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Abstract

We consider a boundary value problem of the stationary transport equation with the in-

coming boundary condition in two or three dimensional bounded convex domains. We discuss

discontinuity of the solution to the boundary value problem arising from discontinuous incom-

ing boundary data, which we call the boundary-induced discontinuity. In particular, we give

two kinds of sufficient conditions on the incoming boundary data for the boundary-induced dis-

continuity. We propose a method to reconstruct attenuation coefficient from jumps in boundary

measurements.

1 Introduction

We consider the stationary transport equation:

ξ · ∇xf(x, ξ) + µt(x)f(x, ξ) = µs(x)

∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′ . (1)

The stationary transport equation describes propagation of photons [6]. The function f(x, ξ) stands
for density of photons at a point x ∈ R

d, d = 2 or 3, with a direction ξ ∈ Sd−1. Here, Sd−1 is
the unit sphere in R

d. Two coefficients µt and µs and the integral kernel p characterize absorption
and scattering of photons in the media; they are called the attenuation coefficient, the scattering
coefficient, and the scattering phase function, respectively.

We introduce a domain in which we consider the equation (1). Let Ω be a bounded convex
domain in R

d with the C1 boundary ∂Ω. We assume that Ω = ∪N
j=1Ωj, where Ωj , 1 ≤ j ≤ N , are

disjoint (open) subdomains of Ω with piecewise C1 boundaries. Let Ω0 := ∪N
j=1Ωj . We assume that,

for all (x, ξ) ∈ Ω×Sd−1, the half line {x−tξ|t ≥ 0} intersects with ∂Ω0 at most finite times. In other
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words, for all (x, ξ) ∈ Ω× Sd−1, there exist positive integer l(x, ξ) and real numbers {tj(x, ξ)}
l(x,ξ)
j=1

such that 0 ≤ t1(x, ξ) < t2(x, ξ) < · · · < tl(x,ξ)(x, ξ), x − tξ ∈ ∂Ω0 if and only if t = tj(x, ξ), and
sup(x,ξ)∈Ω×Sd−1 l(x, ξ) < ∞. This assumption is called generalized convexity condition for Ω0 [1].

We consider the equation (1) in Ω0 × Sd−1. In what follows, we use these notations tj(x, ξ) and
l(x, ξ), and we put t0(x, ξ) = 0.

We introduce a boundary value problem to the equation (1). Denote the incoming boundary
Γ− and the outgoing boundary Γ+ by

Γ± := {(x, ξ) ∈ ∂Ω× Sd−1| ± n(x) · ξ > 0},

where n(x) is the outer unit normal vector at x ∈ ∂Ω and n(x) ·ξ is the inner product of two vectors
n(x) and ξ in R

d. We consider the incoming boundary value problem to seek a solution f to the
equation (1) satisfying

f(x, ξ) = f0(x, ξ), (x, ξ) ∈ Γ− (2)

for a given function f0 on Γ−.
Our aim in this paper is to propose a way to reconstruct the attenuation coefficient µt from the

boundary data, f0 and f |Γ+
, of the solution f to the boundary value problem (1)-(2) with µs and

p also unknown. This reconstruction is related to the optical tomography, which is a new medical
imaging technology [3].

Anikonov et al. [1] made use of propagation of the boundary-induced discontinuity, which is the
discontinuity of the solution to the problem arising from discontinuous incoming boundary data, in
order to solve the inverse problem. They showed that a jump of the boundary-induced discontinuity
propagates along a positive characteristic line when the boundary data has a jump with respect to
direction ξ, and it is observed as a jump of the outgoing boundary data on a discontinuous point,
which locates on the tip of the characteristic line. The exponential decay of the jump contains
information about the X-ray transform of the attenuation coefficient µt, which is defined by

(Xµt)(x, ξ) :=

∫

R

µt(x − rξ) dr, (x, ξ) ∈ R
d × Sd−1.

They applied the inverse X-ray transform to the observed data in order to determine the unknown
coefficient µt from its image Xµt [10].

On the other hand, a jump of the boundary-induced discontinuity also propagates along a
positive characteristic line when the boundary data has a jump with respect to space x. Aoki et
al. [2] showed this property for the case of the two dimensional half homogeneous space with an
incoming boundary data independent of ξ. The authors [9] extended their result to d-dimensional
(d ≥ 2) inhomogeneous slab domains with incoming boundary data depending on ξ, although we
assumed a slight condition on two coefficients. In this paper, we further extend the result in [9] to
a bounded convex domain case. In addition to the discontinuity with respect to direction ξ, which
is presented in Anikonov et al [1], we also discuss the discontinuity with respect to space x.

µt, µs, and p can be reconstructed by the use of an albedo operator [4] [7] [11]. The albedo
operator is the operator which maps the incoming boundary data f0 to the outgoing boundary data
f |Γ+

. However, it is not feasible to observe an albedo operator from finite times experiments. On
the contrary, our proposed method uses jumps in boundary measurements, which are observed by
finite times experiments. Besides, though we can only reconstruct νt our approach, it is the very
coeffiecent contains the most important information.
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We assume that µt and µs are nonnegative bounded functions on R
d such that µt and µs are

continuous on Ω0, µt(x) ≥ µs(x) for x ∈ Ω0, µt(x) = µs(x) = 0 for x ∈ R
d\Ω0, and discontinuity

may occur only at ∂Ω0. We also assume that the integral kernel p is a nonnegative bounded
function on R

d × Sd−1 × Sd−1 which is continuous on Ω0 × Sd−1 × Sd−1 and p(x, ξ, ξ′) = 0 for
(x, ξ, ξ′) ∈ (Rd\Ω0)× Sd−1 × Sd−1, and satisfies

∫

Sd−1

p(x, ξ, ξ′) dσξ′ = 1

for all (x, ξ) ∈ Ω0 × Sd−1. We regard the directional derivative ξ · ∇xf(x, ξ) as

ξ · ∇xf(x, ξ) :=
d

dt
f(x+ tξ, ξ)

∣∣∣∣
t=0

.

Finally, the measure dσξ′ is the Lebesgue measure on the sphere Sd−1.
We introduce some notations. Let

D := (Ω× Sd−1) ∪ Γ−, D := D ∪ Γ+,

and we define two functions τ± on D by

τ±(x, ξ) := inf{t > 0|x± tξ 6∈ Ω}.

