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Abstract

In this paper, we obtain an asymptotic formula for the persistence probability

in the positive real line of a random polynomial arising from evolutionary game

theory. It corresponds to the probability that a multi-player two-strategy random

evolutionary game has no internal equilibria. The key ingredient is to approximate

the sequence of random polynomials indexed by their degrees by an appropriate

centered stationary Gaussian process.
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1 Introduction

1.1 Motivation

In this paper, we study the persistence probability, that is the probability of not changing
sign, in the positive real line of the following random polynomial

fn(x) =
n
∑

i=0

(

n

i

)

aix
i, (1)
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where the coefficients ai’s are real and independent identically distributed (i.i.d.) standard
normal random variables.

Our first motivation is from random polynomial theory in which the study of zeros of a
random polynomial has been studied extensively since the seminal paper of Block and Pólya
[BP32]. We review here relevant work on the persistence probability and refer the reader
to standard monographs [BRS86, Far98] and recent articles [TV15, NNV16, DV17, BZ17]
and references therein for information on other aspects of random polynomials such as
the expected number of roots, central limit theorem and large deviations. A random
polynomial can be generally expressed by

Pn(x) =

n
∑

i=0

ci ξi x
i, (2)

where ci are deterministic coefficients which may depend on both n and i and ξi are random
variables. The most popular random polynomials studied in the literature are:

(i) Kac polynomials (denoted by PK
n ): ci := 1,

(ii) Weyl (or flat) polynomials (PW
n ): ci :=

1
i!
,

(iii) Elliptic (or binomial) polynomials (PE
n ): ci :=

√

(

n
i

)

.

For Kac polynomials, it is shown in [LO39, LO48] that, when {ξi}ni=0 are i.i.d. and are
either all uniform on [1, 1] or all Gaussian or all uniform on {1, 1}, P(NK

n = 0) = O(1/ logn)
where NK

n is the number of real zeros of the Kac polynomial PK
n . This result is extended

in [DPSZ02] to the case where ξi are i.i.d. random variables with the common distribution
having finite moments of all orders as

P(PK
n (x) > 0, ∀x ∈ R) = n−4b0+o(1),

where the constant b0 above is given by

b0 = − lim
t→∞

t−1 logP(Xs > 0, ∀s ∈ [0, t]),

whereX is a centered stationary Gaussian process with correlation E(X0Xt) = 1/ cosh(t/2).
In [SM08], the authors develop a mean-field approximation to re-derive the persistence
probability of (generalized) Kac polynomials relating it to zero crossing properties of the
diffusion equation with random initial conditions. Moreover, using this method, they pre-
dict and numerically verify the following asymptotic formulas for elliptic and Weyl models:

(i) For elliptic polynomials:

lim
n→∞

log P(PE
n (x) > 0, ∀x ∈ R)√

n
= −2πb, (3)
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where b is a positive constant defined as

b = − lim
T→∞

log P(inf0≤t≤T Y (t))

T
, (4)

where Y (t) is a centered stationary Gaussian process with correlation E(Y0Yt) =
e−t2/2.

(ii) For Weyl polynomials

lim
n→∞

log P(PW
n (x) > 0, ∀x ∈ R)√

n
= −2b, (5)

with the same constant b as in (4).

The statement (3) for elliptic polynomials is proven in [DM15]. In addition, this work also
shows (5) for In = [0,

√
n − αn] with n1/2αn → 0 obtaining the persistence exponent −b.

More recently, by extending the method of [DM15], the authors of [CP17] prove (5) for
Weyl polynomials. Inspired by this development, in this paper we study the asymptotic
behaviour of the persistence probability in the positive real line of the random polynomial
fn in (1). This is a new class of random polynomials and as will be discussed in the
next paragraph, the persistence probability of fn−1 corresponds to the probability that an
n-player two-strategy random evolutionary game has no internal equilibria.

Our second motivation comes from evolutionary game theory [MSP73, HS98]. As will
be shown in Appendix 5, under certain assumptions, the polynomial fn originates from the
study of equilibrium points in random evolutionary game theory: finding an internal equi-
librium point in a symmetric n-player two-strategy random game is equivalent to finding
a positive zero of fn−1. In particular, the persistence probability of fn−1 in the positive
real line corresponds to the probability that the random game has no internal equilibria.
Random evolutionary games have been used widely and successfully in the mathematical
modelling of social and biological systems where limited information is available or where
the environment changes so rapidly and frequently that one cannot predict the payoffs of
their inhabitants. Such scenarios arise in fields as biology, ecology, population genetics,
economics and social sciences [May01, FH92, HTG12, GRLD09]. In these situations, due to
randomness, characterizing the statistical properties of equilibrium points becomes essen-
tial and has attracted considerable interest in recent years. In [GT10, HTG12, GT14], the
authors provide analytical and simulation results for random games with a small number of
players (n ≤ 4) focusing on the probability of attaining the maximal number of equilibrium
points. In [DH15, DH16, DTH17b], the authors derive a closed formula for the expected
number of internal equilibria, characterize its asymptotic behaviour and study the effect of
correlations. Related work on the expected number of equilibrium points of random large
complex systems arising from physics and ecology are presented in [Fyo04, FN12, FK16],
see also references therein. More recently, [DTH17a] offers, among other things, an an-
alytical formula for the probability that a multi-player two-strategy game has a certain
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number of internal equilibria. Although the analytical formula is theoretically interest-
ing, it involves complicated multiple integrals and is computationally intractable when the
number of player becomes large. The present paper provides an asymptotic formula, as
the number of players tends to infinity, for the probability that the game has no internal
equilibria. Biologically this probability corresponds to the two extreme cases when the
whole population consists of only one specie/strategy while the other extincts.

