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The Dyson equation with linear self-energy:
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We study the unique solution m of the Dyson equation
—m(2)"t =21 — a + S[m(2)]

on a von Neumann algebra A with the constraint Imm > 0. Here, z lies in the complex upper
half-plane, a is a self-adjoint element of A and S is a positivity-preserving linear operator on A. We
show that m is the Stieltjes transform of a compactly supported A-valued measure on R. Under
suitable assumptions, we establish that this measure has a uniformly 1/3-Hélder continuous density
with respect to the Lebesgue measure, which is supported on finitely many intervals, called bands.
In fact, the density is analytic inside the bands with a square-root growth at the edges and internal
cubic root cusps whenever the gap between two bands vanishes. The shape of these singularities is
universal and no other singularity may occur. We give a precise asymptotic description of m near
the singular points. These asymptotics generalize the analysis at the regular edges given in the
companion paper on the Tracy-Widom universality for the edge eigenvalue statistics for correlated
random matrices [8] and they play a key role in the proof of the Pearcey universality at the cusp for
Wigner-type matrices [15, 20]. We also extend the finite dimensional band mass formula from [8] to
the von Neumann algebra setting by showing that the spectral mass of the bands is topologically
rigid under deformations and we conclude that these masses are quantized in some important cases.
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1. Introduction

An important task in random matrix theory is to determine the eigenvalue distribution of a random matrix
as its size tends to infinity. Similarly, in free probability theory, the scalar-valued distribution of operator-
valued semicircular elements is of particular interest. In both cases, the distribution can be obtained from the
corresponding Dyson equation

—m(2) =21 —a+ S[m(z)] (1.1)

on some von Neumann algebra A with a unit 1 and a tracial state (-). Here, z lies in H := {w € C: Imw > 0},
the complex upper half-plane, a = a* € A and S: A — A is a positivity-preserving linear operator. There is
a unique solution m: H — A of (1.1) under the assumption that Imm(z) := (m(z) — m(2)*)/(2i) is a strictly
positive element of A for all z € H [29]. For suitably chosen a and S as well as A, this solution characterizes the
distributions in the applications mentioned above. In fact, in both cases, the distribution will be the measure
p on R whose Stieltjes transform is given by z — (m(z)). The measure p is called the self-consistent density
of states and its support is the self-consistent spectrum. This terminology stems from the physics literature on
the Dyson equation, where z is often called spectral parameter and S[m] the self-energy. The linearity of the
self-energy operator S is a distinctive feature of our setup.

We first explain the connection between the eigenvalue density of a large random matrix and the Dyson
equation. Let H € C™*™ be a C"*"-valued random variable, n € N, such that H = H*. A central objective
is the analysis of the empirical spectral measure pg == n=! > i 0., Or its expectation, the density of states,
for large n, where \1,...,\, are the eigenvalues of H. Clearly, n=* Tr(H — z)~! is the Stieltjes transform of
pur at z € H. Therefore, the resolvent (H — z)~! is commonly studied to obtain information about puy. In
fact, for many random matrix ensembles, in particular models with decaying correlations among the entries,
the resolvent (H — z)~! is well-approximated for large n by the solution m(z) of the Dyson equation (1.1).
Here, we choose A = C"*" equipped with the operator norm induced by the Euclidean distance on C™ and the
normalized trace () = n~!Tr(-) as tracial state as well as

a:=FEH, Slz] =E[(H — a)z(H —a)], z€C™". (1.2)

If (H — z)~! is well-approximated by m(z) for large n then ugy will be well-approximated by the deterministic
measure p, whose Stieltjes transform is given by z +— (m(z)). The importance of the Dyson equation (1.1) for
random matrix theory has been realized by many authors on various levels of generality [10, 13, 24, 30, 37, 46],
see also the monographs [23, 35] and the more recent works [3, 4, 6, 7, 9, 19, 27, 31].

Secondly, we relate the Dyson equation to free probability theory by noticing that the Cauchy transform of a
shifted operator-valued semicircular element is given by m. More precisely, let B be a unital C*-algebra, A C B



be a C*-subalgebra with the same unit 1 and E: B — A is a conditional expectation (we refer to Chapter
9 in [34] for notions from free probability theory). Pick an @ = a* € A and an operator-valued semicircular
element s = s* € B. Then G(z) :== E[(z—s—a)~!] is the Cauchy-transform of s+a. In this case, m(z) = —G(z)
satisfies (1.1) with S[x] := E[sxs] for all x € A [42]. If A is a von Neumann algebra with a tracial state, then our
results yield information about the scalar-valued distribution p = ps44 of s + a with respect to this state. The
study of qualitative regularity properties for this distribution has a long history in free probability. For example,
the question of whether p has atoms or not is intimately related to non-commutative identity testing (see [22, 32]
and references therein) and the notions of free entropy and Fischer information (see [41, 43] and the survey [45]).
We also refer to the recent preprint [33], where the distribution of rational functions in noncommutative random
variables is studied with the help of linearization ideas from [26, 25] and [28]. Under certain assumptions, our
results provide extremely detailed information about the regularity properties of p, thus complementing these
more general insights. In particular, we show that ps is absolutely continuous with respect to the Lebesgue
measure away from zero for any operator-valued semicircular element s. For other applications of the Dyson
equation (1.1) in free probability theory, we refer to [29, 39, 42, 44] and the recent monograph [34].

In this paper, we analyze the regularity properties of the self-consistent density of states p in detail. More
precisely, under suitable assumptions on S, we show that the boundedness of m already implies that p has a
1/3-Holder continuous density p(7) with respect to the Lebesgue measure. We provide a broad class of models
for which the boundedness of m is ensured. Furthermore, the set where the density is positive, {7 : p(7) > 0},
splits into finitely many connected components, called bands. The density is real-analytic inside the bands with
a square root growth behavior at the edges. If two bands touch, however, a cubic root cusp emerges. These
are the only possible types of singularities. In fact, m(z) is the Stieltjes transform of a positive operator-valued
measure v and we establish the properties mentioned above for v as well. We also extend the band mass formula
from [8] expressing the masses that p assigns to the bands. We use it to infer a certain quantization of the band
masses that we call band rigidity, because it is invariant under small perturbations of the data a and S of the
Dyson equation. In particular, we extend a quantization result from [25] and [38] to cover limits of Kronecker
random matrices. We remark that for the analogous phenomenon in the context of random matrices the term
“exact separation of eigenvalues” was coined in [11].

In the commutative setup, the band structure and singularity behavior of the density have been obtained in
[1, 2], where a detailed analysis of the regularity of p was initiated. In the special noncommutative situation
A=C" " and (-) =n"1Tr(-), it has been shown that p is Holder-continuous and real-analytic wherever it is
positive [4]. Recently, in the same setup, the precise behavior of p near the spectral edges was obtained in [§],
where it was a key ingredient in the proof of the Tracy-Widom universality of the local spectral statistics near
the spectral edges for random matrices with general correlation structure. However, this analysis works only
at edges that are well separated from each other (so called regular edges), i.e. away from the cusp where two
edges merge and away from the almost cusps, i.e. regions with small spectral gaps or small but nonzero minima
of the density. The main novelty of the current work is to give an effective regularity analysis for the general
noncommutative case with a precise quantitative description of all singularities including the almost cusps. One
of the main applications is the proof of the eigenvalue rigidity on optimal scale throughout the entire spectrum.
This is a key input for the recent proof of the local spectral universality at the cusp for general Wigner-type
matrices, i.e. the Pearcey statistics for the complex hermitian case in [20] and its real symmetric counterpart
in [15]. We remark that cusp universality settles the third and last ubiquitous spectral universality regime after
the bulk and edge universalities studied extensively earlier, see [21] and references therein.

