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NOTE ON EXPONENTIAL AND POLYNOMIAL CONVERGENCE FOR A

DELAYED WAVE EQUATION WITHOUT DISPLACEMENT

KAÏS AMMARI AND BOUMEDIÈNE CHENTOUF

Abstract. This note places primary emphasis on improving the asymptotic behavior of a multi-dimensional
delayed wave equation in the absence of any displacement term. In the first instance, the delay is assumed
to occur in the boundary. Then, invoking a geometric condition [3, 10] on the domain, the exponential
convergence of solutions to their equilibrium state is proved. The strategy adopted of the proof is based on
an interpolation inequality combined with a resolvent method. In turn, an internal delayed wave equation is
considered in the second case, where the domain possesses trapped ray and hence (BLR) geometric condition
does not hold. In such a situation polynomial convergence results are established. These finding improve
earlier results of [1, 12].
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1. Introduction

Given a natural number n ≥ 2, consider an open bounded connected set of Ω in R
n, with a sufficiently

smooth boundary Γ = ∂Ω. We assume that (Γ0,Γ1) is a partition of Γ. The first system, we treat in the
present paper, is the wave equation

(1.1) ytt(x, t)−∆y(x, t) = 0, in Ω× (0,∞),

together with a boundary damping

(1.2)







∂y
∂ν

(x, t) = 0, on Γ0 × (0,∞),

∂y
∂ν

(x, t) = −αyt(x, t)− βyt(x, t− τ), on Γ1 × (0,∞),

and the initial conditions

(1.3)

{

y(x, 0) = y0(x), yt(x, 0) = z0(x), x ∈ Ω,
yt(x, t) = f(x, t), (x, t) ∈ Γ1 × (−τ, 0),
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where ν is the unit normal of Γ pointing towards the exterior of Ω, α > 0, and for sake for simplicity
β > 0. Assuming in the first lieu that Γ1 is nonempty while Γ0 may be empty, we shall invoke the
geometric condition [3, 10] in the “control zone“ Γ1 in order to show that the solutions to the above system
exponentially converge to an equilibrium state. The strategy adopted is to use an interpolation inequality
combined with a resolvent method.

In the second lieu, we study the asymptotic behavior of a wave equation in a three-dimensional domain
with a trapped ray and hence the geometric control condition is violated. Specifically, consider the following
delayed wave equation with an internal (distributed) localized damping:

(1.4) ytt(x, t)−∆y(x, t) + a(x)yt(x, t) + b(x)yt(x, t− τ) = 0, in Ω× (0,∞),

as well as the following boundary and initial conditions

(1.5)











∂y
∂ν

(x, t) = 0, on Γ× (0,∞),

y(x, 0) = y0(x), yt(x, 0) = z0(x), x ∈ Ω,
yt(x, t) = g(x, t), (x, t) ∈ Ω× (−τ, 0),

in which a is a non-negative function in L∞(Ω) and depends on a non-empty proper subset ω of Ω on
which 1/a ∈ L∞(ω) and in particular, {x ∈ Ω; a(x) > 0} is a non-empty open set of Ω, and b ∈ L∞(Ω) is
a non-negative function. Assuming, as in [12], the trapping geometry on Ω, we are able to show that the
solutions converge to their equilibrium state with a polynomial decay despite the presence of the delay.

The outcomes of this work improve those available in literature in a number of directions: firstly, we
are able to extend the result [1], where only the logarithmic convergence has been established. Secondly, the
polynomial decay rate of [12] is extended to the case where an internal delay occurs in the wave equation.
Lastly, it is show that the optimal result obtained in [14] remains valid despite the presence a delay term.

Now, let us briefly outline the content of this article. In Section 2, preliminaries and problem statement
are presented. Section 3 deals with the exponential convergence of solutions to an equilibrium state under
the geometric control condition (BLR) on the stabilization zone Γ1. In section 4, we prove a polynomial
convergence result for (1.4)-(1.5) with a trapping geometric condition. Finally, this note ends with a
conclusion.

