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THE GENERALIZED HÖLDER AND MORREY-CAMPANATO

DIRICHLET PROBLEMS FOR ELLIPTIC SYSTEMS IN THE

UPPER-HALF SPACE

JUAN JOSÉ MARÍN, JOSÉ MARÍA MARTELL, AND MARIUS MITREA

Abstract. We prove well-posedness results for the Dirichlet problem in Rn
+ for homo-

geneous, second order, constant complex coefficient elliptic systems with boundary data
in generalized Hölder spaces C ω(Rn−1

,CM ) and in generalized Morrey-Campanato
spaces E ω,p(Rn−1

,CM ) under certain assumptions on the growth function ω. We also
identify a class of growth functions ω for which C ω(Rn−1

,CM ) = E ω,p(Rn−1
,CM )

and for which the aforementioned well-posedness results are equivalent, in the sense
that they have the same unique solution, satisfying natural regularity properties and
estimates.
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1. Introduction

This paper is devoted to studying the Dirichlet problem for elliptic systems in the
upper-half space with data in generalized Hölder spaces and generalized Morrey-Campa-
nato spaces. As a byproduct of the PDE-based techniques developed here, we are able
to establish the equivalence of these function spaces. To be more specific requires intro-
ducing some notation.

Having fixed n,M ∈ N with n ≥ 2 and M ≥ 1, consider a homogeneous, constant
(complex) coefficient, M ×M second-order system in Rn

L :=
(
aαβjk ∂j∂k

)
1≤α,β≤M

. (1.1)

Here and elsewhere, the summation convention over repeated indices is employed. We
make the standing assumption that L is strongly elliptic, in the sense that there exists
κ0 > 0 such that the following Legendre-Hadamard condition is satisfied:

Re
[
aαβjk ξjξkζαζβ

]
≥ κ0 |ξ|2 |ζ |2 for all

ξ = (ξj)1≤j≤n ∈ Rn and ζ = (ζα)1≤α≤M ∈ CM .
(1.2)

Examples include scalar operators, such as the Laplacian ∆ =
n∑

j=1

∂2
j or, more generally,

operators of the form divA∇ with A = (ars)1≤r,s≤n an n×n matrix with complex entries
satisfying the ellipticity condition

inf
ξ∈Sn−1

Re
[
arsξrξs

]
> 0, (1.3)

(where Sn−1 denotes the unit sphere in Rn), as well as the complex version of the Lamé
system of elasticity in Rn,

L := µ∆+ (λ+ µ)∇div. (1.4)

Above, the constants λ, µ ∈ C (typically called Lamé moduli), are assumed to satisfy

Reµ > 0 and Re (2µ+ λ) > 0, (1.5)

a condition equivalent to the demand that the Lamé system (1.4) satisfies the Legendre-
Hadamard ellipticity condition (1.2). While the Lamé system is symmetric, we stress
that the results in this paper require no symmetry for the systems involved.

With each system L as in (1.1)-(1.2) one may associate a Poisson kernel, PL, which is a
CM×M -valued function defined in Rn−1 described in detail in Theorem 3.3. This Poisson
kernel has played a pivotal role in the treatment of the Dirichlet problem with data in
Lp, BMO, VMO and Hölder spaces (see [7, 6]). For now, we make the observation that
the Poisson kernel gives rise to a nice approximation to the identity in Rn−1 by setting
PL
t (x

′) = t1−nPL(x′/t) for every x′ ∈ Rn−1 and t > 0.

For every point x ∈ Rn write x = (x′, t), where x′ ∈ Rn−1 corresponds to the first
n − 1 coordinates of x, and t ∈ R is the last coordinate of x. As is customary, we
shall let Rn

+ := {x = (x′, t) ∈ Rn : x′ ∈ Rn−1, t > 0} denote the upper-half space in
Rn, and typically identify its boundary with (n − 1)-dimensional Euclidean space, via
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∂Rn
+ ∋ (x′, 0) ≡ x′ ∈ Rn−1. The cone with vertex at x′ ∈ Rn−1 and aperture κ > 0 is

defined as

Γκ(x
′) := {y = (y′, t) ∈ Rn

+ : |x′ − y′| < κt}. (1.6)

When κ = 1 we agree to drop the dependence on aperture and simply write Γ(x′).
Whenever meaningful, the nontangential pointwise trace of a vector-valued function u
defined in Rn

+ is given by
(
u|nt.lim∂Rn

+

)
(x′) := lim

Rn
+∋y→(x′,0)

y∈Γκ(x′)

u(y), x′ ∈ Rn−1. (1.7)

The unrestricted pointwise trace of a vector-valued function u defined in Rn
+ at each

x′ ∈ ∂Rn
+ ≡ Rn−1 is taken to be

(
u|lim∂Rn

+

)
(x′) := lim

Rn
+∋y→(x′,0)

u(y), x′ ∈ Rn−1, (1.8)

whenever such a limit exists exists.

Definition 1.1. Call a given mapping ω : (0,∞) → (0,∞) a growth function if ω is
non-decreasing and ω(t) → 0 as t → 0+.

Definition 1.2. Let E ⊂ Rn be an arbitrary set (implicitly assumed to have cardinality
at least 2) and let ω be a growth function. The homogeneous ω-Hölder space on E is
defined as

Ċ
ω(E,CM) :=

{
u : E → CM : [u]

Ċω(E,CM ) < ∞
}
, (1.9)

where [·]
Ċω(E,CM ) stands for the seminorm

[u]
Ċω(E,CM) := sup

x,y∈E
x 6=y

|u(x)− u(y)|
ω(|x− y|) . (1.10)

Let us note that the fact that ω(t) → 0 as t → 0+ implies that if u ∈ Ċ ω(E,CM) then
u is uniformly continuous. The choice ω(t) := tα for each t > 0, with α ∈ (0, 1), yields
the classical scale of Hölder spaces.

Here and elsewhere in the paper, we agree to denote the (n−1)-dimensional Lebesgue
measure of given Lebesgue measurable set E ⊆ Rn−1 by |E|. Also, by a cube Q in Rn−1

we shall understand a cube with sides parallel to the coordinate axes. Its side-length
will be denoted by ℓ(Q), and for each λ > 0 we shall denote by λQ the cube concentric
with Q whose side-length is λ ℓ(Q). For every function h ∈ L1

loc(R
n−1,CM) we write

hQ :=

 

Q

h(x′) dx′ :=
1

|Q|

ˆ

Q

h(x′) dx′ ∈ CM , (1.11)

with the integration performed componentwise.

Definition 1.3. Given a growth function ω along with some integrability exponent
p ∈ [1,∞), the associated generalized Morrey-Campanato space in Rn−1 is defined
as

E
ω,p(Rn−1,CM) :=

{
f ∈ L1

loc(R
n−1,CM) : ‖f‖

E ω,p(Rn−1,CM ) < ∞
}
, (1.12)
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where ‖f‖
E ω,p(Rn−1,CM ) stands for the seminorm

‖f‖
E ω,p(Rn−1,CM ) := sup

Q⊂Rn−1

1

ω(ℓ(Q))

(
 

Q

|f(x′)− fQ|p dx′

)1/p

. (1.13)

The choice ω(t) := tα with α ∈ (0, 1) corresponds to the classical Morrey-Campanato
spaces, while the special case ω(t) := 1 yields the usual space of functions of bounded
mean oscillations (BMO). We also define, for every u ∈ C

1(Rn
+,C

M) and q ∈ (0,∞),

‖u‖(ω,q)∗∗ := sup
Q⊂Rn−1

1

ω(ℓ(Q))

(
 

Q

(
ˆ ℓ(Q)

0

|(∇u)(x′, t)|2 t dt
)q/2

dx′

)1/q

. (1.14)

As far as this seminorm is concerned, there are two reasonable candidates for the end-
point q = ∞ (see Proposition 3.4 and Lemma A.1). First, we may consider

‖u‖(ω,exp)∗∗ := sup
Q⊂Rn−1

1

ω(ℓ(Q))

∥∥∥∥
(ˆ ℓ(Q)

0

|(∇u)(·, t)|2 t dt
)1/2∥∥∥∥

expL,Q

(1.15)

where ‖ · ‖expL,Q is the version of the norm in the Orlicz space expL localized and
normalized relative to Q, i.e.,

‖f‖expL,Q := inf

{
t > 0 :

 

Q

(
e
|f(x′)|

t − 1
)
dx′ ≤ 1

}
. (1.16)

Second, corresponding to the limiting case q = ∞ we may consider

‖u‖(ω,∞)
∗∗ := sup

(x′,t)∈Rn
+

t

ω(t)
|(∇u)(x′, t)|. (1.17)

We are ready to describe our main result concerning the Dirichlet problems with
data in generalized Hölder and generalized Morrey-Campanato spaces for homogeneous
second-order strongly elliptic systems of differential operators with constant complex
coefficients (cf. (1.1) and (1.2)). In Section 6 (cf. Theorems 6.1-6.2), we weaken the
condition (1.18) and still prove well-posedness for the two Dirichlet problems. The main
difference is that in that case they are no longer equivalent as (1.24) might fail (see
Example 6.4).

Theorem 1.4. Consider a strongly elliptic constant complex coefficient second-order
M ×M system L, as in (1.1)-(1.2). Also, fix p ∈ [1,∞) along with q ∈ (0,∞], and let
ω be a growth function satisfying, for some finite constant C0 ≥ 1,

ˆ t

0

ω(s)
ds

s
+ t

ˆ ∞

t

ω(s)

s

ds

s
≤ C0 ω(t) for each t ∈ (0,∞). (1.18)

Then the following statements are true.
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(a) The generalized Hölder Dirichlet problem for the system L in Rn
+, i.e.,




u ∈ C
∞(Rn

+,C
M),

Lu = 0 in Rn
+,

[u]
Ċω(Rn

+,CM ) < ∞,

u|lim∂Rn
+
= f ∈ Ċ ω(Rn−1,CM) on Rn−1,

(1.19)

is well-posed. More specifically, there is a unique solution which is given by

u(x′, t) = (PL
t ∗ f)(x′), ∀ (x′, t) ∈ Rn

+, (1.20)

where PL denotes the Poisson kernel for L in Rn
+ from Theorem 3.3. In addition,

u belongs to the space Ċ ω(Rn
+,C

M), satisfies u|∂Rn
+
= f , and there exists a finite

constant C = C(n, L, ω) ≥ 1 such that

C−1[f ]
Ċ ω(Rn−1,CM ) ≤ [u]

Ċω(Rn
+,CM ) ≤ C[f ]

Ċω(Rn−1,CM ). (1.21)

(b) The generalized Morrey-Campanato Dirichlet problem for L in Rn
+, formulated as





u ∈ C ∞(Rn
+,C

M),

Lu = 0 in Rn
+,

‖u‖(ω,q)∗∗ < ∞,

u|nt.lim∂Rn
+

= f ∈ E ω,p(Rn−1,CM) a.e. on Rn−1,

(1.22)

is well-posed. More precisely, there is a unique solution (1.22) which is given by

(1.20). In addition, u belongs to Ċ ω(Rn
+,C

M), satisfies u|∂Rn
+
= f a.e. on Rn−1,

and there exists a finite constant C = C(n, L, ω, p, q) ≥ 1 such that

C−1 ‖f‖
E ω,p(Rn−1,CM ) ≤ ‖u‖(ω,q)∗∗ ≤ C ‖f‖

E ω,p(Rn−1,CM ) . (1.23)

Furthermore, all these properties remain true if ‖·‖(ω,q)∗∗ is replaced everywhere by

‖·‖(ω,exp)∗∗ .