The key strategy behind the current paper as well as its predecessors [1, 2, 4, 8] is a refined stability analysis
of the Dyson equation (1.1) against small perturbations. It turns out that the equation is stable in the bulk
regime, i.e., where p(Rez) is separated away from zero, but is unstable near the points, where the density
vanishes. Even the stability in the bulk requires an unconventional idea; it relies on rewriting the stability
operator, i.e., the derivative of the Dyson equation with respect to m, through the use of a positivity-preserving
symmetric map, called the saturated self-energy operator, F'. We then extract information on the spectral gap
of F by a Perron-Frobenius argument using the positivity of Imm [1, 2]. In the non-commutative setup this
transformation was based on a novel balanced polar decomposition formula [4]. In the small density regime, in
particular near the regular edges studied in [8], the stability deteriorates due to an unstable direction, which
is related to the Perron-Frobenius eigenvector of F. The analysis boils down to a scalar quantity, ©, the
overlap between the solution and the unstable direction. For the commutative case in [1, 2], it is shown that ©
approximately satisfies a cubic equation. The structural property of this cubic equation is its stability, i.e., that
the coefficients of the cubic and quadratic terms do not simultaneously vanish. This guarantees that higher
order terms are negligible and the order of any singularity is either cubic root or square root.

Now we synthesize both analyses in the previous works to study the small density regime in the most general
setup. The major obstacle is the noncommutativity that already substantially complicated the bulk analysis [4],



but there the saturated self-energy operator, F', governed all estimates. However, in the regime of small density
the unstable direction is identified via the top eigenvector of a non-symmetric operator that coincides with the
symmetric F' only in the commutative case. Thus we need to perform a non-symmetric perturbation expansion
that requires precise control on the resolvent of the non-selfadjoint stability operator in the entire complex plane.
We still work with a cubic equation for ©, but the analysis of its coefficients is considerably more involved than
in [1, 2].

The situation is much simpler near the regular edges, where the cubic equation simplifies to a quadratic
equation; this analysis was performed in [8] at least in the finite dimensional non-commutative case. The main
novelty of the present paper lies in handling the most complicated case, the cusps and almost cusps, where we
need to deal with a genuine cubic equation. The second goal of the paper is to give a unified treatment of all
spectral regimes in the general von Neumann algebraic setup. A few arguments pertaining the regular edges
are relatively simple extensions from [8] to the infinite dimensional case. We will indicate these instances but
for the reader’s convenience we chose to include these proofs since in the current paper we work under weaker
conditions and in a more general setup than in [8].

We stress that along all estimates, the noncommutativity is a permanent enemy; in some cases it can be
treated perturbatively, but for the most critical parts new non-perturbative proofs are needed. Most critically,
the stability of the cubic equation is proven with a new method.

Another novelty of the current paper, in addition to handling the non-commutativity and lack of symmetry,
is that we present the cubic analysis in a conceptually clean way that will be used in future works. Our analysis
strongly suggests that our cubic equation for © is the key to any detailed singularity analysis of Dyson-type
equations and its remarkable structure is responsible for the universal behavior of the singularities in the density.

As a final remark we compare our self-consistent density of states p, obtained from the Dyson equation, with
the equilibrium density py considered in invariant matrix ensembles with an external potential V. Recall that
pv is the solution of a variational principle [18]. Both densities approximate the empirical density of states
of a prominent class of random matrix ensembles, but they have quite different singularity structures at the
vanishing points. Our classification theorem shows that p has only square root and cusp singularities. On the
other hand, if V € C? then py is 1/2-Holder continuous, in particular it cannot have any cusp singularity.
Moreover py may vanish at the edges of its support not necessarily as a square root, see e.g. a behaviour
pv(z) ~ (z4+)%? in Example 1.2 of [16]. In general, only powers a = 2k and o = 2k + 1, k € N are possible
for the vanishing behavior py (z) =~ (z4)®. These patterns persist under small additive perturbations with an
independent GUE matrix, moreover, at critical coupling, a cusp singularity similar to our case appears as well
[17]. A summary of known behaviours of py near its vanishing points in relation with V' is found in Section 1.3
of [12]. The complexity of these patterns indicates that a concise classification theorem of singularities, similar
to our result on p with merely two types of singularities, does not hold for py .

2. Main results

Let A be a finite von Neumann algebra with unit 1 and norm ||-|]. We recall that a von Neumann algebra A is
called finite if there is a state (-): A — C which is (i) tracial, i.e., {xy) = (yx) for all z,y € A, (ii) faithful, i.e.,
(x*x) = 0 for some x € A implies z = 0, and (iii) normal, i.e., continuous with respect to the weak* topology. In
the following, (-) will always denote such state. The tracial state defines a scalar product A x A — C through

(z,y) = (z"y) (2.1)

for z,y € A. The induced norm is denoted by ||z||2 := (z,z)'/? for z € A. Clearly, ||z||2 < ||z| for all z € A.
We follow the convention that small letters are elements of A4 while capital letters denote linear operators on
A. The spectrum of z € A is denoted by Specz, i.e., Specx = C\ {z € C: (z — 2)~! € A}.

For an operator T: A — A, we will work with three norms. We denote these norms by ||T||, ||T||2 and
IT|l2— - if T is considered as an operator (A, || - [) = (A, [ ), (A, [[-[l2) = (A, [ -[l2) or (A, [ - [l2) = (A, []-[]);
respectively.

We denote by As, the self-adjoint elements of A, by A, the cone of positive definite elements of A, i.e.,
Asa = {z € A: 2* =z}, Ap = {z € At x > 0},

and by Ay, the | - |-closure of A, the cone of positive semidefinite elements (or positive elements). We now
introduce two classes of linear operators on A that preserve the cone A,. Such operators are called positivity-



preserving (or positive maps). We define

Y= {S: A— A: S is linear, symmetric wrt. (2.1) and preserves the cone A, }, (2.2a)
SHat = {S €X:el < inf % < sup % < 711 for some € > 0}. (2.2b)
wedy (z) 7 gea; (2)

Moreover, if S: A — A is a positivity-preserving operator, then S is bounded, i.e., ||.S]| is finite (see e.g. Propo-
sition 2.1 in [36]).

Let a € A, be a self-adjoint element and S € X. For the data pair (a,S), we consider the associated Dyson
equation

—m(2)' = 21 —a+ S[m(2)], (2.3)

with spectral parameter z € H := {w € C: Imw > 0}, for a function m: H — A such that its imaginary part is

positive definite,

= S-(m() ~ m(2)") € As

There always exists a unique solution m to the Dyson equation (2.3) satisfying Imm(z) € A4 [29]. Moreover,
this solution is holomorphic in z [29]. For Dyson equations in the context of renormalization theory, a is called
the bare matriz and S the self-energy (operator). In applications to free probability theory, S is usually denoted
by 1 and called the covariance mapping or covariance matriz [34].

We now introduce positive operator-valued measures with values in A, . If v maps Borel sets on R to elements
of A, such that (z,v(-)z) is a positive measure for all x € A then we say that v is a measure on R with values
in A, or an Ay -valued measure on R.

First, we list a few propositions that are necessary to state our main theorem. They will be proven in
Section 3, Section 4.2 and Section 4.3, respectively.

Imm(z)

Proposition 2.1 (Stieltjes transform representation). Let (a,S) € Asa X ¥ be a data pair and m the solution
to the associated Dyson equation. Then there exists a measure v on R with values in Ay such that v(R) =1
and

m(z) = /R@ (2.4)

for all z € H. The support of v and the spectrum of a satisfy the following inclusions
suppv C Speca + [—25Y/2, 2||S||*/2, (2.5a)
SpecaCsuppv+[fHSHl/{HSHl/Q]. (2.5b)
Furthermore, for any z € H, m(z) satisfies the bound

2
z,Conv Speca) ’

el < g (26)

where Conv Spec a denotes the convex hull of Speca.

Our goal is to obtain regularity results for the measure v. We first present some regularity results on the
self-consistent density of states introduced in the following definition.

Definition 2.2 (Density of states). Let (a,S) € Asa x X be a data pair, m the solution to the associated Dyson
equation, (2.3), and v the A;-valued measure of Proposition 2.1. The positive measure p = (v) on R is called
the self-consistent density of states or short density of states.

We have supp p = supp v due to the faithfulness of (). Moreover, the Stieltjes transform of p is given by (m)
since, by (2.3), for any z € H, we have
p(dT)
m(z)) = [ 242

T—2z
Proposition 2.3 (Regularity of density of states). Let (a,S) be a data pair with S € Xqae and pg s the
corresponding density of states. Then p, s has a uniformly Holder-continuous, compactly supported density with
respect to the Lebesgue measure,
Pa,s(dT) = pas(T)dr.

