, t).

Moreover, there exist α > κ > 0 such that the decay rate
estimates

‖u(t)‖L2(Ω) .
(
‖û0‖L2(Ω) + ‖u0 − û0‖H3(Ω)

)
e−κt

+‖u0 − û0‖L2(Ω)e
−αt, (12)

‖û(t)‖L2(Ω) .
(
‖û0‖L2(Ω) + ‖u0 − û0‖H3(Ω)

)
e−κt, (13)

‖u(t)− û(t)‖L2(Ω) . ‖u0 − û0‖L2(Ω)e
−αt, (14)

‖u(t)− û(t)‖H3(Ω) . ‖u0 − û0‖H3(Ω)e
−αt (15)

hold true for t ∈ [0, T ].

2 Linearized model

2.1 Wellposedness

The initial step is to prove the wellposedness of the tar-
get error system (9). To this end, we first consider the
following open loop system instead of (9) for a moment:

w̃t + w̃x + w̃xxx + λ̃w̃ = 0, in Ω× (0, T ),

w̃(0, t) = 0, w̃(L, t) = 0, w̃x(L, t) = h(t),

w̃(x, 0) = w̃0(x), in Ω,

(16)

where h ∈ H1(0, T ), w̃0 ∈ H3(Ω) satisfy the compatibil-
ity conditions w̃0(0) = 0, w̃0(L) = 0. The well-posedness
of (16) was obtained in [2, Lemma 3.3], and one has
w̃ ∈ X3

T together with w̃t ∈ X0
T .

Lemma 5 ([2]) For given T > 0, let h ∈ H1(0, T ),
w̃0 ∈ H3(Ω) satisfy the compatibility conditions w̃0(0) =
0, w̃0(L) = 0. Then equation (16) has a unique solution
w̃ in X3

T with w̃t ∈ X0
T such that the following estimates

hold true:(
‖w̃‖X3

T
+ ‖w̃t‖X0

T

)
≤ C

(
‖w̃0‖H3(Ω) + ‖h‖H1(0,T )

)
.

Note that in (9), the boundary condition w̃x(L, t) =∫ L
0
px(L, y)w̃(y, t)dy is of feedback type. This cor-

responds to a closed loop version of (16) where

h(t) = h(w̃)(t) =
∫ L

0
px(L, y)w̃(y, t)dy. The wellposed-

ness of the closed loop problem will be treated by using
a fixed point argument. To achieve this, we define the
Banach space QT ≡ {w̃ ∈ X3

T | w̃t ∈ X0
T } and its com-

plete metric subspace Q̃T = {w̃ ∈ QT | w̃(·, 0) = w̃0(·)}

with the metric induced from the norm of QT . Observe
that given w̃∗ ∈ Q̃T , since p is a smooth solution of (10),

one has h(w̃∗)(·) =
∫ L

0
px(L, y)w̃∗(y, ·)dy ∈ H1(0, T ).

Indeed,

‖h(w̃∗)‖H1(0,T ) =

∥∥∥∥∥
∫ L

0

px(L, y)w̃∗(y, ·)dy

∥∥∥∥∥
H1(0,T )

≤
√
T‖px(L, ·)‖L2(Ω)

(
‖w̃∗‖X0

T
+ ‖w̃∗t ‖X0

T

)
<∞.

(17)

Now, we replace the boundary condition w̃x(L, t) =
h(w̃)(t) with w̃x(L, t) = h(w̃∗)(t) for fixed w̃∗ ∈ X3

T .
This is nothing but the problem given in (16) which has
a unique solution by Lemma 5. This defines an opera-
tor Γ : Q̃T → Q̃T given by Γ(w̃∗) = w̃. Regarding the
closed loop problem (9), it is now enough to show that Γ

has a fixed point. Let w̃1, w̃2 ∈ Q̃T . Using the estimate
in Lemma 5, we have

d(Γ(w̃1),Γ(w̃2))Q̃T
= ‖Γ(w̃1)− Γ(w̃2)‖QT

≤ C‖h(w̃1)(·)− h(w̃2)(·)‖H1(0,T )

≤ CT‖w̃1 − w̃2‖QT
= CTd(w̃1, w̃2)Q̃T

. (18)

Note that by choosing T sufficiently small we can make
the constant at the right hand side of the above inequal-
ity less than 1. Now, unleashing the Banach fixed point
theorem, we obtain the existence of a unique local solu-
tion w̃ ∈ QT . This implies the local well-posedness for
the target error system (9). In order to show that the
local solution is indeed global, it is enough to prove that
the local solution stays uniformly bounded in time. But
this readily follows from the stabilization estimates given
in Section 2.2 below. Now, by using the transformation
in (8), we obtain the wellposedness of the error system
(7).