Let Γ−,ξ and Γ−,x be projections of Γ− on ∂Ω and Sd−1 respectively;

Γ−,ξ := {x ∈ ∂Ω|n(x) · ξ < 0}, ξ ∈ Sd−1

and
Γ−,x := {ξ ∈ Sd−1|n(x) · ξ < 0}, x ∈ ∂Ω.

Let disc(f) be a set of the discontinuous points for a function f .
The first main result shows how the boundary-induced discontinuity propagates in the media.

Theorem 1. Suppose that a boundary data f0 is bounded and that it satisfies at least one of the

following two conditions.

1. f0(x, ·) is continuous on Γ−,x for almost all x ∈ ∂Ω,

2. f0(·, ξ) is continuous on Γ−,ξ for almost all ξ ∈ Sd−1.

Then, there exists a unique solution f to the boundary value problem (1)-(2), and we have

disc(f) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t < τ+(x∗, ξ∗)}.

Theorem 1 shows that the boundary-induced discontinuity propagates only along a positive
characteristic line starting from a discontinuous point of the incoming boundary data. Here, we
call a bounded function f on D a solution to the boundary value problem (1)-(2) if (i) it has the
directional derivative ξ · ∇xf(x, ξ) at all (x, ξ) ∈ Ω0 ×Sd−1, (ii) it satisfies the stationary transport
equation (1) for all (x, ξ) ∈ Ω0×Sd−1 and the boundary condition (2) for all (x, ξ) ∈ Γ−, (iii) f(·, ξ)
is continuous along the line {x + tξ|t ∈ R} ∩ (Ω ∪ Γ−,ξ) for all (x, ξ) ∈ D, and (iv) ξ · ∇xf(·, ξ)
is continuous on the open line segments {x + tξ|t ∈ (tj−1(x, ξ), tj(x, ξ))}, j = 1, . . . , l(x, ξ) with
t0(x, ξ) = 0 for all (x, ξ) ∈ Ω0 × Sd−1. Also, a positive characteristic line from a point (x, ξ) ∈ Γ−

is defined by {(x+ tξ, ξ)|t ≥ 0}.
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Remark 1. Theorem 1 implies that, for a bounded continuous boundary data f0 on Γ−, there exists
a unique solution f , which is bounded continuous D.

Remark 2. Anikonov et al. [1] showed Theorem 1 with the condition 2. Our main contribution is
to show Theorem 1 with the condition 2.

As the second main result, we shall discuss the boundary-induced discontinuity of the solution
extended up to Γ+. In other words, we can extend the domain of the solution f up to Γ+ and we
see that the boundary-induced discontinuity propagates along a positive characteristic line up to
Γ+.

Theorem 2. Let f be the solution to the boundary value problem (1)-(2). Then, it can be extended

up to Γ+, which is denoted by f , by

f(x, ξ) :=




f(x, ξ), (x, ξ) ∈ D,

lim
t↓0

f(x− tξ, ξ), (x, ξ) ∈ Γ+.

Moreover, we have

disc(f) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t ≤ τ+(x∗, ξ∗)}.

We state the decay of the boundary-induced discontinuity in some situation. Let γ be two points
in ∂Ω when d = 2, while let γ be a simple closed curve in ∂Ω when d = 3. Then, γ splits ∂Ω into
two connected components A and B, that is ∂Ω = A ∪B ∪ γ and A ∩B = A ∩ γ = B ∩ γ = ∅. We
put an incoming boundary data f0 by

f0(x, ξ) =

{
I, (x, ξ) ∈ ((A ∪ γ)× Sd−1) ∩ Γ−,

0, (x, ξ) ∈ (B × Sd−1) ∩ Γ−,
(3)

where I is a constant. We note that f0 satisfies the condition 2 of Theorem 1, and that disc(f0) =
{(x∗, ξ∗)|x∗ ∈ γ, ξ∗ ∈ Γ−,x∗

}.
For (x, ξ) ∈ disc(f), we define a jump [f ](x, ξ) by

[f ](x, ξ) := lim
x→x,

P (x,ξ)∈(A∪γ)

f(x, ξ)− lim
x→x,

P (x,ξ)∈B

f(x, ξ),

where
P (x, ξ) := x− τ−(x, ξ)ξ.

We note that, in our situation, [f0](x, ξ) = I for all (x, ξ) ∈ disc(f0) = (γ × Sd−1) ∩ Γ−. In this
situation, we have the following theorem, which is the most important in this paper.

Theorem 3. Let f be the extended solution to the boundary value problem (1)-(2) with the incoming

boundary data given by (3), and let (x∗, ξ∗) ∈ disc(f). Then,

[f ](x∗, ξ∗) = I exp

(
−

∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr

)
.
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In particular, we take a point (x∗, ξ∗) ∈ disc(f) ∩ Γ+. From Theorem 3, we have

Xµt(x
∗, ξ∗) =

∫ τ−(x∗,ξ∗)

0

µt(x
∗ − rξ∗) dr = − log

(
[f ](x∗, ξ∗)/I

)
.

The right hand side is obtained from observed data. By arranging γ, we can observe the image Xµt

of the X-ray transform of µt. Then, applying the well-known method in [10], we can reconstruct
the attenuation coefficient µt..

The ingredient of the rest part in this paper is as follows. In section 2, we derive an integral
equation from the boundary value problem (1)-(2), and we show existence and uniqueness of so-
lutions to the derived integral equation. In section 3, we discuss regularity of the solution to the
integral equation. Especially, we decompose the solution into two parts, the discontinuous part
and the continuous part. In section 4, we prove that the solution to the integral equation is indeed
that of the boundary value problem (1)-(2) under the assumption in Theorem 1. In section 5, we
extend the definition domain of the solution f up to the outgoing boundary Γ+ and discuss the
boundary-induced discontinuity of the extended solution. In section 6, we discuss the decay of a
jump of the boundary-induced discontinuity. In other words, we prove Theorem 3.

2 Existence and uniqueness of solutions to the stationary

transport equation

We derive an integral equation from the boundary value problem (1)-(2), and we show existence
and uniqueness of a solution to the derived integral equation.

