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8 Extremal functions for an embedding from some

anisotropic space, and partial differential equation

involving the ”one Laplacian”

Françoise Demengel, Thomas Dumas ∗

Abstract

In this paper, we prove the existence of extremal functions for the best con-
stant of embedding from anisotropic space, allowing some of the Sobolev ex-
ponents to be equal to 1. We prove also that the extremal functions satisfy a
partial differential equation involving the 1 Laplacian.

1 Introduction

Anisotropic Sobolev spaces have been studied for a long time, with different purposes.
Let us recall that for ~p = (p1, · · · , pN ), and the pi ≥ 1 the space D1,~p(RN ), denotes
the closure of D(RN ) for the norm

∑

i |∂iu|pi . The existence of a critical embedding
from D1,~p(RN ) into Lp

⋆
, with p⋆ = N∑

i
1
pi

−1
when

∑

i
1
pi
> 1 is due to Troisi, [33].

There is by now a large number of papers and an increasing interest about
anisotropic problems. With no hope of being complete, let us mention some pioneer-
ing works on anisotropic Sobolev spaces [23], [29] and some more recent regularity
results for minimizers of anisotropic functionals, that we will cite below.

Let us note that anisotropic operators bring new problems, essentially when one
wants to prove regularity properties. As an example the property that Ω be Lipschitz
does not ensure the embedding W 1,~p

o (Ω) →֒ Lp
⋆
(Ω). This is linked to the fact that

in the absence of further geometric properties of Ω, one cannot provide a continuous
extension operator from W 1,~p(Ω) in D1,~p(RN ). To illustrate this, see the counterex-
ample in [22], see also [13] for one example when some of the pi are equal to 1, in the
context of the present article.

Let us say a few words about the existence and regularity results of solutions
to −

∑

i ∂i(|∂iu|
pi−2∂iu) = f , u = 0 on ∂Ω when Ω is a bounded domain in R

N .
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Assuming a convenient assumption on f , the existence of solutions can generally
easily be obtained by the use of classical methods in the calculus of variations. But, as
a first step in the regularity of such solutions, the local boundedness of the solutions,
can fail if the supremum of the pi is too large, let us cite to that purpose [18] and [26]
where the author exhibits a counterexample to the local boundedness when pi = 2
for i ≤ N −1 and pN > 2N−1

N−3 . This restriction on ~p, to ensure the local boundedness
is confirmed by the results obtained later : let us cite in a non exhaustive way [7],
[26], [4]. From all these papers it emanates in a first time that a sufficient condition
for a local minimizer to be locally bounded is that the supremum of the pi be strictly
less than the critical exponent p⋆. This local boundedness is extended by Fusco
Sbordone in [17] to the case where sup pi = p⋆. For further regularity properties
of the solutions, as the local higher integrability of the local minimizers for some
genarized functionals, see Marcellini in [27], and Esposito Leonetti Mingione [14, 15]
.

Coming back to D1,~p(RN ), and concerning extremal functions, let us recall that
in the isotropic case, the first results concerned the case where pi = 2 for all i, in
which case the extremal functions are solutions of −∆u = u2

⋆−1. The existence and
the explicit form of them is completely solved by Aubin [3], and Talenti, [31]. For
W 1,p and the isotropic p Laplacian, say −∆pu = −div(|∇u|p−2∇u) the explicit form

is also known as the family of radial functions ua,b(r) = (a+ br
p

p−1 )
p−N

p , while for the

p-Laplacian non isotropic, say for the equation −
∑N

i=1 ∂i(|∂iu|
p−2∂iu) = up

⋆−1, the
explicit solutions are obtained by Alvino Ferrone Trombetti Lions [1] and are given

by ua,b(r) = (a + b
∑N

i=1 |xi|
p

p−1 )
p−N

p . For further results about sharp embedding
constant, and a new, elegant approach by using mass transportation the author can
see [6].

Let us now consider the case where the pi can be different from each others, and
let us first cite the paper of Fragala Gazzola and Kawohl [16], where the authors
prove the existence of extremal functions for some subcritical embeddings in the case
of bounded domains.

For the case of RN and the critical case, the existence of extremal functions is
proved in [21], when all the pi > 1, and p+ := sup pi < p⋆. The authors provide
also some properties of the extremal functions, as the L∞ behaviour, extending in
that way the regularity results already obtained for solutions of anisotropic partial
differential equation in a bounded domain, with a right hand side sub-critical as in
[16], to the critical one. The method uses essentially the concentration compactness
theory of P. L. Lions [24, 25] adapted to this context, and some other tools developed
also in a more general context in [20] .
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In the case where p+ = p⋆ and for more general domains than R
N the reader can

see Vetois, [34]. In this article this author provides also some vanishing properties of
the solutions, as well as some further regularity properties of the solutions.

When some of the pi are equal to 1, let us cite the paper of Mercaldo, Rossi,
Segura de leon, Trombetti, [28], which proved the existence of solutions in some
anisotropic space, with some derivative in the space of bounded measures, for the ~p-
Laplace equation in bounded domains, using the definition of the one Laplacian with
respect to the coordinates for which pi = 1. For the existence of extremal functions in
the case of RN , and in the best of our knowledge, nothing has been done in the case
where some of the pi are equal to 1. Of course in that case these extremal functions
have their corresponding derivative in the space M1(RN ) of bounded measures on
R
N . Even if the existence of such extremal can be obtained following the lines in

the proof of [21], the partial differential equation satisfied by the extremal cannot
be obtained by this existence’s result. In order to get it, we are led to consider a
sequence of extremal functions for the embedding of D1,~pǫ(RN ) in Lp

⋆
ǫ (RN ) where in

~pǫ, all the p
ǫ
i > pi and tend to them as ǫ goes to zero. Note that one of the difficulties

raised by this approximation is that, due to the unboundedness of RN , D1,~pǫ(RN )
is not a subspace of D1,~p(RN ), a problem which does not appear when one works
with bounded domains, see [13]. In particular this does not allow to use directly the
concentration compactness theory of P.L. Lions, [24]. We will prove both that the
best constant for the embedding from D1,~pǫ(RN ) in Lp

⋆
ǫ (RN ) converges to the best

constant for the embedding of D1,~p(RN ) into Lp
⋆
(RN ), and that some extremal uǫ

converge sufficiently tightly to some u. Passing to the limit in the partial differential
equation satisfied by uǫ one obtains that u is extremal and satisfies the required
partial differential equation.

2 Notations, and previous results

2.1 Some measure Theory, definition and properties of the space

BV
~p

Definition 2.1. Let Ω be an open set in R
N , and M(Ω), the space of scalar Radon

measures, i.e. the dual of Cc(Ω). Let M1(RN ) be the space of scalar bounded
Radon measures or equivalently the subspace of µ ∈ M(Ω) which satisfy

∫

Ω |µ| =
supϕ∈Cc(Ω)〈µ,ϕ〉 <∞.

M+(Ω) is the space of non negative bounded measures on R
N .

Definition 2.2. When µ = (µ1, · · · , µn) we define |µ| = (
∑

µ2i )
1
2 as the measure :

For ϕ ≥ 0 in Cc(Ω), 〈|µ|, ϕ〉 = sup
ψ∈Cc(Ω,RN ),

∑N
1 ψ2

i ≤ϕ
2

∑

〈µi, ψi〉.

Let us recall that

3



Definition 2.3. µn ⇀ µ vaguely or weakly in M(Ω) if for any ϕ ∈ Cc(Ω), 〈µn, ϕ〉 →
〈µ,ϕ〉.

When µn and µ are in M1(Ω) we will say that µn converges tightly to µ if for any
ϕ ∈ C(RN ) and bounded, 〈µn, ϕ〉 → 〈µ,ϕ〉.

Remark 2.4. When µn ≥ 0, the tight convergence of µn to µ is equivalent to both
the two conditions 1) µn ⇀ µ vaguely and 2)

∫

Ω µn →
∫

Ω µ.

We will frequently use the following density result:

Proposition 2.5. If ~µ ∈ M1(Ω,RN ) there exists un ∈ D(Ω,RN ) such that (un)
±
i ,

respectively |un| converges tightly to µ±i (respect. |µ|).

The reader is referred to [12], [11], for further properties on convergence of mea-
sures and density of regular functions for the vague and tight topology.