We prove in Lemma 6 below that w̃x(0, ·), w̃xx(0, ·) ∈
L2(0, T ). Moreover, for w̃0 ∈ H6(Ω), we have z0 :=

−w̃′0 − w̃′′′0 − λ̃w̃0 ∈ H3(Ω) satisfying the compatibility
conditions. Introducing z = w̃t, we observe that z satis-
fies the main equation as well as the boundary conditions
of (9) but with initial condition z(x, 0) = z0. Applying
the above arguments to z, we deduce that w̃t = z ∈
X3
T . Moreover, we have w̃xt(0, t) = zx(0, t), w̃xxt(0, ·) =

zxx(0, ·) ∈ L2(0, T ). Therefore, the right hand side of
(32) can be written as a(x)ŵx(0, t)+f(x, t) with a(x) =
ky(x, 0) and f(x, t) = −Ψ1(x)w̃x(0, t) − Ψ2(x)w̃xx(0, t)
such that f ∈ W 1,2(0, T ;H∞(Ω)). Well-posedness of
this problem was studied in [2, Lemma 3.3], and for
given ŵ0 ∈ H3(Ω) satisfying the compatibility, one has
ŵ ∈ X3

T . Now, by the invertibility of (30) due to Lemma
3, we obtain the wellposedness of the observer system
(6) so that û ∈ X3

T . Combining the wellposedness of (7)
and (6), we obtain the wellposedness of the original sys-
tem and conclude that u = X3

T .
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2.2 Stabilization

Note that with the change of variables x̃ ≡ L−y and ỹ ≡
L−x and k(x̃, ỹ) = p(x, y), it is easy to see that k is the
C∞ kernel which solves (4), where x, y, and λ, replaced

by x̃, ỹ, and λ̃. Note also that by this transformation we
see that px(L, y) = −kỹ(x̃, 0), and in [18, Lemma 2.5] it

is shown that for suitably small, λ̃ > 0, the quantity λ̃−
1
2‖kỹ(·, 0)‖2L2(Ω) is strictly greater than zero. Therefore

choosing λ̃ sufficiently small, we can guarantee that α ≡
λ̃− 1

2‖px(L, ·)‖2L2(Ω) > 0. We need the following lemma:

Lemma 6 Let w̃ be the solution of (9). Then the follow-
ing inequalities hold:

‖w̃‖L2(Ω) ≤ ‖w̃0‖L2(Ω)e
−αt,(19)

|w̃x(0, t)|+ |w̃xx(0, t)|+ ‖w̃‖H3(Ω) . ‖w̃0‖H3(Ω)e
−αt.(20)

We multiply (9) by w̃ and integrate over Ω. Applying
integration by parts and boundary conditions we obtain

1

2

d

dt
‖w̃(t)‖2L2(Ω) + λ̃‖w̃(t)‖2L2(Ω) +

1

2
|w̃x(0, t)|2

=
1

2
|w̃x(L, t)|2,

which, together with (9), implies

1

2

d

dt
‖w̃(t)‖2L2(Ω) + λ̃‖w̃(t)‖2L2(Ω)

≤ 1

2

(∫ L

0

px(L, y)w̃(y, t)dy

)2

.

Applying the Cauchy-Schwarz inequality to the right
hand side we see that

1

2

d

dt
‖w̃(t)‖2L2(Ω)+

(
λ̃−1

2
‖px(L, ·)‖2L2(Ω)

)
‖w̃(t)‖2L2(Ω) ≤ 0,

which gives (19).

In order to prove (20), we first differentiate (9) with
respect to t, then multiply by w̃t and integrate over Ω.
Using integration by parts and boundary conditions as
well, we see that

1

2

d

dt
‖w̃t(t)‖2L2(Ω) + λ̃‖w̃t(t)‖2L2(Ω) +

1

2
|w̃tx(0, t)|2

=
1

2
|w̃tx(L, t)|2. (21)

Moreover by (9) we have w̃tx(L, t) =
∫ L

0
px(L, y)w̃t(y, t)dy.

