
A COUNTEREXAMPLE TO THE LIOUVILLE PROPERTY
OF SOME NONLOCAL PROBLEMS

JULIEN BRASSEUR AND JÉRÔME COVILLE

Abstract. In this paper, we construct a counterexample to the Liouville property of some
nonlocal reaction-diffusion equations of the formˆ

RN\K
J(x− y) (u(y)− u(x))dy + f(u(x)) = 0, x ∈ RN \K,

where K ⊂ RN is a bounded compact set, called an ”obstacle”, and f is a bistable nonlinearity.
When K is convex, it is known that solutions ranging in [0, 1] and satisfying u(x) → 1 as
|x| → ∞ must be identically 1 in the whole space. We construct a nontrivial family of simply
connected (non-starshaped) obstacles as well as data f and J for which this property fails.
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1. Introduction

1.1. A nonlocal problem in heterogeneous media. Let K be a compact set of RN with
N > 2, and let |·| be the Euclidean norm in RN . We are interested in the qualitative properties
of positive solutions u to the following problem

Lu+ f(u) = 0 in RN \K,
0 6 u 6 1 in RN \K,
u(x)→ 1 as |x| → +∞,

(1.1)

where f is a bistable nonlinearity with f(0) = f(1) = 0 and L is the nonlocal operator

(1.2) Lu(x) :=

ˆ
RN\K

J(x− y)(u(y)− u(x))dy,

1
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with J ∈ L1(RN) a non-negative kernel with unit mass. The precise assumptions on f and J
will be given later on.

This type of model naturally arises in the study of the behavior of particles evolving in a
heterogeneous medium. The typical kind of problem we have in mind comes from population
dynamics. In this setting, the movement of the individuals is modelled by a stochastic process
that is defined in a domain that possesses several inaccessible regions (reflecting the hetero-
geneity of the environment). At the macroscopic level, the corresponding density of population
u(t, x) satisfies a reaction-diffusion equation that is defined outside a set K, which acts as an
obstacle. When the individuals follow isotropic Poisson jump processes, this reaction-diffusion
equation is given by

(1.3)
∂u

∂t
= Lu+ f(u) in R× RN \K,

and the solutions to (1.1) are particular stationary solutions to (1.3).
In recent years, much attention has been paid to the case of Brownian diffusion. In this

situation, the reaction-diffusion equation takes the form
∂u

∂t
= ∆u+ f(u) in R× RN \K,

∇u · ν = 0 on R× ∂K.
(1.4)

This problem was first studied by Berestycki, Hamel and Matano in [4]. There, it is shown

that there exists a solution to (1.4) that satisfies 0 < u(t, x) < 1 for all (t, x) ∈ R × RN \K,
as well as a classical solution, u∞, to

∆u∞ + f(u∞) = 0 in RN \K,
∇u∞ · ν = 0 on ∂K,

0 6 u∞ 6 1 in RN \K,
u∞(x)→ 1 as |x| → +∞.

(1.5)

This latter solution is actually obtained as the large time limit of u(t, x); more precisely:

u(t, x)→ u∞(x) as t→∞, locally uniformly in x ∈ RN \K.
In addition, they were able to classify the solutions u∞ to (1.5) under some geometric assump-
tions on K. When the obstacle K is either starshaped of directionally convex (see [4, Definition
1.2]), they prove that the solutions to (1.5) are actually identically equal to 1 in the whole set

RN \K. This was further extended to more complex obstacles by Bouhours who showed a
sort of “stability” of this Liouville type property with respect to small regular perturbations
of the obstacle, see [5]. From the biological standpoint, this means that, after some large time,
the population tends to occupy the whole space.

Yet, when the domain is no longer starshaped nor directionally convex but merely simply
connected, it is shown in [4] that this Liouville type property may fail. In other words, the
geometry of the domain may force the population to diffuse heterogeneously in space, even
after some large time.

It is expected that (1.1) and (1.5) share some common properties. In particular, some of
the results obtained for (1.5) should, to some extent, hold true as well for (1.1).

Recently, Brasseur et al. [7] have shown that (1.1) enjoys a similar Liouville type property
when K is convex (or close to being convex) and when the data f and J satisfy some rather
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mild assumptions. That is, any solution u to (1.1) is identically equal to 1 in the whole set

RN \K. They also point out that this cannot be expected for general obstacles since one can
easily find counterexamples when K is no longer simply connected. Indeed, take for instance
K = A(1, 2) = B2 \B1 and suppose that J is supported in B1/2. Then, the function u defined
by

u(x) =

{
1 if x ∈ RN \B2,

0 if x ∈ B1,

is a continuous solution to (1.1); yet, u is not identically 1 in the whole set RN \K. In view
of this, it is natural to ask:

what are the optimal geometric assumptions on K ensuring
that (1.1) enjoys such a Liouville property?

So far, this question remains open.
In this paper, our main concern is to find out whether it is possible to construct a nontrivial

simply connected obstacle K, as well as data f and J , for which (1.1) has a continuous solution
u which is not identically equal to 1.

Note that this is actually a quite reasonable question. Indeed, since the Liouville property
does not hold true on annuli it is quite natural to expect counterexamples on simply connected
obstacles which are “ε-close” to an annulus. We will see that this is indeed the case. Precisely,
we will construct a family of simply connected compact sets Kε and data fε and Jε for which
the solution to (1.1) need not be identically equal to 1.

1.2. Main results. Before we state our main results, let us first specify the assumptions made
all along this paper. We will assume that J is such that

(1.6)


J ∈ L1(RN) is a non-negative, radially symmetric kernel with unit mass,

there are 0 6 r1 < r2 such that J(x) > 0 for a.e. x with r1 < |x| < r2,

M1(J) :=

ˆ
RN
J(x)|x|dx < +∞ and J ∈ W 1,1(RN),

and that f ∈ C1([0, 1]) is a “bistable” nonlinearity, namely

(1.7)


∃ θ ∈ (0, 1), f(0) = f(θ) = f(1) = 0, f < 0 in (0, θ), f > 0 in (θ, 1),ˆ 1

0

f(s)ds > 0, f ′(0) < 0, f ′(θ) > 0, f ′(1) < 0, f ′ < 1 in [0, 1].

Our first result reads as follows

Theorem 1.1. Let N > 2. Then, there are smooth (non-starshaped) simply connected compact
obstacles K and data f and J satisfying (1.6) and (1.7) for which problem (1.1) has a positive

nonconstant solution u ∈ C(RN \K, [0, 1]).

The obstacles constructed in Theorem 1.1 are almost of the same nature as those given in [4]
for the local case. Namely, we consider an annulus A into which a small channel is pierced,
see Figure 1 below for a visual illustration.

By contrast with the classical reaction-diffusion, the operator L does not enjoy strong com-
pactness properties and has no regularising effects. So our construction is not a simple adap-
tation of the techniques of proof used for the local problem (1.5). One of the novelties of this
paper is that we show how to circumvent these issues. As we shall explain in the sequel, our
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argument is in fact general enough to recover the local problem as a limit case (see our remarks
below).

Let us briefly describe our approach. Our strategy relies essentially on two ingredients.
First, we take advantage of the fact that the kernel J and the nonlinearity f may be chosen at
our convenience. That is, instead of considering the problem (1.1), we can consider a rescaled
version of (1.1) given an appropriate choice of J . In our setting, J will be such that

J ∈ L2(RN), supp(J) = Br for some r > 0, and J is radially non-increasing.(1.8)

Then, given a small parameter ε, we look for a nonconstant positive solution uε toˆ
RN\K

Jε(x− y)(uε(y)− uε(x))dy + fε(uε(x)) = 0 in RN \K,(1.9)

that further satisfies 0 6 uε 6 1 in RN \K and uε(x)→ 1 as |x| → +∞, where

fε(s) := ε2f(s) and Jε(z) =
1

εN
J
(z
ε

)
.

In order to prove Theorem 1.1, we only need to show that, for some ε > 0, there is some
obstacle Kε such that (1.9) admits a positive nonconstant solution uε.

Second, we consider a well-chosen family of smooth simply connected obstacles (Kε)0<ε<1

that look like an annulus with a tiny channel of diameter of the order of εN/(N−1) pierced in it
(see the Figure 1). Given such a family, we prove that, for ε small enough, (1.9) indeed admits
a positive nonconstant continuous solution. More precisely, we prove the following

Theorem 1.2. Let N > 2. Let J and f be such that (1.6), (1.7) and (1.8) hold. Then, there
exist ε∗ > 0 and a family of smooth simply connected obstacles (Kε)0<ε<1 ⊂ RN such that, for

all 0 < ε < ε∗, there is a positive nonconstant solution uε ∈ C(RN \Kε, [0, 1]) to (1.9).

Due to the lack of a strong regularising property of (1.9), the construction of uε relies
essentially on elementary arguments. In particular, we obtain a solution uε to (1.9) using
an adequate monotone iterative scheme and elementary estimates. The main difficulty in our
proof lies in the construction of an adequate pair of ordered continuous sub- and super-solution
in a context where the equation (1.1) does not allow the use of traditional schemes based on
compactness arguments. To cope with this major difficulty, we make a detailed construction
of the obstacle Kε and design it in such a way that we still can obtain standard L2-estimates
by elementary means. This requires a detailed analysis of all the parameters involved at each
steps of our construction, especially when we construct our super-solution. To construct our
super-solution we rely on the fact that a solution uε to (1.9) satisfies in particular

(1.10)
1

ε2

ˆ
RN\Kε

Jε(x− y)(uε(y)− uε(x))dx+ f(uε(x)) = 0,

and, from there, relying essentially on the Bourgain-Brezis-Mironescu characterisation of Sobolev
spaces (see e.g. [6, 14]), we can interpret the first term on the left-hand side as a nonlocal
approximation of ∆u in the sense that its energy approximates the L2-variation of u. This, in
turn, with a pertinent choice of Kε and a well-chosen auxiliary problem, allows one to derive
a priori bounds to construct a super-solution by means of variational methods.