Let N1 ≤ N ∈ N, and ~p := (p1, · · · , pN ) ∈ R
N such that pi = 1 for all 1 ≤ i ≤ N1,

and pi > 1 for all N1 + 1 ≤ i ≤ N .
Let p+ = sup pi, and

p∗ :=
N

N1 +
∑N

i=N1+1
1
pi

− 1
.

In all the paper we will suppose that p+ < p⋆. Let D1,~p(RN ) be the completion of
D(RN ) with respect to the norm

|u|~p = |(

N1
∑

i=1

(∂iu)
2)

1
2 |1 +

N
∑

i=N1+1

|∂iu|pi := |∇1u|1 +
N
∑

i=N1+1

|∂iu|pi (2.1)

where ∇1u is the N1 vector (∂1u, · · · , ∂N1u), and |u|pi denotes for i ≥ N1 + 1 the
usual Lpi(RN ) norm.

Remark 2.6. Of course by the equivalence of norms in R
N1 this completion coincides

with the completion for the norm
∑N

i=1 |∂iu|pi .

We now recall the existence of the embedding from D1,~p(RN ) in Lp
⋆
(RN ), a

particular case of the result of Troisi , [33].

Theorem 2.7.

D1,~p(RN ) →֒ Lp
∗

(RN ),

and there exists some constant T0 depending only on ~p, and N such that

4



T0|u|p∗ ≤

N
∏

i=1

|∂iu|
1
N
pi , and |u|p∗ ≤

1

ToN





√

N1|∇1u|1 +

N
∑

i=N1+1

|∂iu|pi



 , (2.2)

for all u ∈ D1,~p(RN ).

We now introduce a weak closure of D(RN ) for the norm (2.1). Set

BV ~p(RN ) : = {u ∈ Lp
∗

(RN ), ∂iu ∈M1(RN ) for 1 ≤ i ≤ N1, and ∂iu ∈ Lpi(RN )

for N1 + 1 ≤ i ≤ N}.

We also define

BV ~p
loc(R

N ) = {u ∈ D′(RN ), ϕu ∈ BV ~p(RN ), for any ϕ ∈ D(RN )}

Definition 2.8. We will say that un ∈ BV ~p(RN ) converges weakly to u if un ⇀ u
(weakly) in Lp

⋆
, ∂iun converges vaguely to ∂iu in M1(RN ) when i ≤ N1, and ∂iun ⇀

∂iu (weakly) in Lpi, when i > N1. .
The convergence is said to be tight if furthermore

∫

RN |∂iun|
pi →

∫

RN |∂iu|
pi for

any i ≥ N1 , and
∫

RN |∇1un| →
∫

RN |∇1u|.

Remark 2.9. If un converges weakly to u, since (un) is bounded in Lp
⋆
, it converges

strongly in Lqloc for a subsequence, when q < p⋆ and then for a subsequence it converges
almost everywhere.

Proposition 2.10. It is equivalent to say that

1. u ∈ BV ~p(RN )

2. There exists un ∈ D(RN ) which converges tightly to u.

3. There exists un ∈ D(RN ) which converges weakly to u.

Remark 2.11. Following the lines in the proof below, but using strong convergence
in L1 of ∂iun for i ≤ N1, in place of tight convergence, it is clear that D1,~p(RN ) =
{u ∈ Lp

⋆
(RN ), ∂iu ∈ L1(RN ), i ≤ N1, ∂iu ∈ Lpi(RN ), i ≥ N1 + 1}.

Proof. Suppose that 1) holds.
We begin by a troncature. For 1 ≤ i ≤ N let αi defined as

αi =
p⋆

pi
− 1.
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Let ϕ ∈ D(]− 2, 2[), ϕ = 1 on [−1, 1], and for all n ∈ N,

un(x) = ΠNi=1ϕ(
xi
nαi

)u(x).

We denote Cn = ΠNi=1[−2nαi , 2nαi ], note that |Cn| = 4Nn
∑N

i=1 αi . We need to prove
that ∂iun → ∂iu in Lpi(RN ) for all i ∈ [N1 + 1, N ]. Since

∂iun(x) = u(x)∂i

(

ΠNj=1ϕ(
xj
nαj

)
)

+ΠNj=1ϕ(
xj
nαj

)∂iu(x),

it is sufficient to prove that u∂i

(

ΠNj=1ϕ(
xj
n
αj )
)

→ 0 in Lpi(RN ). By Hölder’s inequality

∫

RN

|u∂i

(

ΠNj=1ϕ(
xj
nαj

)
)

|pi ≤
c

nαipi
(

∫

RN−1

∫

nαi≤|xi|≤2nαi

|u|p
⋆

)
pi
p⋆ |Cn|

1−
pi
p⋆

≤ c′n
−αipi+(1−

pi
p⋆

)
∑N

j=1 αjo(1)

which tends to zero, since u ∈ Lp
⋆
(RN ) implies that

∫

RN−1

∫

nαi≤|xi|≤2nαi
|u|p

⋆
→
n→∞

0,

and for any i by the definition of αi, αipi ≥ (1 − pi
p⋆ )
∑N

j=1 αj . In the same

manner we have
∫

RN |∇1un − ∇1u| → 0. The second step classically uses a regu-
larisation process. Recall that that when ~µ is a compactly supported measure in
R
N , with values in R

N , when ρ ∈ D(RN ),
∫

ρ = 1, ρ ≥ 0, and ρǫ = 1
ǫN
ρ(x

ǫ
),

ρǫ ⋆ |~µ| converges tightly to |~µ|, ρǫ ⋆ µ
±
i converges tightly to µ±i . From this one de-

rives the tight convergence when ǫ goes to zero and n to ∞ of |∇1(ρǫ ⋆ un)| towards
|∇1u|.

2) implies 3) is obvious. To prove that 3) implies 1), note that if (un) is weakly
convergent to u, one has the existence of some constant independent on n so that
|∇1un|1 +

∑N
i=N1+1 |∂iun|pi ≤ C. Then by the embedding in Theorem 2.7, (un) is

bounded in Lp
⋆
, and by extracting subsequences from ∇1un in M1(RN ,RN1) weakly

and from ∂iun in Lpi weakly for i ≥ N1+1, one gets that the limit u ∈ BV ~p(RN ).

Remark 2.12. Using the last proposition, one sees that (2.2)extends to the functions
in BV ~p(RN ).

We now enounce a result which extends the definition of the ”Anzelotti pairs”,
[2], see also Temam [32], Strang Temam in [30], and [8, 9, 10].

Theorem 2.13. Let σ a function with values in R
N , such that its projection σ1 on the

first N1 coordinates, belongs to L∞
loc(R

N ,RN1), and suppose that for any i ≥ N1 + 1,

σ · ei ∈ L
p′i
loc, and that divσ ∈ L

p⋆

p⋆−1

loc . Then if u ∈ BV ~p
loc(R

N ), one can define a
distribution σ · ∇u in the following manner, for ϕ ∈ D(RN),

〈σ · ∇u, ϕ〉 = −

∫

RN

divσ(uϕ) −

∫

RN

(σ · ∇ϕ)u.
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Then σ · ∇u is a measure, and σ1 · ∇1u := σ · ∇u −
∑N

i=N1+1 σi∂iu is a measure

absolutely continuous with respect to |∇1u|, with for ϕ ≥ 0 in Cc(R
N ) :

〈|σ1 · ∇1u|, ϕ〉 ≤ |σ1|L∞(Supptϕ)〈|∇1u|, ϕ〉. (2.3)

Furthermore when σ1 ∈ L∞(RN ,RN1) and σi ∈ L
p′i(RN ), for any i ≥ N1 +1, divσ ∈

L
p⋆

p⋆−1 (RN ) and u ∈ BV ~p(RN ), σ ·∇u and σ1 ·∇1u are bounded measures on R
N and

one has
∫

RN

σ · ∇u = −

∫

RN

div(σ)u (2.4)

and
|σ1 · ∇1u| ≤ |σ1|∞|∇1u|

Proof. Take ψ ∈ D(RN ), ψ = 1 on Suppt ϕ. Then if u ∈ BV ~p
loc(R

N ), ψu ∈ BV ~p(RN ).
By Proposition 2.10, there exists un ∈ D(RN ) such that un converges tightly to ψu
in BV ~p(RN ). By the classical Green’s formula

∫

RN

σ · ∇unϕ = −

∫

RN

div(σ)(unϕ)−

∫

RN

(σ · ∇ϕ)un.

