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VANISHING ESTIMATES FOR FULLY BUBBLING SOLUTIONS OF

SU(n+1) TODA SYSTEMS AT A SINGULAR SOURCE

LEI ZHANG

ABSTRACT. For Gauss curvature equation (or more general Toda systems) de-

fined on two dimensional spaces, the vanishing rate of certain curvature functions

on blowup points is a key estimate for numerous applications. However, if these

equations have singular sources, very few vanishing estimates can be found. In

this article we consider a Toda system with singular sources defined on a Rie-

mann surface and we prove a very surprising vanishing estimates and a reflection

phenomenon for certain functions involving the Gauss curvature.

1. INTRODUCTION

Let (M,g) be a compact Riemann surface whose volume is assumed to be 1 for

convenience. Let v = (v1, ...,vn) be a solution of the following SU(n+ 1) Toda

system defined on M:

(1.1) ∆gvi +
n

∑
j=1

ai jH je
v j −K(x) = 4π ∑

m

γimδqm
, 1 ≤ i ≤ n

where ∆g is the Laplace-Beltrami operator (−∆g ≥ 0), K is the Gauss curvature,

H1, ..,Hn are positive smooth functions on M, δqm
is the Dirac mass at qm, γim ∈ R

is assumed to be greater than −1 for all i and m, A = (ai j)n×n is the following

Cartan matrix:

A =















2 −1 0 ... 0

−1 2 −1 ... 0
...

...
... ...

...

0 ... −1 2 −1

0 ... ... −1 2















The SU(n+1) Toda systems are well known to be deeply rooted in algebraic geom-

etry (see [1, 5, 10, 15, 16, 17, 18]) and have close connections with various fields

such as integrable system, the non-abelian Chern-Simons model in Gauge theory,

etc (see [6, 7, 8, 9, 12, 13, 19, 20, 21, 22, 23, 24] and Painleve VI equation[2, 4],

etc. The readers may read the introduction of the first two articles in this series

[16, 17] and [2, 4] for the references and explanations in more detail. The purpose
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of this article is to study the behavior of blowup solutions of the singular Toda

system if the blowup point happens to be a singular source.

Equation (1.1) is usually written in the following form:

(1.2) ∆gui +
n

∑
i=1

ai jρ j(
h je

u j

∫

M h je
u j dVg

−1) =
N

∑
m=1

4πγim(δqm
−1), i = 1, ..,n

where A = (ai j)n×n is the Cartan matrix, h1, ...,hn are positive smooth functions on

M, ρ1, ..,ρn are positive constants, q1, ..., qN are distinct points on M and γim are

all greater than −1. In this article we suppose q1 is a blowup point, (note that at

q1 there is a Dirac source) and we consider the behavior of blowup solutions in the

neighborhood of q1. Since our main result is local in nature, we state our result for

the following locally defined SU(n+1) Toda system for convenience:

Let uk = (uk,1, ...,uk,n) be a sequence of solutions of

(1.3) ∆uk,i +
n

∑
j=1

ai jhk, j(x)e
uk, j = 4πγiδ0, in B1, i = 1, ..,n, n ≥ 2

where B1 is the unit ball in R
2 ( throughout the article we use B(x0,r) to denote the

ball centered at x0 with radius r. If x0 is the origin we shall just use Br), A= (ai j)n×n

is the Cartan matrix, δ0 is the Dirac source at the origin, hk,i are positive and smooth

functions in B1: There exists c > 0 such that

(1.4)
1

c
≤ hk,i(x) ≤ c, ∀x ∈ B1, |D2hk,i(x)| ≤ c, ∀x ∈ B1.

For γi we assume

(1.5) γi ≥ 0 for all i = 1, ..,n.

and we shall use I1 to denote the collection of nonzero indexes and I2 to denote the

set of zero indexes:

I1 = {i; γi 6= 0}, I2 = {i; γi = 0}

In addition we make the following natural assumption, which is pretty much

postulated in all the works related to the study of blowup solutions in two dimen-

sional spaces:

(1.6)























maxk⊂⊂B1\{0} uk,i ≤C(K), i = 1, ...,n, n ≥ 2,

maxx,y∈∂B1
|uk,i(x)−uk,i(y)| ≤C.

∫

B1
hk,ie

uk,i ≤C for some C > 0 independent of k .

Since uk = (uk,1, ..,uk,n) has a logarithmic term corresponding to the singular

source, it is convenient to consider the equation for the regular part of uk. Let

ũk = (ũk,1, ..., ũk,n) be the regular part of uk:

(1.7) ũk,i(x) = uk,i(x)−2γi log |x|, i = 1, ..,n.
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Then we have

(1.8) ∆ũk,i +
n

∑
j=1

ai jhk, j(x)|x|2γ j eũk, j(x) = 0, in B1.