2. Preliminaries

2.1. Delayed boundary damping. Consider the state space

H = H1(Ω)× L2(Ω)× L2(Γ1 × (0, 1)),

equipped with the inner product
(2.1)

〈(y, z, u), (ỹ, z̃, ũ)〉H =

∫

Ω

(∇y∇ỹ + zz̃) dx+ ξ

∫ 1

0

∫

Γ1

uũ dσdρ +

̟

[
∫

Ω

z dx+ (α + β)

∫

Γ1

y dσ − βτ

∫ 1

0

∫

Γ1

u dσdρ

][
∫

Ω

z̃ dx+ (α + β)

∫

Γ1

ỹ dσ − βτ

∫ 1

0

∫

Γ1

ũ dσdρ

]

,

where ̟ > 0 is a positive such that

(2.2) ̟ < min

{

1

(α+ β)(α + β − δ)
,

δ

2(α+ β − δ) |Ω| ,
δξ

2(α + β − δ) |Γ1|

}

.

Furthermore, we assume that α, β and ξ obey the following conditions

(2.3)
0 < β < α,
τβ < ξ < τ(2α− β).
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Thereby, it has been shown in [1, Proposition 1] that the space H equipped with the inner product (2.1) is a
Hilbert space provided that̟ satisfies (2.2). Moreover, letting z = yt, and u(x, ρ, t) = yt(x, t−τρ), x ∈
Γ1, ρ ∈ (0, 1), t > 0, [8], the system (1.1)-(1.3) can be formulated in an abstract differential equation in
the Hilbert state space H as follows

(2.4)

{

Φt(t) = AΦ(t),
Φ(0) = Φ0 = (y0, z0, f),

in which A is the unbounded linear operator defined by

(2.5)
D(A) =

{

(y, z, u) ∈ H1(Ω)×H1(Ω)× L2(Γ1;H
1(0, 1));∆y ∈ L2(Ω);

∂y
∂ν

= 0 onΓ0;

∂y
∂ν

+ αz + βu(·, 1) = 0, and z = u(·, 0) onΓ1

}

,

and

(2.6) A(y, z, u) = (z,∆y,−τ−1uρ), ∀(y, z, u) ∈ D(A).

We have the following result:

Proposition 1. ([1, Proposition 2]) Under the conditions (2.3), the linear operator A generates a C0-

semigroup of contractions S(t) on H = D(A). Additionally, for any initial data Φ0 ∈ D(A), the system
(2.4) possesses a unique strong solution Φ(t) = S(t)Φ0 ∈ D(A) for all t ≥ 0 such that Φ(·) ∈ C1(R+;H) ∩
C(R+;D(A)). In turn, if Φ0 ∈ H, then the system (2.4) has a unique weak solution Φ(t) = S(t)Φ0 ∈ H
such that Φ(·) ∈ C0(R+;H).

2.2. Delayed internal damping. Let

L2
0(Ω) =

{

u ∈ L2(Ω);

∫

Ω

u(x) dx = 0

}

, H1,0(Ω) = H1(Ω) ∩ L2
0(Ω),

and the state space

X = H1,0(Ω)× L2
0(Ω)× L2(Ω× (0, 1)),

endowed with the inner product

(2.7) 〈(y1, z1, u1), (y2, z2, u2)〉X =

∫

Ω

(∇y1∇y2 + z1z2) dx+ ξ

∫ 1

0

∫

Ω

u1u2 dx dρ.

Additionally, a, b and ξ are supposed to verify the following conditions:

(2.8) 0 < ‖b‖L∞(Ω) < ‖a‖L∞(Ω) , τ ‖b‖L∞(Ω) < ξ < τ
(

2 ‖a‖L∞(Ω) − ‖b‖L∞(Ω)

)

.

Thanks to the change of variables u(x, ρ, t) = yt(x, t−τρ), (x, ρ, t) ∈ Ω×(0, 1)×(∞, 0) [8], the system
(1.4)-(1.5) can be written as follows

(2.9)

{

Φt(t) = Aa,bΦ(t),
Φ(0) = Φ0 = (y0, z0, g),

where Aa,b is an unbounded linear operator defined by
(2.10)

D(Aa,b) =
{

(y, z, u) ∈ H1,0(Ω)×H1,0(Ω)× L2(Ω;H1(0, 1));∆y ∈ L2(Ω);
∂y
∂ν

= 0 onΓ; z = u(·, 0) onΩ
}

,

and

(2.11) Aa,b(y, z, u) = (z,∆y − az − bu,−τ−1uρ), ∀(y, z, u) ∈ D(Aa,b).
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Assume that the conditions (2.8) hold. Then, according to [11, 2], the linear operator Aa,b generates

a C0-semigroup of contractions etAa,b on X = D(Aa,b).