For all (x, ξ) ∈ D, integrating the equation (1) with respect to x along the line {x−tξ|t > 0} until
the line intersects with the boundary ∂Ω and taking the boundary condition (2) into consideration,
we obtain the following integral equation:

f(x, ξ) = exp
(
−Mt

(
x, ξ; τ−(x, ξ)

))
f0(P (x, ξ), ξ)

+

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

) ∫

Sd−1

p(x− sξ, ξ, ξ′)f(x− sξ, ξ′) dσξ′ds, (4)

where

Mt(x, ξ; s) :=

∫ s

0

µt(x− rξ) dr.

We call a bounded function f on D satisfying the integral equation (4) for all (x, ξ) ∈ D a solution
to the equation (4). We note that, although solutions to the boundary value problem (1)-(2) satisfy
the integral equation (4), the converse does not hold in general. However, as we will see later in
section 4, the solution to the integral equation (4) is also the solution to the boundary value problem
(1)-(2) under the assumption given in Theorem 1. Therefore, we focus on discussing existence and
uniqueness of a solution to the integral equation (4).

Proposition 1. The solution to the integral equation (4) is unique, if it exists.

Proof. Let f1 and f2 be two solutions to the integral equation (4). Then the difference f̃ := f1− f2
is also bounded on D and satisfies the following integral equation:

f̃(x, ξ) =

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

) ∫

Sd−1

p(x− sξ, ξ, ξ′)f̃(x− sξ, ξ′) dσξ′ds

5



for all (x, ξ) ∈ D. Then, we have

|f̃(x, ξ)| ≤

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)
ds

≤

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)∫ τ−(x,ξ)

0

µt(x− sξ) exp
(
−Mt(x, ξ; s)

)
ds

=−

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)
l(x,ξ)∑

j=1

∫ tj(x,ξ)

tj−1(x,ξ)

d

ds
exp
(
−Mt(x, ξ; s)

)
ds

=

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)(
1− exp

(
−Mt(x, ξ; τ−(x, ξ))

))

≤M

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)

for all (x, ξ) ∈ D, where

M := sup
(x,ξ)∈D

(
1− exp

(
−Mt(x, ξ; τ−(x, ξ))

))

and 0 ≤ M < 1 by the boundedness of µt. We recall that l(x, ξ) and {tj(x, ξ)}
l(x,ξ)
j=0 with t0(x, ξ) = 0

are numbers appeared in the statement of the generalized convexity condition. Also, we emphasize
that the supremum in this paper is not the essential supremum. Therefore,

sup
(x,ξ)∈D

|f̃(x, ξ)| ≤ M

(
sup

(x,ξ)∈D

|f̃(x, ξ)|

)
,

and it implies sup(x,ξ)∈D |f̃(x, ξ)| = 0, that is, f1 = f2 on D.

We prove existence of a solution by iteration (see [9]). Define a sequence of functions {f (n)}n≥0

on D by

f (0)(x, ξ) := exp
(
−Mt(x, ξ; τ−(x, ξ))

)
f0(P (x, ξ), ξ), (5)

and

f (n+1)(x, ξ) :=

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)f (n)(x− sξ, ξ′) dσξ′ds. (6)

In fact, the sum f :=
∑∞

n=0 f
(n) is a solution to the integral equation (4). To see this, we give the

following two propositions.

Proposition 2. Suppose that the boundary data f0 is bounded on Γ−. Then, each f (n) is also

bounded on D.
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Proposition 3. Suppose that the boundary data f0 is bounded on Γ−. Then, the sum
∑∞

n=0 f
(n)(x, ξ)

is absolutely and uniformly convergent on D.

Proof of Proposition 2. We use induction with respect to n. For n = 0, we have

|f (0)(x, ξ)| ≤ exp
(
−Mt(x, ξ; τ−(x, ξ))

)
|f0(x− τ−(x, ξ)ξ, ξ)| ≤ sup

(x,ξ)∈Γ−

|f0(x, ξ)|

for all (x, ξ) ∈ Ω× Sd−1. This estimate implies that f (0) is bounded on D.
In case that f (n) is bounded on D for some n ∈ N, we have

|f (n+1)(x, ξ)| ≤

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)|f (n)(x− sξ, ξ′)| dσξ′ds

≤

(
sup

(x,ξ)∈D

|f (n)(x, ξ)|

)∫ τ−(x,ξ)

0

µs(x − sξ) exp
(
−Mt(x, ξ; s)

)
ds

≤M

(
sup

(x,ξ)∈D

|f (n)(x, ξ)|

)
(7)

for all (x, ξ) ∈ D. This inequality implies that f (n+1) is defined and bounded on D. This completes
the proof.

Proof of Proposition 3. From the inequality (7), we have, for all n ≥ 0,

sup
(x,ξ)∈D

|f (n)(x, ξ)| ≤ M

(
sup

(x,ξ)∈D

|f (n−1)(x, ξ)|

)
≤ Mn

(
sup

(x,ξ)∈Γ−

|f0(x, ξ)|

)
.

Thus,

∞∑

n=0

|f (n)(x, ξ)| ≤
∞∑

n=0

Mn

(
sup

(x,ξ)∈Γ−

|f0(x, ξ)|

)
=

1

1−M

(
sup

(x,ξ)∈Γ−

|f0(x, ξ)|

)
< ∞,

which implies absolute and uniform convergence of the sum
∑∞

n=0 f
(n)(x, ξ) on D.

From Proposition 2 and Proposition 3, the sum f(x, ξ) =
∑∞

n=0 f
(n)(x, ξ) converges absolutely

and uniformly on D and satisfies

f(x, ξ) =f (0)(x, ξ) +

∞∑

n=0

f (n+1)(x, ξ)

=f (0)(x, ξ) +

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)

∞∑

n=0

f (n)(x− sξ, ξ′) dσξ′ds

7



=f (0)(x, ξ) +

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)f(x− sξ, ξ′) dσξ′ds

for all (x, ξ) ∈ D, which is the integral equation (4) itself. Thus, the sum is the unique solution to
the integral equation (4).

3 Discontinuity of the solution

We discuss discontinuity of the solution to the integral equation (4). To this end, we decompose
the solution f into two parts as the following:

f(x, ξ) = F0(x, ξ) + F1(x, ξ),

where

F0(x, ξ) := f (0)(x, ξ), F1(x, ξ) :=

∞∑

n=1

f (n)(x, ξ).