Since we study blowup solutions, the maximum of ũk tends to infinity: Let

Mk = max
i

max
x∈B1

|ũk,i(x)|
1+ γi

→ ∞, εk = e−
1
2

Mk ,

and

(1.9) ṽk,i(y) = ũk,i(εky)+2(1+ γi) logεk, i = 1, ...,n.

Then direct computation shows

(1.10) ∆ṽk,i(y)+∑
j

ai jhk, j(εky)|y|2γ j eṽk, j(y) = 0, |y| ≤ ε−1
k .

It is well known that for systems, if the whole system is scaled according to the

maximum of all components, it is possible to have some components tending to

minus infinity over any fixed compact subsets, which means these components do

not appear in the limiting system. Such a situation is called partial blowup phe-

nomenon. If no component is lost in the limit system, such a blowup sequence is

called fully bubbling. The main assumption in this article is that ṽk = (ṽk,1, ..., ṽk,n)
is fully bubbling :

(1.11) ṽk = (ṽk,1, ..., ṽk,n)→ ṽ = (ṽ1, ..., ṽn) in C
1,α

loc
(R2) α ∈ (0,1)

where ṽ = (ṽ1, ..., ṽn) satisfies

(1.12)







∆ṽi +∑n
j=1 ai j|y|2γ j eṽ j = 0, in R

2, i = 1, ..,n

∫

R2 |y|2γi eṽi dy < ∞, i = 1, ..,n.

Here for convenience we assume limk→∞ hk
i (0) = 1, but this assumption is not es-

sential.

Let ψk,i be a harmonic function that makes uk,i −ψk,i constant on ∂B1:

(1.13)

{

∆ψk,i = 0, in B1,
ψk,i(x) = uk,i(x)− 1

2π

∫

∂B1
uk,i on ∂B1.

Since uk,i has bounded oscillation on ∂B1 we have

ψk,i(0) = 0, |Dmψk,i|L∞(B1/2) ≤C(m), for m = 0,1,2, ..

The main result of this article is

Theorem 1.1. Suppose I2 is not empty and n ≥ 2, ṽk is a fully bubbling sequence

described in (1.11), hk and γ = (γ1, ...,γn) satisfy the conditions stated in (1.4),(1.5)

and (1.6). ψk is defined in (1.13). Then we have

|∇(loghk,i +ψk,i)(0)| = O(εk), if n+1− i ∈ I2.
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If the Toda system has only one equation, it is a prescribing Gauss curvature

equation which has been extensively studied for decades. It is well known that the

location of a blowup point has to be a critical point of a curvature function and

this function has to vanish to 0 along the local maximums of blowup solutions at

a certain rate. Such a key estimate has a number of important applications such

as constructing the blowup solutions, capturing the geometric information of the

manifold, computing the Leray-Schauder degree of the set of solutions in terms

of the topology of the manifold, etc. However, almost no vanishing result can be

found if the blowup point happens to be a singular source. In other words, even

for the singular equation, the study of the vanishing rate of curvature function at a

singular source seems completely blank. To the best of our knowledge, Theorem

1.1 provides the first vanishing estimate for singular Toda systems. Moreover, the

reflection of an index (from i to n+1− i) is also a new feature that has never been

observed before.

For the purpose of application Theorem 1.1 can be written under a more general

setting:

Let µk
i be a sequence of smooth functions tending to 4πγiδ0 in measure. We

assume that uk = (uk
1, ..,u

k
n) satisfies (1.6) and

(1.14) ∆uk
i +

n

∑
j=1

ai jh
k
j(x)e

uk
j = µk

i , in B1,

where hk = (hk
1, ...,h

k
n) satisfies (1.4) as well. Then we use f k

i defined in the fol-

lowing as a replacement of 2γi log |x|:

(1.15)

{

∆ f k
i = µk

i , in B1,
f k
i = 0, on ∂B1.

Now the definition of ũk = (ũk
1, ..., ũ

k
n) becomes

ũk
i (x) = uk

i (x)− f k
i .

Clearly ũk satisfies

(1.16) ∆ũk
i +∑

j

ai jh
k
je

f k
j eũk

j = 0, in B1, i = 1, ..,n.

Let

(1.17) Mk = max
i

max
x∈B1

ũk
i (x)

1+ γi,k

where γi,k is a sequence of constants tending to γi. The specific requirements of γi,k

will be stated later. Set

(1.18) εk = e−
1
2

Mk

and

(1.19) ṽk
i (y) = ũk

i (εky)+2(1+ γi,k) log εk, i = 1, ..,n.
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Direct computation shows

(1.20) ∆ṽk
i +∑

j

ai jh
k
j(εky)

e f k
j (εky)

ε
2γi,k

k

eṽk
j(y) = 0, |y| ≤ 1/ε−1

k

It is easy to see from the definition of εk that

ṽk
i ≤ 0 in B(0,ε−1

k ) i = 1, ..,n, and max
i

max
y

ṽk
i (y) = 0,

so our main assumption in this more general setting is

there exists γi,k → γi such that ṽk = (ṽk
1, ..., ṽ

k
n) converges uniformly to(1.21)

(1.12) over any fixed compact subset of R2.