3. Exponential convergence

According to [1], we know that we have the following strong asymptotic stability result for the system
(2.4).

Theorem 1. ([1, Theorem 2]) Assume that the conditions (2.3) hold. Given an initial data Φ0 =
(y0, z0, f) ∈ H, we define

χ =
1

(α + β) |Γ1|

(
∫

Ω

z0 dx+ (α + β)

∫

Γ1

y0 dσ − βτ

∫ 1

0

∫

Γ1

f dσdρ

)

.

Then, the unique solution Φ(t) = (y(·, t), yt(·, t)), yt(·, t− τρ)) of (2.4) tends in H to (χ, 0, 0), as t −→ +∞
with a logarithmic decay log (2 + t).

In this section, we will improve the above result. Indeed, invoking the geometric condition (BLR) on
the control zone Γ1, we shall show that the convergence is actually exponential.

To proceed, let Ḣ be the closed subspace of of co-dimension 1 of the state space H defined as follows:

Ḣ =

{

(y, z, u) ∈ H;

∫

Ω

z(x) dx− βτ

∫ 1

0

∫

Γ1

u(σ, ρ) dσ dρ+ (α + β)

∫

Γ1

y dσ = 0

}

and denote by Ȧ the following new operator

Ȧ : D(Ȧ) := D(A) ∩ Ḣ ⊂ Ḣ → Ḣ,

(3.1) Ȧ(y, z, u) = A(y, z, u), ∀ (y, z, u) ∈ D(Ȧ).

Under the conditions (2.3), the operator Ȧ (see (2.6)) generates a C0-semigroup of contractions etȦ on

Ḣ. Moreover, the spectrum σ(Ȧ) of Ȧ consists of isolated eigenvalues of finite algebraic multiplicity only
[1].

Recall the following frequency domain theorem for exponential stability from [13, 9] of a C0-semigroup
of contractions on a Hilbert space:

Theorem 2. Let A be the generator of a C0-semigroup of contractions S(t) on a Hilbert space H. Then,
S(t) is exponentially stable, i.e., for all t > 0,

||S(t)||L(H) ≤ C e−ωt,

for some positive constants C and ω if and only if

(3.2) ρ(A) ⊃
{

iγ
∣

∣ γ ∈ R
}

≡ iR,

and

(3.3) lim sup
|γ|→+∞

‖(iγI − A−1‖L(X ) < ∞,

where ρ(A) denotes the resolvent set of the operator A.

We are now in a position to state the first main result of this article:
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Theorem 3. Assume that the assumptions (2.3) hold. If Γ1 satisfies a (BLR) geometrical control condition,
then there exist C, ω > 0 such that

∥

∥

∥
etȦ

∥

∥

∥

L(Ḣ)
≤ C e−ωt, ∀t > 0.

In other words, the solutions of the system (1.1)-(1.3) exponentially approach the equilibrium state χ.

Proof. Our first concern is to show that iγ is not an eigenvalue of Ȧ for any real number γ, which clearly
implies (3.2). To do so, it suffices to check that the only solution to the equation

(3.4) ȦZ = iγZ, Z = (y, z, u) ∈ D(Ȧ), γ ∈ R,

is the trivial solution. The proof of this desired result has been already obtained in [1].
Now, suppose that condition (3.3) does not hold. This gives rise, thanks to Banach-Steinhaus Theorem

(see [5]), to the existence of a sequence of real numbers γn → ∞ and a sequence of vectors Zn = (yn, zn, un) ∈
D(Ȧ) with ‖Zn‖Ḣ = 1 such that

(3.5) ‖(iγnI − Ȧ)Zn‖Ḣ → 0 as n → ∞,

i.e.,

(3.6) iγnyn − zn ≡ fn → 0 in H1(Ω),

(3.7) iγnzn −∆yn ≡ gn → 0 in L2(Ω),

(3.8) iγnun +
(un)ρ
τ

≡ vn → 0 in L2(Γ1 × (0, 1)).