Hence we obtain

1

2

d

dt
‖w̃t(t)‖2L2(Ω) + λ̃‖w̃t(t)‖2L2(Ω)

≤ 1

2

(∫ L

0

px(L, y)w̃t(y, t)dy

)2

.

Applying the Cauchy-Schwarz inequality to the right
hand side we get

1

2

d

dt
‖w̃t(t)‖2L2(Ω)+

(
λ̃−1

2
‖px(L, ·)‖2L2(Ω)

)
‖w̃t(t)‖2L2(Ω) ≤ 0,

(22)
which implies

‖w̃t(t)‖L2(Ω) ≤ ‖w̃t(0)‖L2(Ω)e
−αt ≤ ‖w̃0‖H3(Ω)e

−αt

(23)

since ‖w̃t(0)‖L2(Ω) = ‖w̃′0 + w̃′′′0 + λ̃w̃0‖ ≤ ‖w̃0‖H3(Ω).
On the other hand, by (9) we also have

‖w̃xxx(t)‖2L2(Ω)

≤ 3
(
‖w̃x(t)‖2L2(Ω) + λ̃‖w̃(t)‖2L2(Ω) + ‖w̃t(t)‖2L2(Ω)

)
.

(24)

Applying ε-Young’s inequality to the square of the right
hand side of the Gagliardo-Nirenberg inequality

‖w̃x(t)‖L2(Ω) ≤ ‖w̃xxx(t)‖
1
3

L2(Ω)‖w̃(t)‖
2
3

L2(Ω),

we also obtain

‖w̃x(t)‖2L2(Ω) ≤ ε‖w̃xxx(t)‖2L2(Ω) + cε‖w̃(t)‖2L2(Ω) (25)

for ε > 0. Combining (24) and (25), and choosing ε small
enough, we see that

‖w̃xxx(t)‖L2(Ω) . ‖w̃(t)‖L2(Ω) + ‖w̃t(t)‖L2(Ω). (26)

Hence

‖w̃(t)‖H3(Ω) . ‖w̃(t)‖L2(Ω) + ‖w̃t(t)‖L2(Ω), (27)

which, together with (19) and (23), implies

‖w̃‖H3(Ω) . ‖w̃0‖H3(Ω)e
−αt. (28)

To obtain the second part of inequality (20), we multi-
ply (9) by (L − x)w̃xx and integrate over Ω. Applying
integration by parts and boundary conditions, we obtain

w̃2
x(0, t) + w̃2

xx(0, t)

=
2

L

∫ L

0

(
(L−x)w̃tw̃xx+

1

2
w̃2
x+

1

2
w̃2
xx+λ̃(L−x)w̃w̃xx

)
dx.

5



Using Cauchy-Schwarz and Young’s inequalities on the
first and last term of the right hand side, we see that

|w̃x(0, t)|2 + |w̃xx(0, t)|2 . ‖w̃t‖2L2(Ω) + ‖w̃‖2H3(Ω), (29)

which, together with (23) and (28), implies (20).

Now for û, we apply the backstepping transformation

ŵ = û−
∫ x

0

k(x, y)û(y, t)dy (30)

where k is the kernel [18, Lemma 2.1] which solves (4).
Choosing

U(t) =
∫ L

0
k(L, y)û(y, t)dy,

V (t) =
∫ L

0
kx(L, y)û(y, t)dy.

(31)

in (6), we obtain the following equation for ŵ:
ŵt + ŵx + ŵxxx + λŵ

= ky(x, 0)ŵx(0, t)−Ψ1(x)w̃x(0, t)−Ψ2(x)w̃xx(0, t),

ŵ(0, t) = 0, ŵ(L, t) = 0, ŵx(L, t) = 0,

(32)
where Ψi(x) ≡ Pi(x)−

∫ x
0
Pi(y)k(x, y)dy for i ∈ {1, 2}.