Furthermore, there exists a universal constant ¢ > 0 such that the function p: Asa X Xaas xR — [0, 00), (a, S, 7) —
Pa,s(T) s locally Hélder-continuous with Hélder exponent ¢ and analytic whenever it is positive, i.e., for any



(a,S,7) € Aga X Bgiar X R such that pe, s(1) > 0 the function p is analytic in a neighbourhood of (a, S, T). Here,
Asa and Yaat are equipped with the metrics induced by || - || on A and its operator norm on A — A, respectively.

The following proposition is stated under a boundedness assumption on m (see (2.7) below). In the random
matrix context, in Section 9, we provide a sufficient condition for this assumption to hold purely expressed in
terms of @ and S for a large class of random matrix models. In the finite dimensional case, where A = CV>*¥ and

1

(-) = % Tr(+), Proposition 2.4 has already been established in [8, Corollary 4.5] and the arguments there remain

valid in our more general setup. Nevertheless, we will present its proof to keep the current work self-contained.

Proposition 2.4 (Regularity of m). Let (a,S) be a data pair with S € Xaa, and m the solution to the associated
Dyson equation. Suppose that for a nonempty open interval I C R we have

lim sup sup||m(7 +in)|| < oco. (2.7)
nd0 T€l

Then m has a 1/3-Hdlder continuous extension (also denoted by m) to any closed interval I' C I, i.e.,

wp ImC) = m)|

1/3
21,22 €1 Xi[0,00) |Zl - Z2| /

Moreover, m is real-analytic in I wherever p is positive.

The purpose of the interval I in Proposition 2.4 (see also Theorem 2.5 below) is to demonstrate the local
nature of these statements and their proofs; if m is bounded on I in the sense of (2.7) then we will prove
regularity of m and later its behaviour close to singularities on a genuine subinterval I’ C I. At first reading,
the reader may ignore this subtlety and assume I' = I = R.

In Proposition 4.7 below, we provide a quantitative version of (2.8) under slightly weaker conditions than
those of Proposition 2.4.

For the following main theorem, we remark that if m has a continuous extension to an interval I C R then
the restriction of the measure v from (2.4) to I has a density with respect to the Lebesgue measure, i.e., for

each Borel set A C I, we have
1
v(A) = —/ Imm(7)dr. (2.9)
A

™

The existence of a continuous extension can be guaranteed by (2.7) in Proposition 2.4.

Theorem 2.5 (Im m close to its singularities). Let (a, S) be a data pair with S € 3gar and m the solution to the
associated Dyson equation. Suppose m has a continuous extension to a nonempty open interval I C R. Then
any o € supp p NI with p(19) = 0 belongs to exactly one of the following cases:

Edge: The point 1o is a left/right edge of the density of states, i.e., there is some & > 0 such that Imm(1y F
w) =0 for w € [0,¢] and for some vy € AL we have

Imm(y +w) = vow'/? + O(w), wl0.

Cusp: The point 1y lies in the interior of supp p and for some vy € Ay we have

Imm(o 4 w) = vo |w|*? + O(|w[*?), w—=0.

Moreover, suppp NI =suppv NI is a finite union of closed intervals with nonempty interior.

Theorem 2.5 is a simplified version of our more detailed and quantitative Theorem 7.1 below. We can treat all
small local minima of p on supp p NI — not only those ones, where p vanishes — and provide precise expansions
corresponding to those in Theorem 2.5 which are valid in some neighbourhood of 7y. Moreover, the coefficients
vo in Theorem 2.5 are bounded from above and below in terms of the basic parameters of the model. By
applying () to the results of Theorem 2.5 and Theorem 7.1, we also obtain an expansion of the self-consistent
density of states p near small local minima in Theorem 7.2 below.

Finally, we present our quantization result. This result has appeared in [8, Proposition 5.1] for the simpler
setting A = CV*V and under the flatness condition S € Yga.;. In the current work we will follow the same
strategy of proof when A is a general von Neumann algebra with certain adjustments to treat the possibly
infinite dimension and the lack of flatness.



Proposition 2.6 (Band mass formula). Let (a,S) € Asa X X be a data pair and m the solution to the associated
Dyson equation, (2.3). We assume that there is a constant C > 0 such that S[z] < C{x)1 for all x € AL. Then
we have

(i) For each 7 € R\ supp p, there is m(7) € Asa such that limy, o |m(r +in) — m(7)|| = 0. Moreover, m(r)
determines the mass of (—oo,7) and (7,00) with respect to p in the sense that

p((=00,7)) = (L(=o0,0)(m(7))), (2.10)
where 1(_ o) denotes the characteristic function of the interval (—o0,0).
(ii) If m: A — C"*™ s q faithful representation such that (x) = n~!Tr(n(z)) for all x € A and J C supp p is

a connected component of supp p then we have

np(J) € {1,...,n}.

In particular, supp p has at most n connected components.

We will prove Proposition 2.6 in Section 8 below. A result similar to part (ii) has been obtained by a
different method in [25], see also [38]. In fact, we will use the band mass formula, (2.10), in Corollary 9.4
below to strengthen the quantization result in (ii) for a large class of random matrices (Kronecker matrices, see
Section 9). In Section 10, we study the stability of the Dyson equation, (2.3), under small general pertubations
of the data pair (a, S).

2.1. Examples

We now present some examples that show the different types of singularities

described by Theorem 2.5. These examples are obtained by considering the o 1
Dyson equation, (2.3), on C™*™ with (-) = n~! Tr for large n and choosing
a =0 as well as S = S, where To =
1 o
1. .
Salz] == — diag(r, diag(z))
n

1 . nxn
for any x € C™*". Here, for x € C"*", diag(x) denotes the vector of Figure 1: Structure of ro € C***.

diagonal entries, r, € C"*™ is the symmetric block matrix from Figure 1

with a € (0,00). All elements in each block are the indicated constants. Moreover, we write diag(v) with
v € C" to denote the diagonal matrix in C™*™ with v on its diagonal. In fact, this example can also be realized
on C? with entrywise multiplication. Here, we choose ((x1,x2)) = dx1 + (1 — §)2, where § is the relative block
size of the small block in the definition of 7. In this setup on C2, the Dyson equation can be written as

-1

(i) == () e () %= wih) e

for (my,ms) € C% We remark that R, is symmetric with respect to the scalar product (2.1) induced by (- ).
Figure 2 contains the graphs of some self-consistent densities of states p obtained from (2.11) for § = 0.1 and
different values of a. As the self-consistent density of states is symmetric around zero in these cases, only the
part of the density on [0,00) is shown. The density in Figure 2 (a) has a small internal gap with square root
edges on both sides of this gap. Figure 2 (b) contains a cusp which is transformed, by increasing «, into an

internal nonzero local minimum in Figure 2 (c¢). This nonzero local minimum is covered by Theorem 7.1 (d)
below.

2.2. Main ideas of the proofs

In this subsection, we informally summarize several key ideas in the proofs of Proposition 2.4 and Theorem 2.5.
Holder-continuity of m. To simplify the notation, we assume in this outline that ||m(z)|| < 1 for all z € H,
i.e., we assume (2.7) with I = R. We first show that Imm/(z) is 1/3-H6lder continuous and then conclude the

same regularity for m = m(z). To that end, we now control 9,Imm(z) by differentiating the Dyson equation,
(2.3), with respect to z. This yields

2i0,Imm = (Id — C,,,S) " *[m?].
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Figure 2: Examples of the self-consistent density of states p from (2.11) for ¢ = 0.1 and several values of a.

Here, Id denotes the identity map on A and C,,: A — A is defined by C,,[z] :== mam for any z € A.

In order to control the norm of the inverse (Id — C,,S)~! of the stability operator, we rewrite it in a more
symmetric form. We find an invertible V with ||[V[|, ||V ~!|| £ 1, a unitary operator U and a self-adjoint operator
T acting on A such that

Id—C,,S =V~ U -T)V.

