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Abstract. We study the spectrum of the Dirichlet Laplacian on an unbounded twisted tube with
twisting velocity exploding to infinity. If the tube cross section does not intersect the axis of
rotation, then its spectrum is purely discrete under some additional conditions on the twisting
velocity (D. Krejčiřı́k, 2015). In the current work we prove a Berezin type upper bound for the
eigenvalue moments.

1. Introduction

Advances in mesoscopic physics have given rise to study spectral properties of
unbounded regions of tubular shape. The Dirichlet Laplacian in such domains is a
reasonable model for the Hamiltonian in quantum-waveguide nanostructures. One of
the peculiarities of such domains is that they may possess geometrically-induced bound
states, which was noticed first in the two-dimensional situation by P. Exner and P. Šeba
[12], and studied intensively since then, see, e.g., the papers [5, 6, 13, 21] and the recent
monograph [11].

In the above mentioned papers bound states are generated by a local bending of
a straight waveguide. In the present work we deal with another class of unbounded
tubular domains – the so-called twisted tubes.

Twisted tube is a set which is obtained by translating and rotating a bounded open
connected set ω ⊂ R2 about a straight line in R3 . More precisely, for a given x1 ∈ R
and x := (x2,x3) ∈ ω we define the mapping L : R×ω → R3 by

L(x1,x) = (x1,x2 cosθ(x1)+ x3 sinθ(x1),x3 cosθ(x1)− x2 sinθ(x1)) . (1.1)

Here θ : R→ R is the rotation angle which is assumed to be a sufficiently regular
function. Then the region Ω := L(R×ω)⊂R3 is a twisted tube unless the function θ

is constant or ω is rotationally symmetric with respect to the origin in R2 (i.e., either
a disk or an annulus with the center at the origin).

In what follows for Ω ⊂ Rn , n ≥ 1, we denote by −∆Ω
D the Dirichlet Laplacian

in L2(Ω) . If Ω is bounded, the spectrum of −∆Ω
D is purely discrete. However, for un-

bounded domains the discreteness of the spectrum is no longer guaranteed. A necessary
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Figure 1: The twisted tube Ω

condition is the so called quasi-boundedness of Ω (see, e.g., [7]) which is satisfied, by
definition, if limx∈Ω, |x|→∞ dist(x,∂Ω) = 0 .

It is easy to see that the twisted tube Ω is not a quasi-bounded domain if the
cross-section ω contains the origin in R2 . Consequently, in this case the essential
spectrum of −∆Ω

D is non-empty. For example, if θ̇ vanishes at infinity then [17]
σ(−∆Ω

D) = [λ1,∞), where λ1 is the first eigenvalue of −∆ω
D in L2(ω) . Another

interesting example was treated in [10]: θ̇(x1) is a constant (we denote it β ). In
this case σ(−∆Ω

D) = [λ1(β ),∞), where λ1(β ) is the spectral threshold of the two-
dimensional operator −∆ω

D − β 2∂ 2
τ in L2(ω) , ∂τ is the angular momentum operator

∂τ := x3∂2− x2∂3. Of course, if ω contains the origin it does not mean that the spec-
trum is purely essential: for instance, if we perturb locally a twisted tube with constant
θ̇(x1) = β , then eigenvalues may appear below λ1(β ) , see [10] for more details.

The picture changes drastically if

ω ⊂ {(x2,x3) ∈ R2|x2 > 0}. (1.2)

The corresponding twisted tube is depicted on Figure 1. In this case it turns out that
σ(−∆Ω

D) is purely discrete provided

limx1→±∞|θ̇(x1)|= ∞, (1.3)

and therefore Ω becomes quasi-bounded [16].
In the present note we study some properties of the discrete eigenvalues in the

model considered in [16]. Our main result is the Berezin type bound for eigenvalue
moments of order σ ≥ 0.