1.2 The main result of the paper

The main result of the present paper is the following theorem.

Theorem 1.1. Let fn be defined in (1) where the coefficients ai are i.i.d. standard normal
random variables. Then we have

lim
n→∞

logP (fn(x) > 0, ∀x ∈ (0,∞))

π
√
n

= −b, (6)

where b is the persistence exponent defined by

b = − lim
T→∞

log P(inf0≤t≤T Z(t) > 0)

T
, (7)

where Z(t) is a centered stationary Gaussian process with correlation E(Z0Zt) = e−t2/4.

The idea of the proof is as follows. We first show that the contributions to the per-
sistence exponent of intervals (0, n−1/6) and (n1/6,∞) are negligible. We then apply the
method of [DM15] to prove that the main contribution from the interval (n−1/6, n1/6) can
be calculated approximately from that of a centered stationary Gaussian process with
autocorrelation function R(t) = e−t2/4.

1.3 Organization of the paper

The rest of paper is organized as follows. Section 2 contains technical lemmas. The proof of
the main theorem is presented in Section 3. We provide further discussion on future work
in Section 4. In Appendix 5, we show the derivation of the random polynomial fn from the
replicator dynamics for a symmetric multi-player two-strategy random evolutionary game.

2 Preliminaries

In this section, we prove some technical results that will be used in the proof of the main
theorem presented in Section 3.

Since {ai} are i.i.d. random variables of standard normal distribution, the random
polynomial fn(x) is a Gaussian process with autocorrelation function

An(x, y) =
Mn(

√
xy)

√

Mn(x)
√

Mn(y)
, (8)
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where

Mn(x) =
n
∑

i=0

(

n

i

)2

x2i. (9)

We prove here a key lemma on the behavior of Mn(x) as n → ∞.

Lemma 2.1. For x ∈ (0, 1], we define

ix =

[

nx

x+ 1

]

.

(i) For logn
6n

≤ x ≤ 1, we have

(

n

ix

)2

x2ix ≤ Mn(x) ≤ 3i3/4x

(

n

ix

)2

x2ix .

(ii) For n−1/6 ≤ x ≤ 1, we have

Mn(x) = (1 +O(n−1/24))

(

n

ix

)2

x2ix

√
πnx

(x+ 1)

= (1 +O(n−1/24))
(x+ 1)2n+1

2
√
πnx

.

Proof. The proof of this lemma is fairly lengthy and technical. The main idea is to use

Stirling formula to approximate the summand in Mn(x) by another function Jx

(

i
n

)

, see

Eq. (10) below. The tasks are then to understand the behaviour of Jx

(

i
n

)

which is subtly

dependent on the relationship between x and n. It turns out that the behaviour of Mn(x)
depends on whether x ∈ [ logn

6n
, 1] or x ∈ [n−1/6, 1] as in Part (i)/(ii). This will be carried

out using an intermediate parameter ix defined at the beginning of the lemma.
Let us start with Stirling formula that

i! =
√
2πi(1 +O(i−1))

(

i

e

)i

.

Therefore,

(

n

i

)

=

√

n

2πi(n− i)

(

1 +O(max(i−1, (n− i)−1))
)

(n

i

)i
(

n

n− i

)n−i

=

√

n

2πi(n− i)

(

1 +O(max(i−1, (n− i)−1))
)

exp

(

nI

(

i

n

))

,

where I(0) = I(1) = 0 and for t ∈ (0, 1),

I(t) = (t− 1) log(1− t)− t log t.
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Hence
(

n

i

)2

x2i =
n

2πi(n− i)

(

1 +O(max(i−1, (n− i)−1))
)

exp

(

2nJx

(

i

n

))

, (10)

where
Jx(t) = I(t) + t log x.

We notice that

Jx

(

x

x+ 1

)

= log(x+ 1), J ′
x

(

x

x+ 1

)

= 0, J ′′
x (t) =

−1

t(1− t)
∀ t ∈ (0, 1). (11)

Therefore, using Taylor expansion, we get

Jx

(

ix
n

)

= Jx

(

x

x+ 1

)

+ J ′
x

(

x

x+ 1

)(

ix
n

− x

x+ 1

)

+
J ′′
x (ηx)

2

(

ix
n

− x

x+ 1

)2

= log(x+ 1) +
J ′′
x (ηx)

2

(

ix
n

− x

x+ 1

)2

,

with some ηx ∈
(

ix
n
, x
x+1

)

. Using the assumption that x ∈ (0, 1], we have

∣

∣

ix
n

− x

x+ 1

∣

∣ ≤ 1

n
, |J ′′(ηx)| =

1

ηx(1− ηx)
≤ 2n

ix
.

Hence

2n

(

Jx

(

ix
n

)

− log(x+ 1)

)

≤ 2

ix
.

Therefore, using the fact that max(i−1
x , (n− ix)

−1) = i−1
x , we get

(

n

ix

)2

x2ix =
n

2πix(n− ix)

(

1 +O(i−1
x )
)

exp

(

2nJx

(

ix
n

))

(12)

=
(x+ 1)2

2πnx

(

1 +O(i−1
x )
)

(x+ 1)2n

=
(

1 +O(i−1
x )
) (x+ 1)2n+2

2πnx
.

