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REVERSE AGMON ESTIMATES IN FORBIDDEN REGIONS

JOHN A. TOTH AND XIANCHAO WU

Abstract. Let (M, g) be a compact, Riemannian manifold and V ∈ C∞(M ;R). Given
a regular energy level E > minV , we consider L2-normalized eigenfunctions, uh, of the
Schrödinger operator P (h) = −h2∆g + V −E(h) with P (h)uh = 0 and E(h) = E + o(1) as
h → 0+. The well-known Agmon-Lithner estimates [Hel88] are exponential decay estimates
(ie. upper bounds) for eigenfunctions in the forbidden region {V > E}. The decay rate is
given in terms of the Agmon distance function dE associated with the degenerate Agmon
metric (V − E)+ g with support in the forbidden region.

The point of this note is to prove a reverse Agmon estimate (ie. exponential lower
bound for the eigenfunctions) in terms of Agmon distance in the forbidden region under a
control assumption on eigenfunction mass in the allowed region {V < E} arbitrarily close to
the caustic {V = E}. We then give some applications to hypersurface restriction bounds for
eigenfunctions in the forbidden region along with corresponding nodal intersection estimates.

1. Introduction

Let (M, g) be a compact, C∞ Riemannian manifold and V ∈ C∞(M ;R) be a real-valued
potential. We assume that E is a regular value of V so that dV |V=E 6= 0. The corresponding
classically allowed region is

ΩE := {x ∈M ;V (x) ≤ E} (1.1)

with boundary C∞ hypersurface (ie. boundary caustic)

ΛE := {x ∈M ;V (x) = E}. (1.2)

The forbidden region is the complement Ωc
E = {x ∈M ;V (x) > E}.

1.0.1. Agmon-Lithner estimates. Let P (h) : C∞(M) → C∞(M) be the Schrödinger operator

P (h) := −h2∆g + V (x)−E(h)

and uh ∈ C∞(M) be L2-normalized eigenfunctions with eigenvalue E(h) = E + o(1) as
h→ 0+ so that P (h)uh = 0. The Agmon metric associated with P (h) is defined by

gE(x) := (V (x)− E)+ g(x).

The degenerate metric gE is supported in the forbidden region Ωc
E and we denote the cor-

responding Riemannian distance function by dE : Ωc
E × Ωc

E → R+. By a slight abuse of
notation, we define the associated distance function to ΛE by

dE(x) := dE(x,ΛE) = inf
y∈ΛE

dE(x, y), x ∈ Ωc
E . (1.3)

It is well-known [Hel88](3.2.2) that dE ∈ Lip(Ωc
E) and also, |∇xdE|2g ≤ (V (x)−E)+, a.e.
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Given an open subset, U , of the forbidden region Ωc
E with U ⊂ Ωc

E , the Agmon-Lithner
estimate [Hel88] (Prop. 3.3.1) says that for any δ > 0,

‖e(1−δ)dE/h uh‖H1
h
(U) = Oδ(1). (1.4)

where ‖f‖2
H1

h

=
∫
U
(|f |2+|h∂f |2). A standard argument with Sobolev estimates [Hel88] (Prop.

3.3.4) then yields corresponding pointwise upper bounds: In terms of local coordinates, for
any δ > 0 and multi-index α = (α1, ..., αn) ∈ Nn,

|Dα
xuh(x)| ≤ Cα,δe

−dE(x)/heδ/h; x ∈ Ωc
E . (1.5)

Such estimates have widespread applications to tunnelling problems [CS81, Sim84, HS84]
and the theory of Morse-Witten complexes [Wit82].

Our objective here is to establish a partial lower bound that is consistent with (1.4) in a
Fermi neighbourhood of the caustic ΛE (see subsection 2) under a suitable control assumption
on eigenfunction mass in the allowed region ΩE . This is precisely the point of Theorem 3. We
then give applications to lower bounds for Lp-restrictions of eigenfunctions to hypersurfaces
in the forbidden region (so-called goodness estimates in the terminology of Toth and Zelditch
[TZ09]). Finally, we apply these rather explicit bounds to improve on the nodal intersection
bounds of Canzani and Toth [CT16] for a large class of hypersurfaces in forbidden regions.
We now describe our results in more detail.

Since by the monotonicity assumption, ∇V |V=E 6= 0, it follows that the caustic ΛE =

{V = E} is a C∞ hypersurface of M . Fix a constant r0 ∈ (0, inj(M,g)
2

) and let UE(r0) be a
Fermi neighbourhood (see [Gr] Chapter 2, section 2.1) of the caustic ΛE of width 2r0 with
respect to the ambient metric g. We denote the Fermi defining function yn : M → R with
the property that yn > 0 in the forbidden part and ΛE = {yn = 0}. In terms of Fermi
coordinates, the collar neighbourhood is UE(r0) = {y; |yn| < r0}. Consider an annular region
in UE(r0) ∩ {V > E} given by A(δ1, δ2) := {y ∈ UE(r0);E + δ1 < V (y) < E + δ2} with
0 < δ1 < δ2. Our first result in Theorem 3 is a partial reverse Agmon estimate consistent
with (1.4). First, we introduce a control assumption on the eigenfunctions uh in the allowed
region.

Definition 1. We say that the eigenfunctions uh satisfy the control assumption if for every
ε > 0 there exists constants CN(ε) > 0 and h0(ε) > 0 so that for h ∈ (0, h0(ε)],∫

{E− ε
2
≤V (x)≤E}

|uh|2 dvg ≥ CN(ε)h
N (1.6)

for some N > 0. When (1.6) is satisfied for a fixed ε = ε0 > 0, we say that the eigenfunction
sequence satisfies the ε0 control assumption.

Roughly speaking, the control assumption in Definition 1 says that in arbitrarily small (but
independent of h) annular neighbourhoods of the caustic in the allowed region, eigenfunctions
have at least polynomial mass in h.

Our second assumption involves a monotonicity condition on the potential V itself in the
tubular neighbourhood UE(r0). Specifically, we make the following
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Definition 2. Given r0 ∈ (0, inj(M,g)
2

), we say that V satisfies the monotonicity assumption
in UE(r0) provided there exists C(r0) > 0 such that

∂ynV (y) ≥ C(r0), y ∈ UE(r0).

We note that the control assumption is automatically satisfied in the 1D case as a con-
sequence of the WKB asymptotics for the eigenfunctions. In section 5, we give examples of
eigenfunction sequences satisfying this condition in arbitrary dimension.

As for the monotonicity condition in Definition 2, it is not hard to show (see section
2.1 (2.5)) that for r0 > 0 sufficiently small, this condition is necessarily satisfied in UE(r0)
provided ∇V |{V=E} 6= 0 for the energy value E. We note that this condition can readily be
written in a more geometrically intrinsic way in terms of the local normal foliation of the
tubular neighbourhood of ΛE (see subsection 2.1).

Then, under the control and monotonicity assumptions in Definitions 1 and 2, by using
Carleman estimates to pass across the caustic hypersurface, in Theorem 3 we prove that for
any ε > 0 and h ∈ (0, h0(ε)],

‖eτ0dE/h uh‖H1
h
(A(δ1,δ2)) ≥ C(ε, δ1, δ2)e

−β(ε)/h, (1.7)

where β(ε) = o(1) as ε→ 0+ and

τ0 :=
( maxy∈UE(r0) |∂ynV |
miny∈UE(r0)∩Ωc

E
|∂ynV |

)1/2

.