Recall, that the classical Berezin bound is the estimate from above for the moments
of eigenvalues of the Dirichlet Laplacian −∆Ω

D on a bounded domain Ω lying below a
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fixed Λ > 0 [1]:

tr(−∆
Ω
D−Λ)σ

− := ∑
k
(λk−Λ)σ

− ≤ Lcl
σ ,d |Ω|Λσ+d/2, σ ≥ 1. (1.4)

Here {λk}k∈N is a sequence of eigenvalues of −∆Ω
D , numbered in the ascending order

with account of their multiplicities, |Ω| stands for the measure of Ω , Lcl
σ ,d is the so-

called semiclassical constant given by

Lcl
σ ,d =

Γ(σ +1)
(4π)d/2Γ(σ +1+d/2)

, (1.5)

and, finally, (·)− is the negative part of the enclosed quantity (cf. (2.8)). A similar
inequality holds also for 0≤ σ < 1 with some, probably non-sharp, constant instead of
Lcl

σ ,d [19].
Unfortunately, for tubular domains we consider in the current work these estimates

are meaningless since their right-hand sides become infinite due to |Ω| = ∞ . Never-
theless, we are able to derive a Berezin type bound for twisted tubes whose rotation
velocity explodes at infinity (see (1.3)) and additional technical assumptions (2.6)-(2.7)
hold (see also Subsection 4.1). The role of |Ω|Λσ+3/2 will be played by |ω| times
certain expression involving Λ , θ(x1) and θ̇(x1) .

Eigenvalue bounds for twisted tubes were also treated by P. Exner and the first
author in [9], where a locally perturbed twisted tube with constant rotation velocity
was considered. The authors derived Lieb-Thirring-type inequalities for eigenvalue
moments of order σ > 1/2. Other spectral aspects of twisted tubes were treated in
[14, 15] (existence/non-existence of bound states), [2, 8] (Hardy type inequalities), [4]
(asymptotic behavior of the spectrum as the thickness of the tube cross section goes to
zero), [3] (eigenvalue asymptotics in the case when the rotation velocity decays slowly
at infinity).

The paper is organized as follows. In Section 2 we present our main result (Theo-
rem 2.1). Its proof is given in Section 3. Finally, in Section 4 we discuss the obtained
result.

2. Main result

Recall, that we are given with the domain Ω := L(R×ω) ⊂ R3 , where L is de-
fined by (1.1) and the domain ω ⊂ R2 satisfies (1.2). The rotational angle θ(x1) is
assumed to be a continuously differentiable function satisfying condition (1.3). Addi-
tionally, we assume that

θ̇(x1) is a monotonically increasing function, (2.6)

θ̇(x1)≥ 0 on R+, θ̇(x1)≤ 0 on R− (2.7)

(for example, one can choose θ(x1) = ∑
m
k=0 Akx2k

1 with m ∈ N , Ak ≥ 0, Am 6= 0).
Another functions also can be treated, see Subsection 4.1. Note, that (1.3), (2.7) imply

lim
|x1|→∞

θ(x1) = ∞.
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We set for α ∈ θ [0,∞), β ∈ θ(−∞,0] :

θ
−1
+ (α) := {z≥ 0 : θ(z) = α}, θ

−1
− (β ) := {z≤ 0 : θ(z) = β}.

In what follows for z ∈ R we denote

(z)± := |z±|z||/2 (2.8)

(i.e., the negative and positive parts of z ).

Our main result is the following theorem.

THEOREM 2.1. Let σ ≥ 0. Under the above assumptions on θ and ω , for any
0 < ε < 1 and Λ≥ 0 the following inequality holds true,

tr
(
−∆

Ω
D−Λ

)σ

−
≤ Lσ

(1− ε)3/2 |ω|
∫
R
(ε f (x1)−Λ)

σ+3/2
− dx1, (2.9)

where

f (x1) =
(
θ̇
(
θ
−1
+ (θ(x1)−π)

))2
χ{x1≥θ

−1
+ (θ(0)+2π)}(x1)

+
(
θ̇
(
θ
−1
− (θ(x1)−π)

))2
χ{x1≤θ

−1
− (θ(0)+2π)}(x1), (2.10)

and Lσ is a constant depending on σ . For σ ≥ 3/2 (2.9) is valid with Lσ = Lcl
σ ,3 ,

where Lcl
σ ,3 is given by (1.5).