We now estimate Mn(x). Observe that

Mn(x) =
n
∑

i=0

(

n

i

)2

x2i =

(

n

ix

)2

x2ix

n
∑

i=0

(

n
i

)2
x2i

(

n
ix

)2
x2ix

. (13)

We notice that for any i = 0, . . . , n
(

n

i

)

≤ enI(i/n).
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Thus for any i = 0, . . . , n

(

n

i

)2

x2i ≤ e2nJx(i/n). (14)

Observation (O1). By (11), the function Jx(t) is concave in (0, 1) and attains the
maximum at t = x

x+1
. Thus for any closed interval A ⊂ (0, 1),

max
t∈A

Jx(t) = max
t∈Ax

Jx(t),

with
Ax = {t : |t− x

x+1
| = min

s∈A
|s− x

x+1
|}.

Case 1. i ≤ ix − i
3/4
x , or ix + i

3/4
x ≤ i ≤ 60ix. Then by (12),(14) and observation (O1),

we have

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ 4πix exp

(

2n

[

Jx

(

i

n

)

− Jx

(

ix
n

)])

≤ 4πix exp

(

2n

[

Jx

(

ix ± i
3/4
x

n

)

− Jx

(

ix
n

)

])

.

By Taylor expansion,

Jx

(

ix ± i
3/4
x

n

)

− Jx

(

ix
n

)

= ±i
3/4
x

n
J ′
x

(

ix
n

)

+ J ′′
x (νx)

i
3/2
x

2n2
,

for some νx ∈ ( ix−i
3/4
x

n
, ix+i

3/4
x

n
). Notice that

∣

∣

∣
J ′
x

(

ix
n

)

∣

∣

∣
=
∣

∣

∣
J ′
x

(

ix
n

)

− J ′
x

(

x

x+ 1

)

∣

∣

∣
≤ sup

y∈( ix
n
,

x
x+1

)

|J ′′(y)|
∣

∣

∣

ix
n

− x

x+ 1

∣

∣

∣

≤ 4

nx
, (15)

by using (11) and | ix
n
− x

x+1
| ≤ 1

n
. On the other hand,

J ′′
x(νx) =

−1

νx(1− νx)
≤ −1

νx
≤ −n

ix + i
3/4
x

≤ −1

2x
.

Combining above estimates, we get

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ 4πix exp

(

8i
3/4
x

nx
− i

3/2
x

2nx

)

≤ 4πix exp

(

− i
3/2
x

4nx

)

≤ 4πixe
−
√
2nx
16 .
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Therefore, when nx is large enough,

M1,n(x) =
∑

i≤ix−i
3/4
x

(

n
i

)2
x2i

(

n
ix

)2
x2ix

+
∑

ix+i
3/4
x ≤i≤60ix

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ 61ix × 4πixe
−
√
2nx
16 ≤ 244π(nx)2e−

√
2nx
16 ≤ 1

nx
. (16)

Case 2. i > 60ix. Using the same arguments as in Case 1, we can show that

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ 4πix exp

(

2n

[

Jx

(

60ix
n

)

− Jx

(

ix
n

)])

≤ 4πix exp

(

2n

[

4

nx

59ix
n

− 1

120ix

(59ix)
2

2n2

])

≤ 4πix exp

(

472− 592nx

240

)

≤ 4πix exp

(

472− 592 logn

1440

)

≤ 4πixe
−12 logn/5 = 4πixn

−12/5.

Notice that for the last line, we assume that n is large enough and nx ≥ log n/6. Therefore,

M2,n(x) =
∑

i>60ix

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ n× 4πixn
−12/5 ≤ n−1/5. (17)

Case 3. |i− ix| ≤ i
3/4
x . By (10), noting that in this case i and ix are of the same order

of magnitude, we have

(

n
i

)2
x2i

(

n
ix

)2
x2ix

= (1 +O(i−1
x ))

ix(n− ix)

i(n− i)
exp

(

2n

[

Jx

(

i

n

)

− Jx

(

ix
n

)])

. (18)

Since Jx(t) is a concave function,

Jx

(

i

n

)

− Jx

(

ix
n

)

≤ J ′
x

(

ix
n

)

(i− ix)

n
. (19)

On the other hand, by (15)

|J ′
x

(

ix
n

)

(i− ix)| ≤
4|i− ix|

nx
≤ 4i

3/4
x

nx
≤ 4

(ix)1/4
. (20)

We are now in the position to prove (i). Indeed, from (18), (19) and (20), we have

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ (1 + i−1/2
x )

ix(n− ix)

i(n− i)
exp

(

8i−1/4
x

)

≤ (1 + i−1/8
x ).
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Hence,

1 ≤ M3,n(x) =
∑

|i−ix|≤i
3/4
x

(

n
i

)2
x2i

(

n
ix

)2
x2ix

≤ 2i3/4x (1 + i−1/8
x ).