Then the conclusion of Theorem 1.1 also holds for uk in this more general setting:

Theorem 1.2. : Let uk = (uk
1, ...,u

k
n) be a sequence of solutions to (1.14) that satis-

fies (1.6), µk = (µk
1 , ...,µ

k
n ) be a sequence of smooth functions tending to 4πγiδ0 in

measure (with γ = (γ1, ...,γn) satisfying (1.5)). Let f k
i , Mk, εk be defined by (1.15),

(1.17) and (1.18), respectively. Then for ṽk = (ṽk
1, ..., ṽ

k
n) in (1.19), if (1.21) holds,

|∇(log hk
i +ψk,i)(0)| = O(εk), if n+1− i ∈ I2

where ψk,i is defined in (1.13).

Even though Theorem 1.1 and Theorem 1.2 are stated for locally defined Toda

systems, they are very useful for equation (1.2). One major goal for studying (1.2)

is to identify the set of critical parameters when the blowup phenomenon occurs.

This information is related to the topology of M and a corresponding degree count-

ing formula. In order to achieve this goal one major difficulty comes from the

asymptotic behavior of blowup solutions near an isolated blowup point. In gen-

eral the asymptotic behavior of blowup solutions is very complicated and becomes

significantly more difficult as the number of equations increases. Theorem 1.1 and

Theorem 1.2 should be very useful for simplifying bubble interactions even for reg-

ular SU(n+ 1) Toda systems. In fact, even for solutions to the regular SU(n+ 1)
Toda system, if different components tend to infinity at different speed, the com-

ponents that tend to infinity fast look like Dirac mass for slower components. The

phenomenon that Theorem 1.1 and Theorem 1.2 revealed is quite new and no sim-

ilar results have been observed or verified for similar systems before.

The sequence of harmonic function ψk = (ψk,1, ...,ψk,n) is usually easy to be

identified in application. For example for blowup solutions of (1.2), if the blowup

sequence uk converges in measure to a few Dirac masses and some rough estimates

for uk are obtained outside the bubbling area, ψk can be determined easily by the

Green’s function of −∆g on the manifold.

To indicate the application of Theorem 1.1 we present the following simple ex-

ample. Let M be a flat torus and we consider
{

∆gu1 +2eu1 − eu2 = 4πγ1δp1
+4πγ2δp2

∆gu2 − eu1 +2eu2 = 4πγ3δp3
.



6 LEI ZHANG

Here we assume p1, p2, p3 are distinct points and p1 is the only blowup point and

the blowup sequence is fully bubbling at p1. Let (uk,1,uk,2) be the fully bubbling

sequence, then it is easy to use the classification theorem of Lin-Wei-Ye [15] to

obtain euk,1 ⇀ 4π(2+γ1)δp1
and euk,2 ⇀ 4π(2+γ1)δp1

. Thus γ2 = 2 and γ3 = 2+γ1.

The Green’s representation formula for uk
1 gives

uk,1(x) = ūk,1 +
∫

M
G(x,η)(2euk,1 − euk,2 −4πγ1δp1

−8πδp2
)dVg(η)

where ūk,1 is the average of uk,1 and G is the Green’s function that satisfies

∆xG(x, p) =−δp +
1

vol(M)
,

∫

M
G(x, p)dVg(x) = 0.

Using the concentration of uk,1 and uk,2 we see that in the neighborhood of p1

uk,1(x) = ūk,1 +8π(G(x, p1)−G(x, p2))+o(1), x ∈ B(p1,2δ )\B(p1,δ )

for some small δ > 0. The vanishing estimate in Theorem 1.1 gives

(1.22) ∇1γ(p1, p1)−∇1G(p1, p2) = 0.

where γ is the regular part of G and ∇1 means the differentiation with respect to

the first component. In other words if p1, p2 do not satisfy (1.22) it is not possible

to have p1 as the only blowup point with a fully bubbling sequence.

In [17] three sharp estimates are obtained for fully bubbling solutions of regular

SU(n + 1) Toda systems, the third of which is a ∂ 2
z condition: an estimate on

the second derivatives of coefficient functions at blowup points. The readers may

wonder why that estimate is not derived in this article. The reason is the estimate in

Theorem 1.1 is not for all the indexes (however the corresponding estimate in [17]

holds for all indexes). This fact prevents us from getting more accurate asymptotic

behavior of fully bubbling solutions and the ∂ 2
z conditions.

The proof of Theorem 1.1 relies heavily on the important classification theroem

of Lin-Wei-Ye [15] on global solutions of SU(n+ 1) Toda system. In particular

we find out that some leading terms in the asymptotic behavior of global solutions

are crucial for blowup analysis. By differentiating on certain parameters related to

these leading terms we obtain a few families of solutions to the linearized SU(n+1)
Toda systems, which play an important role in the proof of Theorem 1.1.