Using the weak convergence of un towards ψu one gets that
∫

(σ · ∇un)ϕ converges
to 〈σ · ∇u, ϕ〉. By the assumptions on σi and ∂iun, one has

∫

σi∂iunϕ →
∫

σi∂iuϕ,
for i ≥ N1 + 1, hence

∫

(σ1 · ∇1un)ϕ → 〈σ1 · ∇1u, ϕ〉. Furthermore, using for ϕ ≥ 0,
|
∫

σ1 · ∇1unϕ| ≤ |σ1|L∞(Supptϕ)

∫

|∇1un|ϕ → |σ1|L∞(Supptϕ)

∫

|∇1u|ϕ, one gets (2.3).
The identity ( 2.4) is easily obtained by letting ϕ go to 1RN , since all the measures
involved are bounded measures.

2.2 The approximated space D1,~pǫ(RN)

Let ǫ > 0 small, define

aǫi =
(pi − 1)piǫ

2

1− ǫ(pi − 1)
, ǫi = piǫ+ aǫi and p

ǫ
i = pi(1 + ǫi). (2.5)

Note that one has for all i ≥ N1 + 1, pi(1+ǫi)
ǫi

= 1+ǫ
ǫ . We define D1,~pǫ(RN ) as the

closure of D(RN ) for the norm |∇1v|1+ǫ+
∑N

i=N1+1 |∂iv|pǫi . Then the critical exponent

p⋆ǫ for this space is defined by N
p⋆ǫ

= N1
1+ǫ +

∑

i
1
pǫi

− 1. Note that p⋆ǫ satisfies

N

p⋆ǫ
=
N

p⋆
−

ǫN

1 + ǫ
,

7



and as soon as ǫ is small enough, p+ǫ < p⋆ǫ . Let us finally define

λǫ =
p⋆ǫǫ

1 + ǫ
+ 1, (2.6)

and note for further purposes that λǫp
⋆ = p⋆ǫ .

Recall that as a consequence of the embedding of Troisi, [33] one has

D1, ~pǫ(RN ) →֒ Lp
∗

ǫ (RN ),

and there exists some T ǫ0 > 0, such that for all u ∈ D1,~pǫ(RN ),

T ǫ0 |u|p∗ǫ ≤

N
∏

i=1

|∂iu|
1
N

pǫi
, and then |u|p∗ǫ ≤

1

NT ǫ0
(
√

N1|∇1u|1+ǫ +

N
∑

i=N1+1

|∂iu|pǫi )

for all u ∈ D1, ~pǫ(RN ).

Let us define

Kǫ = inf
u∈D1,~pǫ(RN ),|u|p⋆ǫ=1





1

1 + ǫ
|∇1u|

1+ǫ
1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂iu|

pǫi
pǫi





and

K = inf
u∈D1,~p(RN ),|u|p⋆=1



|∇1u|1 +
N
∑

i=N1+1

1

pi
|∂iu|

pi
pi





It is clear by Proposition 2.10 that

K = inf
u∈BV ~p(RN ),|u|p⋆=1





∫

|∇1u|+
N
∑

i=N1+1

1

pi
|∂iu|

pi
pi





Adapting the proof in [21] one has the following result

Theorem 2.14. There exists uǫ ∈ D1,~pǫ(RN ) non negative which satisfies |uǫ|p⋆ǫ = 1
and

Kǫ =
1

1 + ǫ
|∇1uǫ|

1+ǫ
1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂iuǫ|

pǫi
pǫi
.

Furthermore there exists lǫ > 0, so that

−

N1
∑

i=1

∂i(|∇1uǫ|
ǫ−1∂iuǫ)−

N
∑

i=N1+1

∂i(|∂iuǫ|
pǫi−2∂iuǫ) = lǫu

p⋆ǫ−1
ǫ . (2.7)

8



In the sequel we will use the notation div1 as the divergence of some N1 vector
with respect to the N1 first variables.

By multiplying equation ( 2.7) by uǫ and integrating one has Kǫ ≤ lǫ ≤ p+ǫ Kǫ ,
and as we will see in Proposition 3.4 that lim supKǫ ≤ K, if uǫ is an extremal function
for Kǫ, |∇1uǫ|1+ǫ and |∂iuǫ|pǫi are bounded independently on ǫ, hence one can extract

from it a subsequence which converges weakly in BV ~p. In the sequel we will prove
that by choosing conveniently the sequence uǫ, it converges up to subsequence to an
extremal function for K.

3 The main results

The main result of this paper is the following :

Theorem 3.1. 1) There exists vǫ ∈ D1,~pǫ(RN ), |vǫ|p⋆ǫ = 1, an extremal function for
Kǫ, which converges in the following sense to v ∈ BV ~p(RN ): vǫ converges to v in the
distribution sense, and almost everywhere,

∫

RN |∇1vǫ|
1+ǫ →

∫

RN |∇1v|,
∫

RN |∂ivǫ|
pǫi →

∫

RN |∂iv|
pi for all i ≥ N1 + 1, and |v|p⋆ = 1. Furthermore limKǫ = K. As a

consequence v is an extremal function for K.
2) v satisfies the partial differential equation :

− div1(σ
1)−

N
∑

i=N1+1

∂i(|∂iv|
pi−2∂iv) = lvp

⋆−1, σ1 · ∇1v = |∇1v| (3.1)

where K ≤ l ≤ p+K.

The proof of Theorem 3.1 is given in the next subsection, and it relies of course on
a convenient adaptation of the PL Lions compactness concentration theory. However,
due to the fact that the exponents of the derivatives and the critical exponent vary
with ǫ, we are led to introduce a power vλǫǫ of some convenient extremal function,
- where λǫ has been defined in (2.6)-, and to analyze the behaviour of this new
sequence, which belongs to BV ~p(RN ), and is bounded in that space, independently
on ǫ, as we will see later.

In a second time we prove that

Theorem 3.2. Let v be given by Theorem 3.1. Then v ∈ L∞(RN ) and there exists
some constant C(|v|p⋆) depending on the Lp

⋆
norm of v and on universal constants,

such that |v|∞ ≤ C(|v|p⋆).
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3.1 Proof of Theorem 3.1

The proof is the consequence of several lemmata and propositions.

Lemma 3.3. Suppose that u ∈ BV ~p(RN ), and that |u|p⋆ ≤ 1, then

K|u|p
+

p⋆ ≤ |∇1u|1 +
N
∑

i=N1+1

1

pi
|∂iu|

pi
pi

and analogously if u ∈ D1,~pǫ(RN ), |u|p⋆ǫ ≤ 1

Kǫ|u|
p+ǫ
p⋆ǫ

≤
1

1 + ǫ
|∇1u|

1+ǫ
1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂iu|

pǫi
pǫi
.

Hint of the proof :

Use u
|u|p⋆

in the definition of K and the fact that if |u|p⋆ ≤ 1, |u|pip⋆ ≥ |u|p
+

p⋆ .

Proposition 3.4. One has
lim supKǫ ≤ K.

As a consequence any sequence (vǫ) of extremal functions for Kǫ is bounded indepen-
dently on ǫ, more precisely there exists some positive constant c so that, for all ǫ > 0,
|∇1vǫ|1+ǫ, |∂ivǫ|pǫi ≤ c, for all i ≥ N1 + 1.

Proof. Let δ > 0, δ < 1
2 and let uδ ∈ D1,p(RN ), ( or BV ~p(RN )), so that |uδ |p∗ = 1

and

|∇1uδ|1 +

N
∑

i=N1+1

1

pi
|∂iuδ|

pi
pi

≤ K + δ.

By definition of D1,~p(RN ), there exists vδ ∈ D(RN) such that ||vδ |p⋆ − 1| ≤ δ,

|∇1vδ|1 +
N
∑

i=N1+1

1

pi
|∂ivδ|

pi
pi

≤ K + 2δ.