REMARK 2.1. It follows easily from the assumptions on the function θ(x1) that

f (x1)→ ∞ as |x1| → ∞,

which implies the finiteness of the integral at the right-hand-side of (2.9).

3. Proof of Theorem 2.1

We fix a point x = (x2,x3)⊂ R2 and denote

ωx = {x1 ∈ R : (x1,x2,x3) ∈Ω}.

It is easy to see that ωx is either the empty set or a sequence of segments (ak(x),bk(x))∞
k=−∞

satisfying

ak(x)< bk(x)< ak+1(x), ∀k ∈ Z,
ak(x)→±∞ as k→±∞.

We assume that these intervals are renumbered in such a way that

b−1(x)< 0, a1(x)> 0.

In what follows we use the same notation for u ∈H 1
0 (Ω) and its extension by

zero to the whole R3 (the resulting function will belong to H 1(R3)).
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LEMMA 3.1. For each u ∈H 1
0 (Ω)

∫
Ω

∣∣∣∣ ∂u
∂x1

(x1,x)
∣∣∣∣2 dx1 dx≥

∫
Ω

f (x1)|u|2 dx1 dx, (3.11)

where f (x1) is defined by (2.10).

Proof. Let us fix x = (x2,x3) ⊂ R2 . Since u(ak(x),x) = u(bk(x),x) = 0 one has
the following Friedrich inequality for each k ∈ Z :

∫ bk(x)

ak(x)

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 ≥
π2

(bk(x)−ak(x))2

∫ bk(x)

ak(x)
|u|2 dx1,

whence ∫
ω
±
x

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 ≥ ∑
k∈Z:±k≥1

π2

(bk(x)−ak(x))2

∫ bk(x)

ak(x)
|u|2 dx1, (3.12)

where ω±x := ωx∩R± . Our aim is to establish a uniform (with respect to x ) estimate
from below for the right hand side of (3.12). We will do this for ω+

x , for ω−x the
arguments are similar.

At first we notice that on the way from ak(x) to bk(x) the cross-section ω turns
by the angle which is not greater than π , i.e.

θ(bk(x))−θ(ak(x))≤ π. (3.13)

This follows easily from (1.2) and the definition of ak and bk . Then, using the mean
value theorem and (1.3), we obtain from (3.13):

bk(x)−ak(x)≤
π

mins∈[ak(x),bk(x)]
(
θ̇(s)

) ≤ π

θ̇(ak(x))
, k ≥ 1. (3.14)

Also from (3.13) we get, using the monotonicity of θ (see (2.7)),

ak(x)≥ θ
−1
+ (θ(bk(x))−π)≥ θ

−1
+ (θ(x1)−π), x1 ∈ [ak(x),bk(x)], k ≥ 1 (3.15)

provided

θ(ak(x))≥ θ(0)+π. (3.16)

Condition (3.16) is required to guarantee

θ(x1)−π ∈ dom(θ−1
+ ) = [θ(0),∞) as x1 ∈ [ak(x),bk(x)].