We observe discontinuity of F0 and give a proof of continuity of F1.
We prepare the following lemma in advance.

Lemma 1. Let g be a bounded function on R
d ×Sd−1 such that it is continuous on Ω0 ×Sd−1 and

g(x, ξ) = 0 for (x, ξ) ∈ (Rd\Ω0) × Sd−1. Let R be the diameter of the domain Ω. Then, for all

s ∈ [0, R], the integral ∫ s

0

g(x− rξ, ξ) dr (8)

is continuous at all (x, ξ) ∈ R
d × Sd−1.

Proof. We fix (x̄, ξ̄) ∈ R
d × Sd−1 and take s ∈ [0, R]. Since g is continuous on (Rd\∂Ω0) × Sd−1,

g(x−rξ, ξ) converges to g(x̄−rξ̄, ξ̄) as (x, ξ) tends to (x̄, ξ̄) except for r = tj(x̄, ξ̄), j = 1, . . . , ls(x̄, ξ̄),
where

ls(x̄, ξ̄) := max{j ∈ {1, . . . , l(x̄, ξ̄)}|tj(x̄, ξ̄) ≤ s}.

By the generalized convexity condition, ls(x̄, ξ̄) is at most finite. Thus, we apply Lebesgue’s conver-
gence theorem to conclude that the integral (8) is continuous (x̄, ξ̄) ∈ R

d×Sd−1 for all s ∈ [0, R].

Corollary 1. Under the same assumption in Lemma 1, the integral

∫ τ−(x,ξ)

0

g(x− rξ, ξ) dr

is continuous at all (x, ξ) ∈ D.

Proof. Since g(x, ξ) = 0 for (x, ξ) ∈ (Rd\Ω0)× Sd−1, we have

∫ τ−(x,ξ)

0

g(x− rξ, ξ) dr =

∫ R

0

g(x− rξ, ξ) dr

for (x, ξ) ∈ D. The right hand side is continuous at all (x, ξ) ∈ D by Lemma 1.

8



Now we are ready to discuss discontinuity of the solution. First, we observe discontinuity of F0.

Proposition 4.

disc(F0) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t < τ+(x∗, ξ∗)}.

Proof. Let us recall the explicit formula of F0 (5): for all (x, ξ) ∈ D,

F0(x, ξ) = exp
(
−Mt(x, ξ; τ−(x, ξ)) dr

)
f0(P (x, ξ), ξ),

where P (x, ξ) = x−τ−(x, ξ)ξ. Since τ− is continuous onD (see [8]), Corollary 1 with g(x, ξ) = µt(x)

guarantees that exp
(
−Mt(x, ξ; τ−(x, ξ))

)
is continuous on (x, ξ) ∈ D. Thus, we have

(x, ξ) ∈ disc(F0) ⇔ (x− τ−(x, ξ)ξ, ξ) ∈ disc(f0).

Let x∗ = x − τ−(x, ξ)ξ. Then, we have x = x∗ + τ−(x, ξ)ξ and 0 ≤ τ−(x, ξ) < τ+(x∗, ξ), which
completes the proof.

Second, we prove continuity of F1. For this, it suffices to prove that functions f (n), defined by
(5)-(6), are bounded continuous on D for all n ≥ 1 since we already know from Proposition 3 that
the sum

∑∞

n=1 f
(n)(x, ξ) converges uniformly on D. In what follows, we discuss continuity of each

f (n).
We prepare the following lemma.

Lemma 2. Let h be a bounded function on R
d×Sd−1 such that it is continuous on Ω0 ×Sd−1 and

h(x, ξ) = 0 for (x, ξ) ∈ (Rd\Ω0)×Sd−1. Let R be the diameter of the domain Ω. Then, the integral

∫ R

0

exp
(
−Mt(x, ξ; s)

)
h(x− sξ, ξ, ξ′) ds

is continuous at all (x, ξ) ∈ R
d × Sd−1.

Proof. We can prove this lemma in the same way as Lemma 1.

Lemma 3. Under the assumption in Theorem 1, f (1) is bounded continuous on D.

Proof. Boundedness of f (1) was already proved in section 2, and we here prove its continuity. From
the explicit formula of f (0) (5), we have

f (1)(x, ξ) =

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)f (0)(x− sξ, ξ′) dσξ′ds

=

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)
G(x − sξ, ξ) ds,

where

G(x, ξ) :=

∫

Sd−1

p(x, ξ, ξ′) exp
(
−Mt(x, ξ

′; τ−(x, ξ
′))
)
f0(P (x, ξ′), ξ′) dσξ′ . (9)

We note that G is defined only on D, and we have the following lemma, whose proof will be shown
later.
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Lemma 4. Under the assumption in Theorem 1, G is bounded continuous on Ω0 × Sd−1.

Admitting Lemma 4, we continue to prove Lemma 3. Let G̃ be the zero extension of G to
R

d × Sd−1;

G̃(x, ξ) :=

{
G(x, ξ), (x, ξ) ∈ Ω0 × Sd−1,

0, otherwise.

Then, f (1) can be written as the following:

f (1)(x, ξ) =

∫ R

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)
G̃(x− sξ, ξ) ds.

Then, the conclusion immediately follows from Lemma 2 with h(x, ξ) = µs(x)G̃(x, ξ).

Proof of Lemma 4. It is obvious that G is bounded because the integrand is also bounded, so we
only discuss continuity of G. At first we fix a point (x, ξ) ∈ Ω0×Sd−1, and the we prove continuity
of G at the point (x, ξ).

First, we consider the case where f0 satisfies the condition 1 in Theorem 1. In this case, we
change a domain of integration appeared in G from Sd−1 to ∂Ω.

We investigate a relation between the Lebesgue measure dσξ′ on the unit sphere Sd−1 and that
dσy on the boundary ∂Ω. Let us introduce the atlas {(Uλ, ϕλ)}λ∈Λ of ∂Ω. Since ∂Ω is compact, we
can choose a finite number of covering {Ui}Ni=1 from the system of local neighborhoods {Uλ}λ∈Λ,
that is, ∪N

i=1Ui = ∂Ω. Also, for x ∈ Ω, we define a map Px : Sd−1 → ∂Ω by

Px(ξ) := P (x, ξ), ξ ∈ Sd−1.