Combining this estimate with (16) and (17), we obtain (i).
We now prove (ii). Assume that x ∈ (n−1/6, 1). Then using (18) and Taylor expansion,
(

n
i

)2
x2i

(

n
ix

)2
x2ix

= (1 +O(i−1
x ))

ix(n− ix)

i(n− i)
exp

(

2n

[

Jx

(

i

n

)

− Jx

(

ix
n

)])

= (1 +O(i−1/4
x )) exp

(

2n

[

J ′
x

(

ix
n

)

(i− ix)

n
+ J ′′

x

(

ix
n

)

(i− ix)
2

2n2
+ J ′′′

x (νi,x)
(i− ix)

3

6n3

])

,

for some νi,x ∈ ( ix
n
, i
n
). We notice that

J ′′′
x (y) = O(y−2) for all y ∈ R.

Therefore, by Taylor expansion,

J ′′
x

(

ix
n

)

= J ′′
x

(

x

x+ 1

)

+O

(

1

x2

)(

ix
n

− x

x+ 1

)

= J ′′
x

(

x

x+ 1

)

+O

(

1

nx2

)

,

and

J ′′′
x (νi,x) = O

(

1

x2

)

.

Combining these estimates with (20), we get

(ni)
2
x2i

(n
ix
)
2
x2ix

= (1 +O(i−1/4
x )) exp

(

O(i−1/4
x ) +

[

J ′′
x

(

x
x+1

)

+O
(

1
nx2

)

+O
(

1
x2

) (

i−ix
n

)] (i−ix)2

n

)

,

= (1 +O(n−5/24)) exp
(

[

J ′′
x

(

x
x+1

)

+O
(

n−1/24
)]

(i−ix)2

n

)

,

since x ∈ (n−1/6, 1) and |i− ix| ≤ i
3/4
x = O((nx)3/4). Therefore, by using J ′′

x (
x

x+1
) = −(x+1)2

x

and integral approximations, we can prove that

M3,n(x) =
∑

|i−ix|≤i
3/4
x

(ni)
2
x2i

(n
ix
)
2
x2ix

= (1 +O(n−5/24))
∑

|j|≤i
3/4
x

exp
([

−(x+1)2

x
+O(n−1/24)

]

j2

n

)

= (1 +O(n−5/24))
∑

|j|≤
(

nx
x+1

)3/4

exp



−



j

√

(x+1)2

x
+O(n−1/24)
√
n





2



= (1 +O(n−5/24))
√
n

√

(x+1)2

x
+O(n−1/24)

(
∫ ∞

−∞
e−t2dt+O(e−(nx)1/4)

)

= (1 +O(n−1/24))

√
πnx

x+ 1
.
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In conclusion, we have

n
∑

i=0

(

n

i

)2

x2i =

(

n

ix

)2

x2ix(M1,n(x) +M2,n(x) +M3,n(x))

= (1 +O(n−1/24))

(

n

ix

)2

x2ix

√
πnx

x+ 1

= (1 +O(n−1/24))
(x+ 1)2n+1

2
√
πnx

.

Part (ii) follows.

Remark 2.2 (Asymptotic behaviour of Mn via the Legendre polynomial). The asymptotic
formula of Mn can also be calculated using Legendre polynomials as follows. Legendre
polynomials, denoted by Ln(x), are solutions to Legendre’s differential equation

d

dx

[

(1− x2)
d

dx
Ln(x)

]

+ n(n + 1)Ln(x) = 0,

with initial data L0(x) = 1, L1(x) = x. They have been used widely in physics and
engineering and have many interesting properties, see [BO99] for more information. For
instance, Ln has the following explicit representation

Ln(x) =
1

2n

n
∑

i=0

(

n
i

)2

(x− 1)n−i(x+ 1)i.

According to [DH16, Lemma 3], the polynomial Mn defined in (9) and the Legendre poly-
nomial Ln satisfy the following relation

Mn(x) = (1− x2)nLn

(1 + x2

1− x2

)

. (21)

According to [BO99, Example 2, page 229] (see also [WW12]), the Legendre polynomial Ln

satisfies the following asymptotic behaviour as n → ∞ for any x > 1,

Ln(x) ∼
1√
2πn

(

x+
√
x2 − 1

)n+ 1

2

(x2 − 1)
1

4

, for x > 1. (22)

From (21) and (22), we obtain the following asymptotic behaviour for Mn(x) as n → ∞
for any 0 < x < 1

Mn(x) ∼
(x+ 1)2n+1

2
√
πnx

.

This is the result obtained in Part (ii) of Lemma 2.1. However, that part provided a
stronger statement offering a quantitative estimate.
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By transforming x = tan2(t/2
√
n) and y = tan2(s/2

√
n), we will show that for x, y ∈

[n−1/6, n1/6], the autocorrelationAn(x, y) is close to e
−(t−s)2/4. It means that the sequence of

random polynomials (fn(x)) converges weakly to the centered stationary Gaussian process
Z(t) with covariance function R(t) = e−t2/4. Then by heuristic arguments, the persistence
probability of fn should tend to the corresponding one of Z(t). To ensure the continuity of
persistence exponents, we need some restrictive conditions on the autocorrelation function.
The following result which is a combination of Theorem 1.6 in [DM15] and Lemma 3.1 in
[DM17] gives us such conditions.

Lemma 2.3. Let S+ be the class of all non-negative autocorrelation functions. Then the
following statements hold.

(a) For a centered stationary Gaussian process {Zt}t≥0 of autocorrelation function A(s, t) =
A(0, t− s) ∈ S+, the nonnegative limit

b(A) = − lim
T→∞

logP(inf0≤t≤T Z(t) > 0)

T
,

exists.