Then, again using (1.3), we conclude from (3.15):

θ̇(ak(x))≥ θ̇(θ−1
+ (θ(x1)−π)), x1 ∈ [ak(x),bk(x)], k ≥ 1. (3.17)
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Using inequalities (3.14) and (3.17) we can estimate from below the summands in
the right-hand side of (3.12) (recall, that now we consider its “+” part) which corre-
spond to k satisfying (3.17); the remaining summands we estimate by zero. As a result
we obtain∫

ω
+
x

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 ≥ ∑
k: θ(ak(x))≥θ(0)+π

∫ bk(x)

ak(x)

(
θ̇
(
θ
−1
+ (θ(x1)−π)

))2 |u|2 dx1. (3.18)

We need more information on the location of the smallest ak(x) satisfying (3.16).
Let k0 be such that θ(ak0(x)) ≥ θ(0)+π , while θ(ak0−1(x)) < θ(0)+π . There are
two possibilities: either

• all intervals (ak(x),bk(x)), k < k0 belong to (0,θ−1
+ (θ(0)+π)] , or

• (ak(x),bk(x)) ⊂ (0,θ−1
+ (θ(0) + π)) , k ≤ k0 − 2, ak0−1(x) < θ

−1
+ (θ(0) + π) ,

bk0−1(x)> θ
−1
+ (θ(0)+π) .

In the first case u vanishes on [θ−1
+ (θ(0)+π),ak0(x)] and, therefore one can replace

∑
k:θ(ak(x))≥θ(0)+π

∫ bk(x)

ak(x)
in (3.18) by

∫
∞

θ
−1
+ (θ(0)+π)

. In the second case we use the follow-

ing observation: on the way from bk(x) to ak+1(x) the cross-section ω turns on the
angle which is larger than π , i.e. θ(ak+1(x))−θ(bk(x))≥ π. Therefore

θ(ak0(x))≥ θ(bk0−1(x))+π ≥ θ(0)+2π,

while in view of (3.13)

θ(bk0−1(x))≤ θ(ak0−1(x))+π ≤ θ(0)+2π.

Consequently, in the second case the right- hand side of (3.18) is not smaller than∫
∞

θ
−1
+ (θ(0)+2π)

(
θ̇
(
θ
−1
+ (θ(x1)−π)

))2 |u|2 dx1.

Summarising our conclusions in these two case we finally arrive at∫
ω
+
x

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 ≥
∫

∞

θ
−1
+ (θ(0)+2π)

(
θ̇
(
θ
−1
+ (θ(x1)−π)

))2 |u|2 dx1, (3.19)

with the function f being defined by (2.10).
Using the same arguments we get similar estimate for ω−x :∫

ω
−
x

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 ≥
∫

θ
−1
− (θ(0)+2π)

−∞

(
θ̇
(
θ
−1
− (θ(x1)−π)

))2 |u|2 dx1. (3.20)

Taking into account that
∫

Ω
g(x1,x2,x3)dx1dx2dx2 =

∫
R2
[∫

ωx
g(x1,x2,x3)dx1

]
dx

for each g ∈ L1(R3) with supp(g)⊂Ω , we get (3.11) from (3.19)-(3.20) and the defi-
nition of the function f . The lemma is proved.
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We come back to the proof the theorem. Let us fix 0 < ε < 1 and Λ ≥ 0. Given
a function u ∈ H 1

0 (Ω) the quadratic form of the Dirichlet Laplacian −∆D
Ω

can be
represented as follows,∫

Ω

|∇u|2 dx1 dx2 dx3 =

= ε

∫
Ω

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 dx1 dx+
∫

Ω

(
(1− ε)

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 + ∣∣∣∣ ∂u
∂x2

∣∣∣∣2 + ∣∣∣∣ ∂u
∂x3

∣∣∣∣2
)

dx1 dx.