A striking consequence of our construction is that it adapts almost straightforwardly to other
situations. For example, it applies to the standard reaction-diffusion equation (1.5) providing
so an alternative proof of the existence of a counterexample. But it also extends to broader
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classes of nonlocal operators where the dispersal process need not be isotropic but instead
depends on the geodesic distance between points in RN \K. Indeed, our proof also adapts
(with almost no changes) to operators of the form

Lgu(x) :=

ˆ
RN\K

J̃(dg(x, y))(u(y)− u(x))dy,(1.11)

where dg(·, ·) is the geodesic distance on RN \K and J̃ ∈ L1
loc(0,∞) is such that

sup
x∈RN\K

ˆ
RN\K

J̃(dg(x, y))dy <∞,(1.12)

and z 7→ J̃(|z|) satisfies (1.6).
More precisely, we have

Theorem 1.3. Let N > 2. Then, there are smooth (non-starshaped) simply connected compact

obstacles K and data f and J̃ satisfying (1.7) and (1.12) for which the problem{
Lgu+ f(u) = 0 in RN \K,

u(x)→ 1 as |x| → +∞,
(1.13)

has a solution u ∈ C(RN \K, [0, 1]) which is not identically equal to 1 in RN \K.

The obstacle K and the data f and J (= J̃(|·|)) constructed at Theorem 1.3 are exactly the
same as in Theorem 1.1.

Problem (1.13) is of interest in its own right. It gives an alternative way to describe the
evolution of particles within a perforated domain which, in some situations, may be regarded
as more realistic. The point here is that particles cannot travel through K (as is it the case
for problem (1.1)). Instead, they are compelled to “bypass” K as if it was a material obstacle.
This particularity may be helpful to study the dynamics of some species (such as worms or
spores) for which this behavior is well-suited.

When needed we will state in side remarks the necessary changes to make to the proofs in
order to handle this type of dispersal processes.

Remark 1.4. It turns out that the techniques of proof used in [7] to establish the Liouville
property of (1.1) for convex domains also apply to this modified setting (at least when J is
non-increasing), but we leave this to a subsequent paper.

The paper is organized as follows. After describing our notations, we recall some results
from the literature in Section 2. In Section 3, given a pair (J, f) we construct an adequate
family of obstacles. Then, in Section 4, we construct some particular super-solutions to the
problem (1.9). Finally, in Section 5, we use the super-solution constructed at Section 4 to
prove Theorem 1.2.

Notations. Let us list a few notations that will be used throughout the paper.
As usual, SN−1 denotes the unit sphere of RN and BR(x) the open Euclidian ball of radius

R > 0 centred at x ∈ RN (when x = 0, we simply write BR). We denote by A(R1, R2) the
open annulus BR2 \BR1 .

For a compact set Ω ⊂ RN , we denote by diam(Ω) its diameter, given by

diam(Ω) := sup
x,y∈Ω

|x− y|.
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The N -dimensional Hausdorff measure will be denoted by H N . For a measurable set E ⊂
RN , we denote by |E| its Lebesgue measure and by 1E its characteristic function. If 0 < |E| <
∞ and if g : RN → R is locally integrable, we denote by 

E

g(x)dx =
1

|E|

ˆ
E

g(x)dx,

the average of g in the set E. Also, we denote by Lp(E), 1 6 p 6 ∞, the Lebesgue space of
(equivalence classes of) measurable functions g for which the p-th power of the absolute value
is Lebesgue integrable when p <∞ (resp. essentially bounded when p =∞).

2. Preliminaries

In this section, we recall some known results that will be used throughout the paper. In
most cases, we will omit their proofs and point the interested reader to the relevant references.

We first state a general existence result.

Lemma 2.1. Assume that f and J satisfy (1.6) and (1.7). Let K ⊂ RN be a compact set and
let u, u ∈ C(RN \K) be such that{

Lu+ f(u) 6 0 in RN \K,
Lu+ f(u) > 0 in RN \K.

Assume, in addition, that

lim sup
|x|→∞

u(x) = lim
|x|→∞

u(x) = 1,(2.1)

and that

0 6 u 6 u 6 1 in RN \K.(2.2)

Then, there exists u ∈ L∞(RN \K) such that{
Lu+ f(u) = 0 in RN \K,

u 6 u 6 u in RN \K.

Although the proof of Lemma 2.1 relies on rather standard arguments it is not that straight-
forward. For this reason, we will give a detailed proof (which is postponed to the Appendix at
the end of the paper).

Next, we recall a regularity result for nonlocal equations of the form

(2.3)

ˆ
Ω\K

J(x− y)u(y)dy − J (x)u(x) + f(u(x)) = 0 in Ω \K,

where

(2.4) J (x) :=

ˆ
RN\K

J(x− y)dy.

Precisely,

Lemma 2.2. Assume that f ∈ C1([0, 1]) and that J satisfies (1.6). Let Ω ⊂ RN be an open
set having C1 boundary. Suppose that K ⊂ Ω is a compact set and that

max
[0,1]

f ′ < inf
Ω\K
J .(2.5)
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Let u ∈ L∞(Ω \K, [0, 1]) be a solution to (2.3) a.e. in Ω \K. Then, u can be redefined up to

a negligible set and extended as a uniformly continuous function in Ω \K.

For a detailed proof, we refer to [7, Lemma 3.2] (see also [1, 3]).

Remark 2.3. Note that Ω need not be bounded. In particular, Lemma 2.2 holds when Ω = RN .

Finally, we recall the following result

Lemma 2.4. Let K ⊂ RN is a compact set and suppose that f and J satisfy (1.6) and (1.7).
Assume further that J is compactly supported and that J ∈ L2(RN). Let u ∈ C(RN \K, [0, 1])
be a solution to

(2.6)

 Lu+ f(u) = 0 in RN \K,
sup
RN\K

u = 1,

Then, u(x)→ 1 as |x| → ∞.

The proof may be found in [7, Lemma 7.2].

Remark 2.5. The above results still hold when J(x − y) is replaced by J̃(dg(x, y)). For the
validity of Lemma 2.1 in this case, we refer to Remark 5.4 in the Appendix. On the other
hand, a careful inspection of the proof of [7, Lemma 3.2] shows that the condition (2.6) with
J replaced by

J̃ (x) :=

ˆ
RN\K

J̃(dg(x, y))dy,(2.7)

still implies the continuity of solutions to
ˆ

Ω\K
J̃(dg(x, y))u(y)dy − J̃ (x)u(x) + f(u(x)) = 0,

in Ω \K. Similarly, Lemma 2.4 holds as well with Lg (as given by (1.11)) instead of L since its
proof requires only estimates on convex regions on which it trivially holds that dg(x, y) = |x−y|.

3. Construction of a family of obstacles

This section is devoted to the construction of an appropriate family of obstacles (Kε)0<ε<1.
Our construction will depend on the interplay with the datum (J, f). As mentioned in the
introduction, we will assume that J satisfies (1.6) and (1.8) and that f satisfies (1.7). However,
before constructing (Kε)0<ε<1, we need to define some important quantities depending on f
and J . We will call C0 > 0 and M2(J) > 0 the constants respectively defined by

C0 := max
s∈[0,1]

f(s),(3.1)

M2(J) :=

ˆ
RN
J(z)|z|2dz.(3.2)



8 JULIEN BRASSEUR AND JÉRÔME COVILLE

Figure 1. Illustration of Kε in dimension 2.

Note that the assumptions (1.6) and (1.7) guarantee that these two numbers are well-defined.
Furthermore, we introduce two quantities, CN,J and R∗0, respectively defined by

CN,J :=
π2M2(J)

32N
,(3.3)

R∗0(J, f) :=

√
θCN,J
5C0

.(3.4)

Let us now start the construction of the obstacle. Fix some R1 > 2 and let 0 < R0 < R∗0(J, f)
(where R∗0(J, f) is as in (3.4)). Let 0 < ε < 1 be a small parameter and set γ := N

N−1
. We

call A the annulus A := A(R0, R1) and we consider a smooth compact simply connected set
Kε ⊂ A satisfying the following properties:

(i) A ∩
{
x ∈ RN ; x1 6 0

}
⊂ Kε,

(ii) A ∩
{
x ∈ RN ; x1 > 0, |x′| > 2εγ

}
⊂ Kε,

(iii) Kε ⊂
(
A ∩

{
x ∈ RN ; x1 6 0

})
∪
(
A ∩

{
x ∈ RN ; x1 > 0, |x′| > εγ

})
,

(iv) A(R0 + εγ/4, R1 − εγ/4) ∩
{
x ∈ RN ;x1 > 0, |x′| > εγ

}
⊂ Kε.

where x = (x1, x
′) and x′ = (x2, . . . , xN) (see Figure 1 for a visual illustration). Furthermore,

we define the following open set:

Fε := A \Kε.

We will refer to (Kε)0<ε<1 as the family of obstacles associated to the pair (J, f).
Let us also list in this section a preparatory lemma.

Proposition 3.1. Let N > 2. Suppose that f and J are such that (1.7) and (1.8) hold true.
Assume further that (Kε)0<ε<1 is the family of obstacles associated to the pair (J, f). Let

fε(s) := ε2f(s) and Jε(z) :=
1

εN
J
(z
ε

)
.(3.5)
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Then, there exists some ε0 > 0 depending only on N , R0, J and f ′, such that

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dx, for all ε ∈ (0, ε0).(3.6)

Proposition 3.1 will play an important role in the sequel. Inter alia, it guarantees that the
solutions of some nonlocal equations defined in the sequel are continuous.

Proof. By assumption (1.8), up to rescale J , we may assume without loss of generality that

supp(J) = B1/2.

Let 0 < ε < ε1 := min{1, R0/2} and x ∈ RN \Kε. Define

F̃ε := {z ∈ RN ;R0 < z1 < R1, |z′| < εγ} and Λε(x) := Bε/2 ∩ (F̃ε − x).

We will estimate from below the integral in the right-hand side of (3.6). For it, we will treat

separately the case where x ∈ F̃ε and the case where x ∈ RN \ (Kε ∪ F̃ε).

Step 1: Lower bound in F̃ε

Let x ∈ F̃ε. Since Jε is radially non-increasing, non-negative and supported in Bε/2, there is

some J̃ε : R+ → R+ such that Jε(z) = J̃ε(|z|) and supp(J̃ε) = [0, ε/2). Thus, passing to polar

coordinates, the mass carried by Jε(x− ·) in F̃ε can be rewritten as
ˆ
F̃ε

Jε(x− y)dy =

ˆ
Λε(x)

Jε(y)dy =

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)J̃ε(t)t
N−1dt

)
dH N−1(σ).

