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Abstract

In this work we prove the existence of ground state solutions for the following class

of problems














−∆1u+ (1 + λV (x))
u

|u|
= f(u), x ∈ R

N ,

u ∈ BV (RN ),

where λ > 0, ∆1 denotes the 1−Laplacian operator which is formally defined by

∆1u = div(∇u/|∇u|), V : RN → R is a potential satisfying some conditions and f : R → R

is a subcritical and superlinear nonlinearity. We prove that for λ > 0 large enough there

exists ground-state solutions and, as λ → +∞, such solutions converges to a ground-state

solution of the limit problem in Ω = int(V −1({0})).
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1 Introduction

Let us consider the following class of quasilinear elliptic problem


















−∆1u+ (1 + λV (x))
u

|u|
= f(u), x ∈ R

N ,

u ∈ BV (RN ),

(P )λ

where λ > 0, N ≥ 2, the operator ∆1 is the well known 1−Laplacian operator, whose

formal definition is given by ∆1u = div

(

∇u

|∇u|

)

. On the nonlinearity f we assume the

following conditions:

(f1) f ∈ C(R);

(f2) f(s) = o(1) as s → 0;

(f3) There exist constants c1, c2 > 0 and p ∈ (1, 1∗) such that

|f(s)| ≤ c1 + c2|s|
p−1, ∀s ∈ R;

(f4) There exists θ > 1 such that

0 < θF (s) ≤ f(s)s, for s 6= 0,

where F (s) =
∫ s

0 f(t)dt;

(f5) f is increasing.

The potential V is going to be considered satisfying the following conditions:

(V1) V (x) ≥ 0, ∀x ∈ R
N ;

(V2) There exists M0 > 0 such that |{x ∈ R
N ; V (x) ≤ M0}| < +∞, where |A| denotes

the Lebesgue measure of a mensurable set A ⊂ R
N .

(V3) Ω = int(V −1({0})) 6= ∅.

Several recent studies have focused on the nonlinear Schrödinger equation with deep

potential well

−∆u+ (λa(x) + b(x))u = |u|p−2u in R
N , (1.1)
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where a(x), b(x) are suitable continuous functions and p ∈ (2, 2N
N−2 ) if N ≥ 3; p ∈ (1,∞)

if N = 1, 2. In [4], for b(x) = 1, Bartsch and Wang proved the existence of a least energy

solution for λ large enough and that the sequence of solutions converges strongly to a least

energy solution for a problem in a bounded domain. They also showed the existence of at

least catΩ positive solutions for large λ, where Ω = int(a−1(0)), and p is close to the critical

exponent. In [9], Clapp and Ding study the existence of nodal solutions that change sign

exactly once, considering the critical growth case. We also refer to [5] for nonconstant

b(x) > 0, where the authors prove the existence of k solutions that may change sign for

any k and λ large enough. For other results related to Schrödinger equations with deep

potential well, we may refer the readers to [10,19,18,21].

Motivated by the above references our intention is to prove that some of these results

hold for problem (P )λ. The main difficulties arise mainly because of the following facts:

• The lack of smoothness on the energy functional associated to (P )λ;

• The lack of reflexiveness on BV (R), which is the functional space we are going to

work with;

• The difficulty in adapting well known technical results and estimates to our

framework, taking into account the way in which we are going to define the sense of

solutions.

We would like point out that there is in the literature few papers involving the 1-

Laplacian operator in the whole R
N . In fact the authors know only the papers due to

Alves and Pimenta [1] and Figueiredo and Pimenta [13, 14]. In [1], Alves and Pimenta

have studied the existence and concentration of solution for the following class of problem



















−ǫ∆1u+ V (x)
u

|u|
= f(u) in R

N ,

u ∈ BV (RN ),

where ǫ > 0 and V, f are continuous functions that satisfy some technical conditions.

Actually f has a subcritical growth and V verifies the condition

lim inf
|z|→∞

V (z) > inf
z∈RN

V (z) = V0 > 0.
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In [13], Figueiredo and Pimenta has obtained the existence of radially symmetric solutions

when V = 1, by working with the space of radially symmetric BV functions, which is

proved to be embedded in Lq(RN ), for all q ∈ (1, 1∗). In [14] the same authors shown

the existence of ground-state bounded variation solutions for a problem involving the

1−Laplacian operator and vanishing potentials.

In this work our main result is the following.

Theorem 1. Suppose that f satisfies (f1) − (f5) and that V satisfies (V1) − (V3), then

there exists λ∗ > 0 such that (P )λ has a ground-state bounded variation solution uλ for all

λ ≥ λ∗. Moreover, there exists uΩ ∈ BV (RN ) such that, if λn → +∞, up to a subsequence,

uλn
→ uΩ in Lq

loc(R
N ), for 1 ≤ q < 1∗ and

‖un‖λn
− ‖uΩ‖Ω → 0, as n → +∞,

where uΩ ≡ 0 a.e. in R
N\Ω and uΩ is a bounded variation solution of



















−∆1u+
u

|u|
= f(u) in Ω,

u = 0 on ∂Ω.

(1.2)

Some words about the limit problem (1.2) are in oder, mainly because the way in

which we are going to consider the Dirichlet boundary condition. Note that u ∈ BV (Ω)

is a bounded variation solution of (1.2) if

‖v‖Ω − ‖u‖Ω ≥

∫

Ω
f(u)(v − u), ∀v ∈ BV (Ω), (1.3)

where ‖u‖Ω =
∫

Ω |Du| +
∫

Ω |u|dx +
∫

∂Ω |u|dHN−1. Since the trace operator from BV (Ω)

into L1(∂Ω) does not have good properties of continuity w.r.t. the Lq(Ω) convergence,

it is completely useless trying to impose the boundary condition in the space, working

on BV0(Ω) = {u ∈ BV (Ω); u = 0 on ∂Ω}. In fact our approach follows what is usually

done in the literature on 1−Laplacian problems with Dirichlet boundary conditions, i.e.,

imposing the boundary conditions by considering the term
∫

∂Ω |u|dHN−1 in the energy

functional, where HN−1 denotes the (N − 1)−dimensional Housdorff measure in R
N .