This together with (3.11) yields∫
Ω

(
|∇u|2−Λ|u|2

)
dx1 dx≥ ε

∫
Ω

f (x1)|u|2 dx1 dx

+
∫

Ω

(
(1− ε)

∣∣∣∣ ∂u
∂x1

∣∣∣∣2 + ∣∣∣∣ ∂u
∂x2

∣∣∣∣2 + ∣∣∣∣ ∂u
∂x3

∣∣∣∣2−Λ|u|2
)

dx1 dx

≥ (1− ε)
∫

Ω

(
|∇u|2 + 1

1− ε
(ε f (x1)−Λ)−|u|2

)
dx1 dx. (3.21)

We introduce the complement Ω̂ := R3\Ω and consider the functions of the form
h = u+ v with u ∈H 1

0 (Ω) and v ∈H 1
0 (Ω̂) which we may regard as functions in R3

extending them by zero to Ω̂ and Ω , respectively. Next we extend by zero the potential
1

1−ε
(ε f (x1)−Λ)− to potential V defined on the whole space R3 . Then (3.21) implies

∫
Ω

(
|∇u|2−Λ|u|2

)
dx1 dx+

∫
Ω̂

|∇v|2 dx1 dx

≥ (1− ε)
∫
R3
(|∇h|2 +V |h|2)dx1 dx. (3.22)

The left-hand side in (3.22) is the quadratic form corresponding to the operator(
−∆Ω

D−Λ
)
⊕
(
−∆Ω̂

D

)
, while the right-hand one is the form associated with the operator

(1− ε)(−∆+V ) on L2(R3) . Since −∆Ω̂
D is a positive operator, we conclude from

(3.22), using the minimax principle, that for each σ ≥ 0

tr
(
−∆

Ω
D−Λ

)σ

−
≤ (1− ε)σ tr(−∆+V )σ

− . (3.23)

Further we apply the Lieb-Thirring inequality for the operator −∆+V . Recall,
that it reads as

tr (−∆+V )σ

− ≤ Lσ

∫
R3

V σ+3/2
− dx1 dx2 dx3, σ ≥ 0 (3.24)

(for σ = 0 (3.24) is known as Cwikel-Lieb-Rozenblum inequality). It was proved in
[20] for σ > 0, and in [22] for σ = 0. Moreover, for σ ≥ 3/2 the best constant Lσ for
which (3.24) holds coincides with Lcl

σ ,3 given by (1.5) [19].
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Using (3.24) we obtain from (3.23):

tr
(
−∆

Ω
D−Λ

)σ

−
≤ (1− ε)σ Lσ

∫
R3

V σ+3/2
− dx1 dx

=
Lσ

(1− ε)3/2

∫
Ω

(ε f (x1)−Λ)
σ+3/2
− dx1 dx,

=
Lσ

(1− ε)3/2

∫
R

∫
ω(x1)

(ε f (x1)−Λ)
σ+3/2
− dx1 dx

=
Lσ

(1− ε)3/2

∫
R
(ε f (x1)−Λ)

σ+3/2
− |ω(x1)|dx1, (3.25)

where ω(x1) is the image of ω after the rotation. Since for every x∈R , |ω(x1)|= |ω| ,
inequality (3.25) immediately implies (2.9).

Theorem 2.1 is proved.

4. Discussion

4.1. Other choices of θ

Theorem 2.1 (with accordingly modified function f ) remains valid for some other
choices of θ .

Assume, for example, that θ(x1) is a continuously differentiable function satisfy-
ing (1.3) and additionally

θ̇(x1)≥ 0, (4.26)

θ̇(x1) is increasing on R+, θ̇(x1) is decreasing on R− (4.27)

(for example, one can choose θ(x1) = ∑
m
k=0 Akx2k+1

1 with m ∈ N , Ak ≥ 0, Am 6= 0).
Then Theorem 2.1 remains valid with f (x1) being replaced by

f̃ (x1) =
(
θ̇
(
θ
−1
+ (θ(x1)−π)

))2
χ{x1≥θ

−1
+ (θ(0)+2π)}(x1)

+
(
θ̇
(
θ
−1
− (θ(x1)+π)

))2
χ{x1≤θ

−1
− (θ(0)−2π)}(x1). (4.28)

Moreover, if θ satisfies (1.3), (2.6), (2.7) (respectively, (1.3), (4.26), (4.27)) only
for |x1| ≥ s0 > 0 then Theorem 2.1 holds with f (x1) (2.10) being replaced by

f (x1)χmax{s0,θ
−1
+ (2π+θ(s0))}

(x1)+ f (x1)χmin{−s0,θ
−1
− (2π+θ(−s0))}

(x1)

(respectively, with f̃ (x1) (4.28) being replaced by

f̃ (x1)χmax{s0,θ
−1
+ (2π+θ(s0))}

(x1)+ f̃ (x1)χmin{−s0,θ
−1
− (−2π+θ(−s0))}

(x1)).