(c) The following equality between vector spaces holds

Ċ
ω(Rn−1,CM) = E

ω,p(Rn−1,CM) (1.24)

with equivalent norms, where the right-to-left inclusion is understood in the sense

that for each f ∈ E ω,p(Rn−1,CM) there exists a unique f̃ ∈ Ċ ω(Rn−1,CM) with the

property that f = f̃ a.e. in Rn−1.
As a result, the Dirichlet problems (1.19) and (1.22) are equivalent. Specifically,

for any pair of boundary data which may be identified in the sense of (1.24) these
problems have the same unique solution (given by (1.20)).

A few comments regarding the previous result. In Lemma 2.1 we shall prove that,
for growth functions as in (1.18), each u ∈ Ċ ω(Rn

+,C
M) extends uniquely to a function

u ∈ Ċ ω(Rn
+,C

M). Hence, the ordinary restriction u|∂Rn
+
is well-defined in the context

of item (a) of Theorem 1.4. In item (b) the situation is slightly different. One can
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first show that u extends to a continuous function up to, and including, the boundary.
Hence, the non-tangential pointwise trace agrees with the restriction to the boundary
everywhere. However, since functions in E ω,p(Rn−1,CM) are canonically identified when-
ever they agree outside of a set of zero Lebesgue measure, the boundary condition in
(1.22) is most naturally formulated by asking that the non-tangential boundary trace
agrees with the boundary datum almost everywhere. The same type of issue arises
when interpreting (1.24). Specifically, while the left-to-right inclusion has a clear mean-
ing, the converse inclusion should be interpreted as saying that each equivalence class in
E

ω,p(Rn−1,CM) (induced by the aforementioned identification) has a unique representa-

tive from Ċ ω(Rn−1,CM). We would like to observe that (1.24) extends the well-known
result of N.G. Meyers [9] who considered the case ω(t) = tα, t > 0. Here we extend the
class of growth functions for which (1.24) holds and our alternative approach is based
on PDE.

It is illustrative to provide examples of growth functions to which Theorem 1.4 applies.
In this vein, we first observe that (1.18) is closely related to the dilation indices of Orlicz
spaces studied in [1, 2] in relation to interpolation in Orlicz spaces. Concretely, given a
growth function ω set

hω(t) := sup
s>0

ω(st)

ω(s)
, ∀ t > 0, (1.25)

and define the lower and upper dilation indices, respectively, as

iω := sup
0<t<1

log hω(t)

log t
and Iω := inf

t>1

log hω(t)

log t
. (1.26)

One can see that if 0 < iω ≤ Iω < 1 then (1.18) holds. Indeed, it is not hard to check
that there exists a constant C ∈ (0,∞) with the property that hω(t) ≤ C tiω/2 for every
t ∈ (0, 1], and hω(t) ≤ C t(Iω+1)/2 for every t ∈ [1,∞). These, in turn, readily yield
(1.18).

Now, given α ∈ (0, 1), if ω(t) := tα for each t > 0 then iω = Iω = α and, hence, (1.18)

holds. Note that in that case Ċ ω(Rn
+,C

M) = Ċ α(Rn
+,C

M) is the standard homogeneous
Hölder space of order α and the particular version of Theorem 1.4 corresponding to this
scenario has been established in [6]. This being said, there many examples of interest that
are treated here for the first time, such as ω(t) = tα (A+log+ t)θ for A := max{1,−θ/α}
and each t > 0, or ω(t) = tα (A+log+(1/t))

θ for A := max{1, θ/α} and each t > 0, with
0 < α < 1, θ ∈ R, and log+(t) := max{0, log t}.

In these situations iω = Iω = α which guarantees that (1.18) holds. Furthermore, if
ω(t) := max{tα, tβ}, or ω(t) := min{tα, tβ}, for each t > 0, with 0 < α, β < 1, then
in both cases we have iω = min{α, β} and Iω = max{α, β}, hence condition (1.18) is
verified once again.

The following result, providing a characterization of the generalized Hölder and gen-
eralized Morrey-Campanato spaces in terms of the boundary traces of solutions, is a
byproduct of the proof of the above theorem.

Corollary 1.5. Let L be a strongly elliptic, constant (complex) coefficient, second-order
M × M system in Rn. Fix p ∈ [1,∞) along with q ∈ (0,∞), and let ω be a growth
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function for which (1.18) holds. Then for every function u ∈ C ∞(Rn
+,C

M) satisfying
Lu = 0 in Rn

+ one has

‖u‖(ω,q)∗∗ ≈ ‖u‖(ω,exp)∗∗ ≈ ‖u‖(ω,∞)
∗∗ ≈ [u]

Ċw(Rn
+,CM ) (1.27)

where the implicit proportionality constants depend only on L, n, q, and the constant C0

in (1.18). Moreover,

Ċ
ω(Rn−1,CM) =

{
u|∂Rn

+
: u ∈ C

∞(Rn
+,C

M), Lu = 0 in Rn
+, [u]

Ċ ω(Rn
+,CM ) < ∞

}

=
{
u|∂Rn

+
: u ∈ C

∞(Rn
+,C

M), Lu = 0 in Rn
+, ‖u‖(ω,q)∗∗ < ∞

}

=
{
u|∂Rn

+
: u ∈ C

∞(Rn
+,C

M), Lu = 0 in Rn
+, ‖u‖(ω,exp)∗∗ < ∞

}

=
{
u|∂Rn

+
: u ∈ C

∞(Rn
+,C

M), Lu = 0 in Rn
+, ‖u‖(ω,∞)

∗∗ < ∞
}
. (1.28)

The plan of the paper is as follows. In Section 2 we present some properties of the
growth functions and study some of the features of the generalized Hölder and Morrey-
Campanato spaces which are relevant to this work. Section 3 is reserved for collecting
some known results for elliptic systems, and for giving the proof of Proposition 3.4,
where some a priori estimates for the null-solutions of such systems are established.

In turn, these estimates allow us to compare the seminorm ‖·‖(ω,q)∗∗ (corresponding to
various values of q) with [·]

Ċw(Rn
+,CM ). In Section 4 we prove the existence of solutions

for the Dirichlet problems with boundary data in Ċ ω(Rn−1,CM) and E ω,p(Rn−1,CM).
Section 5 contains a Fatou-type result for null-solutions of a strongly elliptic system L
belonging to the space Ċ ω(Rn−1,CM), which will be a key ingredient when establishing
uniqueness for the boundary value problems formulated in Theorem 1.4. Combining
the main results of the previous two sections yields two well-posedness results under
different assumptions on the growth function: one for boundary data in Ċ ω(Rn−1,CM)

and solutions in Ċ
ω(Rn

+,C
M), and another one for boundary data in E

ω,p(Rn−1,CM)

and solutions satisfying ‖u‖(ω,q)∗∗ < ∞ for some 0 < q ≤ ∞, or even in the case where q is
replaced by exp. In concert, these two results cover all claims of Theorem 1.4. Finally,
in Appendix A we present a John-Nirenberg type inequality of real-variable nature,
generalizing some results in [4, 3] by allowing more flexibility due to the involvement of
growth functions. This is interesting and useful in its own right. In addition, we are
able to show exponential decay for the measure of the associated level sets which, in
turn, permits deriving estimates not only in arbitrary Lq spaces but also in the space
expL. Our approach for deriving such results is different from [4, 3], and uses some
ideas which go back to a proof of the classical John-Nirenberg exponential integrability
for BMO functions due to Calderón. As a matter of fact, our abstract method yields
easily Calderón’s classical result.
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2. Growth Functions, Generalized Hölder and Morrey-Campanato
Spaces

We begin by studying some basic properties of growth functions. As explained in the
introduction, we ultimately wish to work with growth functions satisfying conditions
weaker than (1.18). Indeed, the two mains conditions that we will consider are

ˆ 1

0

ω(s)
ds

s
< ∞, (2.1)

and

t

ˆ ∞

t

ω(s)

s

ds

s
≤ Cω ω(t), ∀ t ∈ (0,∞), (2.2)

for some finite constant Cω ≥ 1. In what follows, Cω will always denote the constant
in (2.2). Clearly, if ω satisfies it satisfies (1.18) then both (2.1) and (2.2) hold but the
reverse implication is not true in general (see Example 6.4 in this regard).

Later on, we will need the auxiliary function W defined as

W (t) :=

ˆ t

0

ω(s)
ds

s
for each t ∈ (0,∞). (2.3)

Note that (2.1) gives that W (t) < ∞ for every t > 0. Then (1.18) holds if and only if
(2.2) holds and there exists C ∈ (0,∞) such that W (t) ≤ C ω(t) for each t ∈ (0,∞).

The following lemma gathers some useful properties on growth functions satisfying
condition (2.2).

Lemma 2.1. Given a growth function ω satisfying (2.2), the following statements are
true.

(a) Whenever 0 < t1 ≤ t2 < ∞, one has

ω(t2)

t2
≤ Cω

ω(t1)

t1
. (2.4)

(b) For every t ∈ (0,∞) one has

ω(2t) ≤ 2Cω ω(t). (2.5)

(c) One has limt→∞ ω(t)/t = 0.

(d) For each set E ⊂ Rn one has Ċ ω(E,CM) = Ċ ω(E,CM), with equivalent norms.
More specifically, the restriction map

Ċ
ω(E,CM) ∋ u 7−→ u

∣∣
E
∈ Ċ

ω(E,CM) (2.6)

is a linear isomorphism which is continuous in the precise sense that, under the
canonically identification of functions u ∈ Ċ ω(E,CM) with u

∣∣
E
∈ Ċ ω(E,CM), one

has

[u]
Ċω(E,CM) ≤ [u]

Ċω(E,CM ) ≤ 2Cω[u]Ċω(E,CM ) (2.7)

for each u ∈ Ċ ω(E,CM).
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Proof. We start observing that for every t > 0

ω(t)

t
≤
ˆ ∞

t

ω(s)

s

ds

s
≤ Cω

ω(t)

t
. (2.8)

The first inequality uses that ω is non-decreasing and the second is just (2.2). Then,
given t1 ≤ t2, we may write

ω(t2)

t2
≤
ˆ ∞

t2

ω(s)

s

ds

s
≤
ˆ ∞

t1

ω(s)

s

ds

s
≤ Cω

ω(t1)

t1
, (2.9)

proving (a). The doubling property in (b) follows at once from (a) by taking t2 := 2t1 in
(2.4). Next, the claim in (c) is justified by passing to limit t → ∞ in the first inequality
in (2.8) and using Lebesgue’s Dominated Convergence Theorem.

Turning our attention to (d), fix an arbitrary u ∈ C ω(E,CM). As noted earlier,
this membership ensures that u is uniformly continuous, hence u extends uniquely to a
continuous function v on E. To show that v belongs to Ċ ω(E,CM) pick two arbitrary
distinct points y, z ∈ E and choose two sequences {yk}k∈N, {zk}k∈N of points in E such
that yk → x and zk → z as k → ∞. By discarding finitely many terms, there is no loss
of generality in assuming that |yk − zk| < 2|y − z| for each k ∈ N. Relying on the fact
that ω is non-decreasing and (2.5), we may then write

|v(y)− v(z)| = lim
k→∞

|u(yk)− u(zk)| ≤ [u]
Ċω(E,CM) lim sup

k→∞
ω(|yk − zk|)

≤ [u]
Ċω(E,CM) ω(2|y − z|) ≤ 2Cω[u]Ċ ω(E,CM ) ω(|y − z|). (2.10)

From this, all claims in (d) follow, completing the proof of the lemma. �

In the following lemma we treat W defined in (2.3) as a growth function depending
on the original ω.