Remark 1.
(i) The ε-dependence on the RHS of (1.7) is a consequence of the control assumption on

the eigenfunctions uh in Definition 1.
(ii) It is easy to see that the control assumption in Defintion 1 is necessary in Theorem 3

since simple counterexamples can be constructed otherwise arising from the natural occurence
of additional effective potentials upon separation of variables (see section 5).

(iii) The control assumption in Definition 1 can be weakened slightly in that the polynomial
mass assumption in h can be replaced by the following subexponential one: for all ε > 0,

lim inf
h→0+

h log
( ∫

{E− ε
2
≤V (x)≤E}

|uh|2 dvg
)
= 0.

It follows easily (see (2.21)) that Theorem 3 and consequently, Theorems 5 and 6 all hold
under this slightly weaker assumption.

(iv) In the case where the eigenfunction sequence only satisfies the ε0-control assumption,
the lower bound in (1.7) is also satisfied, where the constant β(ε0) > 0 appearing on the RHS
of the inequality can be explicitly estimated in terms of the potential, V (see Remark 4). The
same is true for the subsequent results in Theorems 5 and 6.

Clearly, the geometric constant τ0 ≥ 1. At present, we are unable to prove that (1.7) holds
in the general setting above with optimal constant τ0 = 1, but we hope to return to this
point elsewhere.

We note that in one-dimension, both upper and lower bounds for eigenfunctions are well-
known; indeed, classical WKB methods [E] (Chapter 4, sections 4.3-4.7) provide explicit
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asymptotic formulas for the eigenfunctions. In higher dimensions, the situation is much
more complicated and, to our knowledge, the problem of establishing lower bounds has only
been addressed in special cases associated with low-lying eigenvalues (i.e. semi-excited states)
[Hel88] (section 4.4) and [Sim84]. For more general eigenfunctions (eg. excited states), while
the upper bounds given by the Agmon estimates are well-known, to our knowledge explicit
lower bounds have not been addressed in the literature. That is the main point of Theorem
3 above.

In section 3 we use the Carleman bounds in (1.7) with shrinking annuli together with a
Green’s formula argument to get lower bounds for Lp eigenfunction restrictions to hypersur-
faces smoothly isotopic in UE(r0)∩ {V > E} to level sets H = {yn = const.} (see Definition
4). In case of the level sets H = {yn = const}, Theorem 5 says that, under the same
assumptions as in (1.7), for any ε > 0 and h ∈ (0, h0(ε)] and with

dHE := max
y∈H

dE(y), dE(H) := min
y∈H

dE(y),

‖uh‖Lp(H) ≥ C(p, ε)e−( 2τ0dHE−dE(H) )/h e−β(ε)/h, p ≥ 1, (1.8)

where β(ε) = o(1) as ε → 0+.

The bounds in (1.8) are goodness estimates in the terminology of Toth and Zelditch [TZ09];
the key novelty here is the rather explicit geometric rate 2τ0d

H
E − dE(H) appearing in (1.8).

Finally, in section 4, we give an application of (1.8) to nodal intersection bounds in for-
bidden regions. In [CT16], Canzani and Toth prove that for any Cω separating hypersurface
H in the forbidden region, with Zuh

= {x ∈M ; uh(x) = 0},
#{Zuh

∩H} ≤ C ′
Hh

−1.

While this rate in h is easily seen to be sharp in general, the constant C ′
H > 0 is not

explicitly controlled in [CT16]. The lower bound in (1.8) allows us to give a more concrete
upper bound for C ′

H in the cases where H is a separating hypersurface that is smoothly
isotopic to a level set of the defining function yn in the forbidden region. This is essentially
the content of Theorem 6.

Finally, we note that while all results are stated here for compact manifolds, the results
in Theorems 3-6 extend to the case of Schrödinger operators on R

n and the proofs are the
same.
Acknowledgements: We would like to thank Jeff Galkowski, Andreas Knauf for many helpful
discussions. We also thank Stephane Nonnenmacher and the referees for detailed comments
regarding earlier versions of the paper.

2. Carleman estimates in a Fermi neighbourhood of the caustic

2.1. Collar neighbourhood of caustic and Fermi coordinates. For background on
the construction of Fermi coordinates in a tubular neighbourhood of any embedded compact
submanifold P ⊂ M, we refer the reader to [Gr] Chapter 2 (see also [HHHZ] section 2).
Here, given a compact Riemannian manifold (M, g), we are interested in the special case
where P is a C∞ compact hypersurface; specifically, P = ΛE = {V = E}. Let ν ∈ NΛE be
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the unit, oriented vector field normal to ΛE . Then, by the tubular neighbourhood theorem,
there exists an open neighbourhood, UE(r0), of ΛE such that

ΛE × (−r0, r0) ∋ (y′, t) 7→ expy′(tν) ∈ UE(r0)

is a C∞ diffeomorphism provided r0 < inj(M, g)/2, where exp denotes the geodesic expo-
nential map in the metric g. Then, the Fermi defining function yn : UE(r0) → (−r0, r0) is
given by

yn(expy′(tν)) = t; t ∈ (−r0, r0).
Writing γν(t, y

′) := expy′(tν), it then follows that the monotonicity condition in Definition
2 can be rewritten in the somewhat more geometric form

〈∇V, γ̇ν(t, y′)〉g ≥ C0 > 0, (t, y′) ∈ (−r0, r0)× ΛE. (2.1)

We will assume from now on that the monotonicity assumption in Definition 2 (or equiv-
alently, (2.1)) is satisfied (see Remark 2). In the following, we identify points y′ ∈ ΛE with
their local coordinate representations in ΛE. Then, in terms of Fermi coordinates (y′, yn) in
the ambient metric g, we have

g = dy2n +
n−1∑

i,j=1

hij(y
′, yn)dy

′
idy

′
j, y ∈ UE(r0)

where
∑n−1

i,j=1 hij(y
′, 0)dy′idy

′
j is the induced metric on ΛE . In the following, we abuse notation

somewhat and simply write h(y′, yn)|dy′|2 :=
∑n−1

i,j=1 hij(y
′, yn)dy

′
idy

′
j.

In the following, yn ∈ C∞(M ;R), is the Fermi defining function for ΛE defined above with

ΛE = {yn = 0}, dyn|ΛE
6= 0.

Since under the monotonicity assumption, ∂ynV (y) > 0, it is immediate that then ∇V (y) 6= 0
for y ∈ UE(r0). Thus, it follows that V (y)− E is also a legitimate defining function in the
tubular neighbourhood UE(r0).

We choose our sign convention so that

{V > E} ∩ UE(r0) = {y; 0 < yn < r0} and {V < E} ∩ UE(r0) = {y;−r0 < yn < 0}. (2.2)

It will also be useful in the following to introduce the following annular domains in the
forbidden region defined by

A(δ, δ′) := {x ∈M ; δ < yn(x) < δ′}, 0 < δ < δ′. (2.3)

In terms of the Fermi coordinates y = (y′, yn), the corresponding Agmon metric gE|UE(r0)

has the form

gE = (V (y)− E) (dy2n + h(y′, yn)|dy′|2), y ∈ UE(r0), yn > 0. (2.4)

Remark 2. By first-order Taylor expansion,

V (y)−E = yn F (y
′, yn), (2.5)
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where

F (y′, yn) =

∫ 1

0

(∂ynV )(y′, tyn) dt.