The paper is organized as follows. In Section 2, we recall some properties involving

the space BV (RN ) and prove some properties of the energy functional associated with
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the problem. In Section 3, we prove the existence of ground state for λ large enough. In

the last section we study the concentration arguments and the profile of the solutions as

λ → +∞.

2 Preliminary results

Let us introduce the space of functions of bounded variation defined by

BV (RN ) =
{

u ∈ L1(RN ); Du ∈ M(RN ,RN )
}

.

It can be proved that u ∈ BV (RN ) is equivalent to u ∈ L1(RN ) and

∫

RN

|Du| := sup

{
∫

RN

udivφdx; φ ∈ C1
c (R

N ,RN ), s.t. |φ|∞ ≤ 1

}

< +∞.

The space BV (RN ) is a Banach space when endowed with the norm

‖u‖ :=

∫

RN

|Du|+ |u|1,

which is continuously embedded into Lr(RN ) for all r ∈ [1, 1∗].

As one can see in [3], the space BV (RN ) has different convergence and density

properties than the usual Sobolev spaces. For example, C∞
0 (RN ) is not dense in BV (RN )

with respect to the strong convergence, since the closure of C∞
0 (RN ) in the norm of

BV (RN ) is equal to W 1,1(RN ), which is a proper subspace of BV (RN ). This has

motivated people to define a weaker sense of convergence in BV (RN ), called intermediate

convergence. We say that (un) ⊂ BV (RN ) converge to u ∈ BV (RN ) in the sense of the

intermediate convergence if

un → u, in L1(RN )

and
∫

RN

|Dun| →

∫

RN

|Du|,

as n → ∞. Fortunately, with respect to the intermediate convergente, C∞
0 (RN ) is dense

in BV (RN ). This fact is going to be used later.

For a vectorial Radon measure µ ∈ M(RN ,RN ), we denote by µ = µa + µs the usual

decomposition stated in the Radon Nikodyn Theorem, where µa and µs are, respectively,

the absolute continuous and the singular parts with respect to the N−dimensional
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Lebesgue measure LN . We denote by |µ|, the absolute value of µ, the scalar Radon

measure defined as in [3][pg. 125]. By
µ

|µ|
(x) we denote the usual Lebesgue derivative of

µ with respect to |µ|, given by

µ

|µ|
(x) = lim

r→0

µ(Br(x))

|µ|(Br(x))
.

It can be proved that J : BV (RN ) → R, given by

J (u) =

∫

RN

|Du|+

∫

RN

|u|dx, (2.4)

is a convex functional and Lipschitz continuous in its domain. It is also well know that J

is lower semicontinuous with respect to the Lr(RN ) topology, for r ∈ [1, 1∗] (see [15] for

example). Although non-smooth, the functional J admits some directional derivatives.

More specifically, as is shown in [2], given u ∈ BV (RN ), for all v ∈ BV (RN ) such that

(Dv)s is absolutely continuous w.r.t. (Du)s and such that v is equal to 0 a.e. in the set

where u vanishes, it follows that

J ′(u)v =

∫

RN

(Du)a(Dv)a

|(Du)a|
dx+

∫

RN

Du

|Du|
(x)

Dv

|Dv|
(x)|(Dv)|s +

∫

RN

sgn(u)vdx, (2.5)

where sgn(u(x)) = 0 if u(x) = 0 and sgn(u(x)) = u(x)/|u(x)| if u(x) 6= 0. In particular,

note that, for all u ∈ BV (RN ),

J ′(u)u = J (u). (2.6)

We have also that BV (RN ) is a lattice, i.e., if u, v ∈ BV (RN ), then

max{u, v},min{u, v} ∈ BV (RN ) and also

J (max{u, v}) + J (min{u, v}) ≤ J (u) + J (v), ∀u, v ∈ BV (RN ). (2.7)

Let us denote

Eλ =

{

u ∈ BV (RN );

∫

RN

(1 + λV (x))|u|dx < +∞

}

,

the subspace of BV (RN ) endowed with the following norm

‖v‖λ :=

∫

RN

|Dv|+

∫

RN

(1 + λ)V (x)|v|dx.

Note that the embedding Eλ →֒ BV (RN ) is continuous in such a way that Eλ is a Banach

space that is continuously embedded into Lq(RN ), for all q ∈ [1, 1∗].
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Let us define the functionals Φλ,Ψλ,ΦF : Eλ → R given by

Φλ(u) = ‖u‖λ,

ΦF (u) =

∫

RN

F (u)dx

and

Ψλ(u) = Φλ(u)−

∫

RN

F (v)dx.

Note that Ψλ is written as the difference of a convex locally Lipschitz functional Φλ,

and a C1(E) one, ΦF . Then we can use the theory of subdifferentials of Clarke [8] to say

that uλ is a critical point of Ψλ if 0 ∈ ∂Ψλ(u
λ), where ∂Ψλ(u

λ) denotes the subdifferential

of Ψλ in uλ. This, in turn, is equivalent to Φ′
F (u

λ) ∈ ∂Φλ(u
λ), which is equivalent to

‖v‖λ − ‖uλ‖λ ≥

∫

RN

f(uλ)(v − uλ), ∀v ∈ Eλ. (2.8)

2.1 The Euler-Lagrange equation

Since (P )λ contains expressions that doesn’t make sense when ∇u = 0 or u = 0, then

it can be understood just as the formal version of the Euler-Lagrange equation associated

to the functional Ψλ. In this section we present the precise form of an Euler-Lagrange

equation satisfied by all bounded variation critical points of Ψλ. In order to do so we

closely follow the arguments in [16], however we have introduced new ideas, because we

are working in whole R
N .