Multiplying (32) by ŵ and integrating over Ω, we obtain

1

2

d

dt
‖ŵ(t)‖2L2(Ω) + λ‖ŵ(t)‖2L2(Ω) +

1

2
|ŵx(0, t)|2

= ŵx(0, t)

∫ L

0

ky(x, 0)ŵ(x, t)dx

−w̃x(0, t)

∫ L

0

Ψ1(x)ŵ(x, t)dx−w̃xx(0, t)

∫ L

0

Ψ2(x)ŵ(x, t)dx.

Applying ε-Young’s and Cauchy-Schwarz inequalities to
the right hand side, for any ε we get

1

2

d

dt
‖ŵ(t)‖2L2(Ω)+κ‖ŵ(t)‖2L2(Ω) ≤

1

2ε

[
w̃2
x(0, t) + w̃2

xx(0, t)
]
,

(33)
where

κ ≡ λ− 1

2
‖ky(·, 0)‖2L2(Ω)−

1

2
ε
(
‖Ψ1‖2L2(Ω) + ‖Ψ2‖2L2(Ω)

)
.

By [18, Lemma 2.5] we know that for sufficiently small λ,
the quantity λ− 1

2‖ky(·, 0)‖2L2(Ω) > 0. Therefore choos-

ing ε sufficiently small we can make the coefficient κ > 0.
Moreover, since α ≡ λ̃− 1

2‖px(L, ·)‖2L2(Ω) and px(L, y) =

ky(x, 0) , choosing λ = λ̃ if necessary, we can assume
α > κ. Inequality (33) and (20) imply

1

2

d

dt
‖ŵ(t)‖2L2(Ω) + κ‖ŵ(t)‖2L2(Ω) . ‖w̃0‖2H3(Ω)e

−2αt.

Using the assumption α > κ, multiplying both sides of
the above inequality by e2κt and taking the integral of
both sides from 0 to t we can easily see that

‖ŵ(t)‖2L2(Ω) .
(
‖ŵ0‖2L2(Ω) + ‖w̃0‖2H3(Ω)

)
e−2κt,

which is equivalent to saying

‖ŵ(t)‖L2(Ω) .
(
‖ŵ0‖L2(Ω) + ‖w̃0‖H3(Ω)

)
e−κt. (34)

On the other hand, both of the transformations given
in (8) and (30) are bounded with bounded inverses by
Lemma 3. Therefore, we have

‖ũ(t)‖H3(Ω) . ‖w̃(t)‖H3(Ω), ‖w̃0‖H3(Ω) . ‖ũ0‖H3(Ω),

‖û(t)‖L2(Ω) . ‖ŵ(t)‖L2(Ω), ‖ŵ0‖L2(Ω) . ‖û0‖L2(Ω).

(35)
Combining (34) and (35), we achieve

‖û‖L2(Ω) .
(
‖û0‖L2(Ω) + ‖u0 − û0‖H3(Ω)

)
e−κt. (36)

Moreover, (19), (20) and (35) also imply

‖u− û‖L2(Ω) . ‖u0 − û0‖L2(Ω)e
−αt, (37)

‖u− û‖H3(Ω) . ‖u0 − û0‖H3(Ω)e
−αt. (38)

Using (36)-(37) together with the triangle inequality, we
obtain

‖u‖L2(Ω) = ‖û+ ũ‖L2(Ω) ≤ ‖û‖L2(Ω) + ‖u− û‖L2(Ω)

.
(
‖û0‖L2(Ω) + ‖u0 − û0‖H3(Ω)

)
e−κt

+ ‖u0 − û0‖L2(Ω)e
−αt. (39)

3 Numerics

3.1 Algorithm

In this section, we describe the steps to obtain the nu-
merical solution of the plant-observer-error system given
in (1), (6), and (7). We follow a different approach com-
pared to for instance [16]. Our idea is based on first solv-
ing the models (7) and (32) with homogeneous boundary
conditions and then obtaining the solutions of nonho-
mogeneous boundary value problems (1) and (6) by us-
ing the invertibility of the backstepping transformation
given in Lemma 3.