Differentiation of (2.5) in the y-variables, gives

∂ynV (y) = F (y′, yn) + yn∂ynF (y), ∂y′V (y) = yn∂y′F (y
′, yn), F (y

′, 0) = ∂ynV (y
′, 0).

Thus, ∂y′V (y′, 0) = 0 and since ∇V |V=E 6= 0 it follows that ∂ynV (y′, 0) 6= 0. Then, by
continuity of ∇V there exists r0 > 0 so that |∂ynV (y)| ≥ C > 0 for y ∈ UE(r0) and under
the sign conventions in (2.2),

∂ynV (y) ≥ C > 0, y ∈ UE(r0).

Consequently, when E ∈ R is a regular value of V , one can always find a constant r0 > 0
so that the monotonicity assumption in Definition 2 is satisfied.

Under the monotonicity condition, we then have F (y) ≥ C > 0 for y ∈ UE(r0) and from
(2.5),

min
y∈UE(r0)∩Ωc

E

∂ynV (y) ≤ F (y) ≤ max
y∈UE(r0)∩Ωc

E

∂ynV (y); y ∈ UE(r0) ∩ Ωc
E . (2.6)

Finally, we note that in terms of the decomposition (2.5), the Agmon metric can be written
in the form

gE = yn F (y) (dy
2
n + h(y′, yn)|dy′|2), y ∈ UE(r0), yn > 0, (2.7)

2.1.1. Locally minimal geodesics and Agmon distance. In the collar neighbourhood UE(r0),
given a point (y′, yn) ∈ UE(r0) ∩ Ωc

E , there is a unique minimal (i.e. distance-minimizing)
geodesic γ : [0, 1] × ΛE → UE(r0) for the ambient metric g joining (y′, yn) to the caustic
hypersurface ΛE. Setting γt(y

′) = γ(t, y′) where γ0(y
′) = (y′, 0) ∈ ΛE and γ1(y

′) = (y′, yn),
the minimal geodesic is just

γt(y
′) = (y′, tyn); 0 ≤ t ≤ 1.

In terms of the discussion in subsection 2.1 above, these are just the geodesic segments
normal to ΛE . It is easy to see that these normal geodesic segments to ΛE are unfortunately
not, in general, minimal geodesics for the conformally rescaled Agmon metric gE; indeed
the latter can be quite complicated. Nevertheless, we will need the following elementary
estimate for Agmon distance in terms of the natural Fermi defining function yn : M → R

above.

Lemma 2.1. Let E be a regular value of V ∈ C∞(M) and assume that the monotonicity
condition is satisfied in UE(r0). Then,

dE(y) ≥
2

3
( min
y∈UE(r0)∩Ωc

E

∂ynV (y) )1/2 y3/2n ; y ∈ UE(r0) ∩ Ωc
E .
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Proof. Let γ : [0, 1] ∈ Ωc
E be a piecewise-C1 minimal geodesic for the Agmon metric gE

joining y = (y′, yn) ∈ UE(r0) ∩ Ωc
E to ΛE; explicitly, γ(0) = (y′, yn) and γ(1) = (f(y′, yn), 0)

where f(y) ∈ Rn−1. Then, writing γ = (γ′, γn), with γ
′ = (γ1, ..., γn−1),

dE(y) =

∫ 1

0

|dtγ(t)|gE dt,

and since

|dtγ(t)|gE =
(
F (γ(t)) γn(t) |dtγn(t)|2 + F (γ(t)) γn(t) 〈h(y(t)) dtγ′(t), dtγ′(t)〉

)1/2

,

with F, γn > 0, and 0 ≤ h ∈ GL(n− 1,R), it follows that

dE(y) ≥ min
y∈UE(r0)∩Ωc

E

F (y)1/2 ·
∫ 1

0

γn(t)
1/2 |dtγn(t)| dt, y ∈ UE(r0) ∩ Ωc

E .

Finally, by making the change of variables t 7→ s = γn(t) in the last integral, one gets

dE(y) ≥ min
y∈UE(r0)∩Ωc

E

F (y)1/2 ·
∫ yn

0

s1/2 ds, y ∈ UE(r0) ∩ Ωc
E .

and the lemma follows from this last estimate combined with (2.6) since miny∈UE(r0)∩Ωc
E
F (y)1/2 ≥

miny∈UE(r0)∩Ωc
E
( ∂ynV (y) )

1/2. �

2.2. Local control and Carleman bounds near the caustic ΛE.

2.2.1. Model computation. Consider the model Airy operator P0(h) := (hDy)
2 + y where

y ∈ R where V (y) = y and E = 0 with the corresponding Airy-type weight function in the
forbidden region given by

ϕ0(y) =
2

3
y3/2, y > 0.

Then, the symbol of the conjugated operator eϕ0/hP0(h)e
−ϕ0/h is

pϕ0(y, ξ) = ξ2 − |ϕ′
0(y)|2 + y + 2iy1/2ξ, y > 0

and
Char(pϕ0) = {(y, ξ) ∈ R

2; ξ = 0, y > 0}.

The latter follows since (y, ξ) ∈ Char(ϕϕ0) iff 0 = |ξ|2 − |ϕ′
0(y)|2 + y + 2iy1/2ξ which in

turn holds iff ξ = 0 provided y > 0, since |ϕ′
0(y)|2 − y = 0.

We note that the weight function ϕ0 is borderline for the Hörmander subelliptic condition
in the sense that for (y, 0) ∈ Char (pϕ0), we have

{Re pϕ0, Im pϕ0} = 4ϕ′′
0(y)|ϕ′

0(y)|2 − 2ϕ′
0(y) ≡ 0, y > 0. (2.8)

Of course, in this case, ϕ0(y) =
2
3
y3/2 =

∫ y

0
τ 1/2dτ is precisely the Agmon distance function

dE(y), where by convention we have set E = 0. In view of (2.8), it is reasonable to expect that
one can construct an appropriate perturbation, ϕε, of the Airy model weight function ϕ0, that
is a Carleman weight with {Re pϕε, Im pϕε} > 0 in a neighbourhood of the caustic ΛE. Indeed,
as we show in subsection 2.2.2 below, one can readily construct such a ϕε as a legitimate
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Carleman weight in a Fermi neighbourhood of ΛE. Combined with the control assumption
on the eigenfunctions uh, we will prove Theorem 3 by applying Carleman estimates in a
Fermi neighbourhood of the caustic with weignt ϕε.

2.2.2. Construction of the weight function. Let P (h) = −h2∆g+V −E : C∞(M) → C∞(M)
and consider the conjugated operator Pϕ(h) = eϕ/hP (h)e−ϕ/h : C∞(M) → C∞(M) with
principal symbol pϕ(x, ξ) = |ξ|2g − |∇xϕ|2g + V (x)−E + 2i 〈ξ,∇xϕ〉g . The model case above

suggests that to create subellipticity for Pϕ(h) in a Fermi neighbourhood of the caustic, it
should suffice to slightly modify the model weight function ϕ0 in the normal Fermi coordinate
(y′, yn). With this in mind, for ε > 0 arbitrarily small (for concreteness, assume 10ε < r0)
and constant τ > 0 to be determined later on, we now set in Fermi coordinates (y′, yn) :
UE → Rn−1 × (−r0, r0),

ϕε(yn) :=
(2
3
+ ε

)
τ (yn + 10ε)3/2, yn ∈ (−4ε, r0). (2.9)

Remark 3. We recall here that r0 < inj(M, g) is fixed (but not necessarily small), whereas
ε > 0 will be chosen arbitrary small (but independent of h) consistent with the control
assumption on the eigenfunctions.