The Rotation-Inversion Lemma from [2] (see Lemma 4.4 below) is designed to control (U — T')~! for a unitary
operator U and a self-adjoint operator T' with ||T']]2 < 1. Applying this lemma in our setup yields ||(Id —
Crn8) " S T m]| 2.
Since ||m|| < 1, we thus obtain
0. Imm| < [[Tmm]|~2 (2.12)

This bound implies that (Imm)3: H — A, is uniformly Lipschitz-continuous. Hence, we can extend Imm to a
1/3-Holder continuous function on R U H and we obtain

l/ Imm(r)dr
R

™ T—Z

m(z) =

This also implies that m is uniformly 1/3-Holder continuous on R UH. Furthermore, m(7) and Imm(7) are
real-analytic in 7 around 79 € R, wherever p(7p) is positive.

Behaviour of Im m where it is not analytic. Owing to (2.12), some unstable behaviour of the Dyson equation
is expected close to points 79 € R, where Imm(79) is zero or small. In order to analyze this behaviour of
Imm(7), we compute A := m(r9 + w) — m(79) from the Dyson equation, (2.3). Since m has a continuous
extension to R, (2.3) holds true for z € R as well. We evaluate (2.3) at z = 79 and z = 79 + w and obtain the
quadratic A-valued equation

BIA] = mS[A]JA + wmA +wm?,  B:=1d - C,S. (2.13)

The blow-up of the inverse B~! of the stability operator B close to 7 requires analyzing the contributions of
A in the unstable direction of B~! separately. In fact, B possesses precisely one unstable direction denoted by
b since we will show that ||T||2 is a non-degenerate eigenvalue of T. We decompose A into A = ©b + r, where
O is the scalar contribution of A in the direction b and r lies in the spectral subspace of B complementary to b.

We view 79 as fixed and consider w < 1 as the main variable. Projecting (2.13) onto b and its complement
yield the scalar-valued cubic equation

YO (w)? + 00 (w)? + 1w = O(Jw||0(wW)] + |O(w)|*) (2.14)

with two parameters 1» > 0 and o € R. In fact, the 1/3-Holder continuity of m implies © = O(|w|'/3) and,
hence, the right-hand side of (2.14) is indeed of lower order than the terms on the left-hand side. Analyzing
(2.14) instead of (2.13) is a more tractable problem since we have reduced a quadratic A-valued equation, (2.13),
to the scalar-valued cubic equation, (2.14).

The essential feature of the cubic equation (2.14) is its stability. By this, we mean that there exists a constant



¢ > 0 such that
P+ 0% > e

This bound will follow from the structure of the Dyson equation and prevents any singularities of higher order
than w'/? or w!'/3. Obtaining more detailed information about © from (2.14) requires applying Cardano’s
formula with an error term. Therefore, we switch to normal coordinates, (w,©(w)) — (A, Q(A)), in (2.14).
We will study four normal forms, one quadratic Q(\)? + A(A) = 0, and three cubics, Q(A\)® + A(X) = 0 and
Q)3 £3Q(\) +2A(X) = 0, where A()) is a perturbation of the identity map A — . The first case corresponds
to the square root singularity of the isolated edge, the second is the cusp. The last two cases describe the
situation of almost cusps, see later.

The correct branches in Cardano’s formula are identified with the help of four selection principles for the
solution Q(A) corresponding to © of the cubic equation in normal form (see SP1 to SP4’ at the beginning of
Section 7.2 below). These selection principles are special properties of  which originate from the continuity
of m, Imm > 0 and the Stieltjes transform representation, (2.4), of m. Once the correct branch is chosen, we
obtain the precise behaviour of Imm around 79, where 75 € supp p satisfies p(7p) = 0 or even p(79) < 1, from
Cardano’s formula and careful estimates of r in the decomposition A = Ob + r (see Theorem 7.1 below).

3. The solution of the Dyson equation

In this section, we first introduce some notations used in the proof of Proposition 2.1, then prove the proposition
and finally give a few further properties of m.

For z,y € A, we introduce the bounded operator C; ,: A — A defined through C, ,[h] := zhy for h € A.
We set Cy := Cy 5. For z,y € A, the operator C, , satisfies the simple relations

* -1 _
Cz,y - CI*,y*v Cac,y - folqyfl’

where C7  is the adjoint with respect to the scalar product defined in (2.1). Here, the second identity holds if
x and y are invertible in A. In fact, C, 4 is invertible if and only if x and y are invertible in A.

In the following, we will often use the functional calculus for normal elements of A. As we will explain now,
our setup allows for a direct way to represent A as a subalgebra of the bounded operators on a Hilbert space.
Therefore, one can think of the functional calculus being performed on this Hilbert space. The Hilbert space is
the completion of A equipped with the scalar product defined in (2.1) and denoted by L?. In order to represent
A as subalgebra of the bounded operators B(L?) on L2, we denote by £, for z € A the left-multiplication on
L? by x, ie., £y: L? — L?, (,(y) = xy for y € L?. The inclusion A C L? and the Cauchy-Schwarz inequality
yield the well-definedness of ¢, and £, € B(L?), the bounded linear operators on L2. In fact,

A— B(L?), x4,

defines a faithful representation of A as a von Neumann algebra in B(L?) [40, Theorem 2.22].
We now introduce the balanced polar decomposition of m. f w = w(z) € A, ¢ =q(z) € Aand u =u(z) € A
are defined through

w = (Imm)~Y2(Rem)(Imm)~ Y2 +il, q = |w]|"?(Imm)/2, ui=— (3.1)

via the spectral calculus of the self-adjoint operator (Imm)~'/2(Rem)(Imm)~/2 then we have
m(z) = Rem(z) + ilm m(z) = ¢ uq. (3.2)

Here, u is unitary and commutes with w. The decomposition m = ¢*uqg was already introduced and also called
balanced polar decomposition in [4] in the special setting of matrix algebras. The operators |w|1/ 2, ¢ and u
correspond to W, Wv/ImM and U* in the notation of [4], respectively. With the definitions in (3.1), (2.3)
reads as

—u* =q(z —a)q" + Flul, (3.3)

where we introduced the saturated self-energy operator
F = C4 ¢ SC¢ 4. (3.4)

It is positivity-preserving as well as symmetric, F' = F*, and corresponds to the saturated self-energy operator



F in [4].

Proof of Proposition 2.1. The existence of v will be a consequence of the following lemma which will be proven
in Appendix A below.

Lemma 3.1. Let A be a von Neumann algebra with unit 1 and a tracial, faithful, normal state { ): A — C. If
h: H — A is a holomorphic function satisfying Im h(z) € Ay for all z € H and

nlirrgo inh(in) = -1 (3.5)

then there exists a unique measure v: B — A on the Borel sets B of R with values in A such that

h(z) = /]R v(dr) (3.6)

T—2z
for all z € H and v(R) = 1.

In order to apply Lemma 3.1, we have to verify (3.5) for h = m. To that end, we take the imaginary part of
(2.3) and use Imm > 0 as well as S € ¥ to conclude

—Imm ™' (2) = Im 21 + S[Imm] > Tm 21.

Hence, |m(z)|] < (Imz)~! as for any z € A we have ||z|| < 1 if = is invertible and Im2~! > 1. Therefore,
evaluating (2.3) at z = in, n > 0, and multiplying the result by m from the left yield

inm(in) = =1 + m(in)a — m(in)S[m(in)] — —1

for n — oo as S is bounded. Hence, Lemma 3.1 implies the existence of v, i.e., the Stieltjes transform represen-
tation of m in (2.4).
This representation has the following well-known bounds as a direct consequence (e.g. [1, 4, 7]).

Lemma 3.2. Let v be the measure in Proposition 2.1 and p = (v). Then, for any z € H, we have

1 Im 2
I < — 1. 3.7
mm(z) < dist(z, supp p)? ( D)

lm(2)]| <

~ dist(z,suppp)’

For the proofs of (2.5a) and (2.5b), we refer to the proofs of Proposition 2.1 in [4] and (3.4) in [7] in the
matrix setup, the same argument works for our general setup as well.
We now prove (2.6). Taking the imaginary part of the Dyson equation, (3.3), yields

Imu = (Im2)gq* + F[Imu] > max{(Imz)qq", F[Imu]}.

Thus, Imu > (Im 2)[|(gqg*) || 7*1. We remark that qg* is invertible since Imm(z) > 0 for z € H. Therefore,
the following Lemma 3.3 with A = Im «/||Im ul|2 implies ||F||2 < 1.