The ultimate outcome will be convergence of ‖Zn‖Ḣ to zero as n → ∞, which contradicts the fact
that ∀ n ∈ N ‖Zn‖Ḣ = 1.

Firstly, since
∥

∥

∥
(iγnI − Ȧ)Zn

∥

∥

∥

Ḣ
≥

∣

∣

∣
ℜ
(

〈(iβnI − Ȧ)Zn, Zn〉Ḣ
)
∣

∣

∣
= −ℜ〈Ȧ)Zn, Zn〉Ḣ

≥ 1

2

(

(2α− β − ξτ−1)

∫

Γ1

|z(σ)|2 σ + (ξτ−1 − β)

∫

Γ1

|u(σ, 1)|2 dσ
)

,

it follows from (3.5) that

(3.9) zn → 0, and un(·, 1) → 0 in L2(Γ1).

Therewith

(3.10) un(·, 0) → 0 in L2(Γ1).

Subsequently, amalgamating (3.6) and (3.9), we get

(3.11) iγn yn = zn + fn → 0 in L2(Γ1),

and hence

(3.12) yn → 0 in L2(Γ1).

On the other hand, (3.8) yields

un(x, ρ) = un(x, 0) e
−iτγnx + τ

∫ ρ

0

e−iτγn(ρ−s) vn(s) ds.
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Putting the above deduction together with (3.8) and (3.10), we deduce that

(3.13) un → 0 in L2(Γ1 × (0, 1)) .

Now, let us take the inner product of (3.7) with zn = iγnyn−fn in L2(Ω) (see (3.11)). A straightforward
computation gives

∫

Ω

|zn|2 dx−
∫

Ω

|∇yn|2 dx =

(3.14) −
∫

Γ1

∂yn
∂ν

yn dσ +
1

iγn

∫

Ω

∇yn∇fn dx− 1

iγn

∫

Γ1

∂yn
∂ν

fn dσ +
1

iγn

∫

Ω

gn zn dx = ◦(1).

The intention now is to evoke the (BLR) in our situation. To proceed, let Ḣ0 be the closed subspace
of H0 := H1(Ω)× L2(Ω) and of co-dimension 1 given by

Ḣ0 =

{

(y, z) ∈ H0;

∫

Ω

z(x) dx+ α

∫

Γ1

y dσ = 0

}

,

and then consider the operator Ȧ0 defined by

Ȧ0 : D(Ȧ0) ⊂ Ḣ0 → Ḣ0,

and

D(Ȧ0) =

{

(u, v) ∈ H0; (v,∆u) ∈ H0,
∂u

∂ν
= 0 on Γ0,

∂u

∂ν
+ α v = 0 on Γ1

}

∩ Ḣ0.

(3.15) Ȧ0(y, z) = (z,∆y), ∀ (y, z) ∈ D(Ȧ0).

In view of the (BLR) geometric control condition [3], we have

(3.16) lim sup
|γ|→+∞

‖(iγI − Ȧ0)
−1‖L(Ḣ0)

< ∞.

Next, exploring the fact that (yn, zn) satisfies of the following system:










−γ2
nyn −∆yn = iγnfn + gn, on Ω,

∂yn
∂ν

= 0, on Γ0,
∂yn
∂ν

+ i α γn yn = α fn − β un(·, 1), on Γ1,

it follows from (3.16) that there exists a positive constant C such that for sufficiently large n, we have:

‖yn‖H1(Ω) ≤ C
(

‖fn‖H1(Ω) + ‖gn‖L2(Ω) + ‖un(·, 1)‖2L2(Γ1)

)

.

Therewith, (3.6), (3.7) and (3.12) yield

(3.17) yn → 0 in H1(Ω).

Combining (3.14) and (3.17), we get

(3.18) zn → 0 in L2(Ω).