We abuse notation somewhat in the following and simply write ϕ = ϕε, the dependence
on ε being understood. Then, ϕ ∈ C∞([−4ε, r0]) and plainly ϕ : [−4ε, r0] → R+ is strictly-
convex and monotone increasing with

min (ϕ′(yn), ϕ
′′(yn) ) ≥ C(ε) > 0, yn ∈ (−4ε, r0).

Let π : T ∗M → M be the natural projection map π(y, ξ) = y. Then, the relevant charac-
teristic variety is

Char(pϕ)∩π−1({(y′, yn); yn ∈ (−4ε, r0)}) = {(y, ξ); |ξ|2y−|∂ynϕ|2+F (y)yn = 0, ξn = 0, yn ∈ (−4ε, r0)}.

Since F (y) > 0, it follows that this set is non-trivial; indeed for any −4ε < yn < 0 (ie. a
point in the allowed region),

Char(pϕ) ∩ π−1({(y′, yn), yn ∈ (−4ε, 0)}) ∼= S∗MA(−4ε,0) ∩ {ξn = 0},

where S∗MA(−4ε,0) := {(y, ξ) ∈ T ∗M ; |ξ|y = 1, y ∈ A(−4ε, 0)}.
Since Char(pϕ) is non-trivial, global ellipticity over the interval (−4ε, r0) evidently fails.

However, we claim that subellipticity is now satisfied in such an interval provided τ > 0 is
chosen large enough but depending only on the potential V . Indeed, since the normal Fermi
coordinate is yn and ϕ is a function of only yn with gn,n = 1, a direct computation gives,
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{Re pϕ, Im pϕ} = {ξ2n + |ξ′|2y − (∂ynϕ)
2 + V − E, 2∂ynϕ · ξn}

= 4∂2ynϕ
(
|∂ynϕ|2 + ξ2n

)
− 2∂ynϕ · ∂ynV

≥ 2∂ynϕ ( 2∂2ynϕ · ∂ynϕ− ∂ynV )

≥ 2τC(ε)( 2∂2ynϕ · ∂ynϕ− ∂ynV ), yn ∈ (−4ε, r0). (2.10)

From (2.9), for any ε > 0 and for all yn ∈ (−4ε, r0),

2∂2ynϕ · ∂ynϕ ≡ 9

4
τ 2
(2
3
+ ε

)2

> τ 2.

Choosing

τ = ‖∂ynV ‖1/2L∞(UE(r0))
, (2.11)

it follows from (2.10) that for all (y, ξ) with yn ∈ (−4ε, r0),

{Re pϕ, Im pϕ}(y, ξ) ≥ C(τ, ε) > 0.

Consequently, ϕ = ϕε is a Carleman weight for P (h) globally in the Fermi neighbourhood
of the caustic where −4ε < yn < r0.

Now, let χ ∈ C∞
0 (R; [0, 1]) be a cutoff satisfying

χ(yn) = 1; −3

2
ε < yn < δ̃1

with

χ(yn) = 0; yn ∈ R \ (−2ε, δ̃2).

where 0 < δ̃1 < δ̃2 < r0.

−2ε -3
2
ε 0 δ̃1 δ̃2 R

Figure 1. cutoff function χ

We note that one can write

χ = χ− χ+

where, χ+ ∈ C∞(R; [0, 1]) satisfies

χ+(yn) = 1, yn < δ̃1,

χ+(yn) = 0, yn > δ̃2,
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and similarily, χ− ∈ C∞(R; [0, 1]) satisfies

χ−(yn) = 1; yn > −3

2
ε,

χ−(yn) = 0; yn < −2ε.

Then, it follows from Leibniz rule that

supp ∂χ ⊂ supp ∂χ+ ∪ supp ∂χ−,

where supp ∂χ− ⊂ [−2ε,−3
2
ε] and supp ∂χ+ ⊂ [δ̃1, δ̃2].

Set Pϕ(h) := eϕ/hP (h)e−ϕ/h : C∞
0 (U) → C∞

0 (U) and with χ = χ(yn) above,

vh := eϕ/hχuh

where P (h) := −h2∆g + V (x)− E(h) and

P (h)uh = 0.

Moreover, we assume throughout that the eigenfunctions uh are L2-normalized with
‖uh‖L2(M,g) = 1.

In view of the subellipticity estimate in (2.10) and the support properties of the cutoff
χ ∈ C∞

0 it follows by the standard Carleman estimate [Zwo12, Theorem 7.7] that

‖Pϕ(h)vh‖2L2 ≥ C1(ε)h ‖vh‖2H1
h
. (2.12)

Since P (h)uh = 0 and Pϕ(h) is local with supp ∂χ+ ∩ supp ∂χ− = ∅, it follows from (2.12)
that

‖eϕ/h[P (h), χ] uh‖2L2 ≥ C1(ε)h ‖eϕ/hχuh‖2H1
h

(2.13)

Let supp ∂̃χ± be arbitrarily small neighbourhoods of supp ∂χ± respectively. Specifically,

we can assume that supp ∂̃χ± ⊃ supp ∂χ±, and choose (δ1, δ2) with 0 < δ1 < δ̃1 < δ̃2 < δ2
so that supp ∂̃χ+ ⊂ [δ1, δ2] and in addition

meas (supp ∂̃χ± \ supp ∂χ±) ≤
ε

10
.

Since the support of the coefficients of the h-differential operator [P (h), χ] is contained in

supp ∂̃χ+ ∪ supp ∂̃χ−, it follows from (2.13) that

‖eϕ/h[P (h), χ] uh‖2L2(supp ∂̃χ+)
+ ‖eϕ/h[P (h), χ]uh‖2L2(supp ∂̃χ−)

≥ C1(ε)h‖eϕ/hχuh‖2H1
h
. (2.14)

Since χ(yn) = 1 when yn ∈ (−ε/2, 0), it follows from (2.14) that
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‖eϕ/h[P (h), χ] uh‖2L2(supp ∂̃χ+)
+ ‖eϕ/h[P (h), χ]uh‖2L2(supp ∂̃χ−)

≥ C1(ε)h‖eϕ/huh‖2H1
h
({y;−ε/2≤yn≤0}). (2.15)

Since eϕ/h[P (h), χ]e−ϕ/h = hQ(h) where Q(h) = a(x)h∂x + b(x), a, b ∈ C∞(M), is an
h-differential operator of order one,

‖eϕ/h[P (h), χ] uh‖2L2(supp ∂̃χ±)
≤ Ch2‖eϕ/huh‖2

H1
h
(supp

˜̃
∂χ±)

. (2.16)

where supp
˜̃
∂χ± ⋑ supp ∂̃χ±. After relabelling

˜̃
∂χ± simply as ∂̃χ±, one gets from (2.15) and

(2.16) that with an appropriate constant C2(ε) > 0,

h2‖eϕ/huh‖2H1
h(supp ∂̃χ+)

+ h2‖eϕ/huh‖2H1
h(supp ∂̃χ−)

≥ C2(ε)h‖eϕ/huh‖2H1
h
({y;−ε/2≤yn≤0}), (2.17)

or equivalently,

h2‖eϕ/huh‖2H1
h
(supp ∂̃χ+)

≥ C2(ε)h‖eϕ/huh‖2H1
h
({y;−ε/2≤yn≤0}) − h2‖eϕ/huh‖2H1

h
(supp ∂̃χ−)

, (2.18)

Since ∂̃χ− is supported in the classically allowed region where yn < 0, we will now use the
control assumption in Definition 1 to get an effective lower bound for the RHS in (2.18).