The first step is to consider the extension of the functionals Φλ,ΦF and Ψλ to

X = L1(RN )∩L
N

N−1 (RN ) endowed with the norm ‖w‖X = |w|1+|w| N
N−1

, given respectively

by Φλ,ΦF ,Ψλ : X → R ∪ {+∞}, where

Φλ(v) =















Φλ(v), if v ∈ Eλ,

+∞, if v ∈ X\Eλ,

ΦF (u) =

∫

RN

F (u)dx

and Ψλ = Φλ − ΦF . It is easy to see that ΦF belongs to C1(X,R) and that Φλ is a

convex lower semicontinuous functional defined in X. Hence the subdifferential (in the

sense of [20]) of Φλ, denoted by ∂Φλ, is well defined. The following is a crucial result in

obtaining an Euler-Lagrange equation satisfied by the critical points of Ψλ.
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Lemma 2. If uλ ∈ BV (RN ) is such that 0 ∈ ∂Ψλ(u
λ), then 0 ∈ ∂Ψλ(u

λ).

Proof. Suppose that 0 ∈ ∂Ψλ(u
λ), i.e., that uλ satisfies (2.8). We would like to prove that

Φλ(v) − Φλ(u
λ) ≥ ΦF

′(uλ)(v − uλ), ∀v ∈ X.

To see why, consider v ∈ X and note that:

• if v ∈ Eλ ∩X, then

Φλ(v)− Φλ(u
λ) = Φλ(v)− Φλ(u

λ)

≥ Φ′
F (u

λ)(v − uλ)

=

∫

RN

f(uλ)(v − uλ)dx

= ΦF
′(uλ)(v − uλ);

• if v ∈ X\Eλ, since Φλ(v) = +∞ and Φλ(u
λ) < +∞, it follows that

Φλ(v)− Φλ(u
λ) = +∞

≥ ΦF
′(uλ)(v − uλ).

Therefore the result follows.

Let us assume that uλ ∈ BV (RN ) is a bounded variation solution of (P )λ, i.e., that

uλ satisfies (2.8). Since 0 ∈ ∂Ψλ(u
λ), by the last result it follows that 0 ∈ ∂Ψλ(u

λ). Since

Φλ is convex and ΦF is smooth, it follows that ΦF
′(uλ) ∈ ∂Φλ(u

λ). In what follows, we

set Φ1
λ,Φ

2
λ : X → R ∪ {+∞} by

Φ1
λ(v) :=















∫

RN |Dv|, if v ∈ BV (RN ),

+∞, if v ∈ X\BV (RN ),

and

Φ2
λ(v) :=

∫

RN

(1 + λV (x))|v| dx.

Note that Φ2
λ ∈ C(X,R), Φ2

λ ∈ C(BV (RN ),R) and

Φλ(v) = Φ1
λ(v) + Φ2

λ(v), ∀v ∈ X.
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Since Φ1
λ and Φ2

λ are convex, and Φ2
λ is finite and continuous in every point of Eλ, it follows

from [3, Theorem 9.5.4] that

ΦF
′(uλ) ∈ ∂Φλ(u

λ) = ∂Φ1
λ(u

λ) + ∂Φ2
λ(u

λ).

By using the same arguments explored in [6, Theorem 8.15], it follows thatX ′ ⊂ L∞,N(RN )

where

L∞,N (RN ) = {g : RN → R measurable : ||g||∞,N < ∞}

where

||g||∞,N = sup
|φ|1+|φ| N

N−1

≤1

∣

∣

∣

∣

∫

RN

gφ dx

∣

∣

∣

∣

.

It is possible to prove that ‖ ‖∞,N is a norm in L∞,N(RN ). Moreover, the inclusion

L∞,N(RN ) →֒ LN (BR(0)) is continuous for all R > 0.

From the above commentaries, there are z∗1 , z
∗
2 ∈ L∞,N(RN ) such that z∗1 ∈ ∂Φ1

λ(u
λ),

z∗2 ∈ ∂Φλ
2
(uλ) and

ΦF
′(uλ) = z∗1 + z∗2 in L∞,N(RN ).

Following the same arguments in [16, Proposition 4.23, pg. 529], we have that there exists

z ∈ L∞(RN ,RN ) such that |z|∞ ≤ 1,

− divz = z∗1 in L∞,N(RN ) (2.9)

and

−

∫

RN

uλdivzdx =

∫

RN

|Duλ|, (2.10)

where the divergence in (2.9) has to be understood in the distributional sense. Moreover,

the same result implies that z∗2 is such that

z∗2 |u
λ| = (1 + λV (x))uλ, a.e. in R

N . (2.11)

Therefore, it follows from (2.9), (2.10) and (2.11) that uλ satisfies


































∃z ∈ L∞(RN ,RN ), ‖z‖∞ ≤ 1, divz ∈ L∞,N(RN ), −
∫

RN uλdivzdx =
∫

RN |Duλ|,

∃z∗2 ∈ L∞,N(RN ), z∗2 |u
λ| = (1 + λV (x))uλ a.e. in R

N ,

−divz + z∗2 = f(uλ), a.e. in R
N .

(2.12)

Hence, (2.12) is the precise version of (P )λ.
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3 Existence of solution

Let us first verify that the geometrical conditions of the Mountain Pass Theorem are

satisfied by Ψλ.

Lemma 3. There exist α, ρ > 0 (uniform in λ) such that,

i) Ψλ(u) ≥ α for all u ∈ Eλ such that ‖u‖λ = ρ, for all λ > 0;

ii) For each λ > 0, there exists eλ ∈ Eλ such that ‖eλ‖λ > ρ and Ψλ(eλ) < 0.