For ǫ small enough one has ||vδ |p⋆ǫ − 1| ≤ 2δ. By considering wǫδ = vδ
|vδ|p⋆ǫ

, one sees

that wǫδ ∈ D(RN ), |wǫδ|p⋆ǫ = 1, and

|∇1w
ǫ
δ|1 +

N
∑

i=N1+1

1

pi
|∂iw

ǫ
δ|
pi
pi

≤
|∇1vδ|1
1− 2δ

+

N
∑

i=N1+1

1

pi

|∂ivδ|
pi
pi

(1− 2δ)pi

≤
1

(1− 2δ)p+
(K + 2δ).

10



By the Lebesgue’s dominated convergence theorem, |∇1w
ǫ
δ|
1+ǫ
1+ǫ →

|∇1vδ |1
|vδ|p∗

, and |∂iw
ǫ
δ|
pǫi
pǫi

→

|∂ivδ |
pi
pi

|vδ|
pi
p∗

for all i ≥ N1 + 1 when ǫ→ 0, hence we get

lim sup
ǫ→0

Kǫ ≤ lim sup
ǫ→0





1

1 + ǫ
|∇1w

ǫ
δ|
1+ǫ
1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂iw

ǫ
δ|
pǫi
pǫi



 ≤
K + 2δ

(1− 2δ)p+
,

which concludes the proof since δ is arbitrary.

Proposition 3.5. Suppose that wǫ ∈ BV ~p(RN ) satisfies |wǫ|p⋆ = 1, and that wǫ → v
almost everywhere. Then for ǫ small enough |wǫ − v|p⋆ ≤ 1.

Proof. If v ≡ 0, there is nothing to prove. If v 6= 0, using Brezis Lieb Lemma, [5] one
has |wǫ − v|p⋆ − (|wǫ|p⋆ − |v|p⋆) → 0 which implies that lim sup |wǫ − v|p⋆ < 1, hence
the result holds. This lemma will be used for wǫ = vλǫǫ , where vǫ is some convenient
extremal function, given in Lemma 3.6 below, and λǫ has been defined in ( 2.6).

Lemma 3.6. Let uǫ be a non negative extremal function for Kǫ, so that |uǫ|p⋆ǫ = 1.
There exists vǫ ≥ 0 which satisfies

|uǫ|p∗ǫ = |vǫ|p∗ǫ = 1, |∇1uǫ|1+ǫ = |∇1vǫ|1+ǫ, and |∂iuǫ|pǫi = |∂ivǫ|pǫi , for all i ≥ N1 + 1,

and

∫

B(0,1)
vp

⋆
ǫ
ǫ =

1

2
.

Proof. This proof is as in [21], but we reproduce it here for the reader’s convenience.

Let αǫi = p∗ǫ
pǫi

− 1, i = 1, · · · , N . For every y = (y1, · · · , yN ) ∈ R
N , and for any

u ∈ D1, ~pǫ(RN ), and t > 0, we set

ut,y(x) = tu(tα
ǫ
1(x1 − y1), · · · , t

αǫ
N (xN − yN )).

Then, we have
|u|p∗ǫ = |ut,y|p∗ǫ ,

|∂iu|pǫi = |∂iu
t,y|pǫi , for all 1 ≤ i ≤ N,

|∇1u|1+ǫ = |∇1u
t,y|1+ǫ.

Let uǫ be an extremal function for Kǫ so that |uǫ|p⋆ǫ = 1. As in [21], [25], we recall
the definition of the Levy concentration function, for t > 0 :

Qǫ(t) = sup
y∈RN

∫

E(y,tα
ǫ
1 ,··· ,t

αǫ
N )

|uǫ|
p∗ǫ ,

11



where E(y, tα
ǫ
1 , · · · , tα

ǫ
N ) is the ellipse defined by

{z = (z1, · · · , zN ) ∈ R
N ,

N
∑

i=1

(zi − yi)
2

t2α
ǫ
i

≤ 1},

with y = (y1, · · · , yN ), and α
ǫ
i =

p∗ǫ
pǫi

− 1 for all i.

Since for every ǫ > 0, lim
t→0

Qǫ(t) = 0, and lim
t→∞

Qǫ(t) = 1, there exists tǫ > 0 such

that Qǫ(tǫ) =
1
2 , and there exists yǫ ∈ R

N such that
∫

E(yǫ,t
αǫ
1

ǫ ,··· ,t
αǫ
N

ǫ )
|uǫ|

p∗ǫ (x)dx =
1

2
.

Thus, by a change of variable one has for vǫ = utǫ,yǫǫ :
∫

B(0,1)
|vǫ|

p∗ǫ =
1

2
= sup

y∈RN

∫

B(y,1)
|vǫ|

p∗ǫ .

Note for further purpose that vǫ is also extremal for Kǫ.

Proposition 3.7. Let vǫ ≥ 0 be in D1,~pǫ(RN ), bounded in that space, independently
on ǫ. Then for λǫ defined in (2.6), the sequence wǫ = vλǫǫ is bounded in D1,~p(RN ).

Proof. One has
∫

RN

|∇1(v
λǫ
ǫ )| = λǫ

∫

RN

vλǫ−1
ǫ |∇1vǫ|

≤ λǫ(

∫

RN

|∇1vǫ|
1+ǫ)

1
1+ǫ (

∫

RN

v
(λǫ−1)(1+ǫ)

ǫ
ǫ )

ǫ
1+ǫ

= λǫ(

∫

RN

|∇1vǫ|
1+ǫ)

1
1+ǫ (

∫

RN

vp
⋆
ǫ
ǫ )

ǫ
1+ǫ

and for all i > N1, using the definition in (2.5)
∫

RN

|∂i(v
λǫ
ǫ )|pi = λpiǫ

∫

RN

v(λǫ−1)pi
ǫ |∂ivǫ|

pi

≤ λpiǫ (

∫

RN

|∂ivǫ|
pǫi )

1
1+ǫi (

∫

RN

v

(λǫ−1)pǫi
ǫi

ǫ )
ǫi

1+ǫi

= λpiǫ (

∫

RN

|∂ivǫ|
pǫi )

1
1+ǫi (

∫

RN

vp
⋆
ǫ
ǫ )

ǫi
1+ǫi

Then
∫

RN |∇1(v
λǫ
ǫ )| and

∫

RN |∂i(v
λǫ
ǫ )|pi for i ≥ N1 + 1 are bounded independently on

ǫ, by the assumptions.

12



Let vǫ be given by Lemma 3.6. One has by the definition of λǫ,
∫

RN

|vǫ|
p⋆ǫ = 1 =

∫

RN

|vλǫǫ |p
⋆

.

Let us define

lim
R→+∞

lim sup
ǫ→0

∫

|x|>R
|vλǫǫ |p

⋆

= ν∞,

and

lim
R→+∞

lim sup
ǫ→0

∫

|x|>R



|∇1(v
λǫ
ǫ )|+

N
∑

i=N1+1

1

pi
|∂i(v

λǫ
ǫ )|pi



 = µ∞

while

lim
R→+∞

lim sup
ǫ→0

∫

|x|>R





1

1 + ǫ
|∇1vǫ|

1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂ivǫ|

pǫi



 = µ̃∞,

Remark 3.8. Note that since
∫

B(0,1) |v
λǫ
ǫ |p

⋆
= 1

2 , and
∫

RN |vλǫǫ |p
⋆
= 1, ν∞ ≤ 1

2 .

Theorem 3.9. Let vǫ ∈ D1,~pǫ(RN ), be given by Lemma 3.6, and λǫ be defined in
(2.6). There exist positive bounded measures on R

N : τ, τ̃ , µi, µ̃i, for N1+1 ≤ i ≤ N,
and ν, a sequence of points xj ∈ R

N , and some positif reals νj , µ
i
j, τj , τ̃j , j ∈ N, so

that for a subsequence

1. vǫ, and v
λǫ
ǫ converge both to v, almost everywhere and strongly in every Lqloc,

q < p⋆, and v ∈ BV ~p(RN ).

2. |∇1(v
λǫ
ǫ )|⇀ |∇1v|+ τ , |∇1vǫ|

1+ǫ ⇀ |∇1v|+ τ̃ , with τ̃ ≥ τ , in M1(RN ) weakly.

3. |∂iv
λǫ
ǫ |pi ⇀ |∂iv|

pi + µi for all i ≥ N1 + 1, |∂ivǫ|
pǫi ⇀ |∂iv|

pi + µ̃i with µ̃i ≥ µi,
in M1(RN ) weakly.