Computing in Fermi coordinates and using the fact that one can take supp ∂̃χ− ⊂
{y;−3ε < yn < −ε}, the RHS of (2.18) is

≥ C2(ε)h
∫
{y;yn∈(−

ε
2
,0)}

e2ϕ(yn)/h(|uh(y)|2 + |h∂yuh(y)|2) dy′dyn

−h2
∫
{y;yn∈(−3ε,−ε)}

e2ϕ(yn)/h(|uh(y)|2 + |h∂yuh(y)|2) dy′dyn. (2.19)

Next we use strict monotonicity of the weight function ϕ ∈ C∞([−3ε, r0]) in (2.9). We set
m(ε) := minyn∈(−

ε
2
,0) ϕ(yn) > 0 and M(ε) := maxyn∈(−3ε,−ε) ϕ(yn) > 0 (we note that both

m(ε) and M(ε) are of order ε3/2). Then, since ϕ is strictly increasing,

m(ε)−M(ε) = C3(ε) > 0.

So, it follows that (2.19) is bounded below by

C2(ε)e
2m(ε)/h

(
h‖uh‖2H1

h({y;yn∈(−
ε
2
,0)}) − C2(ε)

−1h2e2[M(ε)−m(ε)]/h‖uh‖2H1
h({y;yn∈(−3ε,−ε)})

)
. (2.20)
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Finally, by standard elliptic estimates, ‖uh‖H1
h
= O(1) and by the control assumption in

Definition 1, it follows that for any ε > 0,

‖uh‖2H1
h
({y;yn∈(−

ε
2
,0)}) ≥ C3,N(ε)h

N .

Consequently, from (2.18)-(2.20) it follows that with h ∈ (0, h0(ε)], there exist constants
Cj,N(ε) > 0, j = 3, 4, 5, such that

h2‖eϕ/huh‖2H1
h(supp ∂̃χ+)

≥ C2(ε)e
2m(ε)/h

(
hN+1C3,N(ε) +Oε(e

−2C3(ε)/h)
)

≥ C4,N(ε)h
N+1e2m(ε)/h ≥ C5,N(ε)e

m(ε)/h. (2.21)

Next, we relate the weight function ϕε to Agmon distance dE. From Lemma 2.1 we recall
that

dE(y) ≥
2

3
( min
y∈UE(r0)∩Ωc

E

∂ynV )1/2 y3/2n , y ∈ UE(r0) ∩ Ωc
E (2.22)

=
(miny∈UE(r0)∩Ωc

E
∂ynV

maxUE(r0) ∂ynV

)1/2

ϕε(yn) +O(ε). (2.23)

The last estimate in (2.22) follows since in the definition of the weight ϕε (see (2.9)), we
choose τ = maxy∈UE(r0) |∂ynV |1/2 (see (2.11)). Since from the monotonicity assumption in
Definition 2, miny∈UE(r0)∩Ωc

E
∂ynV ≥ C(r0) > 0, it then follows that

ϕε(yn) ≤
(

maxy∈UE(r0)
∂ynV

miny∈UE(r0)∩Ωc
E

∂ynV

)1/2

dE(y) +O(ε). (2.24)

Thus, in view of (2.21) and (2.24), we have proved the following reverse Agmon estimate for
eigenfunctions satisfying the control assumption.

Theorem 3. Let r0 > 0 define the collar neighbourhood UE(r0) of the hypersurface {V = E}
as above and consider an annular subdomain

A(δ1, δ2) ⊂
(
{V > E} ∩ UE(r0)

)
, 0 < δ1 < δ2 < r0.

Then, under the control and monotonicity assumptions in Definitions 1 and 2, it follows that
for any ε > 0 and h ∈ (0, h0(ε)], there exists a constant C(ε, δ1, δ2) > 0 such that

‖eτ0 dE/huh‖H1
h
(A(δ1,δ2)) ≥ C(ε, δ1, δ2) e

−β(ε)/h,

with

τ0 =
( maxUE(r0) ∂ynV

minUE(r0)∩Ωc
E
∂ynV

)1/2
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and where 0 < β(ε) = O(ε) as ε→ 0+.

Remark 4. We note in the more general case where the eigenfunction sequence satisfies the
ε0-control assumption, the estimate in Theorem 3 is still valid (similarily for Theorems 5
and 6). In such a case, the constant β(ε0) can be readily estimated explicitly in terms of the
potential from (2.22) and (2.24) above.

3. Lp restriction lower bounds in forbidden regions

Consider a C∞ hypersurface H ⊂ Ωc
E in the forbidden region that bounds a domain

ΩH ⊂ Ωc
E and is admissible in the sense of Definition 4 (ii) (see also Figure 2). The point of

this section is to extend Theorem 3 to lower bounds for L2-restrictions of eigenfunctions to
hypersurfaces H in the forbidden region.

Let ν be the unit exterior normal to H with 〈∇V, ν〉 < 0. Then, under the separation
assumption above, by Green’s formula,

∫

ΩH

|h∇uh|2g dvg +
∫

ΩH

(V − E(h))|uh|2 dvg = h2
∫

H

∂νuh · uh dσ (3.1)

Using the fact that V (x) − E ≥ C > 0 for all x ∈ ΩH , it follows from (3.1) that with a
constant Cδ = C(V,E,E ′, δ) > 0

h2
∫

H

∂νuh · uh dσ ≥ Cδ‖uh‖2H1
h
(ΩH ). (3.2)

From the pointwise Agmon estimates in (1.5), for any δ > 0,

‖h∂νuh‖L∞(H) = Oδ(e
[−dE(H)+δ]/h), dE(H) := min

q∈H
dE(q)

together with the Hölder inequality,

‖uh‖Lp(H) ≥ Cδ(p) e
[dE(H)−δ]/h‖uh‖2H1

h
(ΩH ), p ≥ 1. (3.3)

Definition 4. We say that the hypersurface H ⊂ {V > E} is admissible provided:

(i) H is a separating hypersurface bounding a C∞ domain ΩH ⊂ {V > E}.

(ii) There exists E ′ > E such that the hypersurface ΛE′ = {yn = E ′ −E} has the property
that

ΛE′ ⊂ ΩH ∩ UE(r0).
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V < E

H

Admissible

V < E

H

Not Admissible

Figure 2. Red region is {V > E} ∩ UE(r0)

Set
E(H) := inf{E ′ > E; ΛE′ ⊂ (ΩH ∩ UE(r0))}. (3.4)

Since ΛE′ ∩ ΩH = ∅ for any E ′ > E sufficiently close to E, it follows that E(H) > E.
Moreover, under the admissiblity assumption, it follows that for any δ > 0 sufficiently small
(we use the same δ > 0 here as in (3.3))

A(E(H), E(H) + δ) ⊂ (ΩH ∩ UE(r0))

and so,

‖uh‖2H1
h(ΩH ) ≥ ‖uh‖2H1

h(A(E(H),E(H)+δ). (3.5)

From the Carleman estimate in Theorem 3,

‖eτ0dE/huh‖2H1
h
(A(E(H),E(H)+δ)) ≥ C(δ, ε)e−β(ε)/h, (3.6)

where β(ε) → 0+ as ε → 0+. Here, we recall that ε > 0 is the parameter appearing in the
control condition in Definition 1.