Notice that Λε(x) is a convex set and that 0 ∈ Λε(x). In particular, both t 7→ 1Λε(x)(σt) and

t 7→ J̃ε(t) are non-increasing functions. Hence, using Chebyshev’s integral inequality (see e.g.
[12, Theorem 2.5.10, p.40]), we have

ˆ
F̃ε

Jε(x− y)dy >
N

(ε/2)N

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)t
N−1dt

ˆ ε/2

0

J̃ε(t)t
N−1dt

)
dH N−1(σ),

Since Jε has unit mass and supp(Jε) = Bε/2, one has
ˆ ε/2

0

J̃ε(t)t
N−1dt = σ−1

N =
(
N |B1|

)−1
,

where σN = H N−1(SN−1). Ergo,
ˆ
F̃ε

Jε(x− y)dy >
1

|Bε/2|

ˆ
SN−1

(ˆ ε/2

0

1Λε(x)(σt)t
N−1dt

)
dH N−1(σ)

=
1

|Bε/2|

ˆ
Bε/2

1Λε(x)(y)dy.

Since F̃ε ⊂ RN \Kε and Λε(x) = Bε/2 ∩ (F̃ε − x), we get

ˆ
RN\Kε

Jε(x− y)dy >
|Bε/2(x) ∩ F̃ε|
|Bε/2|

, for any x ∈ F̃ε.(3.7)
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Let us now estimate the quantity |Bε/2(x) ∩ F̃ε|. Observe that for ε small enough, say when

0 < ε < ε2 := 4−(N−1), one has ε/2 > 2εγ. In particular, this implies that Bε/2(x) ∩ F̃ε
always contains an hyper-rectangle of the form T

(
(0, ε/4)× (0, 2εγ)× · · · × (0, 2εγ)

)
for some

translation T of RN , so that

|Bε/2(x) ∩ F̃ε| > (ε/4)× (2εγ)N−1 = 2N−3εN+1.

Therefore, recalling (3.7), we obtain that, for all 0 < ε < ε2 and all x ∈ F̃ε, it holdsˆ
RN\Kε

Jε(x− y)dy > C1ε,(3.8)

for some C1 > 0 depending on N only.

Step 2: Lower bound in RN \ (Kε ∪ F̃ε)

Let us now consider the case where x ∈ RN \ (Kε ∪ F̃ε). For it, we first note that, since

0 < εγ < ε < R0/2 (remember 0 < ε < ε1), the point x0 := (R0, ε
γ, 0, · · · , 0) ∈ ∂F̃ε satisfies

|x0|2 = R2
0 + ε2γ < R2

0 +R0ε
γ/2 < (R0 + εγ/4)2,

which implies that F̃ε ∩BR0+εγ/4 6= ∅. On the other hand, it is clear from the definition of F̃ε
that F̃ε \BR1−εγ/4 6= ∅. A consequence of this is that

F̃ε ∩ A(R0 + εγ/4, R1 − εγ/4) = A(R0 + εγ/4, R1 − εγ/4) ∩
{
z ∈ RN ; z1 > 0, |z′| < εγ

}
.

Whence, recalling properties (i) and (iv) in the definition of Kε, we deduce that

A(R0 + ε/4, R1 − ε/4) ⊂ A(R0 + εγ/4, R1 − εγ/4) ⊂ Kε ∪ F̃ε,
where, in the left-hand side, we have used the fact that εγ < ε. In turn, this implies that

x ∈ RN \ A(R0 + ε/4, R1 − ε/4).

In particular, since 0 < ε < R0/2 < R0, we may find a point z ∈ RN such that

|x− z| = 3ε

8
and Bε/8(z) ⊂ Bε/2(x) \ A ⊂ RN \Kε.(3.9)

Indeed, when x ∈ RN \BR1−ε/4, this follows from the convexity of BR1 ; and, when x ∈ BR0+ε/4,
the constraint 0 < ε < R0/2 allows one to choose z on the diagonal of BR0+ε/4 containing x.
On account of this, we may writeˆ

RN\Kε
Jε(x− y)dy >

ˆ
Bε/8(z)

Jε(x− y)dy =

ˆ
Bε/8(z−x)

Jε(y)dy =

ˆ
B1/8( z−xε )

J(y)dy.

Now, by (3.9), we have (z − x)/ε ∈ ∂B3/8. Thus,ˆ
RN\Kε

Jε(x− y)dy >
ˆ
B1/8(ex)

J(y)dy =: MJ(ex) for some ex ∈ ∂B3/8.

Notice that B1/8(ex) ⊂ B1/2 = supp(J) (because ex ∈ ∂B3/8) which implies MJ(ex) > 0.
Moreover, since J is radially symmetric, the quantity MJ(ex) does not depend on the choice
of ex ∈ ∂B3/8, namely

MJ(ex) = MJ(e) ≡MJ > 0, for every e ∈ ∂B3/8,
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and some constant MJ depending on J only.

Therefore, for any 0 < ε < ε1 and x ∈ RN \ (Kε ∪ F̃ε), it holdsˆ
RN\Kε

Jε(x− y)dy >MJ > 0.(3.10)

Step 3: Conclusion

Since RN \Kε = F̃ε ∪ (RN \ (F̃ε ∪Kε)), by (3.8) and (3.10), we obtain

inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dy > min {MJ , C1} ε,

for any 0 < ε < ε3 := min{ε1, ε2}. Whence, letting

ε0 := min

{
ε3,

min {MJ , C1}
max[0,1] f ′

}
,

and recalling that fε(s) = ε2f(s), we obtain

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y)dx for any ε ∈ (0, ε0),

which is the desired inequality. �

Remark 3.2. Since Jε is radially non-increasing and satisfies (1.6), there is some non-increasing

J̃ε ∈ L1
loc(0,∞) satisfying Jε(z) = J̃ε(|z|). In particular, since dg(x, y) > |x− y|, it holds that

sup
x∈RN\Kε

ˆ
RN\Kε

J̃ε(dg(x, y))dy 6 sup
x∈RN\Kε

ˆ
RN\Kε

Jε(x− y) dy = 1,

thus implying that J̃ε satisfies (1.12). Moreover, Proposition 3.1 still holds when Jε(x− y) is

replaced by J̃ε(dg(x, y)), i.e. we still have

max
[0,1]

f ′ε < inf
x∈RN\Kε

ˆ
RN\Kε

J̃ε(dg(x, y))dy.(3.11)

Indeed, this is because our proof reduces to estimate the mass carried by Jε(x− ·) on convex
sub-domains of RN \Kε and, in this case, the geodesic distance coincides with the Euclidian

distance, namely it holds that Jε(x− y) = J̃ε(dg(x, y)).

4. Construction of a global super-solution

In this section we construct a global super-solution to (1.9). Precisely, given a pair (J, f)
satisfying (1.7) and (1.8) and given the family of obstacles (Kε)0<ε<1 associated to (J, f) (as
defined in Section 3), we construct a global super-solution ūε toˆ

RN\Kε
Jε(x− y)(ūε(y)− ūε(x))dy + fε(ūε(x)) 6 0 for x ∈ RN \Kε,(4.1)

that further satisfies

ūε ≡ 1 for x ∈ RN \BR,(4.2)

for some large R > 0, where fε and Jε are as in (3.5). More precisely, we prove the following
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Lemma 4.1. Let N > 2 and let (J, f) be a pair satisfying (1.7) and (1.8). Let (Kε)0<ε<1 be
the family of obstacles associated to the pair (J, f) (as defined in Section 3). Let fε and Jε be
as in (3.5). Then, there exists R∗ > 0 and ε∗ > 0 such that, for all 0 < ε < ε∗ and all R > R∗,
there is a continuous positive nonconstant function ūε satisfying (4.1) and (4.2).

The proof of Lemma 4.1 follows essentially two steps. In the first step, we construct a
positive solution to a suitable auxiliary problem defined in BR \Kε for some large R. Then,
in a second step, we regularise this solution to obtain a super-solution that satisfies both (4.1)
and (4.2). To simplify the presentation each step of the proof corresponds to a subsection.

4.1. An auxiliary problem in BR\Kε. Let us first construct an adequate auxiliary problem.

To do so, we define a new nonlinearity, f̃ , satisfying

(4.3) f̃(s) :=


−κs for s 6 3θ

4
,

f0(s) for 3θ
4
< s < θ,

f(s) for θ 6 s 6 1,

f ′(1)(s− 1) for s > 1,

where θ ∈ (0, 1) is as in (1.7), κ > 0 is a small number and f0 is a smooth function such that

f̃ ∈ C1(R). From (1.7), we can choose κ > 0 and f0 such that

f 6 f̃ in [0, 1], max
[0,1]

f̃(s) = max
[0,1]

f and sup
R
f̃ ′ 6 sup

[0,1]

f ′.(4.4)

Now, for R > R1 + 2, we let LR,ε be the operator given by

(4.5) LR,εw(x) :=

ˆ
BR\Kε

Jε(x− y)(w(y)− w(x))dy,

and we consider the following problem

LR,εuε,R(x) + cε(x)(1− uε,R(x)) + f̃ε(uε,R(x)) = 0 for all x ∈ BR \Kε,(4.6)

where

f̃ε(s) = ε2f̃(s) for s ∈ R and cε(x) :=

ˆ
RN\BR

Jε(x− y)dy for x ∈ BR \Kε.(4.7)

Our goal in this step is to show that, for each ε ∈ (0, 1) small enough, there exists a continuous

function uε,R : BR \Kε → (0, 1) satisfying (4.6).

Remark 4.2. Observe that, by construction (remember (4.4)), the function

ûε,R :=

{
uε,R in BR \K,

1 in RN \BR,

provides a discontinuous super-solution to (4.1) satisfying (4.2). We are thus on the right track
to construct the required super-solution.