The organization of this article is as follows. In section two we study the asymp-

totic behavior of global solutions to singular SU(n+1) Toda systems. It turns out

that the components of the global solution that correspond to I2 contribute some

crucial leading terms in the expansion of the global solution. Then in section three

we prove Theorem 1.1. The proof of Theorem 1.2 is very similar to that of Theo-

rem 1.1 and is therefore omitted.

2. PROPERTIES OF GLOBAL SOLUTIONS TO SU(n+1) TODA SYSTEM WITH

ONE SINGULAR POINT

In this section we study the asymptotic behavior of global solutions to SU(n+1)
Toda system with one singularity. The main results of this section are (2.3) and

(2.4).
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Let U = (U1, ...,Un) satisfy

(2.1)







∆Ui +∑n
j=1 ai je

U j = 4πγiδ0, i = 1, ...,n in R
2,

∫

R2 eUi < ∞,

where A = (ai j)n×n is the Cartan matrix. Recall that I1 is the set of nonzero indexes

and I2 is the complement of I1.

Let

U i = ∑
j

ai jU j, γ i = ∑
j

ai jγ j.

We shall use the following properties of global solutions ( see [15] ):

e−U1

= f , e−Uk

= 2k(k−1)detk( f )

where

detk( f ) = det( f (p,q)), 0 ≤ p,q ≤ k−1,

f (p,q) = ∂
q
z̄ ∂ p

z f ,

|z|2γ1

e−U1

= λ0 + ∑
1≤i≤n

λi|Pi(z)|2

Pi(z) =
i

∑
j=0

ci jz
µ1+...+µ j , µ0 = 0, and µi = 1+ γi,cii = 1 for i = 1, ..,n, .

Moreover

λ0...λn = 2−n(n+1)Π1≤i≤ j≤n(
j

∑
k=i

µk)
−2,

and

f = λ0|z|−2γ1

+
n

∑
i=1

λiPi(z)z
−γ1

P̄i(z)z̄
−γ1

.

Let q0(z) = z−γ1

and

qi(z) =
i

∑
j=0

ci jz
µ1+...+µ j−γ1

, i = 1, ...,n

we have

f =
n

∑
i=0

λiqi(z)q̄i(z)

and

f (p,q) =
n

∑
i=0

λi∂pqi∂qq̄i.

e−Um

= 2m(m−1)det

(

(Cλ ,Bλ )

(

C̄

B̄

))

= 2m(m−1)det(CλC̄+Bλ B̄).
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where

Bλ =











λn+1−mqn+1−m ... λnqn

λn+1−mq
(1)
n+1−m ... λnq

(1)
n

...
...

...

λn+1−mq
(m−1)
n+1−m ... λnq

(m−1)
n











Cλ =











λ0q0 ... λn−mqn−m

λ0q
(1)
0 ... λn−mq

(1)
n−m

...
...

...

λ0q
(m−1)
0 ... λn−mq

(m−1)
n−m











B̄′ =







q̄n+1−m q̄
(1)
n+1−m ... q̄

(m−1)
n+1−m

...
...

...
...

q̄n q̄
(1)
n ... q̄

(m−1)
n







C̄′ =







q̄0 q̄
(1)
0 ... q̄

(m−1)
0

...
...

...
...

q̄n−m q̄
(1)
n−m ... q̄

(m−1)
n−m







where q
( j)
i means the j-th z derivative of qi. q̄

( j)
i is the jth z̄ derivative of q̄i. The

leading term comes from Bλ B̄′. Our goal is to determine the first two terms in the

expansion of e−Um

. Here we note that Cλ and C̄ may not be square matrices, but

Bλ and B̄ are square matrices and det(Bλ B̄) will give at least the first two leading

terms. Let

si = µ1 + ...+µi − γ1, i = 1, ..,n.

Using the fact that 0 < ai j < 1 and the definition of γ1 we see that sn > n. Next we

see that

qi = zsi + ci,i−1zsi−1 + ci,i−2zsi−2 + l.o.t

where l.o.t stands for “lower order terms”. From the definition of si we see that

si−1 = si −1, if γi = 0; si > si−1 +1 if γi > 0.

Consequently if i ∈ I2, si = si−1 +1, and si ≥ si−2 +2. If i ∈ I1 and γi 6∈ N (the set

of all natural numbers), ci,i−1 = 0 (see the main theorem of [15]) and si−2 ≤ si −2

still holds. If i ∈ I1 and γi is a positive integer, si ≥ si−2+2 clearly holds. Therefore

for z large

qi = zsi(1+ ci,i−1/z+O(1/z2), if i ∈ I2,

qi = zsi(1+O(1/z2)), if i ∈ I1.