Since δ > 0 is arbitrary, we can set δ = ε in (3.3)-(3.6) and then, it follows that for any
ε > 0, and with

τ0 =
( maxUE(r0) ∂ynV

minUE(r0)∩Ωc
E
∂ynV

)1/2

, dHE := max
q∈ΛE(H)

dE(q), dE(H) = min
q∈H

dE(q), (3.7)

one has the following lower bound for Lp-restrictions of the uh to H :

‖uh‖Lp(H) ≥ C(ε, p) e−2τ0·dHE /h · edE(H)/h · e−β̃(ε)/h, p ≥ 1

where β̃(ε) := β(ε) + ε→ 0+ as ε → 0+. In summary, we have proved
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Theorem 5. Let H be an admissible hypersurface in sense of Definition 4. Then, under the
control and monotonicity assumptions in Definitions 1 and 2 and with E(H) in (3.4) and
dHE , dE(H), τ0 in (3.7), it follows that for any ε > 0 and with h ∈ (0, h0(ε)],

‖uh‖Lp(H) ≥ C(ε, p) e− [ 2τ0 dHE−dE(H)+β̃(ε) ]/h, p ≥ 1,

where β̃(ε) → 0+ as ε→ 0+.

Remark 5. We note that since τ0 ≥ 1 and dHE ≥ dE(H), it is clear that the constant
2τ0(H)dHE − dE(H) > 0.

4. Nodal intersection bounds in forbidden regions

Consider the special case where dimM = 2 and (M, g, V ) are, in addition, real-analytic.
Let H ⊂ Ωc

E be a simple, closed, real-analytic curve in the forbidden region. In [CT16] ,the
authors obtained nodal intersection bounds for the nodal sets of the eigenfunctions uh with
the fixed curve, H. More precisely, given the nodal set

Zuh
= {x ∈M ; uh(x) = 0},

the problem is to estimate the number of nodal intersections with H ; that is #{H ∩ Zuh
}

which is just the cardinality of the intersection. Indeed, under an exponential lower bound
on the L2-restrictions of the eigenfunctions (ie. a goodness bound), this intersection consists
of a finite set of points.

Let q : [0, 2π] → H be a Cω, 2π-periodic, parametrization of H . To bound the number of
zeros of uh ◦ q : [0, 2π] → R we consider its holomorphic extension (uh ◦ q)C : HC

ρ → C to

HC

ρ := {t ∈ C : Re t ∈ [0, 2π], |Im t| < ρ}.
The zeros of (uh ◦ q)C are studied using the Poincaré-Lelong formula:

∂∂ log |(uh ◦ q)C(z)|2 =
∑

zk∈Z(uh◦q)C

δzk(z).

Consider the complex tube of radius ρ > 0 about H given by A(ρ) := qC(HC

ρ ) and let Gρ

be the Dirichlet Green’s function of A(ρ) satisfying:

∆yGρ(x, y) = δx(y), (x, y) ∈ A(ρ)× A(ρ),

Gρ(x, q) = 0, (x, q) ∈ A(ρ)× ∂A(ρ).

We define the constant

CH(ρ) :=
∣∣ max

(z,w)∈A(ρ/2)×A(ρ/2)
Gρ(z, w)

∣∣−1
. (4.1)

We note here that by the maximum principle max(z,w)∈A(ρ/2)×A(ρ/2) Gρ(z, w) < 0, so that
CH(ρ) > 0 is finite. Then, by [TZ09, Proposition 10],

#{Zuh
∩H} ≤ #{Z(uh◦q)C ∩HC

ρ } ≤ CH(ρ) max
t∈HC

ρ

log |FC

h (t)|, (4.2)



16 JOHN A. TOTH AND XIANCHAO WU

where FC

h (t) with t ∈ HC

ρ is the holomorphic continuation of the normalized eigenfunction
traces

Fh(t) :=
uh(q(t))

‖uh‖L2(H)

. (4.3)

It follows that we shall need to control the complexification FC

h (t) to obtain upper bounds
on the complex counting function #{Zϕh

∩H}. Without loss of generality we assume that
H ⊂ int Ωγ where Ωγ ⊂ Ωc

E is a domain whose closure is contained in Ωc
E and whose

boundary is a closed Cω curve that we call γ. In particular, one has γ ∩H = ∅ so that with
dE(H, γ) := inf(q,r)∈H×γ dE(q, γ),

dE(H, γ) > 0, dE(H)− dE(γ) > 0.

In [CT16] (see section 2), the authors consider the h-elliptic operator −h2∆gΩE
+ 1 :

C∞(M) → C∞(M) where gΩE
is a metric extension to M of the Agmon metric gE|Ωγ

.

After choosing a suitable cutoff χΩγ ∈ C∞
0 (Ωc

E) with 0 ≤ χΩγ ≤ 1 and χΩγ |Ωγ = 1, one
can define the h-pseudodifferential operator Q(h) = χΩγ (−h2∆gΩE

+ 1)−1χΩγ : C∞
0 (Ωc

E) →
C∞

0 (Ωc
E). The restriction of the Schwartz kernel of Q(h) to γ × H given by QH

γ (t, s, h) :=

Q(q(t), r(s), h) is then the kernel of an analytic h-Fourier integral operatorQH
γ (h) : C

∞(γ) →
C∞(H) where QH

γ (t, s, h) is of the form

(2πh)−2

∫

R2

ei〈q(t)−r(s),ξ〉/he−C|q(t)−r(s)|2〈ξ〉/ha(q(t), r(s), ξ; h) dξ, (q(t), r(s)) ∈ H × γ, (4.4)

In (4.4), a is an analytic semiclassical symbol of order zero and C > 0 is an appropriate
constant. Moreover, the Schwartz kernel Q(t, s, h) extends holomorphically in the outgoing t
variable to QC(t, s) with (t, s) ∈ HC

ρ∗ × γ where ρ∗ > 0 is a suitable tube radius independent
of h (see Remark 6 (ii) and (iii) below). It then follows from a potential layer formula [CT16]
(14), that the eigenfunction restriction uh ◦q(t) also holomorphically continues to (uh◦q)C(t)
in the strip HC

ρ∗ . Setting

Q(h, ρ∗) := max
(r(s),qC(t))∈γ×HC

ρ∗

(|QC(t, s)|, |∂ν(s)QC(t, s))|)

and using the formula in (4.4) combined with some potential layer analysis, in [CT16] (16),
it is proved that

|FC

h (t)| ≤ CQ(h, ρ∗)

( ‖uh‖L2(γ)

‖uh‖L2(H)

+
‖∂νuh‖L2(γ)

‖uh‖L2(H)

)
, t ∈ HC

ρ∗ . (4.5)

In [CT16] Theorem 4, the authors show that by choosing ρ∗ > 0 sufficiently small (see
Remark 6 (iii)) one can show that

Q(h, ρ∗) = O(1). (4.6)

Thus, from (4.5) this gives (see Remark 6) ),

|FC

h (t)| ≤ C

( ‖uh‖L2(γ)

‖uh‖L2(H)

+
‖∂νuh‖L2(γ)

‖uh‖L2(H)

)
, t ∈ HC

ρ∗ (4.7)
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It follows from the Agmon estimates in (1.4) that for any ε > 0,

max{ ‖uh‖L2(γ), ‖∂νuh‖L2(γ) } ≤ C(ε)e[− dE(γ)+ε] /h, dE(γ) = min
r∈γ

dE(r)

for all h ∈ (0, h0(ε)]. On the other hand, if H is admissible in sense of Definition 4, from
Theorem 5, we have the lower bound

‖uh‖L2(H) ≥ C(ε)e[−2τ0dHE+dE(H)−β̃(ε) ]/h, dHE = max
q∈ΛE(H)

dE(q), β̃(ε) = o(1).