Proof. By (f2)− (f3), it follows that for each η > 0, there exists Aη > 0 such that

|F (s)| ≤ η|s|+Aη |s|
p, ∀s ∈ R. (3.13)

Note that, by (3.13) and the embeddings of Eλ,

Ψλ(u) =

∫

RN

|Du|+

∫

RN

(1 + λV (x))|u|dx −

∫

RN

F (u)dx

≥ ‖u‖λ − η|u|1 −Aη|u|
p
p

≥ ‖u‖λ − η‖u‖λ − c3‖u‖
p
λ

= ‖u‖λ
(

1− η − c3‖u‖
p−1
λ

)

≥ α,

for all u ∈ Eλ, such that ‖u‖λ = ρ, where 0 < η < 1 is fixed, 0 < ρ <

(

1− η

c3

)
1

p−1

and

α = ρ(1− η − c3ρ
p−1).

In order to verify ii) note that by (f4), there exist constants d1, d2 > 0 such that

F (s) ≥ d1|s|
θ − d2, ∀s ∈ R. (3.14)

If u is a function in Eλ\{0} with compact support, we derive that

Ψλ(tu) ≤ t‖u‖λ − d1t
θ|u|θθ + d2|supp(u)| → −∞, (3.15)

as t → +∞. Since θ > 1, we can choose eλ ∈ Eλ such that Ψ(eλ) < 0.

By [13, Theorem 1.3] it follows that, for all λ > 0, there exists a sequence (uλn) ⊂ Eλ

such that

Ψλ(u
λ
n) = cλ + on(1) (3.16)
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and

‖v‖λ − ‖uλn‖λ ≥

∫

RN

f(uλn)(v − uλn)− τn‖v − uλn‖λ, ∀v ∈ Eλ, (3.17)

where τn → 0 as n → +∞. The minimax value cλ is given by

cλ = inf
γ∈Γλ

max
t∈[0,1]

Ψλ(γ(t)),

where Γλ = {γ ∈ C([0, 1], Eλ); γ(0) = 0 and Ψλ(γ(1)) < 0}. Note that by Lemma 3,

cλ ≥ α > 0, ∀λ > 0. (3.18)

In our approach will be important the so called Nehari set, defined as

Nλ = {u ∈ Eλ\{0}; Ψ
′
λ(u)u = 0}

=

{

u ∈ Eλ\{0}; ‖u‖λ =

∫

RN

f(u)u dx

}

.

This set is going to give us a better characterization of the minimax level cλ. From (2.5),

Nλ is a set that contains all nontrivial bounded variation solutions of (P )λ. Its definition

is based on arguments that can be found in [12] which, in turn, are strongly influenced

by those ones in [17]. More specifically, they consist in performing a study of the fibering

maps γu(t) := Ψλ(tu), by using (f1)−(f5) to show that Nλ is radially homeomorphic to the

unit sphere in Eλ. In fact, for each u ∈ Eλ\{0}, by (f2) and (f3), it can be seen that there

exists t0 > 0 such that γu(t0) > 0. On the other hand, (f4) implies that γu(t) → −∞

as t → +∞. Then there exists tu > 0 such that γu(tu) = maxt>0 γu(t) and then that

γ′u(tu) = 0. But (f5) implies that such tu is unique. Then for each u ∈ EV \{0}, there

exists a unique tu > 0 such that tuu ∈ Nλ. This establishes such a radial homeomorphism.

Still with arguments presented in [17], one can prove that the minimax level cλ satisfies

cλ = inf
u∈Eλ\{0}

max
t≥0

Ψλ(tu) = inf
u∈Nλ

Ψλ(u). (3.19)

Lemma 4. There exist constants α0, α1 > 0 which do not depend on λ > 0, such that

α0 ≤ cλ ≤ α1, ∀λ > 0.

Proof. By Lemma 3 it is enough to take α0 ∈ (0, α). In order to obtain α1, let us fix

ϕ ∈ C∞
0 (Ω). Then, for all t > 0, as in (3.15) we get

Ψλ(tϕ) ≤ t

(
∫

RN

|Dϕ|+

∫

RN

|ϕ|dx

)

− d1t
θ|ϕ|θθ + d2|supp(ϕ)| → −∞,
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as t → +∞. Hence if α1 =: maxt>0 Ψλ(tϕ) > 0, it follows from the definition of cλ that

cλ ≤ α1, ∀λ > 0.

Now let us study some more refined information about the sequence (un)n∈N.

Lemma 5. The sequence (uλn)n∈N is bounded in Eλ.

Proof. Considering v = 2uλn in (3.17), we obtain

‖uλn‖λ ≥

∫

RN

f(uλn)u
λ
ndx− τn‖u

λ
n‖λ,

or equivalently

(1 + τn)‖u
λ
n‖λ ≥

∫

RN

f(uλn)u
λ
ndx. (3.20)

Then, by (f4) and (3.20),

cλ + on(1) ≥ Ψλ(u
λ
n)

= ‖uλn‖λ +

∫

RN

(

1

θ
f(uλn)u

λ
n − F (uλn)

)

dx−

∫

RN

1

θ
f(uλn)u

λ
ndx

≥ ‖uλn‖λ

(

1−
1

θ
−

τn
θ

)

≥ C‖uλn‖λ,

for some C > 0 that does not depend on n ∈ N nor λ > 0.

Remark 6. Note that by Lemmas 4 and 5, there exists a constant C > 0 that does not

depend on λ, such that

‖uλn‖λ ≤ C, ∀n ∈ N.