In order to identify the two leading terms of Um, we first identify the leading

term in Bλ . By taking out λn+1−m, ..,λn and ignoring all the l.o.t in each entry we
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have

detBλ = λn+1−m...λn·

det











zsn+1−m ... zsn

sn+1−mzsn+1−m−1 ... snzsn−1

...
...

...

Πm−2
j=0 (sn+1−m − j)zsn+1−m+1−m ... Πm−2

j=0 (sn − j)zsn+1−m











+ l.o.t.

Note that the l.o.t are with respect to the leading term in the determinant. For the

major matrix we first take out zsn+1−m+1−m from the first column, zsn+2−m+1−m from

the second column,..., zsn+1−m from the m− th column, then the power of entries

in the first row becomes zm−1, in the second row it is zm−2,... in the m− 1th row

it is z and in the last row there is no z. Thus by taking out zm−1 from the first row,

zm−2 in the second row,.., z from the m−1th row we see that the power of z of the

leading matrix is

Sm := sn+1−m + ...+ sn −
m(m−1)

2
.

Now detBλ becomes

detBλ = λn+1−m...λnzSm det











1 ... 1

sn+1−m ... sn

...
...

...

Πm−2
j=0 (sn+1−m − j) ... Πm−2

j=0 (sn − j)











+ l.o.t

The evaluation of

D = det











1 ... 1

sn+1−m ... sn

...
...

...

Πm−2
j=0 (sn+1−m − j) ... Πm−2

j=0 (sn − j)











is elementary. First we subtract (sn + 2−m) times row m− 1 from row m. Then

the entries of the last row are

Πm−3
j=0 (sn+1−m − j)(sn+1−m − sn), ...Π

m−3
j=0 (sn−1 − j)(sn−1 − sn),0.

Next we substract sn + 3−m times row m− 2 from row m− 1. Then the m− 1th

row is the following after this operation:

Πm−4
j=0 (sn+1−m − j)(sn+1−m − sn), ...,0.

Eventually we substract sn times row 1 from row 2 and the second row becomes

sn+1−m − sn, ...,sn−1 − sn,0.

By expanding at the (1,m) entry we see that the determinant is equal to

Πn−1
j=n+1−m(sn − s j)det











1 ... 1

sn+1−m ... sn−1

...
...

...

Πm−3
j=0 (sn+1−m − j) ... Πm−3

j=0 (sn−1 − j)










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Therefore

D = Πn+1−m≤i< j≤n(si − s j).

The second term comes from ci,i−1 and its conjugate where

i ∈ I2 := { j ∈ I; γ j = 0.}, I1 = {i; i 6∈ I2}.

For i 6∈ I2, the corresponding term with ci,i−1 is not useful since si − si−1 > 1. Also

ci,i−1 = 0 if γi is not an integer. In the expression of e−Um

we see that if i> n+1−m

and i ∈ I2, there is no contribution from ci,i−1 in this case since the second term in

each entry of this column (with ci,i−1) is just the ci,i−1 multiple of the major term

the next column (by si = si−1+1). Thus the calculation involving this ci,i−1 is zero.

We only need to consider the following case: n+1−m ∈ I2 and the coefficient of

cn+1−m,n−m is the determinant of the following matrix:











zsn−m zsn+2−m ... zsn

sn−mzsn−m−1 sn+2−mzsn+2−m−1 ... snzsn−1

...
... ...

...

Πm−2
j=0 (sn−m − j)zsn−m+1−m Πm−2

j=0 (sn+2−m − j)zsn+2−m+1−m ... Πm−2
j=0 (sn − j)ssn+1−m











Note that the powers of z in the first column are 2 less than those in the second

column. Let

D1 = det











1 1 ... 1

sn−m sn+2−m ... sn

...
... ...

...

Πm−2
j=0 (sn−m − j) Πm−2

j=0 (sn+2−m − j) ... Πm−2
j=0 (sn − j)











It is easy to evaluate D1 in the same way that D was evaluated:

D1 = Πi≥n+2−m(si − sn−m)Πn+2−m≤i< j≤n(s j − si).

If n+1−m ∈ I1,

det(Bλ ) = λn+1−m...λnDzSm(1+O(1/z2)).

If n+1−m ∈ I2,

det(Bλ ) = λn+1−m...λnDzSm(1+
D1

D
cn+1−m,n−m

1

z
+O(1/z2)).

Correspondingly

det(B̄) =







Dz̄Sm(1+O(1/z̄2)), if n+1−m ∈ I1,

Dz̄Sm(1+ D1

D
c̄n+1−m,n−m

1
z̄
+O( 1

z̄2 )), if n+1−m ∈ I2.