For it, we observe that, by setting vε,R := 1− uε,R, (4.6) rewrites

LR,εvε,R(x)− cε(x)vε,R(x) + gε(vε,R(x)) = 0 for x ∈ BR \Kε,(4.8)
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with gε(s) := −ε2f̃(1 − s). Therefore, to construct uε,R it suffices to construct a positive

solution vε,R : BR \K → (0, 1) to (4.8). As in [4], this will be done using a variational
argument. To do so, we define

g(s) := −f̃(1− s), G(t) :=

ˆ t

0

g(s)ds and Gε(t) := ε2G(t),

for all s, t ∈ R and ε ∈ (0, 1). Now, for any ε ∈ (0, 1) and any domain Ω ⊂ BR \ Kε, we
consider the following energy functional

(4.9) Eε,Ω(w) :=
1

4

ˆ
Ω

ˆ
Ω

Jε(x− y)(w(x)−w(y))2dxdy+
1

2

ˆ
Ω

cε(x)w2(x)dx−
ˆ

Ω

Gε(w(x))dx,

for w ∈ L2(Ω). Observe that for any ε > 0 and any domain Ω ⊂ BR\Kε, the null function w ≡ 0
is a global minimiser of Eε,Ω. Therefore, we have to construct a local minimiser. However, unlike
its local analogue, the energy functional Eε,Ω does not posses strong compactness properties,
rendering this type of approach very delicate to implement.

With this in mind, we will show that, for the family Kε constructed in Section 3 and ε small
enough, the above energy has indeed a nontrivial local minimiser when Ω = BR \Kε.

Following the scheme of construction introduced in [4], we first show that the function
w0 := 1BR0

is a strict minimiser of the functional Eε,BR0
when ε ∈ (0, 1) is small enough.

More precisely,

Proposition 4.3. Let N > 2, 0 < R0 < R∗0(J, f) (where R∗0(J, f) is given by (3.4)) and let
w0 := 1BR0

. Then, there exists κ0 > 0, 0 < ε1(J,N,R0) < 1 and 0 < δ0(R0) < |BR0|1/2 such
that, for each 0 < ε < ε1, it holds that

Eε,BR0
(w)− Eε,BR0

(w0) > κ0ε
2‖w − w0‖2

L2(BR0
),

for all w ∈ L2(BR0) such that ‖w − w0‖L2(BR0
) 6 δ0.

Proof. Let us begin with some preliminary observations. First, we notice that since g is linear

around 1 (because f̃ is linear around 0), the function Gε is smooth in a neighborhood of 1. In

particular, there exists τ0(f̃) > 0 such that

Gε(t) = Gε(1) +G′ε(1)(t− 1) +
1

2
G′′ε(1)(t− 1)2 for any |t− 1| < τ0.

But since G′ε(1) = ε2G′(1) = ε2g(1) = 0 and G′′ε(1) = ε2G′′(1) = ε2g′(1) = −ε2f̃ ′(0) = −ε2κ,
this expansion can be rewritten as

Gε(t) = ε2G(1)− κε2

2
(t− 1)2 for any |t− 1| < τ0.(4.10)

Using the number τ0, we define

δ0 := min

{
θ

4
,
C0

κ
,
τ0

2

}
|BR0|1/2,(4.11)

where θ, C0 and κ are as in (1.7), (3.1) and (4.3); and we let w ∈ L2(BR0) be such that

‖w − w0‖L2(BR0
) 6 δ0.(4.12)

Second, denoting by 〈w0〉 := spanL2(BR0
)(w0) the vector space spanned by w0 and letting 〈w0〉⊥

be its orthogonal with respect to the standard scalar product of L2(BR0), we can write the
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space L2(BR) as the direct sum L2(BR0) = 〈w0〉 ⊕ 〈w0〉⊥. This means that we may always
find a constant α ∈ R and a function h ∈ 〈w0〉⊥ such that w decomposes as w = αw0 + h. In
particular, the orthogonality of h with respect to w0 implies thatˆ

BR0

h(x)dx = 0 and ‖w − w0‖2
L2(BR0

) = (1− α)2‖w0‖2
L2(BR0

) + ‖h‖2
L2(BR0

).(4.13)

In view of this, assumption (4.12) gives

− δ0

|BR0|1/2
6 (1− α) 6

δ0

|BR0|1/2
and ‖h‖L2(BR0

) 6 δ0.(4.14)

This fact will be abundantly used in the sequel.
This being said, we are now in position to prove Proposition 4.3. For it, we observe that,

since w0 ≡ 1 in BR0 , we have that

Eε,BR0
(w0) = −

ˆ
BR0

Gε(w0(x))dx = −Gε(1)|BR0| = −ε2G(1)|BR0|.

Furthermore, thanks to R > R0 + 2 and supp(Jε) ⊂ B ε
2
, we have that cε(x) ≡ 0 in BR0 , for

any 0 < ε < 1. Consequently, Eε,BR0
(w) rewrites

Eε,BR0
(w) =

1

4

ˆ
BR0

ˆ
BR0

Jε(x− y)(w(x)− w(y))2dxdy︸ ︷︷ ︸ −
ˆ
BR0

Gε(w(x))dx︸ ︷︷ ︸ .
II I

Let us first estimate II . In view of the Bourgain-Brezis-Mironescu representation of H1(BR0)
(see [6]), one can interpret II as a nonlocal approximation of ‖∇w‖2

L2(BR0
). The crux of our

strategy is that, as shown by Ponce [14, Theorem 1.1], this nonlocal approximation enjoys a
Poincaré-type inequality. Let us now proceed. Let (ρε)0<ε<1 be the family of radially symmetric
mollifiers defined by

ρε(z) := M2(J)−1Jε(z)|z|2 ε−2 for ε ∈ (0, 1),

where M2(J) is given by (3.2). Notice that, by construction, it satisfies

ρε > 0 a.e. in RN ,

ˆ
RN
ρε(z)dz = 1 and lim

ε→0+

ˆ
|z|>τ

ρε(z)dz = 0,

for each 0 < ε < 1 and each τ > 0. Moreover, II can be rewritten as

II = ε2 M2(J)

4

ˆ
BR0

ˆ
BR0

ρε(x− y)
|w(x)− w(y)|2

|x− y|2
dxdy.

Now, by [14, Theorem 1.1], we know that there exists some ε1 = ε1(J,N,R0) > 0 such that
the following Poincaré-type inequality∥∥∥∥∥w −

 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6
2A0

K2,N

ˆ
BR0

ˆ
BR0

ρε(x− y)
|w(x)− w(y)|2

|x− y|2
dxdy

(
=

8A0 ε
−2

K2,NM2(J)
× II

)
,

holds for all ε ∈ (0, ε1) and all w ∈ L2(BR0). Here,

K2,N :=

ˆ
SN−1

(σ · e1)2 dHN−1(σ) =
1

N
,
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and A0 > 0 is the smallest constant such that the standard Poincaré-Wirtinger inequality
holds. That is, A0 is the smallest positive constant such that∥∥∥∥∥w −

 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6 A0‖∇w‖2
L2(BR0

),

holds for any w ∈ H1(BR0). In our case, A0 satisfies the upper bound:

A0 6
diam(BR0)

2

π2
=

4R2
0

π2
,

see [2, Theorem 3.2] (see also [13]). In particular, this gives

ε2 π
2M2(J)

32NR2
0

∥∥∥∥∥w −
 
BR0

w

∥∥∥∥∥
2

L2(BR0
)

6 II .

Now, since w = αw0 + h, since w0 ≡ 1 on BR0 and since h is integral free (by (4.13)) we have

II > ε2 CN,J
R2

0

‖h‖2
L2(BR0

),(4.15)

where CN,J is given by (3.3). We are now left to estimate I. For it, we rewrite I as follows

(4.16) I = Eε,BR0
(w0)−

ˆ
BR0

[
Gε(w(x))−Gε(w0(x))

]
dx.

To estimate the last integral, we split it into two parts, I1 and I2, where

I1 := −
ˆ
BR0

[
Gε(w0+(α−1)w0+h)−Gε(w0+(α−1)w0)

]
,

I2 := −
ˆ
BR0

[
Gε(w0+(α−1)w0)−Gε(w0)

]
.

Let us first estimate I2. Using (4.11), (4.12) and (4.14) we have in particular that |1−α| < τ0.
This, together with (4.10), gives

I2 = −
ˆ
BR0

[
Gε(w0+(α−1)w0)−Gε(w0)

]
=
κ

2
ε2|BR0|(α− 1)2.

Therefore, recalling (4.16), we get

(4.17) I = Eε,BR0
(w0) +

κ

2
ε2|BR0|(α− 1)2 + I1.

Let us now estimate I1. On account of (4.14), we may write

α = 1− η for some |η| 6 δ0

|BR0|1/2
.(4.18)

Then, a standard change of variables yields

I1 = −
ˆ
BR0

ˆ α+h(x)

α

gε(τ)dτdx = ε2

ˆ
BR0

ˆ 1−η+h(x)

1−η
f̃(1−τ)dτdx = −ε2

ˆ
BR0

ˆ −h(x)

0

f̃(τ+η)dτdx.
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Now, we set

Σ :=

{
x ∈ BR0 ;−h(x) >

θ

2

}
,

and we decompose I1 as

I1 = −ε2

(ˆ
Σ

ˆ −h(x)

0

f̃(τ + η)dτdx+

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx

)
.(4.19)

We will estimate these two integrals separately. In view of (4.11) and (4.18), we have that
|η| 6 θ/4. In turn, this implies that

−h(x) + |η| 6 3θ

4
for any x ∈ BR0 \ Σ.

Since, by construction, f̃ is linear in (−∞, 3θ/4], we get
ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx = −κ
ˆ
BR0
\Σ

(ˆ η−h(x)

0

τdτ −
ˆ η

0

τdτ

)
dx

= −κ
2

ˆ
BR0
\Σ
h2(x)dx+ κη

ˆ
BR0
\Σ
h(x)dx

= −κ
2

ˆ
BR0
\Σ
h2(x)dx− κη

ˆ
Σ

h(x)dx,

where, in the last equality, we have used the fact that h is integral free, that is:ˆ
BR0
\Σ
h(x)dx+

ˆ
Σ

h(x)dx = 0.

Using now the Cauchy-Schwarz inequality, we getˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+ κ|η|

√
|Σ|‖h‖L2(Σ).

By the Bienaymé-Chebyshev inequality, we have

|Σ| 6
(

2

θ

)2

‖h‖2
L2(Σ),(4.20)

and thus

(4.21)

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+

2κ|η|
θ
‖h‖2

L2(Σ).

Thanks to (4.11) and (4.18), (4.21) reduces to

(4.22)

ˆ
BR0
\Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 −κ
2

ˆ
BR0
\Σ
h2(x)dx+

2C0

θ
‖h‖2

L2(Σ).