Lemma 3.3. Let T: A — A be a positivity-preserving operator which is symmetric with respect to (2.1). If
there are h € A and € > 0 such that h > €l and Th < h then ||T||2 < 1.

Proof. The argument in the proof of Lemma 4.6 in [1] also yields this lemma in our current setup. O

We rewrite the Dyson equation (3.3) in the form
qla — 2)q" = u* + Fu]. (3.8)
We take the || - ||2-norm on both sides of (3.8) and use that ||u|l2 = 1 (since it is unitary) and |F|j2 <1 to find
la(a = 2)q"[l2 < 2. (3.9)
Then we use the polar decomposition m = ¢*ug again and with z = 7 + in find
(m, (Ca—r +0*)m) = Re(m, Co (azy-m) < [(m, Cos (azy-m)| = [{a(a — 2)¢", Cu- ulala — 2)g"])| < 4,

where the last step holds because of (3.9). Recall that a = a*. Since Spec(Cq—-) = {Au : A, u € Spec(a — 7)}
we have inf Spec(C,_,) > dist(r, Conv Spec a)?, provided 7 ¢ Conv Speca. Thus in this case (2.6) follows. In
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case 7 € Conv Spec a we simply use the trivial bound ||ml|2 < ||m| < n~! from the first inequality of (3.7) and
(2.6) still holds.

From now on until the end of Section 4.2, we will always assume that S is flat, i.e., S € Xga¢ (cf. (2.2h)). In
fact, all of our estimates will be uniform in all data pairs (a,.S) that satisfy

a1 ()1 < Sfz] < ea(x)1, la]| < es3 (3.10)

for all € A, with the some fixed constants ¢, ca,c3 > 0. Therefore, the constants c1, ¢z, c5 from (3.10) are
called model parameters and we introduce the following convention.

Convention 3.4 (Comparison relation). Let x,y € As,. We write x < y if there is ¢ > 0 depending only on
the model parameters cy,co,c3 from (3.1Q) such that cy — x is positive definite, i.e., cy —x € A,. We define
x 2y and x ~ y accordingly. We also use this notation for scalars x,y. Moreover, we write x = y + O(«a) for
z,y € Aand a>0if ||z —y|| S a.

We remark that we will choose a different set of model parameters later and redefine ~ accordingly (cf. Con-
vention 4.6).

Proposition 3.5 (Properties of the solution). Let (a, S) be a data pair satisfying (3.10) and m be the solution
to the associated Dyson equation, (2.3). We have

[m(2)]lz < 1, (3.11)

1
Iml 5 (Imm/(z)) + dist(z, supp p)’ (3.12)
lm(2)7H S 1+ |zl (3.13)
(Imm(2))1 S Imm(z) S (1+[2*)[m(2)[*(Imm(2))1 (3.14)

uniformly for z € H.

These bounds are immediate consequences of the flatness of S exactly as in the proof of Proposition 4.2 in [4]
using supp p = supp v by the faithfulness of (-). We omit the details.
Note that (3.13) implies a lower bound ||m(z)| = (1 + |z|)~! since ||m||[[m~!|| > 1.

4. Regularity of the solution and the density of states

In this section, we will prove Proposition 2.3 and Proposition 2.4. Their proofs are based on a bound on the
inverse of the stability operator Id — C,,,S of the Dyson equation, (2.3), which will be given in Proposition 4.1
below.

4.1. Linear stability of the Dyson equation

For the formulation of the following proposition, we introduce the harmonic extension of the density of states
p defined in Definition 2.2 to H. The harmonic extension at z € H is denoted by p(z) and given by

p(2) = = (Imm().

Proposition 4.1 (Linear Stability). There is a universal constant C > 0 such that, for the solution m to (2.3)
associated to any a € Asy and S € ¥ satisfying (3.10), we have
1

Id— CpisS) 2 S 1
I @) 2 S 1+ o T amiG suwn ) )

(4.1)

uniformly for all z € H.

Before proving Proposition 4.1, we will explain how the linear stability yields the Hoélder-continuity and
analyticity of p in Proposition 2.3. Indeed, assuming that m depends differentiably on (z, a, S), we can compute
the directional derivative V(5.4 py at (z,a, S) of both sides in (2.3). The result of this computation is

(Id = CnS)[V(5,4,pym] = m(6 — d + Dm])m.
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Using the bound in Proposition 4.1 and p(z) = 7~ 1(Imm(z)), we conclude from (3.12) that
1
Ve.apl = 2z (101 + lld] + 1DI) (4.2)

with a possibly larger C. Therefore, it is clear that the control on (Id — C,,,S)~! will be the key input in the
proof of Proposition 2.3.
In order to prove Proposition 4.1, we will use the representation

Id — 0,8 = Cye Cou(C: — FYC! (4.3)

qa*,q’

where ¢, u and F were defined in (3.1) and (3.4), respectively. This representation has the advantage that C is
unitary and F' is symmetric. Hence, it is much easier to obtain some spectral properties for C — F' compared
to Id — C),,S. Now, we will first analyze ¢ and F' in the following two lemmas and then use this knowledge to
verify Proposition 4.1.

Lemma 4.2. If (3.10) holds true then we have
g S @+ D2 m)l laz) 7 S A+ 1D m)]?
uniformly for z € H.

Proof. For q = q(z), we will show below that

AL/2 o . Bl/2
) < g7 < S lme) (4.4)

if A1 <Imm(z) < B1 for some A, B € (0,00) and z € H. Choosing A and B according to (3.14), using the
C*-property of |- ||, [l¢g*q|| = ||¢||?, and (3.13), we immediately obtain Lemma 4.2.

For the proof of (4.4), we set g := Rem and h := Imm. Using the monotonicity of the square root, we
compute

qq= Rl/2 (]l + h—1/zgh—1gh—1/2)1/2h1/2
§A*1/2h1/2(h*1/2(h2+92)h71/2)1/2h1/2
< Hm||A71/2h1/2.

Here, we employed h=1 < A7!1 as well as 1 < A~1h in the first step and (Rem)?+(Imm)? = (m*m+mm*)/2 <
|[m||? in the second step. Thus, h < B1 yields the upper bound in (4.4). Similar estimates using 1 > B~1h
and ||m~1|72 < (m*m + mm*)/2 prove the lower bound in (4.4) which completes the proof of the lemma. O

Lemma 4.3 (Properties of F'). If the bounds in (3.10) are satisfied then | F||2 is a simple eigenvalue of F': A —
A defined in (3.4). Moreover, there is a unique eigenvector f € Ay such that F[f] = ||F|2f and ||f]l2 = 1.
This eigenvector satisfies

(f,qq%)
(f , Imu)

In particular, ||F|l2 < 1. Furthermore, the following properties hold true uniformly for z € H satisfying |z| <
3(1+ [lall + [[S]1'/?) and | F(2)l|l2 > 1/2:

1= |Fls = (Im 2) (4.5)

(i) The eigenvector f has upper and lower bounds
lml =1 < f < [lm]*1. (4.6)
(ii) The operator F has a spectral gap ¥ € (0, 1] satisfying 9 =2 ||m| =2 and
Spec(F/||F|l2) C [-14+ 9,1 —9]U{1}. (4.7)
Proof. The definition of F' in (3.4), (3.10) and Lemma 4.2 imply
(L + ) Hm(2)I7* (@)1 S Fla] < (1 +]2))?(Im(2)]|*(a)1 (4.8)

for all @ € Ay and all z € H. We will use Lemma B.1 (ii) from Appendix B. The condition (B.1) with T' = F
is satisfied by (4.8) with constants depending on ||m|| and |z|. Hence, Lemma B.1 (ii) implies the existence and
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uniqueness of the eigenvector f. We compute the scalar product of f with the imaginary part of (3.3). Since F’
is symmetric, this immediately yields (4.5).

We now assume that z € H satisfies |z| < 3(1+ ||lal| +[|S|*/?) and ||F(z)||z > 1/2. Then |z| < 1 and, by using
this in (4.8), we thus obtain (4.6) and (4.7) from Lemma B.1 (ii) since ||m|| = 1 by (3.13). O

The following proof of Proposition 4.1 proceeds similarly to the one of Proposition 4.4 in [4].