Lemma 2.2. Let ω be a growth function satisfying (2.1) and (2.2), and let W (t) be
defined as in (2.3). Then W : (0,∞) → (0,∞) is a growth function satisfying (2.2) with

CW ≤ 1 + (Cω)
2. (2.11)

Moreover,

ω(t) ≤ Cω W (t) for each t ∈ (0,∞). (2.12)

Proof. By design, W is a non-decreasing function and, thanks to Lebesgue’s Dominated
Convergence Theorem and (2.1) we have W (t) → 0 as t → 0+. Also, on account of
(2.4), for each t ∈ (0,∞) we may write

ω(t) =

ˆ t

0

ω(t)

t
ds ≤ Cω

ˆ t

0

ω(s)

s
ds = CωW (t), (2.13)
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proving (2.12). In turn, Fubini’s Theorem, (2.2), and (2.12) permit us to estimate

t

ˆ ∞

t

W (s)

s

ds

s
= t

ˆ ∞

t

(
ˆ s

0

ω(λ)
dλ

λ

)
ds

s2

= t

ˆ t

0

(
ˆ ∞

t

ds

s2

)
ω(λ)

dλ

λ
+ t

ˆ ∞

t

(
ˆ ∞

λ

ds

s2

)
ω(λ)

dλ

λ

= t

ˆ t

0

1

t
ω(λ)

dλ

λ
+ t

ˆ ∞

t

ω(λ)

λ

dλ

λ

≤ W (t) + Cω ω(t)

≤
(
1 + (Cω)

2
)
W (t), (2.14)

for each t ∈ (0,∞). This shows that W satisfies (2.2) with constant CW ≤ 1+(Cω)
2. �

Moving on, for each given function f ∈ L1
loc(R

n−1,CM) define the Lp-based mean
oscillation of f at a scale r ∈ (0,∞) as

oscp(f ; r) := sup
Q⊂Rn−1

ℓ(Q)≤r

(
 

Q

|f(x′)− fQ|p dx′

)1/p

. (2.15)

The following lemma gathers some results from [6, Lemmas 2.1 and 2.2].

Lemma 2.3. Let f ∈ L1
loc(R

n−1,CM).

(a) For every p, q ∈ [1,∞) there exists some finite C = C(p, q, n) > 1 such that

C−1 oscp(f ; r) ≤ oscq(f ; r) ≤ C oscp(f ; r), ∀ r > 0. (2.16)

(b) For every ε > 0,
ˆ ∞

1

osc1(f ; s)
ds

s1+ε
< ∞ =⇒ f ∈ L1

(
Rn−1,

dx′

1 + |x′|n−1+ε

)M

. (2.17)

We augment Lemma 2.3 with similar results involving generalized Morrey-Campanato
spaces and generalized Hölder spaces.

Lemma 2.4. Let ω be a growth function and fix p ∈ [1,∞). Then the following properties
are valid.

(a) If f ∈ E
ω,p(Rn−1,CM), then

oscp(f ; r) ≤ ω(r) ‖f‖
E ω,p(Rn−1,CM ) for each r ∈ (0,∞). (2.18)

(b) If ω satisfies (2.2), then for each f ∈ E ω,p(Rn−1,CM) one has

‖f‖
E ω,p(Rn−1,CM ) ≤

√
n− 1Cω[f ]Ċ ω(Rn−1,CM ) (2.19)

and

Ċ
ω(Rn−1,CM) ⊂ E

ω,p(Rn−1,CM) ⊂ L1

(
Rn−1,

dx′

1 + |x′|n
)M

. (2.20)
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Proof. Note that given any f ∈ E ω,p(Rn−1,CM) and r > 0, based on (2.15), the fact
that ω is non-decreasing, and (1.13) we may write

oscp(f ; r) = sup
Q⊂Rn−1

ℓ(Q)≤r

ω(ℓ(Q))
1

ω(ℓ(Q))

(
 

Q

|f(x′)− fQ|p dx′

)1/p

≤ ω(r) ‖f‖
E ω,p(Rn−1,CM ) , (2.21)

proving (a). Consider next the claims in (b). Given any f ∈ Ċ ω(Rn−1,CM), a combina-
tion of (1.13), (1.10), and (2.4) yields

‖f‖
E ω,p(Rn−1,CM ) ≤ sup

Q⊂Rn−1

(
 

Q

 

Q

( |f(x′)− f(y′)|
ω(ℓ(Q))

)p

dx′ dy′
)1/p

≤ sup
Q⊂Rn−1

ω(
√
n− 1ℓ(Q))

ω(ℓ(Q))
[f ] ˙C ω(Rn−1,CM )

≤
√
n− 1Cω[f ] ˙Cω(Rn−1,CM ). (2.22)

This establishes (2.19), hence also the first inclusion in (2.20). For the second inclusion
in (2.20), using Jensen’s inequality, (2.18), and (2.2) we may write

ˆ ∞

1

osc1(f ; s)
ds

s2
≤ ‖f‖

E ω,p(Rn−1,CM )

ˆ ∞

1

ω(s)
ds

s2

≤ Cω ω(1) ‖f‖E ω,p(Rn−1,CM ) < ∞. (2.23)

The desired inclusion now follows from this and (2.17) with ε := 1. �

3. Properties of Elliptic Systems and Their Solutions

The following result is a particular case of more general interior estimates found in
[10, Theorem 11.9].

Theorem 3.1. Let L be a constant complex coefficient system as in (1.1) satisfying
(1.2). Then for every p ∈ (0,∞), λ ∈ (0, 1), and m ∈ N ∪ {0} there exists a finite
constant C = C(L, p,m, λ, n) > 0 with the property that for every null-solution u of L
in a ball B(x,R), where x ∈ Rn and R > 0, and every r ∈ (0, R) one has

sup
z∈B(x,λr)

|(∇mu)(z)| ≤ C

rm

(
 

B(x,r)

|u(x)|p dx
)1/p

. (3.1)

To proceed, introduce

W 1,2
bdd(R

n
+) :=

{
u ∈ L2

loc(R
n
+) : u, ∂ju ∈ L2

(
Rn

+ ∩B(0, r)
)

for each j ∈ {1, . . . , n} and r ∈ (0,∞)
}
, (3.2)

and define the Sobolev trace Tr, whenever meaningful, as

(Tr u)(x′) := lim
r→0+

 

B((x′,0),r)∩Rn
+

u(y) dy, x′ ∈ Rn−1. (3.3)
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The following result is taken from [8, Corollary 2.4].

Proposition 3.2. Let L be a constant complex coefficient system as in (1.1) satisfying
(1.2), and suppose u ∈ W 1,2

bdd(R
n
+) satisfies Lu = 0 in Rn

+ and Tr u = 0 on Rn−1. Then
u ∈ C ∞(Rn

+,C
M) and there exists a finite constant C > 0, independent of u, such that

for each x ∈ Rn
+ and each r > 0,

sup
Rn
+∩B(x,r)

|∇u| ≤ C

r
sup

Rn
+∩B(x,2r)

|u|. (3.4)

The following theorem is contained in [6, Theorem 2.3 and Proposition 3.1].

Theorem 3.3. Suppose L is a constant complex coefficient system as in (1.1), satisfying
(1.2). Then the following statements are true.

(a) There exists a matrix-valued function PL = (PL
αβ)1≤α,β≤M : Rn−1 → CM×M , called

the Poisson kernel for L in Rn
+, such that PL ∈ C ∞(Rn−1), there exists some finite

constant C > 0 such that

|PL(x′)| ≤ C

(1 + |x′|2)n/2 , ∀ x′ ∈ Rn−1, (3.5)

and
ˆ

Rn−1

PL(x′) dx′ = IM×M , (3.6)

where IM×M stands for the M×M identity matrix. Moreover, if for every x′ ∈ Rn−1

and t > 0 one defines

KL(x′, t) := PL
t (x

′) := t1−nPL(x′/t), (3.7)

then KL ∈ C ∞
(
Rn

+\B(0, ε)
)
for every ε > 0 and the function KL =

(
KL

αβ

)
1≤α,β≤M

satisfies
LKL

·β = 0 in Rn
+ for each β ∈ {1, . . . ,M}, (3.8)

where KL
·β :=

(
KL

αβ

)
1≤α≤M

is the β-th column in KL.

(b) For each function f = (fβ)1≤β≤M ∈ L1
(
Rn−1, dx′

1+|x′|n

)M
define, with PL as above,

u(x′, t) := (PL
t ∗ f)(x′), ∀ (x′, t) ∈ Rn

+. (3.9)

Then u is meaningfully defined, via an absolutely convergent integral, and satisfies

u ∈ C
∞(Rn

+,C
M), Lu = 0 in Rn

+, u|nt.lim∂Rn
+

= f a.e. on Rn−1. (3.10)

Furthermore, there exists a finite constant C > 0 such that

|(∇u)(x′, t)| ≤ C

t

ˆ ∞

1

osc1(f ; st)
ds

s2
, ∀ (x′, t) ∈ Rn

+, (3.11)

and, for each cube Q ⊂ Rn−1,
(
ˆ ℓ(Q)

0

 

Q

|(∇u)(x′, t)|2 t dx′ dt

)1/2

≤ C

ˆ ∞

1

osc1(f ; sℓ(Q))
ds

s2
. (3.12)
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Our next proposition contains a number of a priori estimates comparing ‖u‖(ω,q)∗∗ ,
corresponding to different values of q, for solutions of Lu = 0 in Rn

+. To set the stage,
we first state some simple estimates which are true for any function u ∈ C

1(Rn
+,C

M):

‖u‖(ω,p)∗∗ ≤ ‖u‖(ω,q)∗∗ ≤ C ‖u‖(ω,exp)∗∗ , 0 < p ≤ q < ∞, (3.13)

where C = C(q) ≥ 1. Indeed, the first estimate follows at once from Jensen’s inequality.
The second estimate is a consequence of the fact that tmax{1,q} ≤ C(et − 1) (with C > 0
depending on max{1, q}) for each t ∈ (0,∞) and the definition of ‖ · ‖expL,Q (cf. (1.15)).

Proposition 3.4. Let L be a constant complex coefficient system as in (1.1) satisfying
the strong ellipticity condition (1.2), and let u ∈ C ∞(Rn

+,C
M) be such that Lu = 0 in

Rn
+. Then the following statements hold.

(a) For every q ∈ (0,∞) there there exists a finite constant C = C(L, n, q) ≥ 1 such
that for each (x′, t) ∈ Rn

+ one has

t |(∇u)(x′, t)| ≤ C

(
 

|x′−y′|< t
2

(
ˆ 3t/2

t/2

|(∇u)(y′, s)|2 s ds
)q/2

dy′
)1/q

. (3.14)

(b) There exists a finite constant C = C(L, n) ≥ 1 such that for each cube Q ⊂ Rn−1

and each x′ ∈ Rn−1 one has
(
ˆ ℓ(Q)

0

|(∇u)(x′, t)|2 t dt
)1/2

≤ C

(
ˆ 2ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)1/2

. (3.15)

Furthermore, whenever 2 ≤ q < ∞ there exists a finite constant C = C(L, n, q) ≥ 1
such that for each cube Q ⊂ Rn−1 and each x′ ∈ Rn−1 one has

(
 

Q

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)q/2

dx′

)1/q

≤ C

(
 

3Q

(
ˆ 3ℓ(Q)

0

|(∇u)(x′, t)|2 t dt
)q/2

dx′

)1/q

. (3.16)

(c) There exists a finite constant C = C(L, n) ≥ 1 such that for each growth function
ω one has

‖u‖(ω,∞)
∗∗ ≤ C[u] ˙Cω(Rn

+,CM ). (3.17)

(d) For every q ∈ (0,∞) there exists a finite constant C = C(L, n, q) ≥ 1 such that for
each growth function ω satisfying (2.2) one has

‖u‖(ω,∞)
∗∗ ≤ C Cω ‖u‖(ω,q)∗∗ . (3.18)

(e) There exists a finite constant C = C(L, n) ≥ 1 such that for each growth function
ω satisfying (2.2) one has

‖u‖(ω,exp)∗∗ ≤ C(Cω)
2 ‖u‖(ω,2)∗∗ . (3.19)

(f) Let ω be a growth function satisfying (2.1) as well as (2.2), and define W (t) as in
(2.3). Then

[u]
ĊW (Rn

+,CM ) ≤ Cω(2 + Cω) ‖u‖(ω,∞)
∗∗ , (3.20)
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and, if the latter quantity is finite, u ∈ Ċ
W (Rn

+,C
M) in the sense of Lemma 2.1(d).