In fact, since ∂Ω is bounded convex, the map Px is well-defined for all x ∈ Ω and the inverse map
P−1
x : ∂Ω → Sd−1 is written by

P−1
x (y) =

x− y

|x− y|
, y ∈ ∂Ω. (10)

Moreover, since ∂Ω is C1, the map Px is a diffeomorphism for all x ∈ Ω. Thus, we introduce the
atlas {(P−1

x (Ui), ϕi ◦ Px)}Ni=1 on Sd−1. Then, the following relation holds.

Lemma 5. For all i = 1, . . . , N ,

dσξ′ =
|n(y) · (x− y)|

|x− y|d
dσy

via y = Px(ξ
′), ξ′ ∈ P−1

x (Ui).

We are ready to change the domain of integration from Sd−1 to ∂Ω. Let {ρi}Ni=1 be the partition
of unity on Sd−1 corresponding to {P−1

x (Ui)}Ni=1, that is, 0 ≤ ρi ≤ 1 on Sd−1 for all i, suppρi
⊂ P−1

x (Ui) for all i, and
∑N

i=1 ρi(ξ) = 1 for all ξ ∈ Sd−1. Then, we have

G(x, ξ) =

N∑

i=1

∫

P−1
x (Ui)

p(x, ξ, ξ′) exp
(
−Mt(x, ξ

′; τ−(x, ξ
′))
)
f0(Px(ξ

′), ξ′)ρi(ξ
′) dσξ′ .
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From Lemma 5, we have

G(x, ξ) =

N∑

i=1

∫

Ui

p

(
x, ξ,

x− y

|x− y|

)
exp

(
−Mt

(
x,

x− y

|x− y|
; |x− y|

))

× f0

(
y,

x− y

|x− y|

)
ρi

(
x− y

|x− y|

)
|n(y) · (x− y)|

|x− y|d
dσy

=

∫

∂Ω

p

(
x, ξ,

x− y

|x− y|

)
exp

(
−Mt

(
x,

x− y

|x− y|
; |x− y|

))
f0

(
y,

x− y

|x− y|

)
|n(y) · (x− y)|

|x− y|d
dσy .

We prove continuity of G at (x, ξ) ∈ Ω0 × Sd−1. Let ǫ := d(x, ∂Ω0). Then, the integrand

p

(
x, ξ,

x− y

|x− y|

)
exp

(
−Mt

(
x,

x− y

|x− y|
; |x− y|

))
f0

(
y,

x− y

|x− y|

)
|n(y) · (x− y)|

|x− y|d

is bounded continuous on Bǫ/2(x)× Sd−1 for almost all y ∈ ∂Ω, where Bǫ/2(x) is the open ball in

R
d centered at x with radius ǫ/2. Thus, we apply the dominated convergence theorem to conclude

that G is continuous at (x, ξ) ∈ Ω0 × Sd−1.
Second, we consider the case where the boundary data f0 satisfies the condition 2 in Theorem

1, which is done by Anikonov et al. [1]. Because of convexity of the domain Ω and smoothness of
the boundary ∂Ω, τ− is continuous on D (see [8]). Thus, for almost all ξ′ ∈ Sd−1, the integrand

p(x, ξ, ξ′) exp
(
−Mt(x, ξ

′; τ−(x, ξ
′))
)
f0(P (x, ξ′), ξ′)

is continuous at (x, ξ) ∈ Ω0 × Sd−1. Furthermore, the integrand is bounded by
(

sup
(x,ξ,ξ′)∈Ω0×Sd−1×Sd−1

p(x, ξ, ξ′)

)(
sup

(x,ξ)∈Γ−

|f0(x, ξ)|

)
,

which is obviously integrable with respect to ξ′. Therefore, we apply the dominated convergence
theorem to conclude that G is bounded continuous on Ω0 × Sd−1.

We finish the proof of Lemma 4.

Proof of Lemma 5. A proof depends on its dimension d.
We consider the two dimensional case d = 2. In this case, Ui is parametrized by an interval

(ai, bi) via ϕi(Ui) = (ai, bi). From this parametrization, the Lebesgue measure dσξ′ on S1 is given
by

dσξ′ =

√(
∂ξ′1
∂t

)2

+

(
∂ξ′2
∂t

)2

dt, t ∈ (ai, bi).

By the chain rule, we have

∂ξ′1
∂t

=
∂ξ′1
∂y1

dy1
dt

+
∂ξ′1
∂y2

dy2
dt

,
∂ξ′2
∂t

=
∂ξ′2
∂y1

dy1
dt

+
∂ξ′2
∂y2

dy2
dt

.

Then, we have

(
∂ξ′1
∂t

)2

+

(
∂ξ′2
∂t

)2

=

{(
∂ξ′1
∂y1

)2

+

(
∂ξ′2
∂y1

)2
}(

dy1
dt

)2

+

{(
∂ξ′1
∂y2

)2

+

(
∂ξ′2
∂y2

)2
}(

dy2
dt

)2

11



+ 2

{(
∂ξ′1
∂y1

)(
∂ξ′1
∂y2

)
+

(
∂ξ′2
∂y1

)(
∂ξ′2
∂y2

)}(
dy1
dt

)(
dy2
dt

)
.