Proof of Proposition 4.1. We will distinguish several cases. If |z| > 3(1 + &) with x := ||a|| + 2||S||'/? then we
conclude from (2.4) and supp p C [—k, k] by (2.5a) that ||m(2)|| < (|2| — xk)~!. Thus,

ISl: 1Sl

<
Om@Slle = T = 52 = 305 P

1
<=,
— 4

Here, we used ||S||z < ||S| since S is symmetric and & > ||S||*/2. This shows (4.1) for large |z|.
Next, we assume |z| < 3(1 + k). In this regime, we use the alternative representation of Id — C,, S in (4.3)
and the spectral properties of F' from Lemma 4.3. Indeed, from (4.3) and Lemma 4.2, we conclude
1 |
(p(z) + dist(z, supp p))3

as u € A is unitary. Here, we used (3.12) in the last step. If ||F(z)||2 < 1/2 then this immediately yields (4.1)
as ||Cyll2 = 1. We now assume ||F'(z)||2 > 1/2. In this case, we will use the following lemma.

1(1d = ConS) " Hl2 S ImlPI(Cs = )72 S (Co = F)7 2 (4.9)

Lemma 4.4 (Rotation-Inversion Lemma). Let U be a unitary operator on L? and T a symmetric operator on
L2%. We assume that there is a constant 6 > 0 such that

SpecT C [=[|Tll2+ 6, [Tl — 0] U {IITll2}

with a non-degenerate eigenvalue || T||2 < 1. Then there is a universal constant C > 0 such that

c
ITl2(2, U1

—T) N, <
I =) e < g

where t € L? is the normalized, ||t||2 = 1, eigenvector of T corresponding to ||T||2.

The proof of this lemma is identical to the proof of Lemma 5.6 in [2], where a result of this type was first
applied in the context of vector Dyson equations.

We start from the estimate (4.9), use the Rotation-Inversion Lemma, Lemma 4.4, with U = Cf and T = F
as well as (4.7) and (3.12) and obtain

(p(2) + dist(z,suppp)) =™ _  (p(2) + dist(z, suppp))~*
11— [IFll2(f. C3lfDI ~ max{l—[|Fll2, |1 = (fC; [}

In order to complete the proof of (4.1), we now show that

max{l — |[Fllz, [1 = (fCI DI} Z (p(2) + dist(z, supp p))“ (4.10)

1(1d = CnS) " Hl2 <

for some universal constant C' > 0. We first prove auxiliary upper and lower bounds on Imu = (¢*)~!(Imm)q~!.

We have Im 2]}
. m z||m
p(2)(p(2) + dist(z, supp p))*1 < Imu < Tist(z, supp )2
For the lower bound, we used the lower bound in (3.14), Lemma 4.2 and (3.12). The upper bound is a direct
consequence of (3.7) as well as Lemma 4.2. Since (f,qq*) > ||(q¢*) 7 |7*(f) = |m|{f) by Lemma 4.2, the
relation (4.5) and the upper bound in (4.11) yield

1. (4.11)

1 —[|[F|l2 Z dist(z, supp p)*.
As 1 — (fCreu[f]) > 0 and (f?) = 1, we obtain from the lower bound in (4.11) that
1= (FCUMI = Re[1 = (FCIIMN] =1 = (fCreulf]) + (fCmulf]) Z p(2)*(p(2) + dist(z, supp p))*.  (4.12)

This completes the proof of (4.10) and hence of Proposition 4.1. O
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4.2. Proof of Proposition 2.3

The following proof of Proposition 2.3 is similar to the one of Proposition 2.2 in [4].

Proof of Proposition 2.3. We first show that p: H — (0,00) has a uniformly Hoélder-continuous extension to
H, which we will also denote by p. This extension restricted to R will be the density of the measure p from
Definition 2.2. Since Id — C,,S is invertible for each z € H by (4.1), the implicit function theorem allows us to
differentiate (2.3) with respect to z. This yields

(Id — C,,S)[0.m] = m>. (4.13)

Since z — (m(z)) is holomorphic on H as remarked below (2.3), we have 27id,p(z) = 2i0,Im (m(z)) = 9,(m(z)).
Thus, we obtain from (4.13) that

10201 S l10:ml2 < (1d = CS) ™ J2||m]? S p~(+2 (4.14)

Here, we used (4.1), p(z) < |m(2)|l2 < 1 by (3.11) and (3.12) in the last step. Hence, p©*3 is a uniformly

Lipschitz-continuous function on H. Therefore, p defines uniquely a uniformly 1/(C + 3)-Holder continuous
function on R which is a density of the measure p from Definition 2.2 with respect to the Lebesgue measure
on R.

Next, we show the Holder-continuity with respect to a and S. As before in (4.2), we compute the derivatives
and use (3.12) and (4.1) to obtain

ldll + 11D
IV (a,0)P(a,5)(2)| S [(Va,pym)| < e

Since the constants in (4.1) and (3.12) depend on the constants in (3.10), we conclude that p is also a locally
1/(C + 4)-Holder continuous function of @ and S.

We are left with showing that p is real-analytic in a neighbourhood of (19, a, S) if p,,5(70) > 0. Since p(19) > 0,
we can extend m to 79 by (4.14). Moreover, m(7p) is invertible as Imm(7g) > 0 and, thus, solves (2.3) with
z = 79. Since (2.3) depends analytically on z = 7, a and S in a small neighbourhood of (79, a, S), the solution
m and thus p will depend analytically on (7, a, S) in this neighbourhood by the implicit function theorem. This
completes the proof of Proposition 2.3. [l

4.3. Proof of Proposition 2.4
For I C R and n, > 0, we define

H;, ={2€H:Rezel, Imze (0,1} (4.15)
and its closure Hy ..

Assumptions 4.5. Let m be the solution of (2.3) for a = a* € A satisfying ||a|| < k1 with a positive constant
ki and S € ¥ satisfying ||S||2—.; < k2 for some positive constant k. For an interval I C R and some 7, € (0, 1],
we assume that

(i) There are positive constants ks, k4 and ks such that

[m(2)] < ks, (4.16)
ks(Imm(z))1 <Imm(z) < ks(Imm(z))1, (4.17)
uniformly for all z € Hy ,, .

(ii) The operator F' := Cy 4+ SCq+ 4 has a simple eigenvalue ||F'||2 with eigenvector f € Ay that satisfies (4.5)
for all z € Hy .. Moreover, (4.7) holds true and there are positive constants kg, k7 and ks such that

kel < f < k71, 9 > ks. (4.18)
uniformly for all z € Hy ,, .

We remark that S € Yg,¢ is not necessarily required in Assumptions 4.5. In fact, we will show in Lemma 4.8
below that S € Xq,¢ and (4.16) imply all other conditions in Assumptions 4.5.
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Convention 4.6 (Model parameters, Comparison relation). For the remainder of the Section 4 as well as
Section 4 and Section 6, we will only consider k1, ..., ks as model parameters and understand the comparison
relation ~ from Convention 3.4 with respect to this set of model parameters.

We remark that all of our estimates will be uniform in 7, € (0,1]. Therefore, 1, is not considered a model
parameter. At the end of this section, we will directly conclude Proposition 2.4 from the following proposition.

Proposition 4.7 (Regularity of m). Let Assumptions 4.5 hold true on an interval I C R for some n, € (0,1].
Then, for any 0 € (0,1], m can be uniquely extended to Iy := {7 € I: dist(r,0I) > 0} such that it is uniformly

1/3-Hélder continuous, indeed,
[m(z1) = m(z)|| S 03|21 — 2|/ (4.19)

for all z1, 22 € Iy x 1[0, 00). Moreover, if p(tg) > 0, 79 € I, then m is real-analytic in a neighbourhood of 7o and
18zm (7o)l S p(70) > (4.20)

We remark that the bound in (4.20) will be extended to higher derivatives in Lemma 5.7 below.

In the following lemma, we establish a very helpful consequence of (i) in Assumptions 4.5. Moreover, part
(ii) of the following lemma shows that all conditions in Assumptions 4.5 are satisfied if we assume (4.16) and
the flatness of S.