(Step 1) At first we obtain numerical solutions of ker-
nel models (4) and (10). This is done via successive
approximation. More precisely, we first change vari-
ables by setting t ≡ y, s ≡ x−y, andG(s, t) ≡ k(x, y).
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Then, G satisfies the boundary value problem given
by

Gttt − 3Gstt + 3Gsst +Gt =−λG, (40)

G(s, 0) = G(0, t) = 0, (41)

Gs(0, t) =
λ

3
t (42)

on the triangular domain T0 ≡ {(s, t) | t ∈ [0, L], s ∈ [0, L− t]} .
Note that the solution of (40)-(42) can be constructed
by solving the integral equation

G(s, t) =
λ

3
st

+
1

3

∫ t

0

∫ s

0

∫ ω

0

(−Gttt+3Gstt−Gt−λG)(ξ, η)dξdωdη.

(43)

Therefore, we set

Gn(s, t) =
λ

3
st

+
1

3

∫ t

0

∫ s

0

∫ ω

0

(−Gn−1
ttt +3Gn−1

stt −Gn−1
t −λGn−1)(ξ, η)dξdωdη

(44)

for n ≥ 1 withG0 ≡ 0.We have proven in [18] that the
sequenceGn uniformly converges to a smooth function
on T0. For the sake of numerical experiments, we define
a parameter niter ∈ Z+ and use

knum(x, y) = Gniter (x− y, y)

for the kernel k. Since the solution of (10) is given by
p(x, y) = k(L− y, L− x), we will use

pnum(x, y) = knum(L−y, L−x) = Gniter (x−y, L−x)

for the kernel p. The observer gains P1 and P2 will
then be taken as

P1,num(x) =
∂

∂y
pnum(x, 0) and P2,num(x, 0) = −pnum(x, 0).

Using these polynomial approximations, we also define
approximations for Ψi, i = 1, 2 by setting

Ψi,num(x) ≡ Pi,num(x)−
∫ x

0

Pi,num(y)knum(x, y)dy.

(Step 2) Secondly, we numerically solve the error sys-
tem (7). In order to do this, we modify the finite dif-
ference scheme given in [19]. To this end, we set the
discrete space

XJ := {ũ = (ũ0, ũ1, ..., ũJ) ∈ RJ+1 | ũ0 = ũJ−1 = ũJ = 0},

and the difference operators (D+ũ)j :=
ũj+1 − ũj

δx
,

(D−ũ)j :=
ũj − ũj−1

δx
for j = 1, ..., J − 1, and D =

1

2
(D+ + D−). Let δx and δt be the space and time

steps for j = 0, ..., J, and n = 0, 1, ..., N , respectively.
Then the numerical approximation of the linearised
error system (7) takes the form

ũn+1
j − ũnj
δt

+ (Aũn+1)j = P1,num(xj)
ũn1
δx

(45)

+P2,num(xj)
(ũn2 − 2ũn1 )

(δx)2
, j = 1, ..., J − 1 (46)

ũ0 = ũJ−1 = ũJ = 0, (47)

ũ0 =

∫ x
j+ 1

2

x
j− 1

2

ũ0(x)dx, j = 1, ..., J − 1, (48)

where xj∓ 1
2

= (j∓ 1
2 )δx, xj = jδx. The (J−1)×(J−1)

matrix A approximates ũx + ũxxx and it is defined by
A := D+D+D− +D. Let us set C̃ := I + δtA. Then,
from the main equation, we obtain

ũn+1
j = C̃−1

(
ũnj

+P1,num(xj)
(δt)ũn1
δx

+ P2,num(xj)
δt(ũn2 − 2ũn1 )

(δx)2

)
(49)

for j = 1, ..., J − 1.
(Step 3) The next step is to solve (32). The right hand

side of the main equation in (32) includes the traces
w̃x(0, t) and w̃xx(0, t). Observe that these traces are
equal to ũx(0, t) and ũxx(0, t) by the transformation
(8) and the boundary conditions p(x, x) = 0 and
w̃(0, t) = 0. Therefore, we can use the approximations
ũn1
δx

and
ũn2 − 2ũn1

(δx)2
from the previous step to approx-

imate ũx(0, tn) and ũxx(0, tn) at the nth time step.
Then the numerical approximation of the linearised
observer target system (32) takes the form

ŵn+1
j − ŵnj
δt

+ (Aŵn+1)j + λŵn+1 = (RHS), (50)

ŵ0 = ŵJ−1 = ŵJ = 0, (51)