Let us now estimate the first integral on the right-hand side of (4.19). For it, we observe that

τ + η > −|η| > −δ0√
|BR0|

> −C0

κ
for any x ∈ Σ and any τ ∈ (0,−h(x)).
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Recalling (4.4), we then obtain

sup
x∈Σ

sup
τ∈(0,−h(x))

f̃(τ + η) 6 sup
s>−C0

κ

f̃(s) = max
s∈[0,1]

f̃(s) = C0.

This, together with the Cauchy-Schwarz inequality, gives
ˆ

Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6 C0

ˆ
Σ

|h(x)|dx 6 C0

√
|Σ|‖h‖L2(Σ),

Using the Bienaymé-Chebyshev inequality (4.20), we finally get

(4.23)

ˆ
Σ

ˆ −h(x)

0

f̃(τ + η)dτdx 6
2C0

θ
‖h‖2

L2(Σ).

Collecting (4.15), (4.17), (4.22) and (4.23), we obtain that

Eε,BR0
(w)− Eε,BR0

(w0)

> ε2

(
κ

2
|BR0|(α− 1)2 +

κ

2
‖h‖2

L2(BR0
\Σ) −

4C0

θ
‖h‖2

L2(Σ) +
CN,J
R2

0

‖h‖2
L2(BR0

)

)
,

for all 0 < ε < ε1 and all w ∈ L2(BR0) with ‖w − w0‖L2(BR0
) 6 δ0. Recalling that 0 < R0 6

R∗0(J, f) and using (3.4), we have CN,J/R
2
0 > 5C0/θ. This, together with the above inequality,

yields

Eε,BR0
(w)− Eε,BR0

(w0) > ε2

(
κ

2
|BR0|(α− 1)2 +

C0

θ
‖h‖2

L2(BR0
)

)
.

Therefore, letting

κ0 := inf

{
κ

2
,
C0

θ

}
,

and recalling (4.13), we obtain

Eε,BR0
(w)− Eε,BR0

(w0) > ε2κ0‖w − w0‖2
L2(BR0

),

for all 0 < ε < ε1 and all w ∈ L2(BR0) with ‖w − w0‖L2(BR0
) 6 δ0. �

Remark 4.4. Note that the proof of Proposition 4.3 relies only on elementary L2-estimates
and on a Poincaré-type inequality. Remarkably, this allows to adapt straightforwardly our
arguments to the local analogue of Eε,BR0

.

Using Proposition 4.3, we now prove the following

Proposition 4.5. Let N > 2, and let Eε,R be the energy functional defined by (4.9) with
Ω = BR \Kε. Then, there exists C∗ > 0, 0 < δ0 < |BR0|1/2 and 0 < εδ0 < 1 such that, for any
0 < ε < εδ0 and any w ∈ L2(BR \Kε) with ‖w − w0‖L2(BR\Kε) = δ0, it holds that

Eε,R(w)− Eε,R(w0) > C∗ε2.

Proof. Let us first notice that our assumptions on f̃ imply that there is some κ1 > 0 such that

−G(t) > κ1t
2 for every t ∈ R.(4.24)
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Let us now compute the energy of w0. Since supp(Jε) = Bε/2 and R1−R0 > ε, a straightforward
calculation yields

Eε,R(w0) = Eε,BR0
(w0)+

1

2

ˆ
Fε

ˆ
BR0

Jε(x− y)dxdy.

In addition, elementary computations yield

1

2

ˆ
Fε

ˆ
BR0

Jε(x− y)dxdy =
1

2

ˆ
Fε∩BR0+

ε
2

(ˆ
BR0

Jε(x− y)dx

)
dy 6

|Fε ∩BR0+ ε
2
|

2
6 CεN+1,

for come constant C = C(N) > 0. As a consequence, we obtain

Eε,R(w0) 6 Eε,BR0
(w0) + CεN+1.(4.25)

Next, developing Eε,R(w), we get

Eε,R(w) = Eε,BR0
(w) + Eε,Fε(w) + Eε,BR\BR1

(w)

+
1

2

ˆ
Fε

(ˆ
BR0

+

ˆ
BR\BR1

)
Jε(x− y)(w(x)− w(y))2dxdy.

Using (4.24) we obtain that Eε,Ω(w) > κ1ε
2‖w‖2

L2(Ω) for any domain Ω ⊂ BR\Kε. In particular,

since w0 = 0 in Fε ∪BR \BR1 we have

Eε,BR\Kε(w) > Eε,BR0
(w) + κ1ε

2‖w − w0‖2
L2(Fε∪BR\BR1

).(4.26)

Gluing together (4.25) and (4.26), we obtain

Eε,R(w)− Eε,R(w0) > Eε,BR0
(w)− Eε,BR0

(w0) + κ1ε
2‖w − w0‖2

L2(Fε∪BR\BR1
) − CεN+1.(4.27)

Now, by Proposition 4.3, there exists κ0 > 0, 0 < δ0 < |BR0|1/2 and ε1 > 0 such that, for any
0 < ε < ε1 and any w ∈ L2(BR0) with ‖w − w0‖L2(BR0

) 6 δ0, we have

(4.28) Eε,BR0
(w)− Eε,BR0

(w0) > κ0ε
2‖w − w0‖2

L2(BR0
).

Letting κ̄ := min{κ1, κ0} and combining (4.28) and (4.27), we obtain

Eε,R(w)− Eε,R(w0) > ε2κ̄‖w − w0‖2
L2(BR\Kε) − Cε

N+1 = ε2
(
κ̄δ2

0 − CεN−1
)
,(4.29)

for all 0 < ε < ε1 and all w ∈ L2(BR \Kε) with ‖w − w0‖L2(BR\Kε) = δ0. The conclusion now
follows from (4.29) and the choice

C∗ =
κ̄δ2

0

2
and εδ0 := min

{
ε1,

(
κ̄δ2

0

2C

) 1
N−1

}
.

The proof is thereby complete. �

We are now in position to construct a positive solution to (4.8).

Proposition 4.6. Let N > 2 and let (J, f) be a pair satisfying (1.7) and (1.8). Let (Kε)0<ε<1

be the family of obstacles associated to the pair (J, f) (as defined in Section 3). Let f̃ be

the extension of f given by (4.3) and let f̃ε and Jε be respectively given by (4.7) and (3.5).

Then, there exists ε̄ > 0 such that, for all 0 < ε < ε̄, there is a function vε,R ∈ C(BR \Kε)

satisfying (4.8) and 0 < vε,R < 1 in BR \Kε.



19

Proof. Let w0 := 1BR0
and let 0 < δ0 < |BR0|1/2 and 0 < εδ0 < 1 be quantities constructed in

the proof of Proposition 4.5, namely such that

Eε,R(w)− Eε,R(w0) > C∗ε2,

holds for some constant C∗ > 0 and for any 0 < ε < εδ0 and any w ∈ L2(BR \ Kε) with
‖w−w0‖L2(BR\Kε) = δ0. Let us fix 0 < ε < ε̄ := min{ε0, εδ0} where ε0 is as in Proposition 3.1.
Further, we denote by Bδ0(w0) the following set:

Bδ0(w0) :=
{
w ∈ L2(BR \Kε) ; ‖w − w0‖L2(BR\Kε) 6 δ0

}
,

and we define

m := inf
w∈Bδ0 (w0)

Eε,R(w).

Note that m is well-defined since Eε,R is a non-negative continuous functional in L2(BR \Kε).
Using Lemma 4.5, we will show that there is a local minimum vε,R of the energy Eε,R in the

ball Bδ0(w0) which is also a solution to (4.8). However, it must be noted that Eε,R lacks of strong
compactness properties and passing to the limit along a subsequence is not straightforward.
So let us first show that m is achieved in Bδ0(w0).

Take a minimising sequence (vj)j∈N ⊂ Bδ0(w0). Notice that |w| ∈ Bδ0(w0) for all w ∈ Bδ0(w0).
Moreover, a straightforward computation shows that Eε,R(|vj|) 6 Eε,R(vj) for all j > 0. Thus,
we may assume that the vj’s are a.e. non-negative for every j > 0. By (4.24), we have
−Gε(t) > κ1ε

2t2 for all t ∈ R. In particular, Eε,R(vj) > κ1ε
2‖vj‖2

L2(BR\Kε) for all j > 0.

Therefore (vj)j∈N is bounded in L2(BR \Kε). Whence, up to extract a subsequence, we obtain
that vj converges weakly in L2(BR \Kε) to some vε,R ∈ Bδ0(w0) (notice that Bδ0(w0) is closed
in L2(BR \Kε)). Let us check that vε,R is indeed a minimiser of Eε,R in Bδ0(w0). To this end,
we shall introduce the following notations

Jε(x) :=

ˆ
RN\Kε

Jε(x− y)dy and Hε(x, s) :=

ˆ s

0

(
Jε(x)τ − gε(τ)

)
dτ.

Since 0 < ε < ε0, by Proposition 3.1, we have

max
[0,1]

f ′ε < inf
RN\Kε

Jε.

Therefore, from the construction of gε (remember (4.4)), we have

g′ε(s) = ε2f̃ ′(1− s) 6 max
R

f̃ ′ε 6 max
[0,1]

f ′ε < inf
RN\Kε

Jε for any s ∈ R.(4.30)

Whence, Hε(x, ·) is convex for each fixed x. Developing the terms involved in the definition of
Eε,R we arrive at

Eε,R(w) = −1

2

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)w(x)w(y)dxdy +

ˆ
BR\Kε

Hε(x,w(x))dx.

Using the weak convergence of (vj)j∈N towards vε,R and the dominated convergence theorem,
we can pass to the limit in the double integral and get that

lim
j→+∞

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)vj(x)vj(y)dxdy =

ˆ
BR\Kε

ˆ
BR\Kε

Jε(x− y)vε,R(x)vε,R(y)dxdy.
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Moreover, since Hε(x, ·) is convex, we haveˆ
BR\Kε

[
Hε(x, vj(x))−Hε(x, vε,R(x))

]
dx >

ˆ
BR\Kε

∂sHε(x, vε,R(x))(vj(x)− vε,R(x))dx.