4. |vλǫǫ |p
⋆
= |vǫ|

p⋆ǫ ⇀ |v|p
⋆
+ ν := |v|p

⋆
+
∑

j νjδxj in M1(RN ) weakly.

5. One has τ ≥
∑

j τjδxj , µ
i ≥

∑

j µ
i
jδxj , for all i ≥ N1 + 1, and for any j ∈ N,

ν
p+

p⋆

j ≤ 1
K(τj +

∑

i
1
pi
µij), and ν

p+

p⋆

∞ ≤ 1
Kµ∞.

6.

|∇1(v
λǫ
ǫ )|1 +

N
∑

i=N1+1

1

pi
|∂iv

λǫ
ǫ |pipi →

∫

RN

|∇1v|+

N
∑

i=N1+1

1

pi

∫

RN

|∂iv|
pi

+

∫

RN



τ +

N
∑

i=N1+1

1

pi
µi



+ µ∞.
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7.

1

1 + ǫ
|∇1vǫ|

1+ǫ
1+ǫ +

N
∑

i=N1+1

1

pǫi
|∂ivǫ|

pǫi
pǫi

→

∫

RN

|∇1v|+
N
∑

i=N1+1

1

pi

∫

|∂iv|
pi

+

∫

RN



τ̃ +

N
∑

i=N1+1

1

pi
µ̃i



+ µ̃∞.

8.
∫

RN

|vǫ|
p⋆ǫ = 1 =

∫

RN

|vǫ|
λǫp

⋆

→

∫

RN

|v|p
⋆

+

∫

RN

ν + ν∞.

Proof. 1 The convergence of vλǫǫ is clear by using the compactness of the embedding
from BV ~p in Lq with q < p⋆ < p⋆ǫ , on bounded sets of RN , the analogous for vǫ is
also true since q < lim inf p⋆ǫ .

Let us prove the existence of τ̃ , τ, µi, µ̃i, N1 + 1 ≤ i ≤ N, and ν. Indeed one
has by extracting a subsequence the existence of τ̃ , since we know that |∇1v| ≤
lim inf |∇1vǫ|

1+ǫ. The existence of τ is obtained from the same arguments. Further-
more, by Hölder’s inequaltiy

∫

|∇1(v
λǫ
ǫ )|ϕ ≤ λǫ(

∫

|∇1vǫ|
1+ǫϕ)

1
1+ǫ (

∫

vp
⋆
ǫ
ǫ ϕ)

ǫ
1+ǫ .

Letting ǫ go to zero, since λǫ goes to 1, one gets that τ̃ ≥ τ . We argue in the same
manner to prove the analogous results for |∂i(v

λǫ
ǫ )|pi and |∂ivǫ|

pǫi . The existence of ν
is clear.

We prove in the lines which follow that ν is purely atomic. This is classical, but
we reproduce the proof for the convenience of the reader. Let

µ = 2|∇1v|+ τ +

N
∑

i=N1+1

2pi−1

pi
(µi + 2|∂iv|

pi)

Claim 1 For all ϕ ∈ Cc(R
N ),

(

∫

|ϕ|p
⋆

dν)
1
p⋆ ≤ (p+)

1
N
+ 1

p⋆ (

∫

µ)
1
N
+ 1

p⋆
− 1

p+
1

To
(

∫

|ϕ|p
+
dµ)

1
p+ (3.2)

To prove Claim 1, let us define hǫ = (vλǫǫ − v). Using (2.2),

(

∫

|hǫϕ|
p⋆)

1
p⋆ ≤

1

To
ΠN1 (

∫

|∂i(hǫϕ)|
pi)

1
Npi . (3.3)
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We have defined ν and µi by the following vague convergences : vλǫp
⋆

ǫ ⇀ vp
⋆
+ ν,

|∂iv
λǫ
ǫ |pi ⇀ |∂iv|

pi + µi, and |∇1v
λǫ
ǫ | ⇀ |∇1v| + τ . By Bresis Lieb’s Lemma, one

derives that

|hǫ|
p∗ ⇀ ν,

while
|∂ihǫ|

pi ≤ 2pi−1(|∂iv
λǫ
ǫ |pi + |∂iv|

pi)⇀ 2pi−1(2|∂iv|
pi + µi),

and

|∇1hǫ| ≤ |∇1(vǫ)
λǫ |+ |∇1v|⇀ 2|∇1v|+ τ vaguely.

Using the fact that hǫ tends to 0 in Lpi(Supptϕ), for all i, since pi < p⋆, one has
∫

|hǫ|
pi |∂iϕ|

pi → 0. Passing to the limit in (3.3), one gets

(∫

|ϕ|p
⋆

dν

)
1
p⋆

≤
1

To

(∫

|ϕ|d(2|∇v| + τ)

)

N1
N

ΠNi=N1+1

(∫

|ϕ|pid(2pi−1(2|∂iv|
pi + µi))

)
1

Npi

.

We then use for i ≥ N1 + 1
∫

|ϕ|pid(2pi−1(2|∂iv|
pi + µi)) ≤ p+(

∫

µ)
1−

pi
p+ (

∫

|ϕ|p
+
dµ)

pi
p+ ,

and
∫

|ϕ|d(2|∇v| + τ) ≤ p+(

∫

µ)
1− 1

p+ (

∫

|ϕ|p
+
dµ)

1
p+ .

Taking the power 1
Npi

and N1
N

and multiplying the inequalities, one derives Claim 1.

By (3.2) one sees that ν is absolutely continuous with respect to µ, with for some
constant c and for any borelian set E,

ν(E) ≤ cµ(E)
p⋆

p+

Let then h ≥ 0 be µ integrable so that ν = hdµ. Then if x is a density point for
µ, ie, so that limr→0 µ(B(x, r)) = 0, one gets that ν(B(x,r))

µ(B(x,r)) → 0, hence if D is the at

most numerable set where µ({xj}) > 0, one has h = 0 in R
N \D. This implies that

ν has only atoms that we will denote {xj}j∈N.

We now prove 5. We still follow the lines in [21].
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Let δ > 0 small, qi = pip
⋆

p⋆−pi
, αi = 1

qi
, ( note that

∑N
i=1 αi = 1), define for

j ∈ N fixe, φ ∈ D(B(0, 1)), φ(0) = 1, 0 ≤ φ ≤ 1 the function φδ as φδ(x) =

φ(
x−x1j
δα1 , · · · ,

x−xNj
δαN

). φδ satisfies
∫

RN |∂iφδ|
qi =

∫

RN |∂iφ|
qi . In particular for all i ≤ N ,

∫

RN

|∂iφδ |
pivpi ≤ (

∫

RN

|∂iφδ|
qi)

pi
qi (

∫

B(xj ,maxi δαi )
vp

⋆

)
pi
p⋆ → 0, (3.4)

when δ goes to zero.
Claim 2

Kν
p+

p⋆

j ≤ lim sup
δ→0

lim sup
ǫ→0

∫

RN



φδ|∇1v
λǫ
ǫ |+

N
∑

i=N1+1

1

pi
|∂i(v

λǫ
ǫ )|piφpiδ





To prove Claim 2, we apply Lemma 3.3 with |vλǫǫ φδ |p⋆ ≤ 1

K(

∫

RN

|vλǫǫ φδ|
p⋆)

p+

p⋆ ≤

∫

RN

|∇1(v
λǫ
ǫ φδ)|+

N
∑

i=N1+1

1

pi

∫

RN

|∂i(v
λǫ
ǫ φδ)|

pi .

We use
∣

∣

∣
|∇1(v

λǫ
ǫ φδ)| − |∇1(v

λǫ
ǫ )|φδ

∣

∣

∣
≤ vλǫǫ |∇1φδ|

≤ |vλǫǫ − v||∇1φδ|+ v|∇1φδ|,

hence by (3.4) when pi = 1 and vλǫǫ − v → 0 in Lqloc for all q < p⋆, this goes to zero
in L1 when ǫ and δ go to zero. For i ≥ N1 + 1, by the mean value’s theorem
∣

∣

∣
|∂i(v

λǫ
ǫ φδ)|

pi −|∂i(v
λǫ
ǫ )φδ|

pi
∣

∣

∣

≤ pi|(∂iφδ)v
λǫ
ǫ |

∣

∣

∣
|∂iφδ|v

λǫ
ǫ + |∂i(v

λǫ
ǫ )φδ|

∣

∣

∣

pi−1

≤ pi

(

|∂iφδ||v
λǫ
ǫ − v|+ |∂iφδ|v

) ∣

∣

∣|(∂iφδ)v
λǫ
ǫ |+ |∂i(v

λǫ
ǫ )|φδ

∣

∣

∣

pi−1
.