In the light of (3.13), (3.17) and (3.18), we conclude that ‖Zn‖Ḣ → 0 which was our objective.
Lastly, the sufficient conditions of Theorem 2 are fulfilled and the proof of Theorem 3 is completed.

�
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4. Polynomial stability

This section is intended to establish a result that is between the previous one in Section 3 (exponential
convergence) and that of [1] (logarithmic convergence) for the system (1.4)-(1.5) (see also (2.9)). This
desirable outcome will be established by introducing, as in [12], the trapping geometry on the domain Ω of
R

3. In fact, we are going to adopt most of the notations in [12] and consider the same geometric situation
as in [12] by letting D(r1, r2) = {(x1, x2) ∈ R

2; |x1| < r1, |x2| < r2}, where r1, r2 > 0. Moreover, we pick
three positive constants m1, m2 and µ. Then, we choose Ω a connected open set in R

3 whose boundary is
is ∂Ω := Γ = Γ1 ∪ Γ2 ∪ Y , where Γ1 = D(m1, m2) × {µ}, with boundary ∂Γ1, Γ2 = D(m1, m2) × {−µ},
with boundary ∂Γ2, and Y is a surface with boundary ∂Y = ∂Γ1∪∂Γ2. On the other hand, ∂Ω is assumed
to be either C2 with Y ⊂ (R2 \ D(m1, m2)) × R (in particular Y ∈ C2) or Ω is convex (in particular is
Lipschitz). Next, let Θ be a small neighborhood of Y in R

3 such that Θ ∩ D(M1,M2) × [−µ, µ] = ∅ for
some M1 ∈ (0, m1) and M2 ∈ (0, m2). Lastly, we choose ω = Ω ∩Θ.

In such a situation of trapped geometry (Ω, ω), the well-known geometric control condition (BLR) [3] is
not fulfilled and hence Phung has established in [12] the polynomial decay convergence result of (1.4)-(1.5)
without delay, i.e, b ≡ 0:

Theorem 4. [12, Phung] There exist C, δ > 0 such that for all t > 0 we have:

∥

∥etAa,0
∥

∥

L(D(Aa,0),Xa)
≤ C

tδ
,

where

Aa,0 :=

(

0 I
∆ − a

)

: D(Aa,0) ⊂ Xa := H1,0(Ω)× L2
0(Ω) → Xa

and

D(Aa,0) :=
{

(y, z) ∈ H1,0(Ω)×H1,0(Ω);∆y ∈ L2(Ω);
∂y

∂ν
= 0 onΓ

}

.

Our second main result is:

Theorem 5. Suppose that the assumption (2.8) is fulfilled and ω satisfies the trapped geometrical condition.
Then, there exists C > 0 such that the semigroup generated by the operator Aa,b see ((2.10)-(2.11)) satisfies

∥

∥etAa,b
∥

∥

L(D(Aa,b),H)
≤ C/tδ/2, ∀t > 0,

where δ > 0 is the same constant given by Theorem 4.

The frequency domain theorem for polynomial stability [6, 4] of a C0-semigroup of contractions on a
Hilbert space will be used:

Theorem 6. A C0-semigroup etP of contractions on a Hilbert space X satisfies, for all t > 0,

||etP ||L(D(P),X ) ≤ C/tβ ,

for some constant C, β > 0 if and only if

(4.19) ρ(P) ⊃
{

iγ
∣

∣ γ ∈ R
}

≡ iR,

and

(4.20) lim sup
|γ|→+∞

‖|γ|−1/β(iγI −P)−1‖L(D(P),X ) < ∞.
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Proof. Firstly, we need to validate (4.19) for the operator Aa,b by showing that iγ /∈ σ (Aa,b), for any
arbitrary real number γ. This can be done by verifying that the equation

(4.21) Aa,bZ = iγZ

with Z = (y, z, u) ∈ D(Aa,b) and γ ∈ R has only the trivial solution. Indeed, the equation (4.21) writes

z = iγy(4.22)

∆y − az − bu(1) = iγz,(4.23)

−uρ

τ
= iγu,(4.24)

∂y

∂ν
= 0 onΓ,(4.25)

z = u(·, 0) onΩ.(4.26)