By Lemma 5 and the compactness of the embeddings of BV (K) in Lq(K) for 1 ≤ q < 1∗

and K ⊂ R
N compact, there exists uλ ∈ BVloc(R

N ) such that

uλn → uλ in Lq
loc(R

N ) for 1 ≤ q < 1∗ (3.21)

and

uλn(x) → uλ(x) a.e. x ∈ R
N , (3.22)
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as n → +∞. Moreover uλ belongs to BV (RN ) and then to Eλ (by using Fatou Lemma

and the boundedness of the sequence (‖un‖λ)n∈N). In fact, if R > 0, by the semicontinuity

of the norm in BV (BR(0)) w.r.t. the L1(BR(0)) topology it follows that

‖uλ‖BV (BR(0)) ≤ lim inf
n→+∞

‖uλn‖BV (BR(0)) ≤ lim inf
n→+∞

‖uλn‖BV (RN ) ≤ C, (3.23)

where C does not depend on n nor on R. Since the last inequality holds for every R > 0,

then uλ ∈ BV (RN ).

The next result will help us to get some compactness properties involving the sequence

(uλn).

Lemma 7. Fix q ∈ [1, 1∗). Then, for a given ǫ > 0, there exists λ∗ > 0 and R > 0 such

that
∫

RN\BR(0)
|uλn|

qdx ≤ ǫ, (3.24)

for all λ ≥ λ∗ and n ∈ N.

Proof. In fact, for a given R > 0, let us define the sets

A(R) = {x ∈ R
N ; |x| > R and V (x) ≥ M0}

and

B(R) = {x ∈ R
N ; |x| > R and V (x) < M0},

where M0 is given in (V2).

Note that, by Remark 6 and (V2),

∫

A(R)
|uλn|dx ≤

1

λM0 + 1
‖un‖λ ≤

C

λM0 + 1
<

ǫ

2
, ∀n ∈ N, (3.25)

if λ > λ∗ where λ∗ ≥ M−1
0

(

2C

ǫ
− 1

)

.

On the other hand, again by Remark 6, Hölder inequality and the embeddings of Eλ,

∫

B(R)
|uλn|dx ≤ C|uλn|

1∗
1∗ |B(R)|

1

N ≤ C|B(R)|
1

N <
ǫ

2
(3.26)

if R > 0 is large enough, since by (V2), |B(R)| → 0 as R → +∞.

Then, if λ > λ∗ and R > 0 is large enough, from (3.25) and (3.26) it follows the claim

for q = 1. Now by Remark 6, the estimate for q ∈ (1, 1∗) follows from interpolation in

Lebesgue spaces since (uλn) is bounded (uniformly in λ) in L1∗(RN ).

13



The next result will be used to show that uλ 6= 0.

Lemma 8.

lim inf
n→+∞

‖uλn‖λ ≥ α0 ∀λ > 0. (3.27)

Proof. Note that from (3.16) and Lemma 4,

α0 + on(1) ≤ cλ + on(1) = Ψλ(u
λ
n) = ‖uλn‖λ −

∫

RN

F (uλn)dx ≤ ‖uλn‖λ.

Lemma 9. For λ∗ as in Lemma 7, it follows that uλ 6= 0 for all λ ≥ λ∗.

Proof. Considering in (3.17) v = uλn + tuλn and taking the limit as t → 0±, we find

Ψ′
λ(u

λ
n)u

λ
n = on(1),

which implies that

‖uλn‖λ =

∫

RN

f(uλn)u
λ
ndx+ on(1)

=

∫

BR(0)
f(uλn)u

λ
ndx+

∫

RN\BR(0)
f(uλn)u

λ
ndx+ on(1). (3.28)

From (f3),
∫

RN\BR(0)
f(uλn)u

λ
ndx ≤ c1

∫

RN\BR(0)
|uλn|dx+ c2

∫

RN\BR(0)
|uλn|

pdx. (3.29)

By taking q = p and ǫ small enough in Lemma 7, the inequality (3.29) gives that

lim sup
n→+∞

∫

RN\BR(0)
f(uλn)u

λ
ndx ≤

α0

2
, (3.30)

where α0 is as in Lemma 8.

From the compactness of the embeddings BV (BR(0)) →֒ Lq(BR(0)) for q ∈ [1, 1∗) and

(f3), we have that

lim
n→+∞

∫

BR(0)
f(uλn)u

λ
ndx =

∫

BR(0)
f(uλ)uλdx. (3.31)

Hence, from (3.27), (3.28), (3.30) and (3.31),
∫

BR(0)
f(uλ)uλdx = lim

n→+∞

∫

BR(0)
f(uλn)u

λ
ndx

≥ lim inf
n→+∞

(

‖uλn‖λ −

∫

RN\BR(0)
f(uλn)u

λ
ndx

)

≥
α0

2
,

if λ ≥ λ∗. This implies that uλ 6= 0.
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Lemma 10. Φ′
λ(u

λ)uλ ≤ 0.

Proof. Note that, if ϕ ∈ C∞
0 (RN ), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in B1(0) and ϕ ≡ 0 in B2(0)

c, for

ϕR := ϕ(·/R), it follows that for all u ∈ BV (RN ),

(D(ϕRu))
s is absolutely continuous w.r.t. (Du)s. (3.32)

In fact, note that

D(ϕRu) = ∇ϕRu+ ϕRDu = ∇ϕRu+ ϕRDua + ϕRDus, in D′(RN ).

Then it follows that

(D(ϕRu))
s = (ϕR(Du)s)s = ϕR(Du)s.