Since
∂ξ′i
∂yj

= −
δi,j

|x− y|
+

(xi − yi)(xj − yj)

|x− y|3
,

where δi,j is the Kronecker’s delta, for i, j = 1, 2, we have

(
∂ξ′1
∂y1

)2

+

(
∂ξ′2
∂y1

)2

=

(
−

1

|x− y|
+

(x1 − y1)
2

|x− y|3

)2

+

(
(x1 − y1)(x2 − y2)

|x− y|3

)2

=
(x2 − y2)

4

|x− y|6
+

(x1 − y1)
2(x2 − y2)

2

|x− y|6
=

(x2 − y2)
2

|x− y|4
,

(
∂ξ′1
∂y2

)2

+

(
∂ξ′2
∂y2

)2

=

(
(x2 − y2)(x1 − y1)

|x− y|3

)2

+

(
−

1

|x− y|
+

(x2 − y2)
2

|x− y|3

)2

=
(x1 − y1)

2(x2 − y2)
2

|x− y|6
+

(x1 − y1)
4

|x− y|6
=

(x1 − y1)
2

|x− y|4
,

and

2

{(
∂ξ′1
∂y1

)(
∂ξ′1
∂y2

)
+

(
∂ξ′2
∂y1

)(
∂ξ′2
∂y2

)}
=2

(
−

1

|x− y|
+

(x1 − y1)
2

|x− y|3

)(
(x1 − y1)(x2 − y2)

|x− y|3

)

+ 2

(
(x2 − y2)(x1 − y1)

|x− y|3

)(
−

1

|x− y|
+

(x2 − y2)
2

|x− y|3

)

=− 2
(x1 − y1)(x2 − y2)

3

|x− y|6
− 2

(x2 − y2)(x1 − y1)
3

|x− y|6

=− 2
(x1 − y1)(x2 − y2)

|x− y|4
.

Thus, we have

dσξ′ =
1

|x− y|2

{
(x2 − y2)

2

(
dy1
dt

)2

−2(x1 − y1)(x2 − y2)

(
dy1
dt

)(
dy2
dt

)
+ (x1 − y1)

2

(
dy2
dt

)2
}1/2

dt

=
1

|x− y|2

∣∣∣∣(x2 − y2)

(
dy1
dt

)
− (x1 − y1)

(
dy2
dt

)∣∣∣∣ dt

=

∣∣(x − y) · n
(
y(t)

)∣∣
|x− y|2

√(
dy1
dt

)2

+

(
dy2
dt

)2

dt =
|(x− y) · n(y)|

|x− y|2
dσy,

where dσy is the Lebesgue measure on ∂Ω. We note that, since

(
dy1
dt

(t),
dy2
dt

(t)

)
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is a tangent vector at y(t) ∈ ∂Ω, the vector

1√(
dy1
dt

)2

+

(
dy2
dt

)2

(
−
dy2
dt

(t),
dy1
dt

(t)

)

is a unit normal vector at y(t) ∈ ∂Ω.
We consider the three dimensional case d = 3. Let (pi, qi) ∈ R

2 be the parametrization of
(Ui, ϕi). Then, (P

−1
x (Ui), ϕi ◦ Px) has the same parametrization and

dσξ′ =

∣∣∣∣
∂ξ′

∂pi
×

∂ξ′

∂qi

∣∣∣∣ dpidqi, (pi, qi) ∈ ϕi(Ui).

In the same way, we have

dσy =

∣∣∣∣
∂y

∂pi
×

∂y

∂qi

∣∣∣∣ dpidqi, (pi, qi) ∈ ϕi(Ui).

By the chain rule of differentiation, we have

∂ξ′

∂pi
=

3∑

j=1

∂yj
∂pi

∂ξ′

∂yj

and

∂ξ′

∂pi
×

∂ξ′

∂qi
=




3∑

j=1

∂yj
∂pi

∂ξ′

∂yj


×

(
3∑

k=1

∂yk
∂qi

∂ξ′

∂yk

)

=

3∑

j,k=1

∂yj
∂pi

∂yk
∂qi

(
∂ξ′

∂yj
×

∂ξ′

∂yk

)

=

(
∂y1
∂pi

∂y2
∂qi

−
∂y2
∂pi

∂y1
∂qi

)(
∂ξ′

∂y1
×

∂ξ′

∂y2

)

+

(
∂y1
∂pi

∂y3
∂qi

−
∂y3
∂pi

∂y1
∂qi

)(
∂ξ′

∂y1
×

∂ξ′

∂y3

)

+

(
∂y2
∂pi

∂y3
∂qi

−
∂y3
∂pi

∂y2
∂qi

)(
∂ξ′

∂y2
×

∂ξ′

∂y3

)
.

From the explicit formula of P−1
x (10), we have

∂ξ′i
∂yj

= −
δi,j

|x− y|
+

(xi − yi)(xj − yj)

|x− y|3
,

where δi,j is the Kronecker’s delta for i, j = 1, 2, 3. Thus, we have

∂ξ′

∂y1
×

∂ξ′

∂y2
=

x3 − y3
|x− y|4

(x− y),
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∂ξ′

∂y1
×

∂ξ′

∂y3
= −

x2 − y2
|x− y|4

(x− y),

∂ξ′

∂y2
×

∂ξ′

∂y3
=

x1 − y1
|x− y|4

(x− y).

From these formulae, we have

∂ξ′

∂pi
×

∂ξ′

∂qi
=

1

|x− y|4

{(
∂y1
∂pi

∂y2
∂qi

−
∂y2
∂pi

∂y1
∂qi

)
(x3 − y3)

−

(
∂y1
∂pi

∂y3
∂qi

−
∂y3
∂pi

∂y1
∂qi

)
(x2 − y2)

+

(
∂y2
∂pi

∂y3
∂qi

−
∂y3
∂pi

∂y2
∂qi

)
(x1 − y1)

}
(x− y)

=
1

|x− y|4

{(
∂y

∂pi
×

∂y

∂qi

)
· (x− y)

}
(x− y)

=

∣∣∣ ∂y∂pi
× ∂y

∂qi

∣∣∣
|x− y|4

{n(y) · (x− y)} (x− y)

and ∣∣∣∣
∂ξ′

∂pi
×

∂ξ′

∂qi

∣∣∣∣ =
|n(y) · (x − y)|

|x− y|3

∣∣∣∣
∂y

∂pi
×

∂y

∂qi

∣∣∣∣ .

Here, we note that the vector
1∣∣∣ ∂y∂pi
× ∂y

∂qi

∣∣∣
∂y

∂pi
×

∂y

∂qi

is a unit normal vector at y(p, q) ∈ ∂Ω. Thus, we have

dσξ′ =

∣∣∣∣
∂ξ′

∂pi
×

∂ξ′

∂qi

∣∣∣∣ dpidqi =
|n(y) · (x− y)|

|x− y|3

∣∣∣∣
∂y

∂pi
×

∂y

∂qi

∣∣∣∣ dpidqi =
|n(y) · (x − y)|

|x− y|3
dσy.