From the definition of Hε, gε and from (4.30) a quick computation shows that |∂sHε(x, s)| =
|Jε(x)s − gε(s)| 6 A|s| for all s ∈ R and some constant A > 0. Since vε,R ∈ L2(BR \ Kε),
it follows that ∂sHε(·, vε,R(·)) ∈ L2(BR \ Kε). Therefore, using the previous two displayed
formulas and the weak convergence of vj towards vε,R, we obtain limj→∞[Eε,R(vj)−Eε,R(vε,R)] >
0. Since, on the other hand, limj→∞ Eε,R(vj) = m 6 Eε,R(vε,R), we finally obtain

Eε,R(vε,R) = m = inf
w∈Bδ0 (w0)

Eε,R(w) 6 Eε,R(w0).

Now, thanks to Proposition 4.5, we deduce that vε,R ∈ Bδ0(w0) is a local minimiser and, as

such, vε,R solves (4.8) almost everywhere in BR \Kε.

Let us now check that vε,R is a continuous solution to (4.8) in the whole set BR \Kε. Since
Jε ∈ L2(RN) and vε,R ∈ L2(BR \Kε), it follows from the equation (4.8) satisfied by vε,R that
Nε(·, vε,R(·)) ∈ L∞(BR \Kε) where Nε(x, s) := Jε(x)s− gε(s). By (4.30), the map Nε(x, ·) is
bijective and thus vε,R ∈ L∞(BR \Kε). Using now Lemma 2.2 and (4.30) we may further infer

that vε,R is continuous in BR \Kε.
To complete the proof it remains to show that 0 < vε,R < 1. Let us first prove that vε,R < 1.

Suppose, by contradiction, that ‖vε,R‖∞ > 1. Then, by continuity of vε,R, there must be a

point x̄ ∈ BR \Kε at which vε,R attains its maximum, i.e. vε,R(x̄) = ‖vε,R‖∞. Using now the
equation satisfied by vε,R, we have

0 >
ˆ
BR\Kε

Jε(x̄− y)(vε,R(y)− vε,R(x̄))dy = cε(x̄)vε,R(x̄)− gε(vε,R(x̄)) > 0.

Thus, since supp(Jε) = Bε/2, we have vε,R(y) = vε,R(x̄) for any y ∈ Bε/2(x̄) ∩ BR \Kε. Note

that Bε/2(x̄) ∩ BR \Kε is nonempty whence we may iterate this reasoning over again and
obtain that vε,R ≡ vε,R(x̄) > 1. Now choose x0 ∈ Ωε such that cε(x0) > 0. Then, evaluating
(4.8) at x0, one obtains

0 =

ˆ
BR\Kε

Jε(x0 − y)(vε,R(y)− vε,R(x0))dy = cε(x0)vε,R(x0)− gε(vε,R(x0)) > cε(x0) > 0,

which is a contradiction.
Therefore vε,R < 1. Since, by construction, we have that vε,R > 0, it remains to check that

vε,R cannot cancel. Assume, by contradiction, that this is the case, namely that there exists a

point x0 ∈ BR \Kε such that vε,R(x0) = 0. Then, by (4.8), we have thatˆ
BR\Kε

Jε(x0 − y)(vε,R(y)− vε,R(x0))dy = 0,

and, as above, this implies that vε,R ≡ 0. However, since vε,R ∈ Bδ0(w0) and δ0 < |BR0|1/2, we
have δ0 > ‖vε,R−w0‖L2(BR\Kε) = ‖w0‖L2(BR\Kε) = |BR0|1/2 > δ0, which is a contradiction. The
proof of Proposition 4.6 is thereby complete. �

From now on (and until the end of Section 4), ε will be fixed and taken so small that
0 < ε < ε̄, where ε̄ is as defined in Proposition 4.6.
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4.2. An extension procedure. Let us now complete the proof of Lemma 4.1. We will
modify the function vε,R constructed above in order to get a continuous super-solution to
(4.1) satisfying (4.2). Let us briefly explain our strategy. Since, by construction, vε,R satisfies
(4.8), the function uε,R = 1 − vε,R verifies (4.6) and, as already noted above, extending the
function uε,R by 1 outside BR, we obtain a (discontinuous) super-solution to (4.1) that satisfies
(4.2). The aim of this section is to find the right extension of uε,R that provides the desired
super-solution.

To do so, we first introduce some useful notations. Given R > 0 and x ∈ RN , we let PR(x)
be the projection of x to the ball BR, that is

PR(x) ∈ BR and |x− PR(x)| = dist(x,BR) = min
y∈BR

|x− y|.

For σ > 0, we let uε,σ ∈ C(RN \Kε) be the following function

(4.31) uε,σ(x) := min
{
uε,R(PR(x)) + σ−1 |x− PR(x)|, 1

}
.

We shall see that, for well-chosen σ, the function uε,σ will satisfy

(4.32) Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 0 for all x ∈ RN \Kε,

where Lε is the nonlocal operator given by

Lεw(x) :=

ˆ
RN\Kε

Jε(x− y)(w(y)− w(x))dy.(4.33)

Namely, we claim

Claim 4.7. There exists σε > 0 such that uε,σ satisfies (4.32) for all 0 < σ < σε.

Observe that by proving Claim 4.7, we end the proof of Lemma 4.1. Indeed, by construction,

we have f 6 f̃ so that uε,σ trivially satisfies (4.1). As for condition (4.2) it is also satisfied (by
construction of uε,σ) provided that R is taken sufficiently large.

Proof. Define AR := RN \BR. As in the previous section, we set

Jε(x) =

ˆ
RN\Kε

J(x− y)dy and cε(x) =

ˆ
RN\BR

Jε(x− y)dy.

Then, in view of (4.31), we have

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6
ˆ
BR\Kε

Jε(x− y)(uε,R(y)− uε,σ(x))dy

+ cε(x)(1− uε,σ(x)) + f̃(uε,σ(x)).(4.34)

Since uε,σ(x) = uε,R(x) for all x ∈ BR \Kε, using (4.6) we easily get that

(4.35) Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 0 for x ∈ BR \Kε.

To complete the proof, it remains to show that uε,σ satisfies (4.32) in the set AR. We shall
consider two sub-domains, Π+ and Π−, defined as follows

Π− := AR ∩
{
uε,σ < 1

}
,

Π+ := AR ∩
{
uε,σ = 1

}
.
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Note that since uε,σ(x) = 1 for all x ∈ Π+, it follows directly from (4.34) that

(4.36) Lεuε,σ(x) + f̃ε(uε,σ(x)) =

ˆ
RN\Kε

Jε(x− y)(uε,R(y)− 1)dy 6 0 for any x ∈ Π+.

Thus, to conclude the proof we need only to check that (4.36) still holds in Π−. To this end,
for any x ∈ Π− and any s ∈ [0, 1], we set

gR(x, s) := Jε(PR(x))s− f̃ε(s).(4.37)

Now, since 0 < ε < ε0, it follows from Proposition 3.1 that there exists a γ > 0 such that

(4.38) inf
z∈RN\Kε

min
s∈[0,1]

∂sgR(z, s) > γ.

Next, since J ∈ W 1,1(RN) (by (1.6)) we may set

(4.39) σε := εγ ×
(ˆ

RN
|∇J(z)|dz

)−1

> 0.

Let us also set

s(x) := uε,R(PR(x)) and τ(x) := dist(x,BR) = |x− PR(x)| > 0.

Then, uε,σ rewrites uε,σ(x) = s(x) + σ−1τ(x) and

(4.40) 0 < s(x) + σ−1τ(x) < 1 for any x ∈ Π−.

On the other hand, in view of (4.31) and by definition of Lε, we can rewrite Lεuε,σ(x) as

Lεuε,σ(x) = Lεuε,σ(PR(x)) +

ˆ
RN\Kε

[Jε(x− y)− Jε(PR(x)− y)](uε,σ(y)− uε,σ(x))dy

− τ(x)

σ

ˆ
RN\Kε

Jε(PR(x)− y)dy.

Since PR(x) ∈ BR \Kε, since J ∈ W 1,1(RN) and since J > 0 a.e. in RN , by (4.35) we obtain

Lεuε,σ(x) 6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

ˆ
RN\Kε

|Jε(x− y)− Jε(PR(x)− y)| dy.

6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

ˆ
RN
|Jε(x− y)− Jε(PR(x)− y)| dy.

6 −τ(x)

σ
Jε(PR(x))− f̃ε(s(x)) +

τ(x)

ε

ˆ
RN
|∇J(z)|dz.

Therefore, we get

Lεuε,σ(x) + f̃ε(s(x) + σ−1τ(x)) 6
(
f̃ε(s(x) + σ−1τ(x))− f̃ε(s(x))

)
− τ(x)

σ
Jε(PR(x)) +

τ(x)

ε

ˆ
RN
|∇J(z)|dz.

By adding and subtracting s(x)Jε(PR(x)) on the right hand side of the above inequality and
recalling (4.37), we obtain

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6
(
gR (x, s(x))− gR

(
x, s(x) + σ−1τ(x)

))
+ γσ−1

ε τ(x).
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where we have used (4.39). By (4.38), (4.40) and the mean value theorem, we deduce that
there exists some

ξ ∈
[
s(x), s(x) + σ−1τ(x)

]
⊂ [0, 1],

such that

gR (x, s(x))− gR
(
x, s(x) + σ−1τ(x)

)
= −∂sgR(x, ξ)σ−1τ(x) 6 −γσ−1τ(x).

Therefore, for every 0 < σ < σε, we obtain that

Lεuε,σ(x) + f̃ε(uε,σ(x)) 6 γτ(x)

(
1

σε
− 1

σ

)
< 0 for any x ∈ Π−.