Using Holder’s inequality, ( 3.4) for i ≥ N1+1, the fact that
∣

∣|∂iφδ|v
λǫ
ǫ + |∂i(v

λǫ
ǫ )φδ |

∣

∣

pi−1

is bounded in L
pi

pi−1 , and vλǫǫ − v → 0 in Lqloc for all q < p⋆, this goes to zero in L1,
when ǫ and δ go to zero. Claim 2 is proved.

We can now conclude, using the fact that |∇1v| is orthogonal to Dirac masses,
as a consequence of the results on the dimension of the support of |∇1v|

s, [19], and
using the fact that |∂iv|

pi belongs to L1, for i ≥ N1 + 1, that

Kν
p+

p⋆

j ≤ lim sup
δ→0

(

∫

RN

τφδ +
N
∑

i=N1+1

1

pi

∫

RN

µiφpiδ )
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Defining τj = lim supδ→0

∫

RN τφδ and µij = lim supδ→0

∫

RN µ
iφpiδ , one gets the first

part of 5.
To prove the last part of 5, let R > 0 large and ψR some C∞ function which is 0

on |x| < R, and equals 1 for |x| > R + 1, 0 ≤ ψR ≤ 1. It can easily be seen that for
any i ≥ N1 + 1 and for any γi ≥ 1

∫

|x|>R+1
|∂iv

λǫ
ǫ |pi ≤

∫

RN

|∂iv
λǫ
ǫ |piψγiR ≤

∫

|x|>R
|∂iv

λǫ
ǫ |pi (3.5)

∫

|x|>R+1
|∇1v

λǫ
ǫ | ≤

∫

RN

|∇1v
λǫ
ǫ |ψγ1R ≤

∫

|x|>R
|∇1v

λǫ
ǫ | (3.6)

and
∫

|x|>R+1
|vλǫǫ |p

⋆

≤

∫

RN

|vλǫǫ |p
⋆

ψp
⋆

R ≤

∫

|x|>R
|vλǫǫ |p

⋆

. (3.7)

And then by the definition of µ∞

lim
R→+∞

lim sup
ǫ→0

∫

RN

|∇1v
λǫ
ǫ |ψR +

N
∑

i=N1+1

1

pi

∫

RN

|∂iv
λǫ
ǫ |piψpiR = µ∞.

Let us remark that since v ∈ BV ~p, one has limR→+∞

∫

|∇1v|ψR+
∑N

i=N1+1
1
pi

∫

|∂iv|
piψpiR+

∫

RN |v|p
⋆
ψp

⋆

R = 0.
We use once more hǫ = vλǫǫ − v, which goes to zero in Lqloc. Note that since

|hǫ|p⋆ ≤ 1, one also has |hǫψR|p⋆ ≤ 1 and then applying Lemma 3.3

K(

∫

|hǫψR|
p⋆)

p+

p⋆ ≤

∫

|∇1(hǫψR)|+

N
∑

i=N1+1

1

pi

∫

|∂i(hǫψR)|
pi . (3.8)

Since ∇ψR is compactly supported in R < |x| < R+ 1, and since pi < p⋆ one has

lim
ǫ→0

∫

RN

hǫ|∇1(ψR)|+

N
∑

i=N1+1

1

pi

∫

RN

|∂iψR|
pihpiǫ = 0.

Then

lim
R→+∞

lim sup
ǫ→0

∫

RN

|∇1(hǫψR)|+

N
∑

i=N1+1

1

pi

∫

RN

|∂i(hǫψR)|
pi = µ∞.

Note also that lim
R→+∞

lim sup
ǫ→0

K(
∫

RN |hǫψR|
p⋆)

p+

p⋆ = Kν
p+

p⋆

∞ , hence, taking the limit in

(3.8), one gets Kν
p+

p⋆

∞ ≤ µ∞.
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To show 6. by the definition of τ and µi,

lim
R→+∞

lim sup
ǫ→0

∫

RN

|∇1v
λǫ
ǫ |(1− ψR) +

N
∑

i=N1+1

1

pi

∫

RN

|∂iv
λǫ
ǫ |pi(1− ψR)

=

∫

RN

|∇1v|+

∫

RN

τ +
N
∑

i=N1+1

1

pi

∫

RN

(|∂iv|
pi + µi).

And then one gets 6. by writing 1 = ψR + (1− ψR) and using (3.5) and (3.6).
7 can be proved in the same manner. 8 is obtained by gathering 4. and (3.7).

Proof. of Theorem 3.1 We take a subsequence vǫ′ so that

1

1 + ǫ′

∫

RN

|∇1vǫ′ |
1+ǫ′ +

N
∑

i=N1+1

1

pǫ
′

i

∫

|∂ivǫ′ |
pǫ

′

i = Kǫ′

with limKǫ′ = lim inf Kǫ, in the sequel we will still denote it vǫ for simplicity .
We are going to prove both that lim supKǫ = K = lim inf Kǫ, ν∞ = µ∞ = 0, µij =

νj = 0, for all j ∈ N, that for all i |∂ivǫ|
pǫi → |∂iv|

pi , tightly on R
N , and that

lim |∇1(v
λǫ
ǫ )| = lim |∇1vǫ|

1+ǫ = |∇1v|, tightly on R
N . Indeed, using the previous

convergences in Theorem 3.9

∫

RN

|∇1v| +

∫

RN

τ +

N
∑

i=N1+1

1

pi

∫

RN

|∂iv|
pi +

N
∑

i=N1+1

1

pi

∫

RN

µi + µ∞

≤

∫

RN

|∇1v|+

∫

RN

τ̃ +

N
∑

i=N1+1

1

pi

∫

RN

|∂iv|
pi +

N
∑

i=N1+1

1

pi

∫

RN

µ̃i + µ̃∞

≤ lim
1

1 + ǫ

∫

RN

|∇1vǫ|
1+ǫ +

N
∑

i=N1+1

1

pǫi

∫

RN

|∂i(vǫ)|
pǫi

= lim inf Kǫ = lim inf Kǫ(|v|
p⋆ +

∑

νj + ν∞)
p+

p⋆

≤ lim inf Kǫ

(

(|v|p
⋆

p⋆)
p+

p⋆ + (
∑

νj)
p+

p⋆ + ν
p+

p⋆

∞

)

≤ lim inf Kǫ

(
∫

RN

|v|p
⋆

p⋆

)
p+

p⋆

+
lim inf Kǫ

K





∑

j

( τj +
N
∑

i=N1+1

1

pi
µij) + µ∞
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≤
lim inf Kǫ

K





∫

RN

|∇1v|+
N
∑

i=N1+1

1

pi

∫

RN

|∂iv|
pi





+
lim inf Kǫ

K





∑

j

τj +
∑

j

N
∑

i=N1+1

1

pi
µij + µ∞





Using the fact that lim supKǫ ≤ K,
∫

RN τ ≥
∑

j τj,
∫

RN µ
i ≥

∑

j µ
i
j, one gets that

we have equalities in place of inequalities everywhere we used them. In particular

(
∫

RN |v|p
⋆
+
∑

j νj + ν∞)
p+

p⋆ = (
∫

RN |v|p
⋆
)
p+

p⋆ +
∑

j ν
p+

p⋆

j + ν
p+

p⋆

∞ , and then only one

of the positive reals
∫

RN |v|p
⋆
, νj , ν∞, can be different from zero. But this imposes

that the only one which is 6= 0 must be equal to one. By Remark 3.8, one then
gets ν∞ = 0. On the other hand, let j ∈ N, either xj /∈ B(0, 1) and then for δ
small enough

∫

B(xj ,δ)
|vǫ|

p⋆ǫ +
∫

B(0,1) |vǫ|
p⋆ǫ ≤ 1, hence νj = 0, or xj ∈ B(0, 1) and

then νj ≤ lim
∫

B(0,1) |vǫ|
p⋆ǫ = 1

2 , and once more νj = 0. One then derives that

1 = |vǫ|
p⋆ǫ
p⋆ǫ

→ |v|p
⋆

p⋆ . By the definition of K one has

K ≤ |∇1v|1 +

N
∑

N1+1

1

pi
|∂iv|

pi ≤ |∇1v|1 +

N
∑

N1+1

1

pi
|∂iv|

pi + τ̃ +

N
∑

N1+1

1

pi
µ̃i + µ̃∞

≤ lim inf Kǫ ≤ lim supKǫ ≤ K

and then τ̃ = τ = µ̃∞ = µ∞ = µ̃i = µi = 0, lim |∇1vǫ|
1+ǫ
1+ǫ = lim |∇1(v

λǫ
ǫ )|1 = |∇1v|1,

and for all i ≥ N1 + 1, both |∂i(v
λǫ
ǫ )|pipi and |∂ivǫ|

pǫi
pǫi

converge to |∂iv|
pi
pi . We have

obtained that v is an extremal function, and limKǫ = K.