Lemma 4.8. Let m be the solution to (2.3) for some data pair (a,S) € Asa x X. We have

(i) Let ||la]] <1, |S)| £ 1 and U C H such that sup{|z|: z € U} S 1. If (4.16) and (4.17) hold true uniformly
for z € U then, uniformly for z € U, we have

lall,lg  ~ 1, Tmu~ (Imu)l ~ pl. (4.21)

(it) Let I C [-C,C] for some C ~ 1 and (4.16) hold true uniformly for all z € Hy,, . If S € Xgat and
llall <1 then [|S|lam). S 1, (417) holds true uniformly for all z € Hy ,, and part (ii) of Assumptions 4.5
is satisfied.

(iit) If Assumptions 4.5 hold true then, uniformly for z € Hj ,,., we have

1(1d = Cou) ) "l + 1(1d = Couey S) M S p(2)~2. (4.22)

Proof of Lemma 4.8. For the proof of (i), we use [lal| < 1, ||S]| £ 1 and (2.3) to show ||m(z)~!|| < 1 uniformly
for all z € U. Thus, following the proof of Lemma 4.2 immediately yields the estimates on ¢ and ¢~! in (4.21)
due to (4.16) and (4.17). Thus, as ||q||,|/¢"*|| ~ 1, we obtain the missing relations in (4.21) from (4.17) since

Imu = (¢*) " 'Imm)g~ ~ Imm ~ (Imm) ~ (Imu).

We now show (ii). By Lemma B.2 (i), the upper bound in the definition of flatness, (3.10), implies [|.S]|o— .| < 1.
Owing to (4.16) and (3.13), we have |[m(z)|| ~ 1 for all z € H;,,. Hence, (4.17) follows from (3.14) since
|z] < C+1 for z € Hy . Moreover, (ii) in Assumptions 4.5 is a consequence of Lemma 4.3.

To prove (4.22), we follow the proof of Proposition 4.1 and replace the use of (3.12) as well as (4.6) and (4.7)
from Lemma 4.3 by (4.16) and (4.18), respectively. This yields

1(0d = CnS) M2 S 1+ 11 = [IF(fCRlDIT S 1 = IFll2{fCEIDIT (4.23)

where we used in the last step that (4.16) implies p(z) S 1 on Hy .. Since Imu ~ p by (4.21) and ||F||2 < 1 by
(4.5) that holds under Assumptions 4.5 (ii), we conclude

L= Fll2(FCLUMIT S = (FCIMITT S p72

as in (4.12) in the proof of Proposition 4.1. This shows ||(Id — Cp,S) 7|2 < p(2)72. Using [|S|la— ) S 1 and
Lemma B.2 (ii), we obtain the missing || - [-bound in (4.22). This completes the proof of Lemma 4.8. O

Proof of Proposition 4.7. Similarly to the proof of Proposition 2.3, we obtain

10:Tmm(2)|| < [[9=m(2)[| < [|(1d = ConS) " HIIm(2)[I* < p(2) ™% ~ [Tmm(z)]| 7 (4.24)
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for z € Hy,, from (4.16), (4.22) and (4.17). By the submultiplicativity of |- ||, (Imm(z))?: Hy,,,. — (A, -|)
is a uniformly Lipschitz-continuous function. Hence, Im m(z) is uniformly 1/3-Hélder continuous on Hy ,, (see
e.g. Theorem X.1.1 in [14]) and, thus, has a uniformly 1/3-Hélder continuous extension to Hy ,.. We conclude
that the measure v restricted to I has a density with respect to the Lebesgue measure on I, i.e., (2.9) holds
true for all measurable A C I. Now, (A.3) in Lemma A.1 implies the uniform 1/3-Hélder continuity of m
on Iy x i(0,00). In particular, m can be uniquely extended to a uniformly 1/3-Hoélder continuous function on
Iy % i[0, 00) such that (4.19) holds true.

To prove the analyticity of m, we refer to the proof of the analyticity of p in Proposition 2.3. The bound
(4.20) can be read off from (4.24). This completes the proof of the proposition. O

Proof of Proposition 2.4. By (2.7), there are Cyp > 0 and 7, € (0,1] such that ||m(7 +in)|| < Cp for all 7 € T
and n € (0,m.). Hence, by Lemma 4.8 (ii), the flatness of S implies Assumptions 4.5 on I N [-C,C] for
C = 3(1+|la| + ||S||*/?), i.e., C ~ 1. Therefore, Proposition 4.7 yields Proposition 2.4 on I N [~C,C].

Owing to (3.7) and suppv = supp p, we have dist(7,suppv) > 1 for 7 € [ satisfying 7 ¢ [-C + 1,C — 1].
Hence, for these 7, the Holder-continuity follows immediately from (A.4) in Lemma A.1. By (2.5a), we have
Imm(7) = 0 for 7 € I satisfying 7 ¢ [—C, C]. Therefore, the statement about the analyticity is trivial outside
of [-C, C]. This completes the proof of Proposition 2.4. O

5. Spectral properties of the stability operator for small self-consistent
density of states
In this section, we study the stability operator B = B(z) := I[d—Cyy,(;)S, when p = p(z) is small and Assumptions

4.5 hold true. Note that we do not require S to be flat, i.e., to satisfy (3.10). We will view B as a perturbation
of the operator By, which we introduce now. We define

s:=signReu, By = Cy o(Id — C.F)C;:" E = (Cgraqg — Cn)S = Cyge o(Cs — CLIFCL . (5.1)

qa*,q’ qa*,q’

with u and ¢ defined in (3.1) and F defined in (3.4). Note By = Id — Cy+5,5, i.e., in the definition of B, u in
m = ¢*uq is replaced by s. Thus, we have B = By + E. Under Assumptions 4.5, (4.21) holds true which we
will often use in the following. Since 1 — |[Reu| =1 — /1 — (Imu)? < (Imu)? < p?, we also obtain

Reu = s + O(p?), Imu = O(p), Rem = ¢*sq + O(p?) (5.2)

and with Cs — Cy, = O(||s — u||) = O(p) we get
E = 0(p). (5.3)
Here, we use the notation R = T + O(«) for operators T and R on A and a > 0 if ||R — T|| < a. We introduce
fu = p Imu. (5.4)

By the functional calculus for the normal operator u, Rewu, s and f, commute. Hence, Cs[f,] = fu. From the
imaginary part of (3.3) and (4.21), we conclude that

(1d = F)[f,] = p~"Im zq¢" = O(p~"Im 2). (5.5)

The following technical lemma provides control on the resolvent of the stability operator B and its relatives.
It has been stated for the finite dimensional situation A = CN*Y in [8, Corollary 4.8]. For the reader’s
convenience we present its proof following the same line of reasoning as in [8]. For z € C and ¢ > 0, we denote
by D.(z) :={w € C: |z — w| < €} the disk in C of radius € around z.
Lemma 5.1 (Spectral properties of stability operator). Let T' € {Id — F,Id — CsF, By, B,1d — Cyp» ,S}. If
Assumptions 4.5 are satisfied on an interval I C R for some n. € (0,1], then there are p. ~ 1 and & ~ 1 such
that

T = wId) ™2 + (T = wId) 7} + (7" — wId) 7' S 1 (5.6)

uniformly for all z € Hy,,. satisfying p(z) + p(z)"'Imz < p, and for all w € C with w € D.(0) U Dy_2.(1).
Furthermore, there is a single simple (algebraic multiplicity 1) eigenvalue X in the disk around 0, i.e.,

1
Spec(T)ND.(0) = {A\} and rankPpr =1, where Ppr = —— (T — wld)dw. (5.7)
2mi 8D, (0)
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If Assumptions 4.5 are satisfied on I for some 7, € (0, 1] then we have
fu=p "Tmu~1. (5.8)
uniformly for z € Hy ,, due to (4.21). This fact will often be used in the following without mentioning it.

Proof. First, we notice that for each choice of the operator T' from the lemma, the bound |[Id — T'|[o— . S 1
holds because of ||S||o— .| < 1, (4.16) and (4.21). Therefore invertibility of 7'—wId as an operator on L? implies
invertibility as an operator on A, as long as w stays away from 1, due to Lemma B.2 (ii). It suffices thus to
show the bound on the ||-||2-norm from (5.6) and (5.7). For T'=Id — F both assertions hold by Lemma 4.3. In
particular, we find

F=Nfullz fu+ O Imz), (5.9)

where f is the single top eigenvector of F, F'f = ||F|2f (see Lemma 4.3). The proof of (5.9) follows from
(5.5) and [|F|l2 = 14+ O(p~'Imz) (cf. (45)) by straightforward perturbation theory of the simple isolated
eigenvalue || F 2.