ŵ0 =

∫ x
j+ 1

2

x
j− 1

2

ŵ0(x)dx, (52)

for j = 1, ..., J , where ŵ0 is obtained from the trans-
formation (30) and

(RHS) =
∂

∂y
knum(xj , 0)−Ψ1,num(xj)

ũn1
δx

−Ψ2,num(xj)
(ũn2 − 2ũn1 )

(δx)2
. (53)
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Let us set Ĉ := (1 + δtλ)I+ δtA. Then, from the main
equation, we obtain

ŵn+1
j = Ĉ−1

(
ŵnj +

∂

∂y
knum(xj , 0)−Ψ1,num(xj)

ũn1
δx

−Ψ2,num(xj)
(ũn2 − 2ũn1 )

(δx)2

)
(54)

for j = 1, ..., J − 1.
In order to obtain the solution of the observer sys-

tem (6), we use the inverse of the transformation (30).
Given w̃, we can find the corresponding inverse im-
age û via the succession method given in the proof of
Lemma 3 (see for example [14, Lemma 2.4] and [18,
Lemma 2.2]). To this end, let miter denote the num-
ber of iterations in the succession and set v0 = Kw̃,
vk := K(w̃ + vk−1) for 1 ≤ k ≤ miter, where K is
the numerical approximation of the integral in the
definition of Υk. Then, vmiter is an approximation of
v = Φ(w̃), and one gets an approximation of the so-
lution of the observer system by setting û(xj , tn) :=
ŵ(xj , tn) + vmiter (xj , tn).

(Step 4) Finally, we solve the original plant (1) by set-
ting

u(xj , tn) := û(xj , tn) + ũ(xj , tn).

3.2 Simulations

In this section, we give two simulations for the linear
model on a domain of critical length: (i) uncontrolled
solution and (ii) controlled solution. The first simula-
tion (Fig. 1) shows a time independent solution of the
KdV equation on Ω = (0, 2π) with initial datum u0 =
1− cosx when no boundary feedback is present. This is
the case when all boundary conditions are homogeneous:
u(0, t) = u(2π, t) = ux(2π, t) = 0. The second simula-
tion (Fig. 2) shows the solution of the KdV equation with
the same initial datum but subject to the backstepping
feedback controllers given in (31) which use the state of
the observer system. The bump at x = 2π in Fig. 4 rep-
resents the action of the feedbacks at the right endpoint
of the domain.

4 Output feedback stabilization with a single
controller and boundary measurement

Using two feedback controllers at the right endpoint of
the domain and measuring two traces at the left are not
necessary to obtain the stabilization results in Section
2.2. One can achieve this by using only one controller and
making only one measurement as well. More precisely,
if we respectively take V (t) = 0 and P1(x) = 0 in (1)
and (6), then Theorem 4 still holds but with decay rate
constants smaller than α and κ. To see this, let us assume
u solves (1) with V (t) = 0, and û solves (6) with V (t) =

Fig. 1. Uncontrolled solution with initial datum
u0 = 1 − cos(x) on a domain of length 2π.

Fig. 2. Controlled solution with initial datum
u0 = 1 − cos(x), û0 = 0, kernel parameters λ = λ̃ = 0.01 on
a domain of length L = 2π, niter = miter = 10.

P1(x) = 0. Then the error target system becomes


w̃t + w̃x + w̃xxx + λ̃w̃ = −py(x, 0)w̃x(0, t), in Ω× (0, T ),

w̃(0, t) = 0, w̃(L, t) = 0,

w̃x(L, t) =
∫ L

0
px(L, y)w̃(y, t)dy, in (0, T ),

w̃(x, 0) = w̃0(x), in Ω.

(55)
Applying the same multipliers to (55) as in Section 2.2,
we get

‖w̃(t)‖L2(Ω) ≤ ‖w̃(0)‖L2(Ω)e
−βt, (56)

‖w̃t(t)‖L2(Ω) ≤ ‖w̃t(0)‖L2(Ω)e
−βt, (57)
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where β =
(
λ̃ − 1

2‖px(L, ·)‖2L2(Ω) −
1
2‖py(·, 0)‖2L2(Ω)

)
.