Lemma 6. Suppose that the function f (n), defined by the recursion formula (5)-(6), is bounded

continuous on D for some n ∈ N. Then, the successive function f (n+1) is also bounded continuous

on D.

Proof. In the same way as the proof of Lemma 3, let f̃ (n) be the zero extention of f (n) to R
d×Sd−1.

Then, we have

f (n+1)(x, ξ) =

∫ R

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

) ∫

Sd−1

p(x− sξ, ξ, ξ′)f̃ (n)(x − sξ, ξ′) dσξ′ds

for all (x, ξ) ∈ D. The conclusion follows from Lemma 2 with h(x, ξ) = µs(x)
∫
Sd−1 p(x, ξ, ξ

′)f̃ (n)(x, ξ′).

Thus, we succeed to separate the solution into two parts, the discontinuous part F0 and the
continuity part F1.
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4 Equivalence between the stationary transport equation

and the derived integral equation

We state the equivalence between the boundary value problem (1)-(2) and the integral equation
(4). It is obvious that the solution f(·, ξ) to the integral equation is continuous on the line segment
{x + tξ|t ∈ R} ∩ (Ω ∪ Γ−,ξ) for all (x, ξ) ∈ D. Thus, we show that the solution to the integral
equation satisfies the other conditions of a solution to the boundary value problem. To this end,
we show the following lemma.

Lemma 7. Let f be the solution to the integral equation (4). Under the assumption in Theorem 1,

the integral ∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′

is bounded continuous for (x, ξ) ∈ Ω0 × S1.

Proof. From the decomposition in section 3, we have
∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′ =

∫

Sd−1

p(x, ξ, ξ′)F0(x, ξ
′) dσξ′ +

∫

Sd−1

p(x, ξ, ξ′)F1(x, ξ
′) dσξ′ .

From Lemma 4, the function G(x, ξ) =
∫
Sd−1 p(x, ξ, ξ

′)F0(x, ξ
′) dσξ′ is bounded continuous on

Ω0×Sd−1. On the other hand,
∫
Sd−1 p(x, ξ, ξ

′)F1(x, ξ
′) dσξ′ is also bounded continuous on Ω0×Sd−1

since F1 is bounded continuous on D as we see in section 3. Thus,∫
Sd−1 p(x, ξ, ξ

′)f(x, ξ′) dσξ′ is also bounded continuous on Ω0 × Sd−1.

Now we are ready to check the properties of a solution to the boundary value problem (1)-(2).
From the integral equation (4), noting that τ−(x+ tξ, ξ) = τ−(x, ξ) + t and P (x+ tξ, ξ) = P (x, ξ),
we have

f(x+ tξ, ξ) = exp
(
−Mt

(
x+ tξ, ξ; τ−(x+ tξ, ξ)

))
f0(P (x + tξ, ξ), ξ)

+

∫ τ−(x+tξ,ξ)

0

µs(x+ tξ − sξ) exp
(
−Mt(x+ tξ, ξ; s)

)

×

∫

Sd−1

p(x+ tξ − sξ, ξ, ξ′)f(x+ tξ − sξ, ξ′) dσξ′ds

=exp
(
Mt (x, ξ;−t)

)
exp
(
−Mt

(
x, ξ; τ−(x, ξ)

))
f0(P (x, ξ), ξ)

+ exp
(
Mt (x, ξ;−t)

) ∫ τ−(x,ξ)

−t

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)f(x− sξ, ξ′) dσξ′ds.

From Lemma 7, we can take the directional derivative of f :

ξ · ∇xf(x, ξ) =
d

dt
f(x+ tξ, ξ)

∣∣∣∣
t=0

=− µt(x) exp
(
−Mt

(
x, ξ; τ−(x, ξ)

))
f0(P (x, ξ), ξ)
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− µt(x)

∫ τ−(x,ξ)

0

µs(x− sξ) exp
(
−Mt(x, ξ; s)

)

×

∫

Sd−1

p(x− sξ, ξ, ξ′)f(x− sξ, ξ′) dσξ′ds

+ µs(x)

∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′ds

=− µt(x)f(x, ξ) + µs(x)

∫

Sd−1

p(x, ξ, ξ′)f(x, ξ′) dσξ′ds

for all (x, ξ) ∈ Ω0×Sd−1. Thus, the solution f has the directional derivative ξ·∇xf(x, ξ) and satisfies
the stationary transport equation (1) for all (x, ξ) ∈ Ω0×Sd−1. Moreover, for (x, ξ) ∈ Ω0×Sd−1, the
directional derivative ξ ·∇xf(·, ξ) is continuous on the line segments {x+tξ|t ∈ (tj−1(x, ξ), tj(x, ξ))},
j = 1, . . . , l(x, ξ) with t0(x, ξ) = 0.

Finally, for all (x, ξ) ∈ Γ−,

f (n)(x, ξ) =

{
f0(x, ξ), n = 0,

0, n ≥ 1.

Thus,

f(x, ξ) =

∞∑

n=0

f (n)(x, ξ) = f0(x, ξ)

for all (x, ξ) ∈ Γ−, which implies that the solution f satisfies the incoming boundary condition (2).
Therefore, the boundary value problem of the stationary transport equation (1)-(2) and the

integral equation (4) are equivalent in this framework.

5 Discontinuity of the extended solution

We extend the definition domain of the solution f up to the outgoing boundary Γ+ and discuss the
boundary-induced discontinuity of the extended solution.

First, we extend the definition domain of the solution f up to the outgoing boundary Γ+. The
idea of extension originates from Cessenat [5], who defined it in a weak sense.

Lemma 8. For all (x, ξ) ∈ Γ+, the limit

f(x, ξ) := lim
t↓0

f(x− tξ, ξ)

exists.