The proof of Claim 4.7 is thereby complete. �

Remark 4.8. An analogue version of Lemma 4.1 holds when Jε(x−y) is replaced by J̃ε(dg(x, y))

where J̃ε is a locally integrable function such that J̃ε(|z|) = Jε(z) and dg(x, y) is the geodesic

distance on RN \Kε. Indeed, the only places where the structure of the radial kernel Jε came
into place is when we used the Poincaré-type inequality [14, Theorem 1.1] in Proposition 4.5,
when we asserted that the solutions to (4.8) satisfying max[0,1] f

′
ε < infBR\Kε Jε are continuous

and when we made our extension procedure. But the Poincaré inequality was only needed

in the ball BR0 and, by convexity, it trivially holds that Jε(x − y) = J̃ε(dg(x, y)) for any
(x, y) ∈ BR0 × BR0 . Similarly, the extension procedure required only to evaluate the new
function on the annulus BR+σ \BR but, since R−R1 > 0 is large and ε is small, it still holds

that Jε(x − y) = J̃ε(dg(x, y)) for any x ∈ BR+σ \ BR and any y ∈ RN \ Kε. Moreover, as
already noted in Remark 2.5, condition (3.11) still implies the continuity of solutions to the
corresponding auxiliary problem:ˆ

BR\Kε
J̃ε(dg(x, y))(vε,R(y)− vε,R(x))dy − c̃ε(x)vε,R + gε(vε,R(x)) = 0 for x ∈ BR \Kε,

where, by analogy, we have set

c̃ε(x) :=

ˆ
RN\BR

J̃ε(dg(x, y))dy.

In fact, the only place where some care should be taken is when justifying that ifˆ
BR\Kε

J̃ε(dg(x̄, y))(vε,R(y)− vε,R(x̄))dy = 0,(4.41)

where x̄ ∈ BR \Kε is a point at which vε,R reaches an extremum, then it holds that vε,R(y) ≡
vε,R(x̄) for any y ∈ BR \Kε (which is needed to establish the analogue of Proposition 4.6). But,
fortunately, the geometry of Kε is simple enough to ensure that this is still the case. Indeed,
(4.41) implies that vε,R(y) ≡ vε,R(x̄) for any y ∈ Π1(x̄) := {z ∈ BR \Kε; dg(x̄, z) < ε/2}. By
iteration, one finds that vε,R(y) ≡ vε,R(x̄) for any y ∈ Πj(x̄) and any j > 1, where Πj(x̄) is
given by

Πj+1(x̄) :=
⋃

y∈Πj(x̄)

{
z ∈ BR \Kε; dg(y, z) < ε/2

}
, for any j > 1.

Then, one can show that, for some j0 > 1 (independent of x̄), it holds that Bε/4(x̄)∩BR \Kε ⊂
Πj0(x̄). Whence, iterating the same reasoning over again, one gets that vε,R(y) ≡ vε,R(x̄) for

any y ∈ Bkε/4(x̄) ∩BR \Kε and any k ∈ N; which then gives the desired result.
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5. Construction of continuous global solutions

In this final section we construct a positive nonconstant solution to (1.9). Our goal will be
to find an ordered pair of global continuous sub- and super-solution. That is, given 0 < ε < ε∗

(where ε∗ has the same meaning as in Lemma 4.1), we aim to construct two functions, uε and
uε, such that 

Lεuε + fε(uε) 6 0 in RN \Kε,

Lεuε + fε(uε) > 0 in RN \Kε,

0 6 uε 6 uε 6 1 in RN \Kε,

(where Lε is as in (4.33)) and which further satisfy

lim
x1→+∞

uε(x) = 1 and lim
|x|→+∞

uε(x) = 1.(5.1)

Here, x1 = x · e1 where e1 := (1, 0, · · · , 0) ∈ SN−1. Then, by Lemmata 2.1 and 2.2 we
automatically obtain the existence of a continuous solution uε to

Lεuε + fε(uε) = 0 in RN \Kε,(5.2)

satisfying 0 6 uε 6 uε 6 uε 6 1. This, together with (5.1), yields a continuous solution to (5.2)
satisfying 0 < uε < 1 and uε(x)→ 1 as x1 →∞. In particular, we have supx∈RN\Kε uε(x) = 1.

Since (1.6), (1.7) are satisfied, uε is continuous, Jε is compactly supported and Jε ∈ L2(RN)
(by (1.8)), we may apply Lemma 2.4 and we obtain that lim|x|→+∞ uε(x) = 1, which proves
that uε satisfies the requirements of Theorem 1.2 and thus Theorem 1.1 is proved.

Therefore, to complete the proof of Theorem 1.2, we need only to prove the following lemma.

Lemma 5.1. Let (J, f) be a pair satisfying (1.7) and (1.8). Let (Kε)0<ε<1 be the family of
obstacles associated to the pair (J, f) (as defined in Section 3). Let (Jε, fε) be as in (3.5) and
let ε∗ > 0 be as in Lemma 4.1. Then, there exists r0 > 0 such that, for all 0 < ε < ε∗, there is

(i) a continuous global sub-solution uε to (5.2) satisfying uε ≡ 0 in {x1 6 r0} and uε(x)→
1 as x1 →∞,

(ii) a continuous global nonconstant super-solution uε to (5.2) satisfying uε ≡ 1 in RN \Br0

and 0 < uε 6 1.

In particular, 0 6 uε < uε 6 1.

Proof. By Lemma 4.1, we know that there exists some R∗ > 0 and some 0 < ε∗ < 1 such
that, for all 0 < ε < ε∗, there is a nonconstant super-solution uε ∈ C(RN \Kε) to (5.2) that
satisfies uε ≡ 1 in RN \ BR∗ . So, we are left to prove that there exists a sub-solution uε to
(5.2) satisfying (i) and such that uε 6 uε.

To do so, let us extend f outside [0, 1] by f ′(0)s when s > 0 and f ′(1)(s− 1) for s > 1. For
simplicity, we still denote by f this extension. Now, we take δ ∈ (0, 1) and we let fδ be a C1

function defined in R such that

fδ 6 f in R, and fδ(s) = f(s) for s > θ,

fδ has only one zero, θδ = θ, in (−δ, 1),

fδ (−δ) = 0, fδ (1) = 0,

f ′δ(s) < 1 for any s ∈ [−δ, 1] and f ′δ (−δ) , f ′δ (1) < 0,ˆ 1

−δ
fδ(s)ds > 0.
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Since f ∈ C1(R) satisfies (1.7) such a function fδ ∈ C1
(
R
)

always exists provided that δ is
taken sufficiently small, say if 0 < δ < δ1 for some small δ1 > 0.

Let fε,δ(s) := ε2fδ(s) and let LRN be the operator given by

LRNu(x) :=

ˆ
RN
Jε(x− y)(u(y)− u(x))dy.(5.3)

Since Jε is radially symmetric (because J is), using the results obtained in [1, 8, 9, 15], we
know that, for any 0 < ε < 1, there exists an increasing function φε,δ ∈ C1(R) and a number
cε,δ > 0 such that the function ϕε,δ(x) := φε,δ(x · e1) satisfies{

LRNϕε,δ(x) + fε,δ(ϕε,δ(x)) = cε,δφ
′
ε,δ(x1) > 0 for all x ∈ RN ,

ϕε,δ(−∞) = −δ, ϕε,δ(∞) = 1 and ϕε,δ = 0 in He1 ,
(5.4)

where He1 is the hyperplane He1 := {x1 = 0}. Now, for any r0 > 0, we let ϕε,δ,r0 be the
function defined by

ϕε,δ,r0(x) := ϕε,δ(x− r0).

By construction, for every r0 > 0, we have

LRNϕε,δ,r0 + fε(ϕε,δ,r0) > LRNϕε,δ,r0 + fε,δ(ϕε,δ,r0) > 0 in RN ,(5.5)

Now, we set

uε(x) := max
{

0, ϕε,δ,r0(x)
}

and H∗ :=
{
x ∈ RN ; x1 > r0

}
.

Note that, for all 0 < ε < ε∗, it holds that Kε ⊂ RN \H∗ provided that r0 is chosen sufficiently
large. Let us now prove that, for r0 large enough, uε is a sub-solution to (5.2).

First, if x ∈ RN \ (K ∪H∗), then uε(x) = 0 and

Lεuε(x) + fε(uε(x)) =

ˆ
RN\Kε

Jε(x− y)uε(y)dy > 0.(5.6)

Next, if x ∈ H∗, then, since Jε is compactly supported, we have⋃
x∈H∗

(
x+ supp(Jε)

)
⊂ RN \Kε,

provided that r0 is chosen sufficiently large. From this and (5.5), we deduce that

Lεuε(x) + fε(uε(x)) =

ˆ
RN\Kε

Jε(x− y)(uε(y)− ϕε,δ,r0(x))dy + fε(ϕε,δ,r0(x))

>
ˆ
RN\Kε

Jε(x− y)(ϕε,δ,r0(y)− ϕε,δ,r0(x))dy + fε(ϕε,δ,r0(x))

= LRNϕε,δ,r0(x) + fε(ϕε,δ,r0(x)) > 0.

Together with (5.6), we obtain that uε is a global sub-solution to (5.2) which, by (5.4), satisfies
uε(x)→ 1 as x1 →∞ and uε(x) = 0 if x1 6 r0. By increasing r0 to R∗ (if necessary) we then
achieve uε < uε when 0 < ε < ε∗. The proof of Lemma 5.1 is thereby complete. �

Remark 5.2. Observe that, on account of Remarks 2.5, 3.2 and 4.8, the same proof as above
yields an analogous result with Lg in place of L. To see this, it suffices to notice that our
arguments are essentially focused on what is happening far away from K and, since the kernel
we consider is compactly supported, the operator Lg will then coincide with L (possibly up to
take R sufficiently large). In like manner, as already mentioned in Remark 2.5, the fact that
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“supRN\Kε u = 1” implies that “lim|x|→∞ u(x) = 1” still holds with Lg in place of L since, here
as well, the proof relies only on estimates of the behaviour of u far away from Kε.

Appendix

In this appendix, we prove Lemma 2.1. Our strategy closely follows [7, 10] and relies on the
well-known monotone iterative method. Before doing so, we first state a preliminary lemma.

Lemma 5.3. Let K ⊂ RN be a compact set and assume that J satisfies (1.6). Let k > 0 and
let w ∈ C(RN \K) be such that

Lw − kw > 0 in RN \K,(5.7)

and that

lim sup
|x|→∞

w(x) 6 0.(5.8)

Then,

w 6 0 in RN \K.

Proof. Suppose, by contradiction, that supRN\K w > 0. Then, by assumption (5.8), there exists
a number r > 0 with K ⊂ Br and a sequence (xj)j>0 ⊂ Br \K such that

lim
j>0

w(xj) = sup
Br\K

w = sup
RN\K

w > 0.(5.9)

Since (xj)j>0 is bounded, up to extraction of a subsequence, there exists a point x̄ ∈ Br \K
such that xj → x̄ as j →∞. Moreover, since w is continuous and (5.7) is satisfied everywhere
in RN \K, it makes sense to evaluate (5.7) at xj for any j > 0. That is, we haveˆ

RN\K
J(xj − y)(w(y)− w(xj))dy > kw(xj) for any j > 0.