We now prove that v satisfies (3.1). First recall that lǫ ≥ Kǫ ≥
1
p+
lǫ, as we can

see by multiplying (2.7) by vǫ the equation, integrating, and using |vǫ|
p⋆ǫ
p⋆ǫ

= 1. In
particular lǫ is bounded. Let us extract from it a subsequence which converges to
some l ≥ 0.

Let us define σ1,ǫ = |∇1vǫ|
ǫ−1∇1vǫ, σ

ǫ
i = |∂ivǫ|

pǫi−2∂ivǫ for i ≥ N1 + 1, and -
with an obvious abuse of notation- σǫ = (σ1,ǫ, σǫN1+1, · · · , σ

ǫ
N ). Note that σ1,ǫ is

bounded in Lqloc, for any q < ∞. Indeed, let K be a compact set, one has by

Holder’s inequality
∫

K
|σ1,ǫ|q =

∫

K
|∇1vǫ|

ǫq ≤ (
∫

K
|∇1vǫ|

1+ǫ)
qǫ
1+ǫ |K|1−

qǫ
1+ǫ and then

(
∫

K
|σ1,ǫ|q)

1
q ≤ ((1 + ǫ)Kǫ)

ǫ
1+ǫ |K|

1
q
− ǫ

1+ǫ . Using the boundedness of Kǫ one gets that
σ1,ǫ is bounded in Lqloc, hence converges up to subsequence weakly in Lqloc to some
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σ1 which satisfies for any compact set K |σ1|Lq(K) ≤ |K|
1
q , hence σ1 ∈ L∞(RN ,RN1)

and |σ1|∞ ≤ 1. Furthermore, the strong convergence of |∂ivǫ|
pǫi towards |∂iv|

pi in L1

when i ≥ N1 + 1 ensures that σi = |∂iv|
pi−2∂iv. From these convergences, one gets

that defining σ = (σ1, σN1+1, · · · , σN ), by the definition in Theorem 2.13, σǫ · ∇vǫ
converges to σ · ∇v in the distribution sense. Using

∑N
N1+1 σ

ǫ
i∂ivǫ →

∑N
N1+1 σi∂iv in

L1
loc, one derives that σ1,ǫ · ∇1vǫ converges to σ

1 · ∇1v in D′(RN ). Since σ1,ǫ · ∇1vǫ is
also bounded in L1, this convergence is in fact vague. By lower semi-continuity for
the vague topology, for any ϕ ≥ 0 in Cc(R

N )
∫

|∇1v|ϕ ≤ lim inf
ǫ→0

∫

|∇1vǫ|
1+ǫϕ = lim inf

ǫ→0

∫

σ1,ǫ · ∇1vǫϕ = 〈σ1 · ∇1v, ϕ〉

This implies that |∇1v| ≤ σ1 ·∇1v in the sense of measures, and since one always has
the reverse inequality, we have obtained that σ1 · ∇1v = |∇1v|.

We get by passing to the limit in (2.7) that v satisfies the partial differential
equation :

−div1(σ
1)−

N
∑

i=N1+1

∂i(|∂iv|
pi−2∂iv) = lvp

⋆−1

with
∫

RN

vp
⋆

= 1, and σ1 · ∇1v = |∇1v|.

Furthermore, multiplying the equation by v and integrating, one gets l ≥ K > 0.

3.2 Proof of Theorem 3.2

We will prove the L∞ regularity when u is some extremal function which satisfies
(3.1), with l = 1. Indeed one has

Lemma 3.10. Let vǫ and v be as in Theorem 3.1. Then

u(x) = v(l−1x1, · · · , l
−1xN1 , l

− 1
pN1+1 xN1+1, · · · , l

−1
pN xN )

and

uǫ(x) = vǫ(l
−1
1+ǫ
ǫ x1, · · · , l

−1
1+ǫ
ǫ xN1 , l

− 1
pǫ
N1+1

ǫ xN1+1, · · · , l
−1
pǫ
N
ǫ xN )

satisfy respectively

−div1(σ
1(u))−

N
∑

i=N1+1

∂i(|∂iu|
pi−2∂iu) = up

⋆−1
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with σ1 · ∇1u = |∇1u|, and

− div1(|∇1uǫ|
ǫ−1∇1uǫ)−

N
∑

i=N1+1

∂i(|∂iuǫ|
pǫi−2∂iuǫ) = up

⋆
ǫ−1
ǫ (3.9)

Furthermore uǫ converges tightly to u in BV ~p(RN ).

We do not give the proof of this lemma, which is left to the reader.
In the sequel we will consider u and uǫ as in Lemma 3.10.

Lemma 3.11. Suppose that u ∈ BV ~p is as in Lemma 3.10. Suppose that g is
Lipschitz continuous on R, such that g(0) = 0 and g′ ≥ 0, then g(u) ∈ BV ~p, with
σ1 · ∇1(g(u)) = |∇1(g(u))|. Furthermore one has the identity

∫

RN

|∇1(g(u))| +
N
∑

i=N1+1

∫

RN

g′(u)|∂iu|
pi =

∫

RN

g(u)up
⋆−1 (3.10)

Proof. In the following lines, we will use ”UTS” to say that the convergence holds
up to subsequence .

Note that g(uǫ) ∈ D1, ~pǫ(RN ) by the mean value’s theorem, since g′ ∈ L∞, and

(g(uǫ))ǫ is bounded in that space by the assumptions on uǫ, and then also in BV ~p
loc.

Then since uǫ converges to u almost everywhere ”UTS” and g is continuous, g(u) ∈

BV ~p(RN ), and g(uǫ) converges weakly to g(u) in BV ~p
loc ”UTS” . In particular it

converges to g(u) in Lqloc, ”UTS” for all q < p⋆. Let us observe that the sequence of
measures σǫ ·∇(g(uǫ)) converges ”UTS” to σ ·∇(g(u)) : Since σǫ ·∇g(uǫ) is bounded in
L1, it is sufficient to prove that it converges in the distribution sense. To check this, let

ϕ ∈ D(RN ), take q < p⋆ so that for ǫ small enough pǫi < q, then σǫ → σ ”UTS” in Lq
′

loc.
Using g(uǫ) → g(u) in Lqloc strongly and ”UTS” for all q < p⋆, one has

∫

g(uǫ)σǫ ·

∇ϕ →
∫

g(u)σ · ∇ϕ. Secondly note that u
p⋆ǫ−1
ǫ g(uǫ) ≤ |g′|∞|uǫ|

p⋆ǫ . By the strong
convergence of (uǫ)

p⋆ǫ in L1 one can suppose that ”UTS” is dominated by a function

h in L1, hence so does u
p⋆ǫ−1
ǫ g(uǫ). By the almost everywhere convergence ”UTS”of

u
p⋆ǫ−1
ǫ g(uǫ) to up

⋆−1g(u) and the Lebesgue’s dominated convergence theorem, one

gets that for any ϕ ∈ D(RN ),
∫

u
p⋆ǫ−1
ǫ g(uǫ)ϕ →

∫

up
⋆−1g(u)ϕ. We have obtained

that
∫

σǫ · ∇(g(uǫ))ϕ →
∫

σ · ∇(g(u))ϕ, for any ϕ in D(RN ), hence also for ϕ in
Cc(R

N ). Furthermore, by lower semicontinuity one has for all ϕ ≥ 0 in Cc(R
N ),

∫

|∇1(g(u))|ϕ ≤ lim inf
ǫ→0

∫

|∇1(g(uǫ))|
1+ǫϕ

= lim inf
ǫ→0

∫

(g′(uǫ))
1+ǫ|∇1uǫ|

1+ǫϕ

≤ lim inf
ǫ→0

|g′|ǫ∞

∫

(g′(uǫ))|∇1uǫ|
1+ǫϕ
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= lim inf
ǫ→0

∫

σ1,ǫ · ∇1(g(uǫ))ϕ

=

∫

σ1 · ∇1(g(u))ϕ

This implies since one also has σ1 · ∇1(g(u)) ≤ |∇1g(u)|, that σ1 · ∇1(g(u)) =
|∇1(g(u))|.