If γ = 0, then (4.22)-(4.26) lead us to claim that the only solution of (4.21) is the trivial one. In turn, if
γ 6= 0, then by taking the inner product of (4.21) with Z we get:

0 = 2ℜ (〈Aa,bZ,Z〉H) ≤
[

‖b‖L∞(Ω) − 2 ‖a‖L∞(Ω) + ξτ−1
]

∫

Ω

|z(σ)|2 σ

+
[

‖b‖L∞(Ω) − ξτ−1
]

∫

Ω

|u(σ, 1)|2 dσ ≤ 0.(4.27)

Whereupon, we have z = u(·, 1) = 0 on Ω. Consequently, the only solution of (4.21) is the trivial one.
It remains now to show that the resolvent operator of Aa,b satisfies the condition (4.20) with β = δ/2.

Otherwise, Banach-Steinhaus Theorem (see [5]) gives rise the existence of a sequence of real numbers
γn → ∞ and a sequence of vectors Zn = (yn, zn, un) ∈ D(Aa,b) with ‖Zn‖X = 1 such that

(4.28) ‖|γn|2/δ(iγnI −Aa,b)Zn‖X → 0 as n → ∞,

that is,

(4.29) |γn|2/δ (iγnyn − zn) ≡ fn → 0 in H1,0(Ω),

(4.30) |γn|2/δ (iγnzn −∆yn + azn + bun(·, 1)) ≡ gn → 0 in L2
0(Ω),

(4.31) |γn|2/δ
(

iγnun +
(un)ρ
τ

)

≡ hn → 0 in L2(Ω× (0, 1)).

The immediate task is to derive from (4.28) that ‖Zn‖X → 0, which contradicts ‖Zn‖X = 1, for all
n ∈ N.

According to (4.27), we have

(4.32) |γn|1/δ
√
a zn → 0, |γn|1/δ

√
b un(·, 1) → 0, in L2(Ω),

which in turn yields

(4.33) |γn|1/δ (iγnyn − zn) ≡
fn

|γn|1/δ
→ 0 in H1,0(Ω),

(4.34) |γn|1/δ (iγnzn −∆yn + azn) ≡ −bun(·, 1)
|γn|1/δ

+
gn

|γn|1/δ
→ 0 in L2

0(Ω),

and we note that (yn, zn) ∈ D(Aa). Based on Theorem 4, we conclude that

yn → 0 in H1,0(Ω) and zn → 0 in L2(Ω).
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Furthermore, we have

un(x, ρ) = un(x, 0)e
−iτγnx + τ

∫ ρ

0

e−iτγn(ρ−s) hn(s)

|γn|2/δ
ds =

zn(x)e
−iτγnx + τ

∫ ρ

0

e−iτγn(ρ−s) hn(s)

|γn|2/δ
ds → 0 in L2(Ω× (0, 1)).

Hence ‖Zn‖X → 0, and so we managed to show that the conditions (4.19) and (4.20) are fulfilled. This
achieves the proof of Theorem 5. �

Remark 1. In the case where Ω = (0, 1)× (0, 1) and

a(x) =

{

1, ∀ x ∈ (0, ε)× (0, 1),
0, elsewhere,

,

where ε > 0 is a constant, we have according to [14] that δ = 2/3 (which is the optimal decay rate). We
obtain in this case that the polynomial decay rate for the delayed system (1.4)-(1.5) is given by t−1/3.

Remark 2. Using Theorem 5 and arguing as in [1], one can prove that the solutions to the system (1.4)-
(1.5) polynomially converge (with a rate t−δ/2) to their equilibrium solution (ζ, 0, 0), where

ζ =
1

∫

Ω

(a + b) dx

[
∫

Ω

(

z0 + (a+ b)y0 − bτ

∫ 1

0

f(ρ) ρ

)

dx

]

.

Particularly, the convergence rate is t−1/3 in the case of Remark 1.

5. Conclusion

This paper has addressed the issue of improving the asymptotic behavior of a wave equation under the
presence of a boundary or internal delay term. Assuming the absence of any presence of any displacement,
the convergence rate is shown to be either exponential under (BLR) control geometric condition in the
control zone or polynomial when a trapped ray occurs in the geometry of the domain.
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