Consequently if n+1−m ∈ I1,

(2.2) e−Um

= λn+1−m...λn|z|2Sm D2(1+O(1/|z|2)).
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If n+1−m ∈ I2,

e−Um

(2.3)

=λn+1−m..λnD2|z|2Sm(1+
D1

D
(
cn+1−m

z
+

c̄n+1−m

z̄
)+O(1/|z|2))

= λn+1−m..λnD2|z|2Sm(1+
2D1

D
(αn+1−m cosθ +βn+1−m sinθ)r−1 +O(r−2))

where cn+1−m = αn+1−m +
√
−1βn+1−m, r = |z|. Thus by (2.2) and (2.3) if n+1−

m ∈ I2

(2.4)























− ∂U l

∂αn+1−m

=
2D1

D

δlm cosθ

r
+O(1/r2),, δlm =

{

1, l = m

0, l 6= m.

− ∂U l

∂βn+1−m

=
2D1

D

δlm sinθ

r
+O(1/r2).

3. PROOF OF THEOREM 1.1

Recall that ṽk = (ṽk,1, .., ṽk,n) is defined in (1.9) and it satisfies (1.10). The main

assumption of this article is that ṽk converges to a global SU(n+ 1) Toda system

after scaling ( see (1.11)).

In the first step of the proof we invoke the main result in [16]. There exists a

sequence of global solutions Ũk = (Ũk,1, ..,Ũk,n) of

∆Ũk,i(y)+
n

∑
j=1

ai j|y|2γ j hk, j(0)e
Ũk, j(y) = 0, in R

2, i = 1, ...,n

such that the following holds:

(1) Let λk,i (i = 0, ...,n), ck,i j (0 ≤ i< j ≤ n) be the parameters in the definition

of Ũk and let λi (i = 0, ..,n) and ci j (0 ≤ i < j ≤ n) be the parameters in

the definition of ṽ in (1.11). Then along a subsequence λk,i → λi (i =
0, ...,n) and ck,i j → ci j. As a result Ũk,i converges to ṽi uniformly over

any fixed compact subset of R
2. Here we use the harmless assumption

limk→∞ hk,i(0) = 1.

(2) There exist distinct points p1, ..., pl ∈R
2 with l ≤ n2 +2n such that

ṽk,1(pm)−ψk,1(pm) = Ũk,1(pm), 1 ≤ m ≤ l.

In other words the first component of ṽk −ψk and Ũk agree at l points. In

[16] these points are determined in a way that ck,i j and λk,i j do not tend to

infinity.

(3) Let

wk,i(y) = ṽk,i(y)−Ũk,i(y)−ψk,i(εky) in Ωk := B(0,ε−1
k ).

It holds:

(3.1) |wk,i(y)| ≤Cεk(1+ |y|), y ∈ Ωk.
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It is already established in [15] that global solutions U =(U1, ..,Ui) of (2.1) satisfies

Ui(y) = (−4−2γn+1−i) log |y|+O(1), |y|> 1.

What we need is a little more specific expansion of Ũk,i:

(3.2) Ũk,i(y) = (−4−2γn+1−i −2γi) log |y|+ ck,i +O(1/|y|),
for |y| > 1 and i = 1, ..,n, where ck,i are uniformly bounded. To see why (3.2)

holds, we let

Ûk,i(y) = Ũk,i(y)+ (4+2γn+1−i +2γi) log |y|, |y|> 1.

Then it is easy to see that Ûk,i satisfies

∆Ûk,i(y)+∑
j

ai j|y|−2γn+1− j−4eÛk, j = 0, |y|> 1

and Ûk,i is bounded at infinity because all the parameters in the definition of Uk are

bounded. Making a Kelvin transformation of Ûk,i:

Vk,i(z) = Ûk,i(
z

|z|2 ), |z|< 1

2
,

we have

∆Vk,i(z)+∑
j

|z|2γn+1− j eVk, j(z) = 0, |z|< 1.

Since Vk,i is bounded around 0, γi ≥ 0 for all i, Vk,i ∈C1,α(B1/2) for all α ∈ (0,1).
From the expansion of Vk,i near 0 we see that (3.2) holds.

The equation for wk,i is

∆wk,i(y)+∑
j

ai j|y|2γ j hk, j(0)e
ξ k

j wk, j(3.3)

=∑
j

ai j|y|2γ j (hk, j(0)−hk, j(εky)eψk, j(εky))eŨk, j , i = 1, ..,n

where hk,i(0)e
ξ k

i (x) is obtained by mean value theorem. Let

wi
k = ∑

j

ai jwk, j

then (3.3) becomes

∆wi
k + |y|2γi hk,i(0)e

ξ k
i wk,i(3.4)

=|y|2γi(hk,i(0)−hk,i(εky)eψk,i(εky))eŨk,i , in Ωk.

Let φk = (φk,1, ...,φk,n) be solutions of the linearized system

(3.5) ∆φk,i +∑
j

ai j|y|2γ j hk, j(0)e
Ũk, j φk, j = 0 in R

2.