(b) Let {Z(k)
t }t≥0, 1 ≤ k ≤ ∞ be a sequence of centered Gaussian processes of unit

variance and nonnegative autocorrelation functions Ak(s, t), such that A∞(s, t) ∈ S+.
Assume that the following conditions hold

(b1) We have Ak(s, s+ τ) → A∞(0, τ) uniformly in s ≥ 0, when k → ∞.

(b2) For some α > 1,

lim sup
k,τ→∞

sup
s≥0

{τα logAk(s, s+ τ)} < −1.

(b3) There exists η > 1 such that

lim sup
u↓0

| log u|η sup
1≤k≤∞

p2k(u) < ∞,

where p2k(u) := 2− 2 infs≥0,τ∈[0,u]Ak(s, s+ τ).

(b4) The function A∞(0, τ) is non-increasing and satisfies that for any finite h > 0
and θ ∈ (0, 1)

a2h,θ = inf
0<t≤h

{

A∞(0, θt)− A∞(0, t)

1− A∞(0, t)

}

> 0.

Then we have

lim
k,T→∞

1

T
log P

(

Z
(k)
t > 0, ∀t ∈ [0, T ]

)

= −b(A∞).

11



While Lemma 2.3 shows the convergence of persistence exponent of general Gaussian
processes under strict conditions of autocorrelation functions, Lemma 2.4 below provides
a lower bound on the persistence probability of a differentiable Gaussian process Z(t),
assuming a simple condition that the variances of Z(t) and Z ′(t) are comparable.

Lemma 2.4. [DM15, Lemma 4.1] There is a universal constant µ ∈ (0, 1), such that the
following statements hold.

(i) If (Zt)t∈[a,b] is a differentiable centered Gaussian process satisfying

2(b− a)2 sup
t∈[a,b]

E(Z ′2
t ) ≤ sup

t∈[a,b]
E(Z2

t ),

then

P

(

inf
t∈[a,b]

Zt > 0

)

≥ µ.

(ii) If (Zt)t∈[0,T ] is a differentiable centered Gaussian process with nonnegative autocorre-
lation function satisfying for all t ≤ T

2 △
2
E(Z ′2

t ) ≤ E(Z2
t ),

for some positive constant △, then

P

(

inf
t∈[0,T ]

Zt > 0

)

≥ µ⌈T
△
⌉.

Proof. Part (i) is exactly Lemma 4.1 in [DM15]. Part (ii) is a direct consequence of (i).
Indeed, we divide the interval [0, T ] into ⌈T

△
⌉ small intervals of length △. Then the condition

of (i) is verified in each small interval. Thus using Slepian’s lemma and (i), we get (ii).

3 Proof of Theorem 1.1

In this section, we prove the main theorem, Theorem 1.1, using preliminary lemmas in Sec-
tion 2. The proof consists of three steps. In Subsection 3.1 we show that the contribution
to the persistence probability of two intervals (0, n−1/6) and (n1/6,∞) is negligible. Then in
Subsection 3.2, we compute the persistence exponent from the main interval (n−1/6, n1/6).
Finally, by bringing two previous steps together, we conclude the proof in Subsection 3.3.

3.1 Negligible intervals

In this part, we show that the contribution of intervals (0, n−1/6) and (n1/6,∞) to the
persistence exponent is negligible.

Proposition 3.1. We have

12



(i) lim
n→∞

1√
n
logP

(

fn(x) > 0 ∀x ∈ (0, n−1/6)
)

= 0,

(ii) lim
n→∞

1√
n
logP

(

fn(x) > 0 ∀x ∈ (n1/6,∞)
)

= 0.

Proof. Part (ii) is a consequence of (i). Indeed, we have

P
(

fn(x) > 0 ∀x ∈ (n1/6,∞)
)

= P
(

fn(x) > 0 ∀x ∈ (0, n−1/6)
)

,

since for x > 0,

fn(
1
x
) =

1

xn

n
∑

i=0

(

n

i

)

aix
n−i (L)=

fn(x)

xn
.

Now it remains to prove (i). Since the upper bound that

logP
(

fn(x) > 0 ∀x ∈ (0, n−1/6)
)

≤ log 1 = 0

is trivial, we only need to show the lower bound

lim inf
n→∞

1√
n
logP

(

fn(x) > 0 ∀x ∈ (0, n−1/6)
)

≥ 0. (23)

By Slepian’s lemma, (23) follows from the following lower bounds,

lim inf
n→∞

1√
n
log P

(

fn(x) > 0 ∀x ∈ (0, logn
6n

)
)

≥ 0, (24)

lim inf
n→∞

1√
n
log P

(

fn(x) > 0 ∀x ∈ ( logn
6n

, n−1/6)
)

≥ 0. (25)

We first prove (24). We observe that

P
(

fn(x) > 0 ∀x ∈ (0, logn
6n

)
)

≥ P

(

a0 >
∣

∣

∣

n
∑

i=1

(

n

i

)

aix
i
∣

∣

∣
∀x ∈ (0, logn

6n
)

)

≥ P

(

a0 > max
1≤i≤n

|ai| ×
n
∑

i=1

(

n

i

)

xi ∀x ∈ (0, logn
6n

)

)

≥ P

(

a0 > max
1≤i≤n

|ai| ×
(

1 + logn
6n

)n
)

≥ P

(

a0 > log n×
(

1 + logn
6n

)n
)

× P

(

max
1≤i≤n

|ai| ≤ logn

)

= (1− Φ(ξn))× (Φ(log n))n, (26)

where Φ(x) is the normal distribution function, and

ξn = log n×
(

1 + logn
6n

)n
.