Consequently, from (4.7) we get that with β̃(ε) = o(1) as ε→ 0+,

|FC

h (t)| ≤ C(ε)e[β̃(ε)+ε]/h · e[ 2τ0dHE−dE(H)−dE(γ) ]/h, t ∈ HC

ρ∗ . (4.8)

Finally, taking log of both sides of (4.8) gives for h ∈ (0, h0(ε)],

h log |FC

h (t)| ≤ 2τ0d
H
E − dE(H)− dE(γ) + µ(ε), (4.9)

with µ(ε) := β̃(ε) + ε → 0+ as ε → 0+. A combination of (4.2) and (4.9) then proves the
following

Theorem 6. Assume that dimM = 2 and (M, g,H, γ, V ) are all real-analytic and suppose
that H is an admissible hypersurface in sense of Definition 4. Then, under the control and
monotonicity assumptions in Definitions 1 and 2, for any fixed ε > 0, there are constants
µ(ε) > 0 and h0(ε) > 0 such that for h ∈ (0, h0(ε)],

#{Zuh
∩H} ≤ CH(ρ

∗) ·
(
2τ0d

H
E − dE(H)− dE(γ) + µ(ε)

)
h−1.

Here, µ(ε) → 0+ as ε → 0+ and τ0, d
H
E , dE(H) are the constants defined in (3.7). In addition,

ρ∗ > 0 is the tube radius and CH(ρ
∗) is the corresponding Dirichlet Green’s function constant

defined in (4.1).

Remark 6. (i) We note that in Theorem 6 above, the constant on the RHS given by
CH(ρ

∗)·
(
2τ0d

H
E−dE(H)−dE(γ)+µ(ε)

)
= CH(ρ

∗)·
(
2(τ0d

H
E−dE(H))+dE(H)−dE(γ)+µ(ε)

)
>

0. This follows since τ0d
H
E − dE(H) ≥ dHE − dE(H) ≥ 0, dE(H)− dE(γ) > 0 and the Green’s

function constant CH(ρ
∗) > 0.

(ii) As we have pointed out above, tube radius ρ∗ > 0 is determined directly from analytic
continuation properties of the operator kernel QH

γ (t, s, h) and, as such, depends on the an-
alyticity properties of the data (M, g, V,H, γ) in a complicated way (see also (iii) below).
However, ρ∗ and consequently, the Green’s function constant CH(ρ

∗), is nevertheless uni-
versal; that is, it is determined independent of the eigenfunction sequence uh. On the other
hand, the part of the nodal bound in (4.2) that depends on the uh’s (i.e. maxt∈HC

ρ∗
log |FC

h (t)|
) is bounded in (4.9) rather explicitly in terms of the Agmon distance function.
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(iii) It follows from [CT16] Theorem 4 that the bound in (4.6) can be improved to

Q(h, ρ∗) = O(e−C1(ρ∗)/h) (4.10)

for some C1(ρ
∗) > 0. It follows from the holomorphic continuation properties of the phase in

(4.4) that when dE(γ,H) = inf(r,q)∈γ×H dE(r, q) is sufficiently small, one can choose

ρ∗ =
1

C2

d 2
E(γ,H)

where C2 > 0 is sufficiently large. For such a choice of ρ∗, the constant in (4.10) can be
taken to be

C1(ρ
∗) =

1

C3
d 2
E(γ,H),

where C3 > 0 is another constant.
However, since

dE(H)− dE(γ)−
1

C3
d 2
E(γ,H) ∼ dE(H)− dE(γ) as dE(γ,H) → 0+,

(4.10) only gives a marginal improvement in Theorem 6. Moreover, both constants C2 and
C3 above depend in a complicated way on the data (M, g, V,H) and are difficult to deter-
mine explicitly. Consequently, we decided to omit these considerations from the statement of
Theorem 6.

5. Eigenfunction control condition: examples

5.1. Counterexample: lack of eigenfunction control. Here we show that without the
control assumption in Definition 1, we can establish a Schrödinger model such that the cor-
responding eigenfunction decays much faster than e−(1−ε)dE/h in A(δ, δ′) for δ′ small enough.
Such counterexample is essentially inspired by the paper ([CT16]).

Consider a convex surface of revolution generated by rotating a curve γ = {(z, f(z)), z ∈
[−1, 1]} about the z-axis where f ∈ C∞((−1, 1),R+) ∩ C0([−1, 1];R+), f(1) = f(−1) = 0
and both f(z) > 0 and f ′′(z) < 0 for all z ∈ (−1, 1). Let M be the corresponding convex
surface of revolution given by the parametrization

β : [−1, 1]× [0, 2π) → R
3,

β(z, θ) = (f(z) cos θ, f(z) sin θ, z).

In addition, we require here that

f 2 ∈ C∞([−1, 1];R) and lim
z→±1∓

(f 2)′(z) = 2 lim
z→±1∓

f(z)f ′(z) 6= 0.

The latter condition ensures that M is smooth near the poles. Indeed, since f 2 ∈
C∞([−1, 1]), by the Whitney extension theorem [Wh], it has a C∞-extension in (−1−δ, 1+δ)
for δ > 0. We abuse notation slightly and denote the extended function also by f 2. Then,
since x2 + y2 = f 2(z), by an application of the implicit function theorem, it follows that if
(f 2)′(±1) = 2ff ′(±1) 6= 0, there exist F± ∈ C∞

loc such that z = F±(x
2 + y2) for (x, y, z) ∈M
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near the respective poles (0, 0,±1). In particular, M is then locally a smooth graph over the
(x, y)-plane near the poles. Also, since f 2(r) > 0 for r ∈ (−1, 1) and f 2(±1) = 0, it follows
that ∓(f 2)′(±1) > 0.

As an example, in the case of the round sphere, f(z) =
√
1− z2, z ∈ [−1, 1], so that f 2(z) =

1 − z2 and limz→±1∓ f(z)f
′(z) = ∓1. Written in terms of standard spherical coordinates,

z = cosϕ and f(z) = sinϕ, where ϕ ∈ [0, π] is the polar angle with the z-axis.
Then, M inherits a Riemannian metric g given by

g = w2(z)dz2 + f 2(z)dθ2,

where w(z) =
√

1 + (f ′(z))2.
Let E ∈ R be a regular value of V and consider the Schrödinger equation on M given by

(−h2∆g + V )ϕh = E(h)ϕh,

where V ∈ C∞(M) and is axisymmetric, so that V (z, θ) = V (z). We also assume that
E(h) = E + o(1) and that {V = E} is disjoint from the poles (0, 0,±1).

In the following, we will relabel the z-coordinate and write r = z to indicate that this
variable essentially measures distance into the forbidden region {V (r) > E}.