Set

φ i
k = ∑

j

ai jφk, j.
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Then

(3.6) ∆φ i
k + |y|2γihk,i(0)e

Ũk,i φk,i = 0, in R
2.

Let Ω̃k = B(0, 1
2
ε−1

k ). Multiplying φk,i to both sides of (3.4) and taking the

summation on i, we have,
∫

Ω̃k

∑
i

∆(∑
j

ai jwk, j)φk,i +

∫

Ω̃k

∑
i

|y|2γi hk,i(0)e
ξ k

i wk,iφk,i(3.7)

=∑
i

∫

Ω̃k

|y|2γi

(

hk,i(0)−hk,i(εky)eψk,i(εky)

)

eŨk,iφk,i,

Using integration by parts, we write the first term on the left hand side of (3.7)

as
∫

Ω̃k

∆(∑
i, j

ai jwk, j)φk,i

=

∫

∂ Ω̃k

(∑
i, j

ai j∂νwk, jφk,i −∑
i, j

ai jwk, j∂ν φk,i)dS+

∫

Ω̃k

∑
i, j

ai jwk, j∆φk,i.

=

∫

∂ Ω̃k

∑
i

(∂νwi
kφk,i −wi

k∂νφk,i)dS+

∫

Ω̃k

∑
i

wk,i∆φ i
k.

The left hand side of (3.7) now becomes

(3.8)

∫

∂ Ω̃k

∑
i

(∂νwi
kφk,i −wi

k∂νφk,i)dS+

∫

Ω̃k

∑
i

(∆φ i
k + |y|2γihk,i(0)e

ξ k
i φk,i)wk,idy.

By (3.1) and (3.2)

hk,i(0)e
ξ k

i −hk,i(0)e
Ũk,i = O(εk)(1+ |y|)−3−2γi−2γn+1−i

φk,i will be chosen to satisfy

(3.9)











φk,i(x) = (dk,i cosθ +qk,i sinθ)/r+O(1/r2)

∂rφk,i(x) =−dk,i cosθ +qk,i sinθ

r2
+O(1/r3),

r = |x|> 1,

where dk,i and qk,i are bounded sequences of constants. Thus by (3.1), (3.2) and

the estimate of φk,i in (3.9) above, we have

(3.10) |y|2γi eξ k
i φk,iwk,i −|y|2γi eŨk,iφk,iwk,i = O(ε2

k )(1+ |y|)−3−2γn+1−i , |y|> 1.

Using (3.10) and (3.6) in the second term of (3.8) we obtain the following estimate

easily
∫

Ω̃k

∑
i

(∆φ i
k + |y|2γi hk,i(0)e

ξ k
j φk,i)wk,idy = O(ε2

k ).

We further claim that the first term of (3.8) is O(ε2
k ), which follows immediate

from (3.9) and the following estimate:

(3.11) ∇wk,i = O(ε2
k ), wk,i = ck,i +O(εk), on ∂ Ω̃k.
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In order to prove (3.11) we first observe that

wk,i = ck,i +O(εk) on ∂Ωk

since ṽk,i −ψk,i is constant on ∂Ωk and Ũk,i satisfies (3.2). Now we use the Green’s

representation of wk,i on Ωk:

(3.12) wk,i(y) =
∫

Ωk

Gk(y,η)(−∆wk,i(η))dη −
∫

∂Ωk

∂ν G(y,η)wk,i(η)dSη ,

where

(3.13) Gk(y,η) =− 1

2π
log |y−η |+ 1

2π
log(

|y|
ε−1

k

|ε
−2
k y

|y|2 −η |), y,η ∈ Ωk.

It is easy to see that the second term of (3.12) is a harmonic function with O(εk)
perturbation on ∂Ωk. Thus the gradient of this term on ∂ Ω̃k is O(ε2

k ) because the

distance from ∂ Ω̃k to ∂Ωk is comparable to ε−1
k . Therefore in order to prove (3.11)

it suffices to show
∫

Ωk

∇yGk(y,η)

(

∑
j

ai j|η |2γ j hk, j(0)e
ξ k

j wk, j(η)(3.14)

−∑
j

ai j|η |2γ j(hk, j(0)−hk, j(εkη)eψk, j(εkη))eUk, j

)

=O(ε2
k ), y ∈ Ωk, |y|>

1

4
ε−1

k .

The proof of (3.14) follows from (3.13), (3.1) and (3.2) by standard estimate,

so we omit the details. Hence we have established the first estimate of (3.11). To

prove the second estimate of (3.11) we just need to show that the oscillation of wk,i

on Ωk \ Ω̃k is O(εk). Let y1,y2 ∈ Ωk \ Ω̃k, using (3.12) we have

wk,i(y1)−wk,i(y2)(3.15)

=

∫

Ωk

(Gk(y1,η)−G(y2,η))

(

∑
j

ai j|η |2γ j hk, j(0)e
ξ k

j wk, j(η)

−∑
j

ai j|η |2γ j(hk, j(0)−hk, j(εkη)eψk
i (εkη))eUk, j

)

−
∫

∂Ωk

(∂ν Gk(y1,η)−∂νGk(y2,η))wk,i(η)dSη .