13



We notice that log(1− Φ(x)) = (−1
2
+ o(1))x2 as x → ∞. Therefore, for n large enough,

(Φ(log n))n ≥
(

1− e− log2 n/4
)n

≥ 1/2, (27)

and

lim inf
n→∞

log(1− Φ(ξn))√
n

≥ lim inf
n→∞

−ξ2n√
n

≥ lim inf
n→∞

− log2 n× elogn/3√
n

= 0. (28)

Combining (26), (27) and (28), we get (24). We now prove (25). Let us define

gn(x) = (x+ 1)−nfn(x).

Then

g′n(x) = (x+ 1)−n

(

f ′
n(x)−

n

x+ 1
fn(x)

)

= (x+ 1)−n

n
∑

i=0

(

n

i

)

aix
i
(

i
x
− n

x+1

)

.

Using Lemma 2.1, we have

E(gn(x)
2) = (x+ 1)−2nMn(x) ≥ (x+ 1)−2n

(

n

ix

)2

x2ix , (29)

with

ix =

[

nx

x+ 1

]

.

Using the same arguments as in Lemma 2.1, we can also prove that

E(g′n(x)
2) = (x+ 1)−2n

n
∑

i=0

(

n

i

)2

x2i
(

i
x
− n

x+1

)2

≤ (x+ 1)−2n3i3/4x

(

n

ix

)2

x2ix
(

ix
x
− n

x+1

)2
. (30)

Combining (29) and (30), we obtain

E(g′n(x)
2) ≤ 3i3/4x

(

ix
x
− n

x+ 1

)2

E(gn(x)
2) ≤ 3n3/4

x5/4
E(gn(x)

2). (31)

Thus for x ∈ ( logn
6n

, 1√
n
),

2 △
2
1,n E(g′n(x)

2) ≤ E(gn(x)
2),
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with

△1,n=
(log n)5/8

8n
.

Applying Lemma 2.4, we have

P

(

fn(x) > 0 ∀x ∈ ( logn
6n

, 1√
n
)
)

= P

(

gn(x) > 0 ∀x ∈ ( logn
6n

, 1√
n
)
)

≥ µ
1

△1,n
√

n .

Therefore,

lim inf
n→∞

1√
n
log P

(

fn(x) > 0 ∀x ∈ ( logn
6n

, 1√
n
)
)

≥ lim inf
n→∞

log µ

n △1,n
= 0. (32)

Using (31) for x ∈ (n−1/2, n−1/6), we get

2 △
2
2,n E(g′n(x)

2) ≤ E(gn(x)
2),

with

△2,n=
1

3n11/16
.

Applying Lemma 2.4, we have

P
(

fn(x) > 0 ∀x ∈ (n−1/2, n−1/6)
)

= P
(

gn(x) > 0 ∀x ∈ (n−1/2, n−1/6)
)

≥ µ
1

n1/6
△2,n .

Therefore,

lim inf
n→∞

1√
n
logP

(

fn(x) > 0 ∀x ∈ (n−1/2, n−1/6)
)

≥ lim inf
n→∞

log µ

n2/3 △2,n

= 0. (33)

Using (32), (33) and Slepian’s lemma, we get (25).

3.2 The main interval

We make a transformation

x = tan2

(

t

2
√
n

)

.

Then x ∈ (n−1/6, n1/6) is equivalent to t ∈ (αn, π
√
n− αn), with

αn = 2
√
n tan−1(n−1/12) = (2 + o(1))n5/12.

Let us define for t ∈ (αn, π
√
n− αn),

hn(t) = fn(tan
2(t/2

√
n)).

Then

P
(

fn(x) > 0 ∀ x ∈ (n−1/6, n1/6)
)

= P
(

hn(t) > 0 ∀ t ∈ (αn, π
√
n− αn)

)

. (34)
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Moreover, the autocorrelation function of hn(t) is

Bn(t, s) = An

(

tan2( t
2
√
n
), tan2( s

2
√
n
)
)

=
Mn

(

tan( t
2
√
n
) tan( s

2
√
n
)
)

√

Mn(tan
2( t

2
√
n
))
√

Mn(tan
2( s

2
√
n
))
. (35)

We recall the approximation on Mn(u). For u ∈ (n−1/6, 1),

Mn(u) = (1 +O(n−1/24))
(u+ 1)2n+1

√
πnu

. (36)

For u ∈ (1,∞), we remark that

Mn(u) = u2nMn(
1
u
).

Therefore, the estimate (36) holds for all u ∈ (n−1/6, n1/6). Hence,

Bn(t, s) =
Mn

(

tan( t
2
√
n
) tan( s

2
√
n
)
)

√

Mn(tan
2( t

2
√
n
))
√

Mn(tan
2( s

2
√
n
))

= (1 +O(n−1/24))





(1 + tan( t
2
√
n
) tan( s

2
√
n
))2

(

1 + tan2( t
2
√
n
)
)(

1 + tan2( s
2
√
n
)
)





2n+1
2

= (1 +O(n−1/24))
[

cos
(

t−s
2
√
n

)]2n+1

.