To get identity (3.10 ) it is then sufficient to multiply the equation ( 3.9) by
g(uǫ)ϕ, and pass to the limit using the previous convergence. Next one can let ϕ go
to 1RN since all the measures involved are bounded measures.

Corollary 3.12. Let u be as in Lemma 3.10. For any L and a > 0, (umin(ua, L)) ∈
BV ~p(RN ), σ1 · ∇1(umin(ua, L)) = |∇1(umin(ua, L))|, and

∫

|∇1(umin(ua, L))|+
N
∑

i=N1+1

(

1

1 + a
pi

)pi−1
∫

|∂i(umin(u
a
pi , L))|pi ≤

∫

up
⋆

min(ua, L).

Proof. We use Lemma 3.11 with g(u) = umin(ua, L) and equation (3.10). Then it is
sufficient to observe that

∫

g′(u)|∂iu|
pi ≥

(

1

1 + a
pi

)pi−1
∫

|∂i(umin(u
a
pi , L))|pi .

We now prove the following

Proposition 3.13. Let u be as in Lemma 3.10, then u ∈ L∞.

Proof. This proof follows the lines in [16] and [21]. Once more, we reproduce it here
for the sake of completeness. We begin to prove that u ∈ Lq for all q < ∞. In the
sequel, c denotes some positive constant which does not depend on k nor on a, which
can vary from one line to another. Let k to choose later, and write for all pj, ( recall
that pj = 1 for j ≤ N1) :

∫

up
⋆

min(uapj , Lpj ) =

∫

u≤k
up

⋆

(min(ua, L))pj +

∫

u≥k
up

⋆

(min(ua, L))pj

≤ kapj
∫

|u|p
⋆

+ (

∫

u≥k
up

⋆

)1−
pj
p⋆

(
∫

(umin(ua, L))p
⋆

)

pj
p⋆

.
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Using the embedding from BV ~p in Lp
⋆
one has

(
∫

(umin(ua, L))p
⋆

) 1
p⋆

≤ c





∫

|∇1(umin(ua, L))|+

N
∑

j=N1+1

(

∫

|∂j(umin(ua, L))|pj )
1
pj



 .

(3.11)
Using Corollary 3.12, for umin(uapj , L) one gets for all j

(1 + a)−pj+1

∫

|∂j(umin(ua, L))|pj ≤

∫

up
⋆

min(uapj , Lpj )

and then defining Ij = (
∫

|∂j(umin(ua, L))|pj )
1
pj and ǫk =

∫

u≥k u
p⋆ ,

Ij ≤ c(1 + a)



ka(

∫

up
⋆

)
1
pj + ǫ

1
pj

− 1
p⋆

k





∫

| ∇1(umin(ua, L))|+

N
∑

i=N1+1

Ii









and

∫

| ∇1(umin(ua, L))| ≤ c(1+a)



ka
∫

up
⋆

+ ǫ
1− 1

p⋆

k





∫

| ∇1(umin(ua, L))|+
N
∑

i=N1+1

Ii







 .

Summing over j one gets

∫

| ∇1(umin(ua, L))| +
N
∑

j=N1+1

Ij

≤ c(1 + a)



ka
N
∑

j=1

|u|
p⋆

pj

p⋆

+

N
∑

j=1

ǫ
1
pj

− 1
p⋆

k (

∫

| ∇1(umin(ua, L))|+

N
∑

i=N1+1

Ii)



 .

Choosing ka so that c(a+1)
∑

ǫ
1
pj

− 1
p⋆

k < 1
2 , ( recall that pj < p⋆ for all j and ǫk → 0

when k → +∞), we have obtained

1

2





∫

| ∇1(umin(ua, L))| +
N
∑

j=N1+1

Ij



 ≤ c(1 + a)kaa

N
∑

j=1

|u|
p⋆

pj

p⋆ ,
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hence, coming back to (3.11)

|umin(ua, L)|p⋆ ≤ c(1 + a)kaa

N
∑

j=1

|u|
p⋆

pj

p⋆ .

Letting L go to ∞ one gets |ua+1|p⋆ ≤ C ′(|u|p⋆)(1 + a)kaa, taking the power 1
a+1 , one

has obtained that for q = p⋆(a+ 1),

|u|q ≤ C ′(|u|p⋆)
1

1+a (1 + a)
1

a+1k
a

a+1
a ,

and then u belongs to Lq for all q <∞.

To prove that u ∈ L∞, we still follow the lines in [21].
Choose q > p⋆ so that ǫ := −1

p⋆
+ (1 − p⋆

q
)(1 − 1

p⋆
) 1
p+−1

> 0. Let ϕk = (u − k)+,

and Ak = {x, u(x) > k}. Let us begin to note that Ak is of finite measure for all
k > 0, since

|{x, u(x) > k}|kp
⋆

≤

∫

u>k

|u|p
⋆

≤ |u|p
⋆

p⋆ .

We then deduce that for k > 0, (u− k)+ ∈ L1, since

∫

(u− k)+ ≤

∫

u≥k
u ≤

∫

u≥k

up
⋆

kp⋆−1
. (3.12)

We now apply Lemma 3.11 with g(u) = (u− k)+. Using (3.10) one gets

|∇1ϕk|1 +

N
∑

i=N1+1

|∂iϕk|
pi
pi

=

∫

up
⋆−1(u− k)+

≤ |u|p
⋆−1
q |Ak|

(1− p⋆

q
)(1− 1

p⋆
)|ϕk|p⋆

≤ c|Ak|
(1− p⋆

q
)(1− 1

p⋆
)|ϕk|p⋆ .

We then have since |ϕk|p⋆ ≤ |u|p⋆ = 1, by Lemma 3.3

|ϕk|
p+

p⋆ ≤ c



|∇1ϕk|1 +

N
∑

i=N1+1

1

pi
|∂iϕk|

pi
pi





≤ c|Ak|
(1− p⋆

q
)(1− 1

p⋆
)
|ϕk|p⋆ .

hence

24



|ϕk|p⋆ ≤ c|Ak|
ǫ+ 1

p⋆ ,

and using Hölder’s inequality, one derives
∫

RN (u− k)+ ≤ |Ak|
1− 1

p⋆ |ϕk|p⋆ ≤ c|Ak|
1+ǫ.

Let y(k) =
∫∞
k

|Aτ |dτ , then y(k) =
∫

RN (u− k)+ ≤ c(−y′(k))1+ǫ, and integrating
one obtains

−y
ǫ

1+ǫ (u(s)) + y
ǫ

1+ǫ (k) ≥
ǫ

1 + ǫ
c

−1
1+ǫ (u(s)− k)

hence for any s, recalling ( 3.12), for some constants b and γ > 0:

u(s)− k ≤
1 + ǫ

ǫ
c

1
1+ǫ

|u|
p⋆ǫ
1+ǫ

p⋆

k
(p⋆−1)ǫ

1+ǫ

≤
b

kγ
.

Optimizing with respect to k, ie taking the infimum one gets that

u(s) ≤ c(|u|p⋆)

Remark 3.14. Let q1, · · · , qm be such that {pN1+1, · · · , pN} = {q1, · · · , qm}, and
qi 6= qj when i 6= j.

Note that one could consider in place of K = infu∈D1,~p,|u|p⋆=1 |∇1u|1+
∑N

i=N1+1
1
pi
|∂iu|

pi
pi

the infinimum

K̃ = inf
u∈D1,~p(RN ),|u|p⋆=1

|∇1u|1 +

m
∑

j=1

(
1

qj

∫

(
∑

i,pi=qj

|∂iu|
2)

qj
2 )

and prove the existence of an extremal function with obvious changes.
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