(g) Let ω be a growth function satisfying

ˆ t

0

ω(s)
ds

s
≤ C ′

ω ω(t), ∀ t ∈ (0,∞), (3.21)

for some finite constant C ′
ω > 1. Then

‖u‖(ω,exp)∗∗ ≤ (C ′
ω)

1/2 ‖u‖(ω,∞)
∗∗ . (3.22)

(h) Let ω be a growth function satisfying (1.18). Then for every q ∈ (0,∞)

‖u‖(ω,q)∗∗ ≈ ‖u‖(ω,exp)∗∗ ≈ ‖u‖(ω,∞)
∗∗ ≈ [u]

Ċw(Rn
+,CM ) (3.23)

where the implicit constants depend only on L, n, q, and the constant C0 in (1.18).

In particular, if ‖u‖(ω,q)∗∗ < ∞ for some q ∈ (0,∞], or ‖u‖(ω,exp)∗∗ < ∞, then u ∈
Ċ ω(Rn

+,C
M) in the sense of Lemma 2.1(d).

Proof. We start by proving (a). Fix (x′, t) ∈ Rn
+ and let Qx′,t be the cube in Rn−1

centered at x′ with side-length t. Then from Theorem 3.1 (presently used with m := 0
and p := min{q, 2}) and Jensen’s inequality we obtain

|(∇u)(x′, t)| ≤ C

(
 

|(y′,s)−(x′,t)|< t
2

|(∇u)(y′, s)|p dy′ ds
)1/p

≤ C

(
 

|x′−y′|< t
2

(
 

(t/2,3t/2)

|(∇u)(y′, s)|2 ds
)p/2

dy′

)1/p

≤ C

(
 

|x′−y′|< t
2

(
 

(t/2,3t/2)

|(∇u)(y′, s)|2 ds
)q/2

dy′
)1/q

= Ct−1

(
 

|x′−y′|< t
2

(
ˆ 3t/2

t/2

|(∇u)(y′, s)|2 s ds
)q/2

dy′
)1/q

, (3.24)

proving (3.14). Turning our attention to (b), fix a cube Q ⊂ Rn−1 along with a point
x′ ∈ Rn−1. First, integrating (3.14) written for q := 2 yields

ˆ ℓ(Q)

0

|(∇u)(x′, t)|2 t dt ≤ C

ˆ ℓ(Q)

0

1

tn+1

ˆ 3t/2

t/2

ˆ

|x′−y′|<s

|(∇u)(y′, s)|2 s dy′ ds t dt

≤ C

ˆ 2ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s)|2
ˆ 2s

2s/3

t−n dt dy′ s ds

= C

ˆ 2ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ ds
sn

, (3.25)
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and this readily leads to the estimate in (3.15). To justify (3.16), observe that for each
nonnegative function h ∈ L1

loc(R
n−1) we have

 

Q

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)
h(x′) dx′

≤ 3n
 

3Q

ˆ ℓ(Q)

0

(
1

sn−1

ˆ

|y′−x′|<s

h(x′) dx′

)
|(∇u)(y′, s)|2 s ds dy′

≤ Cn

 

3Q

(
ˆ 3ℓ(Q)

0

|(∇u)(y′, s)|2 s ds
)
(Mh)(x′) dx′, (3.26)

where M is the Hardy-Littlewood maximal operator in Rn−1. Note that if q = 2 then
(3.26) gives at once (3.16) by taking h = 1 in Q and using that Mh ≤ 1. On the other
hand, if q > 2, we impose the normalization condition ‖h‖L(q/2)′ (Q,dx′/|Q|) = 1 and then

rely on (3.26) and Hölder’s inequality to write

 

Q

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<s

|(∇u)(y′, s) s|2 dy′ds
sn

)
h(x′) dx′

≤ Cn

(
 

3Q

(
ˆ 3ℓ(Q)

0

|(∇u)(y′, s)|2 s ds
)q/2

dx′

)2/q

‖Mh‖L(q/2)′ (Q,dx′/|Q|)

≤ C

(
 

3Q

(
ˆ 3ℓ(Q)

0

|(∇u)(y′, s)|2 s ds
)q/2

dx′

)2/q

, (3.27)

bearing in mind that M is bounded in L(q/2)′(Rn−1), given that q > 2. Taking now the
supremum over all such functions h yields (3.16) on account of Riesz’ duality theorem.

As regards (c), fix (x′, t) ∈ Rn
+ and use Theorem 3.1 together with the fact that ω is

a non-decreasing function to write

|(∇u)(x′, t)| =
∣∣∇(u(·)− u(x′, t))(x′, t)

∣∣

≤ C

t

 

|(y′,s)−(x′,t)|<t/2

|u(y′, s)− u(x′, t)| dy′ ds

≤ C[u] ˙Cω(Rn
+,CM )

ω(t)

t
. (3.28)

In view of (1.17), this readily establishes (3.17).

The claim in (d) is proved by combining (3.14) and (2.5), which permit us to estimate
(recall that Qx′,t denotes the cube in Rn−1 centered at x′ with side-length t)

‖u‖(ω,∞)
∗∗ ≤ C sup

(x′,t)∈Rn
+

1

ω(t)

(
 

(3/2)Qx′,t

(
ˆ 3t/2

0

|(∇u)(y′, s)|2 s ds
)q/2

dy′
)1/q

≤ C Cω ‖u‖(ω,q)∗∗ . (3.29)
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Going further, consider the claim in (e). For starters, observe that the convexity of

the function t 7→ et − 1 readily implies that 2n−1(et − 1) ≤ e2
n−1t − 1 for every t > 0

which, in view of (1.16), allows us to write

‖f‖expL,Q ≤ 2n−1 ‖f‖expL,2Q (3.30)

for each cube Q in Rn−1 and each Lebesgue measurable function f on Q.

Turning to the proof of (3.19) in earnest, by homogeneity we may assume that

‖u‖(ω,2)∗∗ = 1 to begin with. We are going to use Lemma A.1. As a prelude, define

F (y′, s) := |(∇u)(y′, s) s|, ∀ (y′, s) ∈ Rn
+, (3.31)

and, for each cube Q in Rn−1 and each threshold N ∈ (0,∞), consider the set

EN,Q :=

{
x′ ∈ Q :

1

ω(ℓ(Q))

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2

> N

}
. (3.32)

where κ := 1 + 2
√
n− 1. Denoting Q∗ := (2κ + 1)Q = (3 + 4

√
n− 1)Q, then using

Chebytcheff’s inequality, and (2.4), for each cube Q in Rn−1 and each N > 0 we may
write

|EN,Q| ≤
1

N2

1

ω(ℓ(Q))2

ˆ

Q

ˆ ℓ(Q)

0

ˆ

|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

dx′

≤ 1

N2

1

ω(ℓ(Q))2

ˆ

Q∗

ˆ ℓ(Q)

0

(ˆ

|y′−x′|<κs

dx′
)
|F (y′, s)|2ds

sn
dy′

≤ C
1

N2

1

ω(ℓ(Q))2

ˆ

Q∗

ˆ ℓ(Q∗)

0

|(∇u)(y′, s) s|2ds
s
dy′

≤ C
|Q∗|
N2

ω(ℓ(Q∗))2

ω(ℓ(Q))2
(
‖u‖(ω,2)∗∗

)2
= C

|Q∗|
N2

[ω(ℓ(Q∗))

ω(ℓ(Q))

]2

≤ C0(Cω)
2 1

N2
|Q|, (3.33)

for some finite constant C0 > 0. Therefore, taking N :=
√
2C0Cω > 0, we conclude that

|EN,Q| ≤
1

2
|Q|. (3.34)

This allows us to invoke Lemma A.1 with ϕ := ω, which together with (3.15), (2.5), and
(3.30), gives

‖u‖(ω,exp)∗∗ ≤ C sup
Q⊂Rn−1

1

ω(ℓ(Q))

∥∥∥∥
(
ˆ ℓ(2Q)

0

ˆ

| · −y′|<s

|F (y′, s)|2 dy′ds
sn

)1/2∥∥∥∥
expL,Q

≤ C(Cω)
2. (3.35)

This completes the proof of (e).
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Turning our attention to (f), fix x = (x′, t) and y = (y′, s) in Rn
+, and abbreviate

r := |x− y|. Then,

|u(x)− u(y)|
W (|x− y|) ≤ 1

W (r)
|u(x′, t)− u(x′, t+ r)|+ 1

W (r)
|u(x′, t+ r)− u(y′, s+ r)|

+
1

W (r)
|u(y′, s+ r)− u(y′, s)|

=: I + II + III. (3.36)

To bound I, we use the Fundamental Theorem of Calculus, (2.4), and (2.3) and obtain

I =
1

W (r)

∣∣∣∣
ˆ r

0

(∂nu)(x
′, t+ ξ) dξ

∣∣∣∣ ≤ ‖u‖(ω,∞)
∗∗

1

W (r)

ˆ r

0

ω(t+ ξ)

t+ ξ
dξ

≤ Cω ‖u‖(ω,∞)
∗∗

1

W (r)

ˆ r

0

ω(ξ)

ξ
dξ = Cω ‖u‖(ω,∞)

∗∗ . (3.37)

Note that III is bounded analogously replacing x′ by y′ and t by s. For II, we use again
the Fundamental Theorem of Calculus, together with (2.4) and (2.12), to write

II =
1

W (r)

∣∣∣∣
ˆ 1

0

d

dθ
[u(θ(x′, t+ r) + (1− θ)(y′, s+ r))] dθ

∣∣∣∣

=
1

W (r)

∣∣∣∣
ˆ 1

0

(x′ − y′, t− s) · (∇u)
(
θ(x′, t+ r) + (1− θ)(y′, s+ r)

)
dθ

∣∣∣∣

≤ ‖u‖(ω,∞)
∗∗

r

W (r)

ˆ 1

0

ω
(
(1− θ)s+ θt+ r

)

(1− θ)s+ θt+ r
dθ

≤ Cω ‖u‖(ω,∞)
∗∗

r

W (r)

ˆ 1

0

ω(r)

r
dθ

≤ (Cω)
2 ‖u‖(ω,∞)

∗∗ . (3.38)

As x and y were chosen arbitrarily, (3.36), (3.37), and (3.38) collectively justify (3.20).

To justify (g), observe that since ω is non-decreasing and satisfies (3.21) we may write

(
 

Q

(
ˆ ℓ(Q)

0

|(∇u)(x′, t)|2 t dt
)q/2

dx′

)1/q

≤
(
ˆ ℓ(Q)

0

ω(t)2
dt

t

)1/2

‖u‖(ω,∞)
∗∗

≤ (C ′
ω)

1/2ω(ℓ(Q)) ‖u‖(ω,∞)
∗∗ , (3.39)

which readily leads to the desired inequality.