We shift the interval (αn, π
√
n− αn) to the interval (0, π

√
n− 2αn) by changing variable

u = t− αn,

and define
h̄n(u) = hn(u+ αn).

Then the autocorrelation of h̄n(u) is

B̄n(u, v) = Bn(u+ αn, v + αn) = (1 +O(n−1/24))
[

cos
(

u−v
2
√
n

)]2n+1

. (37)

Observe that for fixed u, v,

B̄n(u, v) → e−(u−v)2/4.

This fact suggests us to verify Conditions (b1)-(b4) of Lemma 2.3 for the sequence of

Gaussian processes {Z(n)
t } with autocorrelation functions B̄n(u, v) and the limit stationary

Gaussian process Z
(∞)
t with autocorrelation function e−(u−v)2/4.

Verification of the condition (b1). It is easily deduced from (37).
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Verification of the condition (b2). Here we consider two cases. In the first case where
τ/

√
n → 0, as τ, n → ∞,

ταB̄n(u, u+ τ) ≤ (const)τα
[

cos
(

τ
2
√
n

)]2n+1

≤ (const)ταe−τ2/4 → 0.

In the second case, assume that there exists a positive constant c0 such that τ/
√
n ≥ c0,

then as τ, n → ∞,

ταB̄n(u, u+ τ) ≤ (const)nα/2 [cos (c0/2)]
2n+1 → 0.

Thus Condition (b2) is verified.
Verification of Condition (b3). Using (37), we have for n large enough

B̄n(t, t+ τ) ≥ (1− n−1/30)
[

cos
(

τ
2
√
n

)]2n+1

≥ (1− n−/30)(1− τ 2).

Therefore,

p̄2n(w) = 2− 2 inf
0≤τ≤w

0≤t,t+τ≤π
√
n−2αn

B̄n(t, t+ τ) ≤ 2w2 + 2n−1/30.

Hence, for any δ > 0, as w → 0

| logw|2 sup
n≥w−δ

p̄2n(w) → 0.

Thus, to verify (b3), it suffices to show that for some δ > 0

lim
w→0+

| logw|2 sup
n≤w−δ

p̄2n(w) < ∞. (38)

To show (38) holds, it is sufficient to prove that

lim
u→0+

| log u|2 sup
n≤u−δ

p2n(u) < ∞, (39)

where

p2n(u) = 2− 2 inf
0≤y−x≤u

n−1/6≤x≤y≤n1/6

An(x, y).

Recall that

An(x, y) =
Mn(

√
xy)

√

Mn(x)
√

Mn(y)
,

where

Mn(x) =
n
∑

i=0

(

n

i

)2

x2i.
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We have

εn(x, y) := Mn(
√
xy)−Mn(x) =

n
∑

i=0

(

n

i

)2

xi(yi − xi) ≥ 0,

since y ≥ x, and

ε̃n(x, y) := Mn(y)−Mn(x)− 2εn(x, y) =
n
∑

i=0

(

n

i

)2

(yi − xi)2 ≥ 0.

Let a > 0 and b, c ≥ 0 be real numbers satisfying ac− b2 ≥ 0. Then

1− a + b
√

a(a+ 2b+ c)
=

ac− b2
(

a + b+
√

a(a + 2b+ c)
)

√

a(a+ 2b+ c)
≤ ac− b2

a2
.

By the Cauchy-Schwarz inequality, Mn(x)ε̃n(x, y)− ε2n(x, y) ≥ 0. Hence, using the above
inequality for a = Mn(x), b = εn(x, y) and c = ε̃n(x, y), we get

0 ≤ 1−An(x, y) = 1− Mn(x) + εn(x, y)
√

Mn(x) (Mn(x) + 2εn(x, y) + ε̃n(x, y))

≤ Mn(x)ε̃n(x, y)− ε2n(x, y)

M2
n(x)

= (y − x)2
Mn(x)ε̃1,n(x, y)− ε21,n(x, y)

Mn(x)
, (40)

with

ε1,n(x, y) =

n
∑

i=0

(

n

i

)2

xi

(

yi − xi

y − x

)

,

and

ε̃1,n(x, y) =

n
∑

i=0

(

n

i

)2(
yi − xi

y − x

)2

.

Using the fact that

n
∑

i=0

a2i

n
∑

i=0

b2i −
(

n
∑

i=0

aibi

)2

=

n
∑

i<j

(aibj − ajbi)
2,

we get

Mn(x)ε̃1,n(x, y)− ε21,n(x, y) =
∑

i<j

(

n

i

)2(
n

j

)2

x2iy2i
(

yj−i − xj−i

y − x

)2

. (41)
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We notice that

0 ≤ y − x ≤ τ ≤ u, n ≤ u−δ, x ≥ n−1/6 ≥ uδ/6. (42)

Hence,

y2i ≤ (x+ u)2i = x2i
(

1 +
u

x

)2i

≤ x2i

(

1 + n
1
6
−1
δ

)2n

≤ 2x2i, (43)

for all δ ≤ 1/2 and n large enough. Moreover, since y − x ≤ u ≤ x,

yj−i − xj−i

y − x
=

j−i−1
∑

k=0

(y − x)kxj−i−k ≤ (j − i)xj−i−1 ≤ nxj−i−1. (44)

Combining (41), (43) and (44) yields that

Mn(x)ε̃1,n(x, y)− ε21,n(x, y) ≤ 2n2

x2

∑

i<j

(

n

i

)2(
n

j

)2

x2i+2j

≤ n2

x2
M2

n(x). (45)

It follows from (40), (42) and (45) that

0 ≤ 1− An(x, y) ≤ u2n2

x2
≤ u2−7δ/3 ≤ u5/6,

for δ ≤ 1/2. As consequence, (39) holds.
Verification of the condition (b4). It is easy to check (or see Remark 3.1 in [LS05]).