Taking (3.32) into account, the fact that ϕRu
λ
n is equal to 0 a.e. in the set where uλn

vanishes and also the fact that ϕRµ
|ϕRµ| =

µ
|µ| a.e. in BR(0), it follows that it is well defined

Ψ′
λ(u

λ
n)(ϕRu

λ
n). Moreover, by (2.5), it follows that

Ψ′
λ(u

λ
n)(ϕRu

λ
n) =

∫

RN

((Duλn)
a)2ϕR + uλn(Duλn)

a · ∇ϕR

|(Duλn)
a|

dx

+

∫

RN

Duλn
|Duλn|

ϕR(Duλn)
s

|ϕR(Duλn)
s|
|ϕR(Duλn)

s|+

+

∫

RN

(1 + λV (x))sgn(uλn)(ϕRu
λ
n)dx−

∫

RN

f(uλn)ϕRu
λ
ndx

=

∫

RN

ϕR|(Duλn)
a|dx+

∫

RN

uλn(Duλn)
a · ∇ϕR

|(Duλn)
a|

dx+

+

∫

RN

(Duλn)
s

|(Duλn)
s|

ϕR(Duλn)
s

|ϕR(Duλn)
s|
|ϕR(Duλn)

s|+

∫

RN

(1 + λV (x))|uλn|ϕRdx−

−

∫

RN

f(uλn)ϕRu
λ
ndx.

The last equality together with the lower semicontinuity of the norm in BV (BR(0)) w.r.t.

the L1(BR(0)) convergence and the fact that Ψ′
λ(u

λ
n)(ϕRu

λ
n) = on(1) (since (ϕRu

λ
n) is

bounded in BV (RN )), imply that

∫

BR(0)
|Duλ|+lim inf

n→∞

∫

RN

uλn(Duλn)
a · ∇ϕR

|(Duλn)
a|

dx+

∫

RN

(1+λV (x))ϕR|u
λ|dx ≤

∫

RN

f(uλ)uλϕRdx.

(3.33)

By doing R → +∞ in both sides of (3.33) we get that

∫

RN

|Duλ|+

∫

RN

(1 + λV (x))|uλ|dx ≤

∫

RN

f(uλ)uλdx, (3.34)

and the proof is finished.
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By the last result there exists tλ ∈ (0, 1] such that tλu
λ ∈ Nλ.

Before to get more information about tλ, let’s just give a piece of information.

Lemma 11. Under (f5), f is such that t 7→ f(t)t − F (t) is increasing for t ∈ (0,+∞)

and decreasing for t ∈ (−∞, 0).

Proof. Let t1 > t2 > 0, then

f(t1)t1 − F (t1) = f(t1)t1 − F (t2)−

∫ t1

t2

f(s)ds

> f(t1)t1 − F (t2)− f(t1)

∫ t1

t2

ds

> f(t2)t2 − F (t2).

The case in which t1 < t2 < 0 is analogous.

Lemma 12. Let λ∗ be as in Lemma 7. If λ ≥ λ∗, then tλ = 1,

lim
n→+∞

∫

RN

f(uλn)u
λ
ndx =

∫

RN

f(uλ)uλdx,

lim
n→+∞

∫

RN

F (uλn)dx =

∫

RN

F (uλ)dx

and

lim
n→+∞

‖uλn‖λ = ‖uλ‖λ.

Proof. Note that

cλ+ on(1) = Ψλ(u
λ
n)+ on(1) = Ψλ(u

λ
n)−Ψ′

λ(u
λ
n)u

λ
n =

∫

RN

(

f(uλn)u
λ
n − F (uλn)

)

dx. (3.35)

Applying Fatou Lemma in the last inequality together with Lemma 11, we derive that

cλ ≥

∫

RN

(

f(uλ)uλ − F (uλ)
)

dx

≥

∫

RN

(

f(tλu
λ)tλu

λ − F (tλu
λ)
)

dx

= Ψλ(tλu
λ)−Ψ′

λ(tλu
λ)tλu

λ

= Ψλ(tλu
λ)

≥ cλ.

Hence, tλ = 1, Φλ(u
λ) = cλ, and by (3.35),

f(uλn)u
λ
n − F (uλn) → f(uλ)uλ − F (uλ) in L1(RN ). (3.36)
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This limit together with (f4) and (3.22) yield

f(uλn)u
λ
n → f(uλ)uλ in L1(RN ) (3.37)

F (uλn) → F (uλ) in L1(RN ) (3.38)

and

‖uλn‖λ → ‖uλ‖λ. (3.39)

Here, we have used the fact that (f4) ensures that

0 ≤ (1− 1/θ)f(uλn)vn ≤ f(uλn)vn − F (uλn)

and

0 ≤ (θ − 1)F (uλn) ≤ f(uλn)u
λ
n − F (uλn).

Then, by (3.36), we can apply the Lebesgue Dominated Convergence Theorem to get

(3.37) and (3.38). Recalling that ‖uλ‖λ =
∫

RN f(uλ)uλ and ‖uλn‖λ =
∫

RN f(uλn)u
λ
n+ on(1),

the limit (3.37) implies in (3.39).

As a consequence of the last result, we see that uλ is a bounded variation solution of

(P )λ. In fact, from (3.17), Lemma 12 and the lower semicontinuity of ‖ · ‖λ w.r.t. the

L1(RN ) convergence, it follows that

‖v‖λ − ‖uλ‖λ ≥

∫

RN

f(uλ)(v − uλ)dx, ∀v ∈ Eλ, (3.40)

and then uλ is in fact a nontrivial solution of (P )λ. Moreover, note that from (3.16)

cλ ≤ Ψλ(u
λ)

= Ψλ(u
λ)−Ψ′

λ(u
λ)uλ

=

∫

RN

(

f(uλ)uλ − F (uλ)
)

dx

≤ lim inf
n→∞

∫

RN

(

f(uλn)u
λ
n − F (uλn)

)

dx

= Ψλ(u
λ
n) + on(1)

= cλ,

which implies that

Ψλ(u
λ) = cλ. (3.41)

Since Nλ contains all nontrivial bounded variation solutions of (P )λ, from (3.41), in

view of (3.19) it follows that uλ is a ground-state solution of (P )λ.
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4 The concentration arguments

4.1 The behavior of the (PS)c,∞ sequences

First of all let us consider the following definition.