The proof for the above cases is almost the same as in the case (1.3), (2.6), (2.7).
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4.2. Asymptotics of the obtained bound for large Λ

The right-hand side of (2.9) looks rather cumbersome. The situation becomes
easier when Λ→ ∞ . The following statement takes place.

PROPOSITION 4.1. The right-hand side of (2.9) has the asymptotics

(1+o(1))
Lσ

(1− ε)3/2 |ω|
∫
R
(εθ̇

2(x1)−Λ)
σ+3/2
− dx1 as Λ→ ∞. (4.29)

Proof. Let us prove that the right hand side of (2.9) can be estimated from above
by the expression of the form (4.29).

Due to the monotonicity of θ (see (2.7)) and θ̇ (see (2.6)) there exists s0 > 0 such
that θ(x1) > θ(0)+π and θ̇(θ(x1)−π) ≥ α > 0 as x1 > s0 . On each finite interval
being contained in [θ−1

+ (θ(0)+π),∞ ) the function θ
−1
+ (θ(x1)−π)− x1 is bounded.

Moreover, applying the mean value theorem for x1 > s0 one gets

θ
−1
+ (θ(x1)−π)− x1 = θ

−1
+ (θ(x1)−π)−θ

−1
+ (θ(x1)) =−

π

θ̇(c(x1))
,

where c(x1) ∈ (θ(x1)−π,θ(x1)) . Hence

K1 := sup{x1≥θ
−1
+ (θ(0)+π)}

∣∣θ−1
+ (θ(x1)−π)− x1

∣∣< ∞

Similarly,
K2 := sup{x1≤θ

−1
− (θ(0)+π)}

∣∣θ−1
− (θ(x1)−π)− x1

∣∣< ∞.

Let K = max{K1,K2} . Then∫
R
(ε f (x1)−Λ)

σ+3/2
− dx1 =

∫
∞

θ
−1
+ (θ(0)+2π)

(εθ̇
2(θ−1

+ (θ(x1)−π))−Λ)
σ+3/2
− dx1

+
∫

θ
−1
− (θ(0)+2π)

−∞

(εθ̇
2(θ−1
− (θ(x1)−π))−Λ)

σ+3/2
− dx1

≤
∫

∞

θ
−1
+ (θ(0)+π)

(εθ̇
2(x1−K)−Λ)

σ+3/2
− dx1+

∫
θ
−1
− (θ(0)+2π)

−∞

(εθ̇
2(x1+K)−Λ)

σ+3/2
− dx1

=
∫

∞

θ
−1
+ (θ(0)+2π)−K

(εθ̇
2(x1)−Λ)

σ+3/2
− dx1 +

∫
θ
−1
− (θ(0)+2π)+K

−∞

(εθ̇
2(x1)−Λ)

σ+3/2
− dx1

≤
∫
R
(εθ̇

2(x1)−Λ)
σ+3/2
− dx1+Λ

σ+3/2 (|θ−1
+ (θ(0)+2π)−K|+ |θ−1

− (θ(0)+2π)+K|
)
.

(4.30)

One has:∫
R
(εθ̇

2(x1)−Λ)
σ+3/2
− dx1 =

∫
|θ̇(x1)|≤

√
Λ/(ε)

(εθ̇
2(x1)−Λ)σ+3/2 dx1

≥
∫
|θ̇(x1)|≤

√
Λ/(2ε)

(εθ̇
2(x1)−Λ)σ+3/2 dx1≥

Λσ+3/2

2σ+3/2 meas
{

x1 ∈ R : |θ̇(x1)| ≤
√

Λ/(2ε)
}
.