As regards (h), the idea is to combine (3.13), (g), and (d) for the first three equiva-
lences. In concert, (c), the fact that (1.18) gives W ≤ C0 ω, and (f) also give the last
equivalence in (h). The proof of Proposition 3.4 is therefore complete. �
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4. Existence Results

In this section we develop the main tools used to establish the existence of solutions
for the boundary value problems formulated in the statement of Theorem 1.4. We start
with the generalized Hölder Dirichlet problem.

Proposition 4.1. Let L be a constant complex coefficient system as in (1.1) satisfy-
ing the strong ellipticity condition formulated in (1.2), and let ω be a growth function

satisfying (2.2). Given f ∈ Ċ ω(Rn−1,CM), define u(x′, t) := (PL
t ∗ f)(x′) for every

(x′, t) ∈ Rn
+. Then u is meaningfully defined via an absolutely convergent integral and

satisfies

u ∈ C
∞(Rn

+,C
M), Lu = 0 in Rn

+, u|nt.lim∂Rn
+

= f a.e. on Rn−1. (4.1)

Moreover, there exists a finite constant C = C(L, n) > 0 such that

[u]
Ċω(Rn

+,CM ) ≤ C Cω(1 + Cω)[f ]Ċω(Rn−1,CM ), (4.2)

and u ∈ Ċ ω(Rn
+,C

M) with u|∂Rn
+
= f .

Proof. Let f ∈ Ċ ω(Rn−1,CM) and define u(x′, t) := (PL
t ∗ f)(x′) for every (x′, t) ∈ Rn

+.
By (2.20) and Theorem 3.3(b), u satisfies all properties listed in (4.1). To prove the
estimate in (4.2), we first notice that for any (x′, t) ∈ Rn

+, we can write

(PL
t ∗ f)(x′) =

ˆ

Rn−1

PL
t (x

′ − y′)f(y′) dy′ =

ˆ

Rn−1

t1−nPL

(
x′ − y′

t

)
f(y′) dy′

=

ˆ

Rn−1

PL(z′)f(x′ − tz′) dz′. (4.3)

Fix now x = (x′, t) and y = (y′, s) arbitrary in Rn
+, and set r := |x − y|. By (3.5) and

the fact that ω is non-decreasing we obtain

|u(x′, t)− u(y′, s)| = |(PL
t ∗ f)(x′)− (PL

s ∗ f)(y′)|

≤ C

ˆ

Rn−1

1

(1 + |z′|2)n/2 |f(x
′ − tz′)− f(y′ − sz′)| dz′

≤ C[f ]
Ċω(Rn−1,CM )

ˆ

Rn−1

1

(1 + |z′|2)n/2 ω((1 + |z′|)r) dz′

≤ C[f ]
Ċω(Rn−1,CM )

ˆ ∞

0

1

(1 + λ2)n/2
ω
(
(1 + λ)r

)
λn−1dλ

λ

≤ C[f ]
Ċω(Rn−1,CM )

(
ˆ 1

0

ω(2r) λn−1dλ

λ
+

ˆ ∞

1

ω(2λr)

λ

dλ

λ

)

= C[f ]
Ċ ω(Rn−1,CM )

(
ω(2r) + 2r

ˆ ∞

2r

ω(λ)

λ

dλ

λ

)

≤ C Cω(1 + Cω)ω(r)[f ]Ċω(Rn−1,CM ), (4.4)



GENERALIZED HÖLDER AND MORREY-CAMPANATO DIRICHLET PROBLEMS IN Rn
+ 19

where in the last inequality we have used (2.2) and (2.5). Hence, (4.2) holds. In par-

ticular, u ∈ Ċ ω(Rn
+,C

M) by Lemma 2.1(d). This and the fact that u|nt.lim∂Rn
+

= f a.e. in

Rn−1 with f ∈ Ċ ω(Rn−1,CM) then prove that, indeed, u|∂Rn
+
= f . �

The result below is the main tool in the proof of existence of solutions for the gener-
alized Morrey-Campanato Dirichlet problem.

Proposition 4.2. Let L be a constant complex coefficient system as in (1.1) satisfying
the strong ellipticity condition stated in (1.2), and let ω be a growth function satisfying
(2.2). Given 1 ≤ p < ∞, let f ∈ E

ω,p(Rn−1,CM) and define u(x′, t) := (PL
t ∗ f)(x′) for

every (x′, t) ∈ Rn
+. Then u is meaningfully defined via an absolutely convergent integral

and satisfies

u ∈ C
∞(Rn

+,C
M), Lu = 0 in Rn

+, u|nt.lim∂Rn
+

= f a.e. on Rn−1. (4.5)

Moreover, for every q ∈ (0,∞] there exists a finite constant C = C(L, n, p, q) > 0 such
that

‖u‖(ω,q)∗∗ ≤ C(Cω)
4 ‖f‖

E ω,p(Rn−1,CM ) . (4.6)

Furthermore, the same is true if ‖·‖(ω,q)∗∗ is replaced by ‖·‖(ω,exp)∗∗ .

Proof. Given f ∈ E ω,p(Rn−1,CM), if u(x′, t) := (PL
t ∗ f)(x′) for every (x′, t) ∈ Rn

+, from
(2.20) and Theorem 3.3(b) we see that u satisfies all properties listed in (4.5).

Next, having fixed an arbitrary exponent q ∈ (0,∞), based on Proposition 3.4(d),
(3.13), Proposition 3.4(e), (3.12), (2.16), (2.18) and (2.2) we may write

‖u‖(ω,∞)
∗∗ ≤ C Cω ‖u‖(ω,q)∗∗ ≤ C Cω ‖u‖(ω,exp)∗∗

≤ C(Cω)
3 ‖u‖(ω,2)∗∗ ≤ C(Cω)

3 sup
t>0

1

ω(t)

ˆ ∞

1

osc1(f, st)
ds

s2

= C(Cω)
3 ‖f‖

E ω,p(Rn−1,CM) sup
t>0

t

ω(t)

ˆ ∞

t

ω(s)
ds

s2

≤ C(Cω)
4 ‖f‖

E ω,p(Rn−1,CM ) , (4.7)

which proves (4.6) and the corresponding estimate for ‖u‖(ω,exp)∗∗ . �

5. A Fatou-Type Result and Uniqueness of Solutions

We shall now prove a Fatou-type result which is going to be the main ingredient
in establishing the uniqueness of solutions for the boundary value problems we are
presently considering. More precisely, the following result establishes that any solu-
tion in Ċ ω(Rn

+,C
M) can be obtained as a convolution of its trace with the associated

Poisson kernel.

Proposition 5.1. Let L be a constant complex coefficient system as in (1.1) satisfying
the strong ellipticity condition stated in (1.2), and let ω be a growth function satisfying
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(2.2). If u ∈ C
∞(Rn

+,C
M) ∩ Ċ

ω(Rn
+,C

M) is a function satisfying Lu = 0 in Rn
+, then

u|∂Rn
+
∈ Ċ ω(Rn−1,CM) and

u(x′, t) =
(
PL
t ∗ (u|∂Rn

+
)
)
(x′), ∀ (x′, t) ∈ Rn

+. (5.1)

Proof. Let u ∈ C ∞(Rn
+,C

M) ∩ Ċ ω(Rn
+,C

M) satisfy Lu = 0 in Rn
+. By Lemma 2.1(d),

it follows that u can be continuously extended to a function (which we call again u)

u ∈ Ċ ω(Rn
+,C

M). In particular, the trace u|∂Rn
+
is well-defined and belongs to the space

Ċ ω(Rn−1,CM). To proceed, fix an arbitrary ε > 0 and define uε = u(· + εen) in Rn
+,

where en = (0, . . . , 0, 1) ∈ Rn. Then, by design, uε ∈ C ∞(Rn
+,C

M) ∩ Ċ ω(Rn
+,C

M),
Luε = 0 in Rn

+, and [uε] ˙C ω(Rn
+,CM ) ≤ [u] ˙Cω(Rn

+,CM ). Moreover, using Proposition 3.4(c)

and (2.4) we obtain

sup
(x′,t)∈Rn

+

|(∇uε)(x
′, t)| = sup

(x′,t)∈Rn
+

|(∇u)(x′, t+ ε)|

≤ C[u] ˙Cω(Rn
+,CM ) sup

(x′,t)∈Rn
+

ω(t+ ε)

t + ε

≤ C Cω[u] ˙Cω(Rn
+,CM )

ω(ε)

ε
. (5.2)

This implies that ∇uε is bounded in Rn
+, hence uε ∈ W 1,2

bdd(R
n
+,C

M).

Define next fε(x
′) := u(x′, ε) ∈ Ċ ω(Rn−1,CM) and wε(x

′, t) := (PL
t ∗ fε)(x′) for each

(x′, t) ∈ Rn
+. Then, Proposition 4.1 implies that that wε ∈ C ∞(Rn

+,C
M)∩ Ċ ω(Rn

+,C
M),

Lwε = 0 in Rn
+ and wε|∂Rn

+
= fε. Moreover, for every pair of points x′, y′ ∈ Rn−1 we

have, on the one hand,

|fε(x′)− fε(y
′)| = |u(x′, ε)− u(y′, ε)| ≤ [u] ˙C ω(Rn

+,CM ) ω(|x′ − y′|), (5.3)

and, on the other hand, using the Mean Value Theorem and Proposition 3.4(c),

|fε(x′)− fε(y
′)| = |u(x′, ε)− u(y′, ε)|

≤ |x′ − y′| sup
z′∈[x′,y′]

|(∇u)(z′, ε)|

≤ C |x′ − y′| [u] ˙Cω(Rn
+,CM )

ω(ε)

ε
. (5.4)

Therefore, we conclude that fε ∈ Ċ Ψ(Rn−1,CM), with norm depending (unfavorably)
on the parameter ε, where the growth function Ψ is given by

Ψ(t) := min

{
t,
ω(t)

ω(1)

}
=

{
t if t ≤ 1,

ω(t)/ω(1) if t > 1.
(5.5)
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For every R > 1 and x = (x′, t), let us now invoke (3.11), (2.16) and (2.18), with Ψ in
place of ω, to write

ˆ

B(0,R)∩Rn
+

|(∇wε)(x)|2 dx ≤
ˆ

B(0,R)∩Rn
+

(
C

t

ˆ ∞

1

osc1(fε; st)
ds

s2

)2

dx

≤ C ‖fε‖E Ψ,p(Rn−1,CM )

ˆ

B(0,R)∩Rn
+

(
ˆ ∞

1

Ψ(st)

st

ds

s

)2

dx

≤ C ‖fε‖E Ψ,p(Rn−1,CM )R
n−1

ˆ R

0

(
ˆ ∞

t

Ψ(s)

s

ds

s

)2

dt, (5.6)

and then use (2.2) to observe that

ˆ R

0

(
ˆ ∞

t

Ψ(s)

s

ds

s

)2

dt ≤
ˆ 1

0

(
ˆ 1

t

ds

s
+

1

ω(1)

ˆ ∞

1

ω(s)

s

ds

s

)2

dt

+

ˆ R

1

(
1

ω(1)

ˆ ∞

1

ω(s)

s

ds

s

)2

dt

≤
ˆ 1

0

(
log(1/t) + Cω

)2
dt+ (R− 1)(Cω)

2 < ∞, (5.7)

Collectively, (5.6) and (5.7) show that wε ∈ W 1,2
bdd(R

n
+,C

M).