By the validity of Conditions (b1)-(b4), we deduce from Lemma 2.3 the following propo-
sition.

Proposition 3.2. We have

lim
n→∞

1

π
√
n
log P

(

fn(x) > 0 ∀x ∈ (n−1/6, n1/6)
)

= −b,

with b is as in the statement of Theorem 1.1.

3.3 Conclusion

Thanks to Slepian’s inequality, using Propositions 3.1 and 3.2 we get

lim inf
n→∞

1

π
√
n
log P (fn(x) > 0 ∀x ∈ (−∞,∞)) ≥ −b.

On the other hand, it follows directly from Proposition 3.2 that

lim sup
n→∞

1

π
√
n
logP (fn(x) > 0 ∀x ∈ (−∞,∞)) ≤ −b.

Combining these two inequalities we get Theorem 1.1.
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4 Summary and future work

In this paper, we have obtained an asymptotic formula for the persistence probability of
the random polynomial fn in (1) that arises from evolutionary game theory. The persis-
tence probability corresponds to the probability that a symmetric n-player two-strategy
random game has no internal equilibria. We note that fn forms a different class of random
polynomials that have been studied extensively in the literature particularly in random
polynomial theory, see [EK95] and a recent paper [LPX18] and references therein for infor-
mation. There are several open problems that are of interest for both evolutionary game
theory and random polynomial theory that we do not address in this paper such as prov-
ing a central limit theorem and a large deviation principle for the empirical measures of
the real zeros of fn as well as studying universality phenomena for this class of random
polynomials. We leave these problems for future research.

5 Appendix: derivation of fn from evolutionary game

theory

In this appendix, we review the derivation of the random polynomial fn in (1) from the
replicator dynamics for multi-player two-strategy games in evolutionary game theory. The
replicator equation for multi-player two-strategy games has already been derived in previ-
ous works [HS98, Sig10, GT10]. For the sake of completeness, we rederive it here.

We consider an infinitely large population consists of individuals using two strategies, A
and B. Let y, 0 ≤ y ≤ 1, be the frequency of strategy A in the population. The frequency
of strategy B is thus (1 − y). The interaction of the individuals in the population is in
randomly selected groups of n participants, that is, they interact and obtain their fitness
from n-player games. In this paper, we consider symmetric games where the payoffs do
not depend on the ordering of the players. Let ak (respectively, bk) be the payoff of that
an A-strategist (respectively, B) achieves when interacting with a group containing k A
strategists (and n − k B strategists). In symmetric games, the probability that an A
strategist interacts with k other A strategists in a group of size n is

(

n− 1
k

)

yk(1− y)n−1−k.

We note that this probability depends only on the number k of A strategist but not on the
particular order of the group. The average payoffs of A and B are, respectively

πA =

n−1
∑

k=0

ak

(

n− 1
k

)

yk(1− y)n−1−k, πB =

n−1
∑

k=0

bk

(

n− 1
k

)

yk(1− y)n−1−k.

The replicator equation of a d-player two-strategy game is given by [HS98, Sig10, GT10]

ẏ = y(πA − π) = y(1− y)
(

πA − πB

)

,
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where π := yπA+(1−y)πB is the average payoff of the population. The replicator equation
reflects the natural selection. In fact, if πA ≥ π then y increases, that is A spreads in the
population; vice versa, if πA < π then y decreases and A declines. Equilibrium points
of the dynamics satisfy that y(1 − y)(πA − πB) = 0. Since y = 0 and y = 1 are two
trivial equilibrium points, we focus only on internal ones, i.e. 0 < y < 1. They satisfy the
condition that the fitnesses of both strategies are the same πA = πB, which gives rise to

n−1
∑

k=0

βk

(

d− 1
k

)

yk(1− y)n−1−k = 0,

where βk = ak−bk. Using the transformation x = y
1−y

, with 0 < x < +∞, dividing the left

hand side of the above equation by (1−y)n−1 we obtain the following polynomial equation
for x

n−1
∑

k=0

βk

(

n− 1
k

)

xk = 0. (46)

Note that this equation can also be derived from the definition of an evolutionary stable
strategy, see e.g., [BCV97]. In complex large systems, information about the interaction
between participants is rarely available at the level of detail sufficient for the exact com-
putation of the payoff matrix; therefore, it is necessary to suppose that the payoff matrix
entries ak and bk (thus βk) for 0 ≤ k ≤ n−1, are random variables. We then obtain random
games and the expression on the right-hand side of (46) becomes a random polynomial. It
is exactly the random polynomial fn−1 in (1) that we start with.

We note that in this paper we need to make an assumption that the payoff differences
ak−bk are independent standard normal random variables. This choice could be interpreted
as modeling noise added to payoffs of a game where both strategies are neutral, i.e., have
always identical payoffs. Although this assumption is rather restricted, it provides an exact
match between random polynomial theory and random polynomial theory which opens up
a new avenue for future research, for instance, among other things, to relax the identical
and independent assumption.
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