Definition 13. A sequence (un) ⊂ BV (RN ) is called a (PS)c,∞-sequence for the family

(Ψλ)λ≥1, if there is a sequence λn → ∞ such that un ∈ Eλn
for n ∈ N,

Ψλn
(un) → c,

as n → +∞ and moreover

‖v‖λn
− ‖un‖λn

≥

∫

RN

f(un)(v − un)− τn‖v − un‖λn
, ∀v ∈ Eλn

(4.42)

where τn → 0 as n → +∞.

Before to proceed with other results, let us point out some facts about the limit problem

(1.2). Note that (1.2) is the formal version of the Euler-Lagrange equation of the functional

ΦΩ : BV (Ω) → R given by

ΦΩ(u) =

∫

Ω
|Du|+

∫

Ω
|u|dx+

∫

∂Ω
|u|dHN−1 −

∫

Ω
F (u)dx.

By the assumptions (f1)− (f5), the Nehari set associated to ΦΩ is well defined by

NΩ = {u ∈ BV (Ω)\{0}; Φ′
Ω(u)u = 0},

and let us define

cΩ = inf
NΩ

ΦΩ.

Note that cΩ is well defined since from (f4), ΦΩ(u) ≥ 0 for all u ∈ NΩ. In fact, since IΩ

satisfies the geometric conditions of the Mountain Pass Theorem, well known arguments

imply that

cΩ = inf
γ∈ΓΩ

max
t∈[0,1]

IΩ(γ(t)),

where ΓΩ = {γ ∈ C([0, 1], BV (Ω)); γ(0) = 0 and IΩ(γ(1)) < 0}.

Proposition 14. Let (un) ⊂ BV (RN ) be a (PS)d,∞-sequence for (Ψλ)λ≥1, where d ∈ R.

Then either d = 0 or d ≥ cΩ. In the last case, there exists uΩ ∈ BV (RN ) such that, up to

a subsequence, un → uΩ in Lq
loc(R

N ), for 1 ≤ q < 1∗, uΩ ≡ 0 a.e. in R
N\Ω and uΩ is a

bounded variation solution of (1.2). Moreover, if d = cΩ, then

‖un‖λn
− ‖uΩ‖Ω → 0, as n → +∞.
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Proof. First of all note that the arguments in Lemma 5 imply that d ≥ 0, since it holds

d+ on(1) ≥ C‖un‖λn
. (4.43)

It follows also from (4.43) that (‖un‖λn
) is a bounded sequence in R and then that

(un) is bounded in BV (RN ). By the Sobolev embeddings, there exists uΩ ∈ BVloc(R
N )

such that un → uΩ in Lq
loc(R

N ), for 1 ≤ q < 1∗. Moreover, it is possible to argue as in the

last section in order to show that in fact uΩ ∈ BV (RN ).

Now let us show that uΩ ≡ 0 a.e. in R
N\Ω. For each m ∈ N, let us define

Cm = {x ∈ R
N ; V (x) ≥ 1/m}. Then note that

∫

Cm

|un|dx ≤
m

λn

∫

Cm

λnV (x)|un|dx

≤
m

λn
‖un‖λn

= on(1),

since (‖un‖λn
) is a bounded sequence. Then, Fatou Lemma and the last inequality implies

that
∫

Cm

|uΩ|dx = 0. (4.44)

Hence, since R
N\Ω =

⋃+∞
i=1 Cm, it follows that

∫

RN\Ω
|uΩ|dx = 0

and then that uΩ = 0 a.e. in R
N\Ω.

If d = 0, then (4.43) imply that ‖un‖λn
→ 0 as n → +∞ and nothing is left to prove.

If d > 0, since

d+ on(1) = Ψλn
(un) ≤ ‖un‖λn

,

the same arguments in Lemma 9 can be used to show that uλ 6= 0.

Since uΩ 6= 0, there exists t > 0 such that tuΩ ∈ NΩ. Let us prove that t ∈ (0, 1], what

is implied by the following claim.

Claim. Φ′
Ω(uΩ)uΩ ≤ 0.

For δ > 0, let ϕδ ∈ C∞(RN ) be such that ϕδ ≡ 1 in Ωδ, ϕδ ≡ 0 in (Ω2δ)
c and

|∇ϕδ|∞ ≤ C/δ, where by Ωσ we mean the σ−neighborhood of Ω, σ > 0. Let us define

uΩ(x) =















uΩ(x), if x ∈ Ω,

0, if x ∈ R
N\Ω.

(4.45)
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Note that uΩ ∈ BV (RN ) and, by the Green Formula for BV functions (see [3][Theorem

10.2.1] for instance),

∫

Ωδ

|DuΩ|+

∫

Ωδ

|uΩ|dx =

∫

Ω
|DuΩ|+

∫

Ω
|uΩ|dx+

∫

∂Ω
|uΩ|dHN−1. (4.46)

As in the proof of Lemma 10, note that Ψ′
λn
(un)(ϕδun) is well defined and, by using

un+ tϕδun as test function in (4.42) and doing t → 0±, since (un) is bounded in BV (RN ),

it is possible to see that

Ψ′
λn
(un)(ϕδun) = on(1). (4.47)