Proof. By the fundamental theorem of calculus, we have

f(x, ξ) = f0(P (x, ξ), ξ) −

l(x,ξ)∑

j=1

∫ tj(x,ξ)

tj−1(x,ξ)

ξ · ∇xf(x− sξ, ξ) ds. (11)

From the boundedness of the directional derivative ξ · ∇xf(x, ξ) the integral in the right hand side
of equation (11) is even defined for all (x, ξ) ∈ Γ+. Thus, we define f |Γ+

by equation (11).
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From equation (11), for (x, ξ) ∈ Γ+ and for sufficiently small t > 0,

f(x− tξ, ξ) =f0(P (x− tξ, ξ), ξ) −

l(x−tξ,ξ)∑

j=1

∫ tj(x−tξ,ξ)

tj−1(x−tξ,ξ)

ξ · ∇xf(x− tξ − sξ, ξ) ds

=f0(P (x, ξ), ξ) −

l(x,ξ)∑

j=1

∫ tj(x,ξ)

tj−1(x,ξ)

ξ · ∇xf(x− sξ, ξ) ds+

∫ t

0

ξ · ∇xf(x− sξ, ξ) ds.

Here, we used the relation τ−(x− tξ, ξ) = τ−(x, ξ)− t. Thus, we have

|f(x, ξ)− f(x− tξ, ξ)| =

∣∣∣∣
∫ t

0

ξ · ∇xf(x− sξ, ξ) ds

∣∣∣∣

≤

(
sup

(x,ξ)∈Ω×Sd−1

|ξ · ∇xf(x, ξ)|

)
t.

By this estimate, we conclude the proof.

From this observation, we can extend the definition domain of the solution f up to Γ+.
Second, we discuss the boundary-induced discontinuity of the extended solution. Let D :=

D ∪ Γ+ and let f be the extended solution to the boundary value problem (1)-(2) up to Γ+. Since
the recursion formulae (5)-(6) make sense even for (x, ξ) ∈ Γ+, we extend the sequence of functions

{f (n)}n≥0 up to Γ+, which is denoted by {f
(n)

}n≥0. In the same way as in section 3, we can show
that the following propositions. In what follows, we use the following notations:

F0(x, ξ) := f
(0)

(x, ξ),

F1(x, ξ) :=
∞∑

n=1

f
(n)

(x, ξ).

Proposition 5.

disc(F0) = {(x∗ + tξ∗, ξ∗)|(x∗, ξ∗) ∈ disc(f0), 0 ≤ t ≤ τ+(x∗, ξ∗)}.

Proposition 6. Under the assumption in Theorem 1, F1 is bounded countinuous on D.

Proposition 5 and Proposition 6 imply Theorem 2.

6 Decay of jump discontinuity

We discuss the decay of a jump of the boundary-induced discontinuity in the situation introduced
in section 1. Let us recall the situation of Theorem 3. For the case d = 3, let γ be a simple closed
curve in ∂Ω, or for the case d = 2, let γ be two points in ∂Ω, and we note that γ decomposes ∂Ω
into two connected components A and B such that ∂Ω = A∪B ∪γ and A∩B = A∩γ = B∩γ = ∅.
Suppose

f0(x, ξ) =

{
I, (x, ξ) ∈ ((A ∪ γ)× Sd−1) ∩ Γ−,

0, (x, ξ) ∈ (B × Sd−1) ∩ Γ−,
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where I is a constant. f0 satisfies the condition 2 of Theorem 1 since f0(x, ·) is continuous on Γ−,x

for all x ∈ ∂Ω. Here, we remark that disc(f0) = {(x∗, ξ∗)|x∗ ∈ γ, ξ∗ ∈ Γ−,x∗
}.

For (x, ξ) ∈ disc(f), we define a jump [f ] on disc(f) by

[f ](x, ξ) := lim
x→x

P (x,ξ)∈(A∪γ)

f(x, ξ)− lim
x→x

P (x,ξ)∈B

f(x, ξ),

where P (x, ξ) := x− τ−(x, ξ)ξ. We note that, in our setting, [f0](x, ξ) = I for all (x, ξ) ∈ disc(f0) =
(γ × Sd−1) ∩ Γ−. In this situation, we have the following lemma.

Lemma 9. For (x∗, ξ∗) ∈ disc(f),

[F0](x
∗, ξ∗) = I exp

(
−Mt(x

∗, ξ∗; τ−(x
∗, ξ∗))

)
.

Proof. Let (x∗, ξ∗) ∈ disc(f). For ξ∗ ∈ Sd−1, we introduce the following two domains:

ΩA,ξ∗ :={x ∈ Ω|P (x, ξ∗) ∈ (A ∪ γ) ∩ Γ−,ξ∗},

ΩB,ξ∗ :={x ∈ Ω|P (x, ξ∗) ∈ B ∩ Γ−,ξ∗}.

We show that these two sets are not empty. Let (x∗, ξ∗) := (x∗ − τ−(x
∗, ξ∗)ξ∗, ξ∗). Then, the proof

of Proposition 4 shows (x∗, ξ∗) ∈ disc(f0), which means x∗ ∈ γ. Let δ > 0. Then, Bδ(x∗) intersects
both A and B. Take xA ∈ Bδ(x∗) ∩ A and xB ∈ Bδ(x∗) ∩ B. Since n(x∗) · ξ∗ < 0 and the outer
unit normal vector n(x) is continuous on ∂Ω, we note that n(xA) · ξ∗ < 0 and n(xB) · ξ∗ < 0 for
sufficiently small δ. Thus, xA + tξ∗ ∈ ΩA,ξ∗ and xB + tξ∗ ∈ ΩB,ξ∗ for small t > 0, which implies
that neither ΩA,ξ∗ nor ΩB,ξ∗ is empty.

We are ready to prove Lemma 9. For x ∈ ΩA,ξ∗ ,

F0(x, ξ
∗) = I exp

(
−Mt(x, ξ

∗; τ−(x, ξ
∗))
)
.

On the other hand, for x ∈ ΩB,ξ∗ ,
F0(x, ξ

∗) = 0.

Thus, we have

[F0](x
∗, ξ∗) = I exp

(
−Mt(x, ξ

∗; τ−(x, ξ
∗))
)
.

Lemma 10. For (x∗, ξ∗) ∈ disc(f),
[F1](x

∗, ξ∗) = 0.

Proof. It immediately follows from Proposition 6.

From Lemma 9 and Lemma 10, we have

[f ](x∗, ξ∗) = [F0](x
∗, ξ∗) + [F1](x

∗, ξ∗) = I exp
(
−Mt(x

∗, ξ∗; τ−(x
∗, ξ∗))

)

for (x∗, ξ∗) ∈ disc(f), which is the statement of Theorem 3.
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