We seek eigenfunctions of the form ϕh(r, θ) = vh(r)ψh(θ). These are joint eigenfunctions
of the quantum integrable system given by the commuting operators H = −h2∆g + V (r)
and P = hDθ [TZ03]. The Laplace operator in the coordinates (r, θ) has the following form

∆g =
1

w(r)f(r)

∂

∂r

(
f(r)

w(r)

∂

∂r

)
+

1

f 2(r)

∂2

∂θ2
.

It follows that ψh(θ) must satisfy the ODE

− h2k
d2

dθ2
ψh(θ) = h2km

2
hk
ψh(θ) (5.1)

Let {hk} be a decreasing sequence with hk → 0+ as k → +∞ and mhk
= 1/hk ∈ Z. Then,

we choose a particular sequence of solutions of (5.1) given by

ψhk
(θ) = eimhk

θ.

Then, vhk
(r) must satisfy

− h2k
1

f 2(r)

(
f(r)

w(r)

d

dr

)2

vhk
(r) + [ (V (r)−E) +

1

f 2(r)
] vhk

(r) = 0, r ∈ (−1, 1). (5.2)

As for boundary conditions in (5.2) (recalling that r = z), the eigefunctions are of the
form

eimhk
θvhk

(z) = (cos θ + i sin θ)mhk vhk
(z) =

(x+ iy)mhk

f(z)mhk

vhk
(z). (5.3)

Thus, in view of (5.3), to ensure that the eigenfunctions ϕhk
(z, θ) = vhk

(z)ψhk
(θ) are

smooth up to the poles z = ±1, the vhk
in (5.2) must be of the form

vhk
(z) = f(z)mhk · vreghk

(z), vreghk
∈ C∞([−1, 1]).

Thus, since mhk
6= 0 here (mhk

→ ∞) and f(±1) = 0, it follows that the vhk
in (5.2)

satisfy the Dirichlet boundary conditions vhk
(±1) = 0.
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We note that this is precisely what happens in the case of standard spherical harmonics,
where V = 0, E = 1, f(z) =

√
1− z2 and the vhk

are the associated Legendre polynomials.

Next, we make the radial change of variables s → r(s) =
∫ s

0
f(τ)
w(τ)

dτ. In view of the as-

sumption on profile function above (ie. f 2 ∈ C∞[−1, 1] and ∓(f 2)′(±1) > 0), it follows that
near r = 1, we have f(r) ∼ c1(1 − r)1/2 and f ′(r) ∼ −c2(1 − r)−1/2 with cj > 0, j = 1, 2.

Thus, dr
ds

= f(r)√
1+|f ′(r)|2

∼ c3(1 − r) and so, s(r) ∼ − log(1 − r) as r → 1−. Consequently, for

the inverse function r 7→ s(r), we have s(1) = ∞. Similar reasoning at r = −1 shows that
s(−1) = −∞.

Setting ṽhk
(s) := vhk

(r(s)), the equation (5.2) becomes

(
−h2k

d2

ds2
+ f 2(r(s))(V (r(s))−E(h)) + 1

)
ṽhk

(s) = 0, s ∈ R, (5.4)

where ṽhk
(±∞) = 0.

Consider the effective potential

Veff(r) := f 2(r)(V (r)−E) + 1,

where r ∈ [−1, 1].
We assume here that V (r = 0) = E. Then, since Veff(0) = 1, it follows that there

exists α > 0 and a corresponding annulus A(−α, α) = {r;−α < r < α} centered around
{r = 0} ⊂ {V = E} disjoint from the poles, so that

Veff(r) ≥
1

4
, ∀r ∈ A(−α, α). (5.5)

Consider the annulus A(−ε0, ε0) = {r;−ε0 < r < ε0} where ε0 ≪ α. Then, in view of
(5.5), it then follows by the standard Agmon-Lithner estimate applied to (5.4) that for any
δ > 0,

‖e(1−δ)
∫ s

r−1(−α)

√
Veff (r(s)) ds/hk ṽhk

(s)‖L2(A(r−1(−ε0),r−1(ε0))) = Oδ(1).

Making the change of variables s→ r(s) then gives

‖e(1−δ)
∫ r

−α

√
Veff (τ)

∂sτ
dτ/hk vhk

(r)‖L2(A(−ε0,ε0)) = Oδ(1), (5.6)

In view of (5.5) and the fact that 0 < ∂sr = f(r(s))
w(r(s))

≤ C1 for all r(s) ∈ A(−α, α) follows
from (5.6) that

‖e
(1−δ)
2C1

(α+r)/hkvhk
(r)‖L2(A(−ε0,ε0)) = Oδ(1). (5.7)

But then, for r ∈ A(−ε0, ε0) with ε0 > 0 sufficiently small (i.e. ε0 ≪ α), the inequality
(5.7) contradicts the control condition in Definition 1; indeed, the eigenfunctions already
decay exponentially in h in the allowed region A(−ε0, 0).
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We note that since dE(r) = O(|V (r)−E|3/2) = O(ε
3/2
0 ) for r ∈ A(0, ε0), it follows that for

ε0 > 0 sufficiently small, in the forbidden region where r ∈ A(0, ε0),

1

2C1
(α + r) > τ0dE(r).

In this case, the exponential decay is therefore more pronounced than in Theorem 3. This
is due to the presence of the effective potential term mkhk ∼ 1 which in turn appears because
of the particular choice of the sequence of Fourier modes in (5.1). This is consistent with our
results, since as we have already shown, the control condition is violated for this particular
sequence of eigenfunctions.

5.2. Examples of eigenfunction sequences satisfying control. We consider precisely
the same example of a Schrödinger operator on a convex surface of rotation as above but
choose the quantum number m = const. 6= 0 so that mhk = O(hk) as hk → 0. Then, the
ODE in (5.4) becomes

(
−h2k

d2

ds2
+ f 2(r(s))(V (r(s))− E(h)) +O(h2k)

)
vhk

(r(s)) = 0. (5.8)

The fact that the corresponding eigenfunctions ϕh(r, θ) = vh(r)ψh(θ) satisfy the control
assumption is then an immediate consequence of standard WKB theory applied to the semi-

classical ODE (5.8). Indeed, writing Φ(r) :=
∫ r

r0

f(r)
∂sr

(E − V (r))1/2 dr, it follows by WKB

asymptotics that for r ∈ [−1, 1] satisfying E − 2ε < V (r) < E − ε,

vh(r) ∼h→0+ e
iΦ(r)/hc1(h) a1(r; h) + e−iΦ(r)/hc2(h)a2(r; h), (5.9)

where for k = 1, 2, ak(r; h) ∼
∑∞

j=0 ak,j(r)h
j and

|c1(h)|2 + |c2(h)|2 ≥ C1 > 0, |ak(r; h)| ≥ C2(ε) > 0; k = 1, 2.

Consequently, from (5.9) we get that for any ε > 0,

∫

−2ε<V (r)−E<−ε

∫ 2π

0

|ϕh(r, θ)|2 drdθ =
∫

−2ε<V (r)−E<−ε

∫ 2π

0

|vh(r)|2 |eimθ|2 drdθ

=

∫

−2ε<V (r)−E<−ε

∫ 2π

0

|vh(r)|2 drdθ ≥ C(ε) > 0.

In the last estimate, to control mixed terms, we have used that by an integration by parts,
∫

−2ε<V (r)−E<−ε

e±2iΦ(r)/ha1(r; h)a2(r; h) dr = Oε(h).

As a result, this particular sequence clearly satisfies the control assumption in Definition 1
with N = 0.
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