The last term in (3.15) is O(εk) because it is the difference of of two points of a har-

monic function whose oscillation on ∂Ωk is O(εk). Writing Gk(y1,η)−Gk(y2,η)
as

Gk(y1,η)−Gk(y2,η) = ∇1Gk(y
∗,η) · (y1 − y2)

where ∇1 means differentiation with respect to the first component, y∗ is between

y1 and y2 ( y∗ ∈ Ωk \ Ω̃k), we see that the first term of (3.15) is O(εk) by (3.14).
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Thus (3.11) is established. By (3.11) the left hand side of (3.7) is O(ε2
k ). Equation

(3.7) now becomes

(3.16) ∑
i

∫

Ω̃k

|y|2γi(hk,i(0)−hk,i(εky)eψk,i(εky))eŨk,i(y)φk,i(y)dy = O(ε2
k ).

Let

(3.17) h̄i,k = hk,ie
ψk,i,

by (3.2) and (3.9) we have

|y|2γi(hk,i(0)−hk,i(εky)eψk,i(εky))eŨk,i(y)φk,i(y)

=εk(∂1h̄k,i(0)y1 +∂2h̄k,i(0)y2)|y|2γi hk,i(0)e
Ũk,i φk,i +O(ε2

k )(1+ |y|)−3−2γn+1−i .

Therefore (3.16) is reduced to

∑
i

∫

Ω̃k

(∂1h̄k,i(0)y1 +∂2h̄k,i(0)y2)|y|2γi hk,i(0)e
Ũk,i φk,i = O(εk).

Using (3.5) and integration by parts we have

∑
i

∫

Ω̃k

(∂1h̄k,i(0)y1 +∂2h̄k,i(0)y2)|y|2γi hk,i(0)e
Ũk,i φk,i(3.18)

=∑
i

∫

∂ Ω̃k

(y1∂1h̄k,i(0)+ y2∂2h̄k,i(0))(
φ i

k

|y| −∂νφ i
k)

=∑
i

∫ 2π

0
(cos θ∂1h̄k,i(0)+ sinθ∂2h̄k,i(0))(φ

i
k − r∂rφ

i
k)rdθ

=O(εk)

From (3.17) we have

(3.19) ∇h̄k,i(0) = (∇ loghk,i(0)+∇ψk,i(0))hk,i(0).

If

φ i
k =

1

r
(dk,i cosθ +qk,i sinθ)+O(1/r2)

we obtain from (3.18)

∑
i

∫ 2π

0
(cos θ∂1h̄k,i(0)+ sinθ∂2h̄k,i(0))r(φ

i
k − r∂rφ

i
k)dθ(3.20)

=π ∑
i

(dk,i∂1h̄k,i(0)+qk,i∂2h̄k,i(0))+O(εk)

where r = ε−1
k /2.

Recall that (U1
k , ...,U

n
k ) are described by up to n2 +2n parameters. In particular

we write

ck,n+1−i = αk,n+1−i +
√
−1βk,n+1−i.
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For each i such that n+1− i ∈ I2, we differentiate the real and imaginary parts of

(U1
k , ...,U

n
k ) to get (by (2.4))

Φαn+1−i
=









− ∂U1
k

∂αk,n+1−i

...

− ∂Un
k

∂αk,n+1−i









=







2D1

D
δ1,i cos θ/r

...
2D1

D
δn,i cos θ/r






+O(

1

r2
)

and

Φβn+1−i
=









− ∂U1
k

∂βk,n+1−i

...

− ∂Un
k

∂βk,n+1−i









=







2D1

D
δ1,i sinθ/r

...
2D1

D
δn,i sinθ/r






+O(

1

r2
)

For n+1− i ∈ I2, letting (φ1
k , ...,φ

n
k )

′ be Φαn+1−i
and Φβn+1−i

respectively in (3.20)

we have

|∇h̄k,i(0)| = O(εk), if n+1− i ∈ I2

which is, by (3.19),

(3.21) ∇(log hk,i)(0)+∇ψk,i(0) = O(εk), if n+1− i ∈ I2.

Theorem 1.1 is established. �

Remark 3.1. In [17] a ∂ 2
z estimate was established for fully bubbling solutions

of nonsingular Toda systems. In this article it does not seem to be possible to get

the ∂ 2
z estimates for the nonsingular SU(n+ 1) Toda system. The reason is if the

estimate of ∇hk
i (0) is not obtained for n+1− i ∈ I1, the corresponding wk,i cannot

be improved to O(ε2
k ) over compact subsets of R2. This lack of accuracy prevents

us from getting estimates on the second derivatives of hk
i .
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