Then by (2.5) it follows that

Ψ′
λn
(un)(ϕδun) =

∫

RN

((Dun)
a)2ϕδ + un(Dun)

a · ∇ϕδ

|(Dun)a|
dx

+

∫

RN

Dun
|Dun|

ϕδ(Dun)
s

|ϕδ(Dun)s|
|ϕδ(Dun)

s|+

+

∫

RN

(1 + λnV (x))sgn(un)(ϕδun)dx−

∫

RN

f(un)ϕδundx

=

∫

RN

ϕδ|(Dun)
a|dx+

∫

RN

un(Dun)
a · ∇ϕδ

|(Dun)a|
dx+

+

∫

RN

(Dun)
s

|(Dun)s|

ϕδ(Dun)
s

|ϕδ(Dun)s|
|ϕδ(Dun)

s|+

∫

RN

(1 + λnV (x))|un|ϕδdx−

−

∫

RN

f(un)ϕδundx. (4.48)

Since un → uΩ in Lq(Ωδ) for 1 ≤ q < 1∗, by the lower semicontinuity of ‖ · ‖BV (Ωδ)

w.r.t. the Lq(Ωδ) convergence, (4.46), (4.47) and (4.48), it follows that

‖uΩ‖Ω ≤ lim inf
n→+∞

(
∫

Ωδ

|Dun|+

∫

Ωδ

|un|dx

)

≤ lim inf
n→+∞

(
∫

RN

ϕδ|(Dun)
a|dx+

∫

RN

(1 + λnV (x))|un|ϕδdx

+

∫

RN

(Dun)
s

|(Dun)s|

ϕδ(Dun)
s

|ϕδ(Dun)s|
|ϕδ(Dun)

s|

)

≤ lim sup
n→+∞

(

∫

RN

f(un)ϕδundx−

∫

Ω2δ\Ωδ

un(Dun)
a · ∇ϕδ

|(Dun)a|
dx

)

=

∫

Ω2δ

f(uΩ)ϕδuΩdx, (4.49)

since
∫

Ω2δ\Ωδ

un(Dun)
a · ∇ϕδ

|(Dun)a|
dx ≤

C

δ

∫

Ω2δ\Ωδ

|un|dx = on(1),
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By doing δ → 0 in (4.49) it follows that Φ′
Ω(uΩ)uΩ ≤ 0 and the Claim is proved.

Then there exists t ∈ (0, 1] such that tuΩ ∈ NΩ.

Note moreover that

d+on(1) = Ψλn
(un)+on(1) = Ψλn

(un)−Ψ′
λn
(un)un =

∫

RN

(f(un)un − F (un)) dx. (4.50)

Applying Fatou Lemma in the last inequality together with Lemma 11, we derive that

d ≥

∫

Ω
(f(uΩ)uΩ − F (uΩ)) dx

≥

∫

Ω
(f(tuΩ)tuΩ − F (tuΩ)) dx

= ΦΩ(tuΩ)−Φ′
Ω(tuΩ)tuΩ

= ΦΩ(tuΩ)

≥ cΩ, (4.51)

what shows that d ≥ cΩ.

Now let us suppose that d = cΩ. In this case, we can prove that t = 1, i.e., that

uΩ ∈ NΩ. This follows since in this case, from (4.51) and the fact that d = cΩ, it follows

that t = 1, uΩ ∈ NΩ, ΦΩ(uΩ) = cΩ, and from (4.50),

f(un)un − F (un) → f(uΩ)uΩ − F (uΩ) in L1(RN ). (4.52)

This limit together with (f4) imply that

f(un)un → f(uΩ)uΩ in L1(RN ) (4.53)

F (un) → F (uΩ) in L1(RN ) (4.54)

and

‖un‖λn
→ ‖uΩ‖Ω. (4.55)

From (4.53), (4.55), by taking the lim supn→+∞ in (4.42) and noting that, for all

v ∈ BV (Ω), if v is defined as in (4.45),

‖v‖Ω = ‖v‖λn
,

it follows that

‖v‖Ω − ‖uΩ‖Ω ≥

∫

Ω
f(uΩ)(v − uΩ).

Then uΩ is a bounded variation solution of (1.2).
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4.2 Proof of Theorem 1

Let us consider a sequence λn → +∞ as n → +∞ and, for each n ∈ N, un := uλn

the bounded variation solution of (P )λn
obtained in Section 3, which is such that

Φλn
(un) = cλn

.

Note that, for a given u ∈ BV (Ω), denoting by u its extension by zero outside Ω (as

in (4.45)), it follows from Green Formula for BV functions that

∫

RN

|Du|+

∫

RN

|u|dx =

∫

Ω
|Du|+

∫

Ω
|u|dx+

∫

∂Ω
|u|dHN−1. (4.56)

Hence, if u ∈ BV (Ω), then u ∈ Eλ and ΦΩ(u) = Ψλ(u) for every λ > 0. Then, for each

γ ∈ ΓΩ, it follows that γ ∈ Γλ. Based on this fact, it is easy to see that

cλ = inf
γ∈Γλ

max
t∈[0,1]

Ψλ(γ(t)) ≤ inf
γ∈ΓΩ

max
t∈[0,1]

ΦΩ(γ(t)) = cΩ, (4.57)

for every λ > 0.

Then it follows that

(cλn
)n∈N ⊂ [0, cΩ],

which implies that, up to a subsequence, Ψλn
(uλn

) → d ∈ [0, cΩ], as n → +∞. Since un

satisfies (4.42) with τn = 0, it follows that (un) is in fact a (PS)d,∞ sequence.

Note that by (3.18), d > 0. On the other hand, by Proposition 14, it holds that

d ≥ cΩ. (4.58)

Then, from (4.57) and (4.58) it follows that (un) is a (PS)cΩ,∞-sequence and then,

again by Proposition 14 there exists uΩ ∈ BV (RN ) such that, up to a subsequence,

un → uΩ in Lq
loc(R

N ), for 1 ≤ q < 1∗, uΩ ≡ 0 a.e. in R
N\Ω and uΩ is a bounded variation

solution of (1.2). Moreover,

‖un‖λn
− ‖uΩ‖Ω → 0, as n → +∞

and Theorem 1 is proved.
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