We now consider vε := uε−wε ∈ C ∞(Rn
+,C

M)∩ Ċ ω(Rn
+,C

M)∩W 1,2
bdd(R

n
+,C

M), which
satisfies Lvε = 0 in Rn

+ and vε|∂Rn
+
= 0. Hence, Tr vε = 0 on Rn−1 (see (3.3)) and for

each x ∈ Rn we have

|vε(x)| ≤ |vε(x)− vε(0)|+ |vε(0)|

≤ max
{
[vε] ˙C ω(Rn

+,CM ) , |vε(0)|
}
(1 + ω(|x|)). (5.8)

From this and Proposition 3.2 we then conclude that

sup
Rn
+∩B(0,r)

|∇vε| ≤
C

r
sup

Rn
+∩B(0,2r)

|vε| ≤ Cε
1 + ω(2r)

r
, (5.9)

and from Lemma 2.1(c) we see that the right side of (5.9) tends to 0 as r → ∞. This

forces∇vε ≡ 0, and since vε ∈ C ∞(Rn
+,C

M)∩ ˙C ω(Rn
+,C

M) with vε|∂Rn
+
= 0 we ultimately

conclude that vε ≡ 0. Consequently,

u(x′, t+ ε) = (PL
t ∗ fε)(x′), ∀ (x′, t) ∈ Rn

+. (5.10)
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Since, as noted earlier, u|∂Rn
+
∈ Ċ

ω(Rn−1,CM), for every x′ ∈ Rn−1 and ε > 0 we may

now write
∣∣u(x′, t+ ε)−

(
PL
t ∗ (u|∂Rn

+
)
)
(x′)
∣∣ =

∣∣(PL
t ∗ (fε − u|∂Rn

+
)
)
(x′)
∣∣

≤ ‖PL
t ‖L1(Rn−1) sup

y′∈Rn−1

∣∣fε(y′)− u|∂Rn
+
(y′)
∣∣

= ‖PL‖L1(Rn−1) sup
y′∈Rn−1

∣∣u(y′, ε)− u|∂Rn
+
(y′)
∣∣

≤ ‖PL‖L1(Rn−1)[u] ˙Cω(Rn
+,CM ) ω(ε). (5.11)

From (3.5) we know that ‖PL‖L1(Rn−1) < ∞. Upon letting ε → 0+ and using that ω
vanishes in the limit at the origin, we see that (5.11) implies (5.1). This finishes the
proof of Proposition 5.1. �

6. Well-Posedness Results

We are now ready to prove well-posedness results. We first consider the case in which
the boundary data belong to generalized Hölder spaces and we note that, in such a
scenario, the only requirement on the growth function is (2.2).

Theorem 6.1. Let L be a constant complex coefficient M × M system as in (1.1)
satisfying the strong ellipticity condition (1.2). Also, let ω be a growth function satisfying
(2.2). Then the generalized Hölder Dirichlet problem for L in Rn

+, formulated as




u ∈ C ∞(Rn
+,C

M),

Lu = 0 in Rn
+,

[u]
Ċω(Rn

+,CM ) < ∞,

u|lim∂Rn
+
= f ∈ Ċ ω(Rn−1,CM) on Rn−1,

(6.1)

is well-posed. More specifically, there exists a unique solution which is given by

u(x′, t) = (PL
t ∗ f)(x′), ∀ (x′, t) ∈ Rn

+, (6.2)

where PL denotes the Poisson kernel for the system L in Rn
+ from Theorem 3.3. In

addition, u extends to a function in Ċ ω(Rn
+,C

M) with u|∂Rn
+
= f , and there exists a

finite constant C = C(n, L, ω) ≥ 1 such that

C−1[f ]
Ċ ω(Rn−1,CM ) ≤ [u]

Ċω(Rn
+,CM ) ≤ C[f ]

Ċω(Rn−1,CM ). (6.3)

Proof. Given f ∈ Ċ ω(Rn−1,CM), define u as in (6.2). Proposition 4.1 then implies that

u satisfies all conditions in (6.1). Also, u extends to a function in Ċ ω(Rn
+,C

M) with
u|∂Rn

+
= f , and the second inequality in (6.3) holds. Moreover, (2.7) yields

[f ]
Ċ ω(Rn−1,CM ) = [u|∂Rn

+
]
Ċω(Rn−1,CM ) ≤ [u]

Ċω(Rn
+,CM ) ≤ 2Cω[u]Ċ ω(Rn

+,CM ), (6.4)

so that the first inequality in (6.3) follows.
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It remains to prove that the solution is unique. However, this follows at once from
Proposition 5.1. Indeed, the first three conditions in (6.1) imply (5.1) and since u|∂Rn

+
=

f we conclude that necessarily u(x′, t) =
(
PL
t ∗ f

)
(x′) for every (x′, t) ∈ Rn

+. �

Here is the well-posedness for the generalized Morrey-Campanato Dirichlet problem.
In this case, the growth function is assumed to satisfy both (2.1) and (2.2).

Theorem 6.2. Let L be a constant complex coefficient M × M system as in (1.1)
satisfying the strong ellipticity condition (1.2). Fix p ∈ [1,∞) along with q ∈ (0,∞],
and let ω be a growth function satisfying (2.1) and (2.2). Then the generalized Morrey-
Campanato Dirichlet problem for L in Rn

+, namely




u ∈ C ∞(Rn
+,C

M),

Lu = 0 in Rn
+,

‖u‖(ω,q)∗∗ < ∞,

u|nt.lim∂Rn
+

= f ∈ E ω,p(Rn−1,CM) a.e. on Rn−1,

(6.5)

is well-posed. More specifically, there exists a unique solution which is given by

u(x′, t) = (PL
t ∗ f)(x′), ∀ (x′, t) ∈ Rn

+, (6.6)

where PL denotes the Poisson kernel for the system L in Rn
+ from Theorem 3.3. More-

over, with W defined as in (2.3), the solution u extends to a function in Ċ W (Rn
+,C

M)
with u|∂Rn

+
= f a.e. on Rn−1, and there exists a finite constant C = C(n, L, ω, p, q) ≥ 1

for which

C−1 ‖f‖
EW,p(Rn−1,CM ) ≤ ‖u‖(ω,q)∗∗ ≤ C ‖f‖

E ω,p(Rn−1,CM ) . (6.7)

Furthermore, all results remain valid if ‖·‖(ω,q)∗∗ is replaced everywhere by ‖·‖(ω,exp)∗∗ .

Proof. Having fixed f ∈ E ω,p(Rn−1,CM), if u is defined as in (6.6) then Proposition 4.2
implies the validity of all conditions in (6.5) and also of the second inequality in (6.7)
(even replacing q by exp). In the case q = ∞ we invoke Proposition 3.4(f) to obtain that

u ∈ Ċ W (Rn
+,C

M) in the sense of Lemma 2.1(d). Note that we also have

[u|∂Rn
+
]
Ċ W (Rn−1,CM ) ≤ [u]

ĊW (Rn
+,CM ) ≤ 2CW [u]

Ċ W (Rn
+,CM ) ≤ C(Cω)

4 ‖u‖(ω,∞)
∗∗ (6.8)

thanks to (2.7) (for the growth function W ), Lemma 2.2, and (3.20).

Given that, on the one hand, u|∂Rn
+
= u|nt.lim∂Rn

+
everywhere in Rn−1 due to the fact that

u ∈ Ċ W (Rn
+,C

M), and that, on the other hand, u|nt.lim∂Rn
+

= f a.e. in Rn−1, we conclude

that u|∂Rn
+
= f a.e. in Rn−1. In addition, (2.19) (applied to W ), Lemma 2.2, and (6.8)

permit us to estimate

‖f‖
E W,p(Rn−1,CM ) = ‖ u|∂Rn

+
‖EW,p(Rn−1,CM ) ≤

√
n− 1CW [u|∂Rn

+
] ˙
C W (Rn−1,CM )

≤ C(Cω)
6 ‖u‖(ω,∞)

∗∗ ≤ C(Cω)
7 ‖u‖(ω,q)∗∗ ≤ C(Cω)

7 ‖u‖(ω,exp)∗∗ , (6.9)

where 0 < q < ∞ and where we have also used Proposition 3.4(d) and (3.13).
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To prove that the solution is unique, we note that having ‖u‖(ω,q)∗∗ < ∞ for a given

q ∈ (0,∞], or even ‖u‖(ω,exp)∗∗ < ∞, implies that ‖u‖(ω,∞)
∗∗ < ∞ by Proposition 3.4(d)

and (3.13). Having established this, Proposition 3.4(f) applies and yields that u ∈
Ċ W (Rn

+,C
M). Consequently, u|∂Rn

+
= u|nt.lim∂Rn

+
everywhere in Rn−1, and if we also take

into account the boundary condition from (6.5), we conclude that u|∂Rn
+
= f a.e. on

Rn−1. Moreover, since Lemma 2.2 ensures that W is a growth function satisfying (2.2),
we may invoke Proposition 5.1 to write

u(x′, t) =
(
PL
t ∗ (u|∂Rn

+
)
)
(x′) =

(
PL
t ∗ f

)
(x′), ∀ (x′, t) ∈ Rn

+. (6.10)

The proof of the theorem is therefore finished. �

Remark 6.3. Theorems 6.1 and 6.2 are closely related. To elaborate in this, fix a growth
function ω satisfying (2.1) and (2.2). From (2.19) and Proposition 4.2 it follows that,

given any f ∈ Ċ ω(Rn−1,CM), the unique solution of the boundary value problem (6.1),
i.e., u(x′, t) = (PL

t ∗ f)(x′) for (x′, t) ∈ Rn
+, also solves (6.5), regarding now f as a

function in E
ω,p(Rn−1,CM) (cf. (2.20)) with p ∈ [1,∞) and q ∈ (0,∞] arbitrary (and

even with ‖·‖(ω,q)∗∗ replaced by ‖·‖(ω,exp)∗∗ ). As such, u satisfies (6.7) whenever (2.1) holds.

This being said, the fact that f ∈ E ω,p(Rn−1,CM) does not guarantee, in gen-

eral, that the corresponding solution satisfies u ∈ Ċ ω(Rn
+,C

M), even though we have
established above that the solution to the boundary value problem (6.5) belongs to

Ċ W (Rn
+,C

M). Note that, as seen from (1.9)-(1.10) and (2.12), the space Ċ W (Rn
+,C

M)

contains Ċ ω(Rn
+,C

M).

This aspect is fully clarified with the help of Example 6.4 discussed further below,
where we construct some growth function ω satisfying (2.1), (2.2), and for which the

space E ω,1(Rn−1,C) is strictly bigger than Ċ ω(Rn−1,C). Its relevance for the issue at
hand is as follows. Consider the boundary problem (6.5) formulated with L being the

Laplacian in Rn and with f ∈ E ω,1(Rn−1,C) \ Ċ ω(Rn−1,C) as boundary datum. Its

solution u then necessarily satisfies u /∈ Ċ ω(Rn
+,C), for otherwise Lemma 2.1(d) would

imply u ∈ Ċ ω(Rn
+,C

M) and since u|∂Rn
+
= u|nt.lim∂Rn

+
= f a.e. on Rn−1 and f is continuous

in Rn−1 we would conclude that f coincides everywhere with u|∂Rn
+
∈ Ċ ω(Rn−1,C), a

contradiction.

In spite of the previous remark, Theorem 1.4 states that the boundary problems (6.1)
and (6.5) are actually equivalent under the stronger assumption (1.18) on the growth
function. Here is the proof of Theorem 1.4.