(4.31)

9



Evidently, the measure standing at the right-hand side of (4.31) tends to infinity as
Λ→ 0. Therefore (4.31) implies

Λ
σ+3/2 = o

(∫
R
(εθ̇

2(x1)−Λ)
σ+3/2
− dx1

)
, Λ→ ∞. (4.32)

Combining (4.30) and (4.32) we get the desired estimate∫
R
(ε f (x1)−Λ)

σ+3/2
− dx1 ≤ (1+o(1))

∫
R
(εθ̇

2(x1)−Λ)
σ+3/2
− dx1.

Using the same arguments one can prove that the right hand side of (2.9) can be
also estimated from below by the expression of the form (4.29). The proof is similar:
the chain of estimates (2.9) remains valid if we replace all “≤” by “≥”, all “±K ” by
“∓K ” and “+Λσ+3/2 ” in the last line by “−Λσ+3/2 ”.

Proposition 4.1 is proved.

4.3. Comparison with the classical Berezin bound

In this subsection we show that the obtained estimate (2.9) can be used to improve
the classical Berezin bound for bounded twisted tubes with sufficiently large rotation
velocity in the regime Λ� N , where N is the length of the tube.

Let Ω be a twisted tube considered in Section 2. Additionally, we assume that its
rotation velocity satisfies

|θ̇(x1)| ≥ |x1|. (4.33)

Combining (2.9) and (4.29) and taking into account (4.33) one gets for large Λ :

tr
(
−∆

Ω
D−Λ

)σ

−
≤ (1+o(1))

Lσ

(1− ε)3/2 |ω|
∫
R
(εθ̇

2(x1)−Λ)σ+3/2 dx1

≤ (1+o(1))
Lσ

(1− ε)3/2 |ω|Λ
σ+3/2(θ̇−1

+ (
√

Λ/ε)− θ̇
−1
− (
√

Λ/ε))

≤ 2(1+o(1))
Lσ

(1− ε)3/2
√

ε
|ω|Λσ+2. (4.34)

Now, we consider the bounded twisted tube

ΩN := {(x1,x2,x3) ∈Ω : 0 < x1 < N} .

For this tube the classical Berezin inequality (1.4) reads

tr
(
−∆

Ω1
D −Λ

)σ

−
≤ Lcl

σ ,3Λ
σ+3/2|ΩN |= Lcl

σ ,3Λ
σ+3/2|ω|N. (4.35)

On the other hand, applying the Dirichlet bracketing technique, we get

(−∆
ΩN
D )⊕ (−∆

Ω\ΩN
D )≥−∆

Ω
D ,
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whence

tr
(
−∆

ΩN
D −Λ

)σ

−
≤ tr

(
(−∆

ΩN
D )⊕ (−∆

Ω\ΩN
D )−Λ

)σ

−
≤ tr(−∆

Ω
D−Λ)σ

−.

Thus the right-hand side of (4.34) is also an upper bound tr
(
−∆

ΩN
D −Λ

)σ

−
.

Finally, assume that N = N(λ ) and Λ�N as Λ→∞ . Then for large Λ the right-

hand side of (4.34) gives much better extimate for tr
(
−∆

ΩN
D −Λ

)σ

−
than the classical

Berezin inequality (4.35).
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[8] T. EKHOLM, H. KOVAŘÍK, D. KREJČIŘÍK, A Hardy inequality in twisted waveguides, Archive for
Rational Mechanics and Analysis 188, 2 (2008), 245–264.

[9] P. EXNER, D. BARSEGHYAN, Spectral estimates for Dirichlet Laplacians on perturbed twisted tubes,
Operators and Matrices 8, 1 (2014), 167–183.
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