But, since k > 0, using (5.9) and the dominated convergence theorem, we obtain

0 >
ˆ
RN\K

J(x̄− y)

(
w(y)− sup

RN\K
w

)
dy > k sup

RN\K
w > 0,

which is a contradiction. The proof is thereby complete. �

We are now in position to prove Lemma 2.1.

Proof of Lemma 2.1. Let us first observe that, from the assumptions made on J , the operator
L is linear and continuous on (C0(RN \K), ‖·‖∞), where

C0(RN \K) :=

{
w ∈ C(RN \K); lim

|x|→∞
w(x) = 0

}
.

Indeed, this is because, given any w ∈ C0(RN \K), we have

Lw(x) =

ˆ
RN
J(y)

(
1x−RN\K(x)w(x− y)

)
dy − J (x)w(x),
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where J is as in (2.4), and, by the dominated convergence theorem, we have that Lw(x)→ 0
as |x| → ∞. The continuity of Lw is a mere consequence of the continuity of translations in
L1(RN) and of the continuity of w, as is easily seen from the (trivial) inequality

|Lw(x1)− Lw(x2)| 6 2‖w‖∞
ˆ
RN
|J(y + x1 − x2)− J(y)|dy + |w(x1)− w(x2)|,(5.10)

which holds for any x1, x2 ∈ RN \K. So that L indeed maps C0(RN \K) into itself. Moreover,
the continuity of the operator L follows from the fact that

‖Lw‖∞ 6 2‖w‖∞ for any w ∈ C0(RN \K).

Next, we let k > 0 be a number large enough so that the map s 7→ −ks− f(s) is decreasing
in [0, 1] and that k ∈ ρ(L) where ρ(L) denotes the resolvent of the operator L.

Let u and u be continuous global sub- and super-solutions to

Lu+ f(u) = 0 in RN \K,(5.11)

satisfying (2.1) and (2.2).
We will construct a solution u to (5.11) satisfying u 6 u 6 u using a monotone iterative

scheme. That is, we will construct u as the limit of an appropriate sequence of functions.
The main tool behind our construction is the comparison principle Lemma 5.3. To this end,
we have to make sure that the sequence we construct has the right asymptotic behavior as
|x| → ∞ (as required by Lemma 5.3). With this aim in mind, we first construct an appropriate
sequence of auxiliary functions. Namely, we define v0 ≡ 0 and, for j > 0, we let

Lvj+1(x)− kvj+1(x) = −kvj(x)− f(u(x) + vj(x))− Lu(x) for x ∈ RN \K.(5.12)

Let us check that the vj’s are well-defined elements of C0(RN \ K). Since k ∈ ρ(L) and
0 ≡ v0 ∈ C0(RN \K), v1 is a well-defined element of C0(RN \K) as soon as

f(u(·)) + Lu(·) ∈ C0(RN \K),

which is the case since f(1) = 0, f is continuous, u(x)→ 1 as |x| → ∞ and Lu ∈ C0(RN \K)
(because u ∈ C(RN \K)) and

Lu(x) =

ˆ
RN
J(y)1x−RN\K(y)(u(x− y)− u(x))dy −→

|x|→∞

ˆ
RN
J(y)(1− 1)dy = 0.

Similarly, if, for some j > 0, it holds that vj ∈ C0(RN \ K), then, given that k ∈ ρ(L) and
that Lu ∈ C0(RN \K), vj+1 is a well-defined element of C0(RN \K) as soon as

f(u(·) + vj(·)) ∈ C0(RN \K),

which trivially holds since f is continuous, f(1) = 0 and u(x) → 1, vj(x) → 0 as |x| → ∞.
Whence, by induction, we infer that the vj’s are, indeed, well-defined elements of C0(RN \K).

Let us now define a sequence (uj)j>0 ⊂ C(RN \ K) by setting uj := u + vj. Then, by
construction, we have

Luj+1(x)− kuj+1(x) = −kuj(x)− f(uj(x)) for any x ∈ RN \K and j > 0,(5.13)

and the uj’s satisfy the limit condition

lim
|x|→∞

uj(x) = 1 for any j > 0.(5.14)
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We will show that the desired solution to (5.11) can be obtained as the pointwise limit of
(uj)j>0. Let us proceed step by step. First, when j = 0, we have

Lu1(x)− ku1(x) = −ku0(x)− f(u0(x)) for x ∈ RN \K.(5.15)

We claim that u 6 u1 6 u0 = u in RN \K. Indeed, we have{
L(u1 − u0)(x)− k(u1 − u0) =−Lu0(x)− f(u0(x)),

L(u1 − u)(x)− k(u1 − u)6 f(u(x)) + ku(x)− f(u0(x))− ku0(x).

Since u0 = u is a super-solution to (5.11), u 6 u and s 7→ −ks− f(s) is decreasing, we obtain
that {

L(u1 − u0)(x)− k(u1 − u0) > 0,

L(u1 − u)(x)− k(u1 − u) 6 0.
(5.16)

By construction of u1 (remember (2.1) and (5.14)), we have

lim
|x|→∞

(u1 − u0)(x) = 0 and lim inf
|x|→∞

(u1 − u)(x) > 0.(5.17)

This, together with Lemma 5.3, then gives that u 6 u1 6 u0 = u in RN \K. Similarly, by
(5.13), the function u2 ∈ C(RN \K) solves (5.15) with u2 in place of u1 and u1 in place of u0.
Thus, from (2.1), (5.14) and the monotonicity of s 7→ −ks− f(s), we deduce that (5.16) and
(5.17) still hold with u2 instead of u1 and u1 instead of u0. We may then apply the comparison
principle Lemma 5.3 and we deduce that u 6 u2 6 u1 6 u0 = u in RN \K. By induction, we
infer that the uj’s satisfy the monotonicity relation

u 6 · · · 6 uj+1 6 uj 6 · · · 6 u2 6 u1 6 u0 = u.

Since (uj)j>0 is non-increasing and bounded from below by u, the function

u(x) := lim
j→∞

uj(x) ∈ [u(x), u(x)] ,(5.18)

is well-defined for any x ∈ RN \K. In particular, since 0 6 u 6 u 6 1, it follows from (5.18)
that u ∈ L∞(RN \K). It remains only to check that the function u is a solution to (5.11). For
it, it suffices to let j → ∞ in (5.13) (using the dominated convergence theorem), which then
gives

Lu(x) + f(u(x)) = 0 for any x ∈ RN \K.
The proof is thereby complete. �

Remark 5.4. The same arguments also apply when the operator L is replaced by Lg provided

that J = J̃(|·|) satisfies (1.8), since it still holds that if w(x) → ` ∈ R as |x| → ∞, then
Lgw(x) → 0 as |x| → ∞. Moreover, the continuity of w still implies the continuity of Lgw
but the proof is less obvious since one can no longer rely on the continuity of translations in
L1(RN). For the sake of completeness, we state a last lemma below which justifies why this is
true.

Lemma 5.5. Let K ⊂ RN be a compact set and assume that J̃ satisfies (1.12) and that J̃ is
supported in [0, r] for some r > 0. Let w ∈ C(RN \K). Then, Lgw ∈ C(RN \K).
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Proof. Let x1, x2 ∈ RN \K with x1 fixed and x2 arbitrarily close to x1. For w ∈ C(RN \K),
the analogue of (5.10) is here:

|Lgw(x1)− Lgw(x2)| 6 2‖w‖∞
∣∣∣∣ˆ

RN
[J̃(dg(x1, y))− J̃(dg(x2, y))]dy

∣∣∣∣+ ‖J̃ ‖∞|w(x1)− w(x2)|,

where J̃ is as in (2.7). Since w ∈ C(RN \K), the delicate part is to show that the first term
on the right-hand side vanishes as x2 → x1. This can be done as follows. Let δ > 0 be small
enough so that x2 ∈ Bδ/2(x1) ⊂ Bδ(x1) ⊂ RN \K. Then, we may write∣∣∣∣ˆ

RN\K
[J̃(dg(x1, y))− J̃(dg(x2, y))]dy

∣∣∣∣
6
ˆ
RN\(Bδ(x1)∪K)

|J̃(dg(x1, y))− J̃(dg(x2, y))|dy +

ˆ
Bδ(x1)

|J̃(dg(x1, y))− J̃(dg(x2, y))|dy

=: I1(x1, x2) + I2(x1, x2).

Since dg(xi, y) = |xi − y| for any i ∈ {1, 2} and y ∈ Bδ(x1), we have

I2(x1, x2) 6 ‖J(·+ x1 − x2)− J‖L1(RN ) −→
x2→x1

0.

On the other hand, since J is radially symmetric, supp(J) = Br and J ∈ W 1,1(Br), by [11,

Theorems 1.1 and 2.3], we have that J̃ ∈ W 1,1((0, r), tN−1), J̃ is almost everywhere equal to a

continuous function, J̃ ′ exists almost everywhere andˆ r

0

|J̃ ′(t)|tN−1dt 6 C1

ˆ
Br

|∇J(z)|dz.(5.19)

Therefore, using the fact that dg(xi, y) > |xi − y| > δ/2 for any y ∈ RN \ (Bδ(x1) ∪ K), we
have

I1(x1, x2) 6
ˆ
RN\(Bδ(x1)∪K)

ˆ dg(x1,y)

dg(x2,y)

|J̃ ′(t)|dtdy

6

(
2

δ

)N−1 ˆ
RN\(Bδ(x1)∪K)

ˆ dg(x1,y)

dg(x2,y)

|J̃ ′(t)|tN−1dtdy.(5.20)

Now, since x1, x2 ∈ Bδ/2(x1) ⊂ RN \K and dg(·, ·) is a distance, we have

|dg(x1, y)− dg(x2, y)| 6 dg(x1, x2) = |x1 − x2| −→
x2→x1

0

Therefore, using (5.19), (5.20) and the dominated convergence theorem, we obtain that

I1(x1, x2)→ 0 as x2 → x1.

This completes the proof. �
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