Proof of Theorem 1.4. We start with the observation that (1.18) and Lemma 2.2 yield
C−1

0 W (t) ≤ ω(t) ≤ C0W (t) for each t ∈ (0,∞). Therefore,

Ċ ω(Rn
+,C

M) = ˙C W (Rn
+,C

M), Ċ ω(Rn
+,C

M) = ˙C W (Rn
+,C

M), (6.11)

and
E

ω,p(Rn−1,CM) = E
W,p(Rn−1,CM), (6.12)

as vector spaces, with equivalent norms.
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Having made these identifications, we now proceed to observe that (a) follows directly
from Theorem 6.1, while (b) is implied by Theorem 6.2 with the help of (6.11) and
(6.12). To deal with (c), we first observe that the left-to-right inclusion follows from
Lemma 2.4(b), whereas (2.19) provides the accompanying estimate for the norms. For
the converse inclusion, fix f ∈ E

ω,p(Rn−1,CM) and set u(x′, t) := (PL
t ∗ f)(x′) for every

(x′, t) ∈ Rn
+. Theorem 6.2 and (6.11) then imply that u ∈ Ċ ω(Rn

+,C
M) with u|∂Rn

+
= f

a.e. on Rn−1. Introduce f̃ := u|∂Rn
+
and note that f̃ ∈ Ċ ω(Rn−1,CM) with f̃ = f a.e.

on Rn−1. Then u(x′, t) = (PL
t ∗ f̃)(x′) and, thanks to (6.3), (3.23), and (6.7), we have

[f̃ ]
Ċω(Rn−1,CM ) ≤ C[u]

Ċω(Rn
+,CM ) ≤ C ‖f‖

E ω,p(Rn−1,CM ) . (6.13)

This completes the treatment of (c), and finishes the proof of Theorem 1.4. �

We are now in a position to give the proof of Corollary 1.5.

Proof of Corollary 1.5. We start by observing that (1.27) is a direct consequence of
Proposition 3.4(h). In particular, the last three equalities in (1.28) follow at once. Also,

the fact that the second set in the first line of (1.28) is contained in Ċ ω(Rn−1,CM)

is a consequence of Lemma 2.1(d). Finally, given any f ∈ Ċ
ω(Rn−1,CM), if u is the

solution of (1.19) corresponding to this choice of boundary datum, then u|∂Rn
+
= f and

u also satisfies the required conditions to be an element in the second set displayed in
(1.28). �

The following example shows that conditions (2.1) and (2.2) do not imply (1.24).

Example 6.4. Fix two real numbers α, β ∈ (0, 1) and consider the growth function
ω : (0,∞) → (0,∞) defined for each t > 0 as

ω(t) :=

{
tα, if t ≤ 1,

1 + (log t)β, if t > 1.
(6.14)

Clearly, ω satisfies (2.1), and we also claim that ω satisfies (2.2). Indeed, for t ≤ 1,
ˆ ∞

t

ω(s)

s

ds

s
=

ˆ 1

t

sα−1ds

s
+

ˆ ∞

1

1 + (log s)β

s2
ds ≤ C(tα−1 + 1) ≤ 2C tα−1. (6.15)

For t ∈ [1,∞), define

F (t) :=

t

ˆ ∞

t

ω(s)

s

ds

s

ω(t)
=

ˆ ∞

t

1 + (log s)β

s2 ds

1 + (log t)β

t

, (6.16)

which is a continuous function in [1,∞) and satisfies F (1) < ∞. Moreover, using
L’Hôpital’s rule,

lim
t→∞

F (t) = lim
t→∞

−(1 + (log t)β)

β(log t)β−1 − (1 + (log t)β)
= 1. (6.17)
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Hence, F is bounded, which amounts to having ω satisfy (2.2). The function W , defined
as in (2.3), is currently given by

W (t) =





1

α
tα, if t ≤ 1,

1

α
+

1

β + 1
(log t)β+1 + log t, if t > 1.

(6.18)

Since (1.18) would imply W (t) ≤ Cω(t) which is not the case for t sufficiently large,
we conclude that the growth function ω satisfies (2.1) and (2.2) but it does not satisfy
(1.18).

For this choice of ω, we now proceed to check that E
ω,1(Rn−1,C) 6= Ċ

ω(Rn−1,C). To
this end, consider the function

f(x) := log+ |x1|, ∀ x = (x1, x2, . . . , xn−1) ∈ Rn−1, (6.19)

where log+ t := max{0, log t}. With e1 =: (1, 0, . . . , 0) ∈ Rn−1 we then have

sup
x 6=y

|f(x)− f(y)|
ω(|x− y|) ≥ lim

x1→∞

|f(x1e1)− f(e1)|
ω(|x1e1 − e1|)

= lim
x1→∞

log x1

1 + (log(x1 − 1))β
= ∞, (6.20)

since β < 1. This means that f /∈ Ċ ω(Rn−1,C). To prove that f ∈ E ω,1(Rn−1,C),

consider Q̃ := (a, b)×Q ⊂ Rn−1, where Q is an arbitrary cube in Rn−2 and a, b ∈ R are
arbitrary numbers satisfying a < b. Then,

‖f‖
E ω,1(Rn−1,C) ≤ sup

Q̃⊂Rn−1

1

ω(ℓ(Q̃))

 

Q̃

 

Q̃

|f(x)− f(y)| dx dy

≤ sup
a<b

1

ω(b− a)
H(a, b), (6.21)

where

H(a, b) :=

 b

a

 b

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1. (6.22)

We shall now prove that the right-hand side of (6.21) is finite considering several different
cases.

Case I: 1 ≤ a < b. In this scenario, define

G(λ) := 1 + 2λ− 2λ(λ+ 1) log

(
1 +

1

λ

)
, ∀λ > 0. (6.23)

Note that G is continuous in (0,∞), G(0) = 1, and by L’Hôpital’s rule, limλ→∞G(λ) = 0,
hence G is bounded. Also,

H(a, b) =
b2 − a2 − 2ab log(b/a)

(b− a)2
= G

(
a/(b− a)

)
. (6.24)

Consequently, whenever b− a ≥ 1 we have

H(a, b) = G
(
a/(b− a)

)
≤ C ≤ C

(
1 + (log(b− a)

)β
) = Cω(b− a). (6.25)
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Again by L’Hôpital’s rule, limλ→∞ λαG(λ) = 0, hence λαG(λ) ≤ C for every λ > 0.
Therefore, whenever 0 < b− a < 1 we may write

H(a, b) = G
(
a/(b− a)

)
≤ C

(
b− a

a

)α

≤ C(b− a)α = Cω(b− a). (6.26)

All these show that H(a, b) ≤ Cω(b− a) in this case.

Case II: a < b ≤ −1. This case is analogous to the previous one by symmetry.

Case III: −1 ≤ a < b ≤ 1. This case is straightforward since H(a, b) = 0, given that
log+ |x1| = log+ |y1| = 0 whenever a < x1, y1 < b.

Case IV: −1 < a < 1 < b. In this case we obtain

H(a, b) =
1

(b− a)2

ˆ b

1

ˆ b

1

| log x1 − log y1| dx1 dy1

+
1

(b− a)2

ˆ 1

a

ˆ b

1

log x1 dx1 dy1 +
1

(b− a)2

ˆ b

1

ˆ 1

a

log y1 dx1 dy1

≤ (b− 1)2

(b− a)2
H(1, b) + 2

(1− a)(b log b− b+ 1)

(b− a)2
. (6.27)

For the first term in the right-hand side of (6.27), we use (6.25) and (6.26) (written with
a := 1) and obtain, keeping in mind that in this case a < 1,

(b− 1)2

(b− a)2
H(1, b) ≤ Cω(b− 1)

(
b− 1

b− a

)2

≤ Cω(b− a). (6.28)

To bound the second term in the right-hand side of (6.27), we first use the fact that
1− a < 2 and log t ≤ t− 1 for every t ≥ 1 to obtain

(1− a)(b log b− b+ 1)

(b− a)2
≤ 2

b(b− 1)− b+ 1

(b− a)2
≤ 2

(
b− 1

b− a

)2

≤ 2

≤ 2
(
1 + (log(b− a))β

)
= 2ω(b− a), (6.29)

whenever b− a ≥ 1. To study the case when b− a < 1, bring in the auxiliary function

G̃(λ) :=
λ log λ− λ+ 1

(λ− 1)1+α
, ∀λ > 1. (6.30)

By L’Hôpital’s rule, limλ→1+ G̃(λ) = 0, hence G̃(λ) ≤ C for each λ ∈ (1, 2]. If b− a < 1,
we clearly have 1 < b ≤ 2 which, in turn, permits us to estimate

(1− a)(b log b− b+ 1)

(b− a)2
=

(1− a)(b− 1)1+αG(b)

(b− a)2

≤ C(b− 1)1+α

b− a
≤ C(b− a)α = Cω(b− a). (6.31)

Consequently, we have obtained that H(a, b) ≤ Cω(b− a) in this case as well.

Case V: a < −1 < b < 1. This is analogue to Case IV, again by symmetry.
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Case VI: a < −1, b > 1. We break the interval (a, b) into two intervals (a, 0) and
(0, b) to obtain

H(a, b) ≤ 1

(b− a)2
(I + II), (6.32)

where, using Case IV and Case V,

I :=

ˆ 0

a

ˆ 0

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1 +

ˆ b

0

ˆ b

0

| log+ x1 − log+ y1| dx1 dy1

= H(a, 0)(0− a)2 +H(0, b)(b− 0)2 ≤ C|a|2ω(|a|) + C b2ω(b)

≤ 2C(b− a)2ω(b− a). (6.33)

Similarly, by Case IV,

II :=

ˆ 0

a

ˆ b

0

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1 +

ˆ b

0

ˆ 0

a

∣∣ log+ |x1| − log+ |y1|
∣∣ dx1 dy1

≤ 2
(
max{|a|, b} − 0

)2
H
(
max{|a|, b}, 0

)

≤ 2Cmax{|a|, b}2 ω(max{|a|, b})

≤ 2C(b− a)2 ω(b− a). (6.34)

Thus, H(a, b) ≤ Cω(b− a) in this case also.

Collectively, the results in Cases I-VI prove that f ∈ E ω,1(Rn−1,C).

Appendix A. John-Nirenberg’s Inequality Adapted to Growth Functions

In what follows we assume that all cubes are half-open, that is, they can be written
in the form Q = [a1, a1+ ℓ(Q))× · · ·× [an−1, an−1+ ℓ(Q)) with ai ∈ Rn−1 and ℓ(Q) > 0.
Notice that since ∂Q has Lebesgue measure zero the half-open assumption is harmless.
Subdividing dydically yields the collection of (half-open) dyadic-subcubes of a given
cube Q, which we shall denote by DQ. For the following statement, and with the aim of
considering global results, it is also convenient to consider the case Q = Rn−1 in which
scenario we take DQ to be the classical dyadic grid generated by [0, 1)n−1, or any other
dyadic grid. Let us also recall the definition of the dyadic Hardy-Littlewood maximal
function localized to a given cube Q, i.e.,

(
Md

Qf
)
(x) := sup

x∈Q′∈DQ

 

Q′

|f(y′)| dy′, x ∈ Q, (A.1)

for each f ∈ L1(Q). The following result is an extension of the John-Nirenberg inequality
obtained in [4, 3] (when ω ≡ 1) adapted to our growth function.