Moreover, ‖w̃t‖L2(Ω) ≤ ‖w̃x + w̃xxx + λ̃w̃‖L2(Ω)

+‖py(·, 0)‖L2(Ω)|w̃x(0, t)|; and w̃x(0, t) = w̃x(L, t) −∫ L
0
w̃xx(x, t)dx, which, together with the boundary con-

dition, implies

|w̃x(0, t)| . ‖w̃‖L2(Ω) + ‖w̃xx‖L2(Ω). (58)

Therefore

‖w̃t‖L2(Ω) . ‖w̃‖H3(Ω). (59)

Combining (57) and (59), we obtain

‖w̃t(t)‖L2(Ω) ≤ ‖w̃0‖H3(Ω)e
−βt. (60)

On the other hand by (55) and (58) we have

‖w̃xxx‖2L2(Ω) ≤ 4(‖w̃x(t)‖2L2(Ω) + λ̃‖w̃(t)‖2L2(Ω)

+ ‖w̃t(t)‖2L2(Ω) + ‖py(·, 0)‖2L2(Ω)|w̃x(0, t)|2)

. ‖w̃x(t)‖2L2(Ω) + ‖w̃xx(t)‖2L2(Ω)

+ ‖w̃(t)‖2L2(Ω) + ‖w̃t(t)‖2L2(Ω). (61)

Applying ε-Young’s inequlity to the Gagliardo-Nirenberg

inequality ‖w̃xx‖L2(Ω) ≤ ‖w̃xxx‖
2
3

L2(Ω)‖w̃‖
1
3

L2(Ω), we ob-

tain

‖w̃xx‖2L2(Ω) ≤ δ‖w̃xxx‖
2
L2(Ω) + cδ‖w̃‖2L2(Ω) (62)

for any δ > 0. Combining (25), (61) and (62), we see that
our new error target w̃ also satisfies (26). Hence (27),
which together with (56) and (60) implies

‖w̃‖H3(Ω) . ‖w̃0‖H3(Ω)e
−βt. (63)

Not only ‖w̃‖H3(Ω) but also |w̃xx(0, t)|2 is bounded by

‖w̃0‖H3(Ω)e
−βt. To see this let us multiply (55) by (L−

x)w̃xx and integrate over Ω. After applying integration
by parts and the boundary conditions we obtain

w̃2
x(0, t) + w̃2

xx(0, t)

=
2

L

∫ L

0

(
(L−x)w̃tw̃xx+

1

2
w̃2
x+

1

2
w̃2
xx+λ̃(L−x)w̃w̃xx

)
dx

− 2

L
w̃x(0, t)

∫ L

0

(L− x)py(x, 0)w̃xxdx. (64)

Using Cauchy-Schwarz and Young’s inequalities, we
achieve |w̃xx(0, t)|2 . ‖w̃t‖2L2(Ω) + ‖w̃‖2H3(Ω), which,

together with (60) and (63), implies

|w̃xx(0, t)|2 . ‖w̃0‖H3(Ω)e
−βt. (65)

In the case of one observer, i.e., P1(x) = V (t) = 0, ŵ
given by (30) solves the following observer target system

ŵt + ŵx + ŵxxx + λŵ

= ky(x, 0)ŵx(0, t))−Ψ2(x)w̃xx(0, t),

ŵ(0, t) = 0, ŵ(L, t) = 0,

ŵx(L, t) = −
∫ L

0
kx(L, y)û(y, t)dy.

(66)

Multiplying (66) by ŵ and integrating over Ω, we obtain

1

2

d

dt
‖ŵ(t)‖2L2(Ω) + λ‖ŵ(t)‖2L2(Ω) +

1

2
|ŵx(0, t)|2

= ŵx(0, t)

∫ L

0

ky(x, 0)ŵ(x, t)dx

− w̃xx(0, t)

∫ L

0

Ψ2(x)ŵ(x, t)dx

+
1

2

[∫ L

0

kx(L, y)û(y, t)dx

]2

. (67)

Note that ŵ = (I − Υk)û. Therefore by Lemma 3 we
have ‖û‖L2(Ω) ≤ ‖(I − Υk)−1‖B[L2(Ω)]‖ŵ‖L2(Ω). Using
this fact and applying ε-Young’s and Cauchy-Schwarz
inequalities to the right hand side of (67), for any ε we
get

1

2

d

dt
‖ŵ(t)‖2L2(Ω) + µ‖ŵ(t)‖2L2(Ω) ≤

1

2ε
w̃2
xx(0, t), (68)

where

µ ≡ λ− 1

2
‖ky(·, 0)‖2L2(Ω) −

1

2
ε‖Ψ2‖2L2(Ω)

− 1

2
‖kx(L, ·)‖2L2(Ω)‖(I −Υk)−1‖2B[L2(Ω)].

Inequality (68) and (63) imply

1

2

d

dt
‖ŵ(t)‖2L2(Ω) + µ‖ŵ(t)‖2L2(Ω) . ‖w̃0‖2H3(Ω)e

−2βt.

(69)
By the proof of [18, Lemma 2.5], we know that
asymptotically ‖ky(·, 0)‖L2(Ω) ∼ λ. A similar argu-
ment also implies ‖kx(L, ·)‖L2(Ω) ∼ λ. Moreover, us-
ing the calculations in [14], it is not hard to see that
‖(I − Υk)−1‖B[L2(Ω)] ∼ 1 + λeCλ where C > 0 de-
pends only on L. Therefore choosing λ and ε sufficiently
small we can guarantee that µ > 0. In addition, in
the case of λ = λ̃, we have p(x, y) = k(L − y, L − x)
and ‖ky(·, 0)‖L2(Ω) = ‖px(L, ·)‖L2(Ω), ‖py(·, 0)‖L2(Ω) =

‖kx(L, ·)‖L2(Ω) which imply that choosing λ = λ̃ if nec-
essary we can also guarantee β > µ. Taking β > µ,
multiplying (69) by e2µt and integrating from 0 to t we
obtain

‖ŵ(t)‖L2(Ω) .
(
‖ŵ0‖L2(Ω) + ‖w̃0‖H3(Ω)

)
e−µt, (70)
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which together with (35) implies

‖û‖L2(Ω) .
(
‖û0‖L2(Ω) + ‖u0 − û0‖H3(Ω)

)
e−µt. (71)

By (56), (63) and (35) we also have

‖u− û‖L2(Ω) . ‖u0 − û0‖L2(Ω)e
−βt, (72)

‖u− û‖H3(Ω) . ‖u0 − û0‖H3(Ω)e
−βt. (73)

Again, combining (71) and (72) and using the triangle
inequality, we prove the exponential decay of u.

5 Conclusion

In this paper, we studied an output feedback stabiliza-
tion problem with right endpoint controller(s) to which
the standard backstepping method does not apply be-
cause the associated kernel PDE models become overde-
termined and do not possess smooth solutions. The dif-
ficulty was due to the type of given boundary conditions
(one b.c. at the left, two b.c. at the right) and the lo-
cation of the controller(s). We dealt with this issue by
using a kernel instead, that does not satisfy all of the
boundary conditions implied by the standard algorithm
of backstepping. Although using such a kernel is associ-
ated with more complicated target systems and slower
rate of decay, it had the major advantage that the ex-
ponential stabilization can be achieved even on critical
length domains. This method is interesting in the sense
that it can be applied to many other PDEs where one
encounters overdetermined kernel models.

Acknowledgement

We would like to thank the anonymous reviewers for
their careful reading of the manuscript and their several
insightful comments and suggestions, which significantly
contributed to improving the quality of this article.

References

[1] Andras Balogh and Miroslav Krstic. Boundary control
of the Korteweg-de Vries-Burgers equation: further results
on stabilization and well-posedness, with numerical
demonstration. IEEE Trans. Automat. Control, 45(9):1739–
1745, 2000.

[2] Jerry L. Bona, Shu Ming Sun, and Bing-Yu Zhang. A
nonhomogeneous boundary-value problem for the Korteweg-
de Vries equation posed on a finite domain. Comm. Partial
Differential Equations, 28(7-8):1391–1436, 2003.

[3] Eduardo Cerpa. Exact controllability of a nonlinear
Korteweg-de Vries equation on a critical spatial domain.
SIAM J. Control Optim., 46(3):877–899, 2007.

[4] Eduardo Cerpa and Jean-Michel Coron. Rapid stabilization
for a Korteweg-de Vries equation from the left Dirichlet
boundary condition. IEEE Trans. Automat. Control,
58(7):1688–1695, 2013.

[5] Eduardo Cerpa and Emmanuelle Crépeau. Boundary
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