Lemma A.1. Let F ∈ L2
loc(R

n
+) and let ϕ : [0,∞) → [0,∞) be a non-decreasing func-

tion. Let Q0 ⊂ Rn−1 be an arbitrary half-open cube, or Q0 = Rn−1. Assume that there
are numbers α ∈ (0, 1) and N ∈ (0,∞) such that

∣∣∣∣
{
x′ ∈ Q :

1

ϕ(ℓ(Q))

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2

> N

}∣∣∣∣ ≤ α|Q| (A.2)
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for every cube Q ∈ DQ0 and κ := 1 + 2
√
n− 1. Then, for every t > 0

sup
Q∈DQ0

1

|Q|

∣∣∣∣
{
x′ ∈ Q :

1

ϕ(ℓ(Q))

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<κs

|F (y′, s)|2 dy′ds
sn

)1/2

> t

}∣∣∣∣

≤ 1

α
e−

log(α−1)
N

t. (A.3)

Hence, for each q ∈ (0,∞) there exists a finite constant C = C(α, q) ≥ 1 such that

sup
Q∈DQ0

1

ϕ(ℓ(Q))

(
 

Q

(
ˆ ℓ(Q)

0

ˆ

|x′−y′|<s

|F (y′, s)|2 dy′ds
sn

)q/2

dx′

)1/q

≤ CN. (A.4)

Moreover, there exists some finite C = C(α) ≥ 1 such that

sup
Q∈DQ0

1

ϕ(ℓ(Q))

∥∥∥∥
(
ˆ ℓ(Q)

0

ˆ

| · −y′|<s

|F (y′, s)|2 dy′ds
sn

)1/2∥∥∥∥
expL,Q

≤ CN. (A.5)

The previous result can be proved using the arguments in [4, 3] with appropriate
modifications. Here we present an alternative abstract argument based on ideas that go
back to Calderón, as presented in [11] (see also [12, 5]). This also contains as a particular
case the classical John-Nirenberg result concerning the exponential integrability of BMO
functions.

Proposition A.2. Let Q0 ⊂ Rn−1 be an arbitrary half-open cube, or Q0 = Rn−1. For
every Q ∈ DQ0 assume that there exist two non-negative functions GQ, HQ ∈ L1

loc(R
n−1)

such that

GQ(x
′) ≤ HQ(x

′) for almost every x′ ∈ Q, (A.6)

and, for every Q′ ∈ DQ \ {Q},

GQ(x
′) ≤ GQ′(x′) +HQ(y

′) for a.e. x ∈ Q′ and for a.e. y′ ∈ Q̂′, (A.7)

where Q̂′ is the dyadic parent of Q′. For each α ∈ (0, 1) define

mα := sup
Q∈DQ0

inf
{
λ > 0 : |{x′ ∈ Q : HQ(x

′) > λ}| ≤ α|Q|
}
. (A.8)

Then, for every α ∈ (0, 1) one has

sup
Q∈DQ0

|{x ∈ Q : GQ(x
′) > t}|

|Q| ≤ 1

α
e
− log(α−1)

t
mα , ∀ t > 0. (A.9)

As a consequence,

sup
Q∈DQ0

‖GQ‖expL,Q ≤ 1 + α−1

log(α−1)
mα (A.10)

and for every q ∈ (0,∞) there exists a finite constant C = C(q) > 0 such that

sup
Q∈DQ0

( 

Q

GQ(x
′)q dx′

)1/q
≤ Cq

1

α1/q log(α−1)
mα. (A.11)
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Before proving this result and Lemma A.1, let us illustrate how Proposition A.2
yields the classical John-Nirenberg result regarding the exponential integrability of BMO
functions. Concretely, pick f ∈ BMO(Rn−1). Fix an arbitrary cube Q0 and for every
Q ∈ DQ0 define GQ := |f − fQ| and HQ := 2n−1Md

Q

(
|f − fQ|

)
(cf. (A.1)). Clearly, (A.6)

holds by Lebesgue’s Differentiation Theorem. Moreover, for every Q′ ∈ DQ \Q, x′ ∈ Q′,

and y′ ∈ Q̂′ we have

GQ(x
′) ≤ |f(x′)− fQ′|+ |f ′

Q − fQ| ≤ GQ′(x′) +

 

Q′

|f(z′)− fQ| dz′

≤ GQ′(x′) + 2n−1

 

Q̂′

|f(z′)− fQ| dz′ ≤ GQ′(x′) +HQ′(y′), (A.12)

and (A.7) follows. Going further, by the weak-type (1, 1) of the dyadic Hardy-Littlewood
maximal function, for every λ > 0 we may write

|{x′ ∈ Q : HQ(x
′) > λ}| ≤ 2n−1

λ

ˆ

Q

|f(y′)− fQ| dy′ ≤
2n−1‖f‖BMO(Rn−1)

λ
|Q|. (A.13)

In particular, choosing for instance α := e−1, if we use the previous estimate with
λ := 2n−1‖f‖BMO(Rn−1)/α we obtain mα ≤ 2n−1‖f‖BMO(Rn−1)/α. Thus, (A.9) yields

|{x ∈ Q0 : |f(x′)− fQ0| > t}|
|Q0|

≤ 1

α
e
−
α log(α−1)

2n−1
t

‖f‖BMO(Rn−1)

= e · e
−

1
2n−1e

t
‖f‖BMO(Rn−1) (A.14)

while (A.10) gives

‖f − fQ0‖expL,Q0 ≤ (1 + e) e 2n−1‖f‖BMO(Rn−1) (A.15)

which are the well-known John-Nirenberg inequalities.

We now turn to the proof of Lemma A.1.

Proof of Lemma A.1. Let F , α, and N be fixed as in the statement of the lemma. For
every Q ∈ DQ0 and x′ ∈ Rn−1, define

GQ(x
′) :=

1

ϕ(ℓ(Q))

(ˆ ℓ(Q)

0

ˆ

|x′−z′|<s

|F (z′, s)|2 dz′ds
sn

)1/2
(A.16)

and

HQ(x
′) =

1

ϕ(ℓ(Q))

(ˆ ℓ(Q)

0

ˆ

|x′−z′|<κs

|F (z′, s)|2 dz′ds
sn

)1/2
. (A.17)

Note that (A.6) is trivially verified since κ > 1. To proceed, fix Q′ ∈ DQ along with

x′ ∈ Q′ and y′ ∈ Q̂′. If |x′ − z′| < s with ℓ(Q′) ≤ s ≤ ℓ(Q) then

|y′ − z′| ≤ |y′ − x′|+ |x′ − z′| < 2
√
n− 1 ℓ(Q′) + s ≤ κs. (A.18)
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Therefore, since ϕ is non-decreasing,

GQ(x
′) ≤ ϕ(ℓ(Q′))

ϕ(ℓ(Q))
GQ′(x′) +

1

ϕ(ℓ(Q))

(ˆ ℓ(Q)

ℓ(Q′)

ˆ

|x′−z′|<s

|F (z′, s)|2 dz′ds
sn

)1/2

≤ GQ′(x′) +HQ(y
′), (A.19)

establishing (A.7). Moreover, (A.2) gives immediately that mα ≤ N . Granted this,
(A.9), (A.11), and (A.10), (with α ∈ (0, 1) given by (A.2)) prove, respectively (A.3),
(A.4), and (A.5). �

Finally, we give the proof of Proposition A.2.

Proof of Proposition A.2. We start by introducing some notation. Set

Ξ(t) := sup
Q∈DQ0

|EQ(t)|
|Q| := sup

Q∈DQ0

|{x′ ∈ Q : GQ(x
′) > t}|

|Q| , 0 < t < ∞. (A.20)

Fix α ∈ (0, 1), let ε > 0 be arbitrary, and write λε = mα + ε. From (A.8) it follows that

|FQ,ε| := |{x′ ∈ Q : HQ(x
′) > λε}| ≤ α|Q|, ∀Q ∈ DQ0 . (A.21)

Fix now Q ∈ DQ0, β ∈ (α, 1) (we will eventually let β → 1+) and set

ΩQ := {x′ ∈ Q : Md
Q(1FQ,ε

)(x′) > β}. (A.22)

Note that (A.21) ensures that
 

Q

1FQ,ε
(y′) dy′ =

|FQ,ε|
|Q| ≤ α < β, (A.23)

hence we can extract a family of pairwise disjoint stopping-time cubes {Qj}j ⊂ DQ\{Q}
so that ΩQ = ∪jQj and for every j

|FQ,ε ∩Qj|
|Qj|

> β,
|FQ,ε ∩Q′|

|Q′| ≤ β, Qj ( Q′ ∈ DQ. (A.24)

Let t > λε and note that (A.6) gives

λε < t < GQ(x
′) ≤ HQ(x

′) for a.e. x′ ∈ EQ(t). (A.25)

which implies that

β < 1 = 1FQ,ε
(x′) ≤ Md

Q

(
1FQ,ε

)
(x′) for a.e. x′ ∈ EQ(t). (A.26)

Hence,

|EQ(t)| = |EQ(t) ∩ ΩQ| =
∑

j

|EQ(t) ∩Qj|. (A.27)

For every j, by the second estimate in (A.24) applied to Q̂j , the dyadic parent of Qj ,

we have |FQ,ε ∩ Q̂j |/|Q̂j| ≤ β < 1, therefore |Q̂j \ FQ,ε|/|Q̂j| > 1− β > 0. In particular,

(A.7) guarantees that we can find x̂′
j ∈ Q̂j \ FQ,ε, such that for a.e. x′ ∈ Qj we have

GQ(x
′) ≤ GQj

(x′) +HQ(x̂
′
j) ≤ GQj

(x′) + λε. (A.28)
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Consequently, GQj
(x′) > t− λε for a.e. x

′ ∈ EQ(t) ∩Qj which further implies

|EQ(t) ∩Qj | ≤ |{x′ ∈ Qj : GQj
(x′) > t− λε}| ≤ Ξ(t− λε)|Qj|. (A.29)

In turn, this permits us to estimate

|EQ(t)| =
∑

j

|EQ(t) ∩Qj | ≤ Ξ(t− λε)
∑

j

|Qj | ≤ Ξ(t− λε)
1

β

∑

j

|FQ,ε ∩Qj |

≤ Ξ(t− λε)
1

β
|FQ,ε| ≤ Ξ(t− λε)

α

β
|Q|, (A.30)

where we have used (A.24), that the cubes {Qj}j are pairwise disjoint and, finally,
(A.21). Dividing by |Q| and taking the supremum over all Q ∈ DQ0 we arrive at

Ξ(t) ≤ α

β
Ξ(t− λε), t > λε. (A.31)

Since this is valid for all β ∈ (α, 1), we can now let β → 1+, iterate the previous
expression, and use the fact that Ξ(t) ≤ 1 to conclude that

Ξ(t) ≤ 1

α
α

t
λε =

1

α
e− log(α−1) t

λε , t > 0. (A.32)

Recalling that λε = mα + ε and letting ε → 0+ establishes (A.9).

We shall next indicate how (A.9) implies (A.10). Concretely, if we take t := 1+α−1

log(α−1)
mα

we see that (A.9) gives
 

Q

(
e

GQ(x′)

t − 1
)
dx′ =

ˆ ∞

0

|{x′ ∈ Q : GQ(x
′)/t > λ}|

|Q| eλ dλ

≤ 1

α

ˆ ∞

0

e− log(α−1) λt
mα eλ dλ =

1

α

ˆ ∞

0

e−α−1λ dλ = 1. (A.33)

With this in hand, (A.10) follows with the help of (1.16).

At this stage, there remains to justify (A.11). This can be done invoking again (A.9):
 

Q

GQ(x
′)q dx′ =

ˆ ∞

0

|{x′ ∈ Q : GQ(x
′) > λ}|

|Q| q λq dλ

λ
≤ 1

α

ˆ ∞

0

e− log(α−1) λ
mα q λq dλ

λ

=
1

α

(
mα

log(α−1)

)q ˆ ∞

0

e−λ q λq dλ

λ
= Cq

1

α

(
mα

log(α−1)

)q

. (A.34)

This completes the proof of Proposition A.2. �
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