We will now prove (5.7) and the ||-||2-norm bound

T —wId) e < 1, w¢ D.(0)UD;_o.(1) (5.10)

for the choices T' = 1d — C, F, By, B,Id — Cpy+ 1S in this order. We start with 7' = Id — C,F'. We introduce the
interpolation T} := Id — V4 F between Ty = Id — F' and T} = Id — C, F by setting

Vi=(1—-8)Id+tCs, te0,1].

Once we have established (5.10) with 7' = T; for all ¢ € [0, 1], the assertion about the single isolated eigenvalue
(5.7) also follows for T' = T;. Indeed, the rank of the spectral projection Pr, is a continuous function of ¢ and
thus rank Pr, = rank Py, = 1 by what we have already shown.

In order to show (5.10) we consider two regimes. On the one hand, for |w| > 3 we simply use |[F|j2 < 1 and
[[Vz]l2 < 1. On the other hand, for |w| < 3 we estimate the norm of ((1 — w)Id — V;F)[x] from below for any
x € L?. For this purpose we decompose x = af + y according to the top eigenvector f of F, with y L f and
a € C. Then we find

(A = w)d = ViF)[a]l[5 = [a*|w]* + (1 — w)Id = V,F)[y]l|5 + O(p~ Tm z2[3)

B (5.11)
|af?e? + (9 = 2¢)*([|z]|3 — |a*) + O(p~ Tm 2]3) .

Y

where ¥ ~ 1 is the spectral gap of F from (4.7). In the equality of (5.11) we used that V;F[f] = f+ O(p~'Im z)
and FV;[f] = f+O(p~'Im 2) due to (5.9), Vi[fu] = fu and ||F||2 = 1+ O(p~'Im z), as well as the orthogonality
of y and f. For the inequality in (5.11) we estimated |w| > & and used

(1 = w)Id = VE)[YllI3 > (11— w| = [IFll2(1 = 9)?[lyll3 = (0 - 2¢)*([l3 — |af?) .

From (5.11) we now conclude ||((1 — w)Id — V; F)[z]||3 2 ||z||3 by choosing ¢ and p, small enough.

Since we have established the claim of the lemma for T' = Id — C,F it also follows for T = By because of
the definition of By in (5.1) and (4.21). Thus By has a simple isolated eigenvalue in D, (0) and we can use
analytic perturbation theory to establish the lemma for the choices T' = B,Id — Cp,« ,»,S. Note that in either
case T = By + O(p) due to ||s —u| < p (cf. (5.2)). O

If z € Hy,,, satisfies p(z) + p(2) "'Im z < p, for p. ~ 1 from Lemma 5.1 then we denote by P; r the spectral
projection corresponding to the isolated eigenvalue of Id — CsF, i.e., Ps g equals Pp in (5.7) with T'=1d — C, F.
We also set Qs r :=Id — Ps p. Moreover, for such z, we define ¢ and o by

U(2) = (sfy, (Id+ F)Id = CF)T'Quplsfil),  o(2) = (sf). (5.12)

In the following corollary we consider B as a perturbation of By and correspondingly expand its isolated
eigenvalue and eigenvectors. In [8, Corollary 4.8] a simpler expansion has been performed in the vicinity of an
edge point, i.e., where Imm follows the square root behaviour from Theorem 2.5. However, here we have to
expand to higher order because we cover the neighbourhood of any cubic root cusp from Theorem 2.5 as well.

Corollary 5.2. Let z € Hy ,,. satisfy p(z) + p(z)"'Im z < p, for p. ~ 1 from Lemma 5.1. Let By and 8 be the
isolated eigenvalues in D.(0) of By and B, respectively (cf. Lemma 5.1). We denote by Py and P the spectral
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projections corresponding to By and (3, respectively. Then with Qg :=1d — Py and @ :=1d — P we have
IB7QI + 1B7'Qll2 + 1By ' Qoll S 1. (5.13)

Furthermore, we set by := PyCy 4[fu] and ly == PS‘C;;* [fu]. Then by and ly are right and left eigenvectors of
By associated to Sy and we have

bo = Cyr [ fu] + O(p™ ' m 2), lo=Cya[fu]l + O(p~'Imz), (5.14a)
- Imz T )2 — s
Bo = T O(p~2(Im2)?) = O(p~'Im z) . (5.14b)

The definitions b := Plbo] and | := P*[ly] yield right and left eigenvectors of B associated to 8 which satisfy

b= by+2ipCy o(Id — CsF) Qs r[sf2] + O(p* + Im2), (5.15a)
I =1p—2ipC 1. (Id — FC) 'Qt pF[sf2] + O(p* +Imz), (5.15b)
2
B{l,b) = mp~'m z — 2ipo + 2p* (1/1 + <;2>) +0(p* +Tmz + p~2(Im 2)?). (5.15¢)
Moreover, we have

bl < 1, 17 < 1. (5.16)
For later use, we record some identities here. From (5.9) in the proof of Lemma 5.1 with C4[f,] = fu, we

obtain the first relation in

fua i — * — * —

Py p = <<f2>>fu +O0(p 'Imz), Pip=Pr+0(p 'Imz), Qip=Qsr+0O(p 'Imz). (5.17)

This first relation together with f,, = f implies the second and third one. Moreover, the definitions of By and

Qo yield
By'Qo = Cye o(Id = CsF)7'Q, pCl. (5.18)

By a direct computation starting from the definition of f, in (5.4) and the balanced polar decomposition,
m = q*ugq, we obtain
(fuag®) = p~ (Imm) = . (5.19)

Proof. The bounds in (5.13) follow directly from the analytic functional calculus and Lemma 5.1. The expres-
sions (5.14a) for the right and left eigenvectors, by and ly, corresponding to the simple isolated eigenvalue Sy,
follow by simple perturbation theory from

ByCoaelfu]l = p~'(Im2)1, BoCy 4lfu] = O(p'Im z), (5.20)

which in turn is a consequence of (5.5) and Cs[f,] = fu. For (5.14b) we take the scalar product with by on both
sides of the first equation in (5.20). Then we use (5.14a) and (5.19).

Now we show (5.15a) and (5.15b). By analytic perturbation theory of B around By we find b = by + b1 +O(p?)
and [ =1y + 11 + O(pQ) with by := 7(30 — ﬂold)ilQoE[bo] and [ := 7(Ba< — Bold)ilQaE* [lo] (Cf Lemma C.1
with E satisfying (5.3)). Here the invertibility of By — Sold on the range of Qg is seen from the second part of
Lemma 5.1 with T = By. In fact,

(Bo — Bold) "' Qo = By ' Qo + O(B). (5.21)
Furthermore, we use (5.14a) and obtain the first equalities below:

Elbo] = Cq- ,q(C — Cu)F[fu] + O(Im 2) = —2iqu al8F2+ 202 Co [£2] + O(p® + Im 2), (5.22a)
E*[lo] = C,p - F(Cs — Cf)[fu] + O(Im 2) = 2ipC; 1. Flsf2] + 20°C, o~ F[f3] + O(p® 4+ Im 2). (5.22b)

In the second equality of (5.22a), we apphed (Cs—C)[fu] = 2(Imu—iRew)(Imu) f,, = —2ipsf2+2p* f2+O(p?),
ICs — Cull = O(p) (cf. (5.2)) and (5.5). For the second equality in (5.22b), we applied (Cs — C)[fu] =
2ipsfz + 207 fa + O(p?).

For the proof of (5.15¢), we start from (C.3), use E = O(p) and obtain

B{1,b) = Bo(lo, bo) + (lo, Elbo]) — (lo, EBo(Bo — Bold) *QoE[bo]) + O(p*). (5.23)
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Each of the terms on the right-hand side is computed individually. For the first term, we use (lg,by) =
(f2) + O(p~'Im 2) due to (5.14a) and thus obtain from (5.14b) that

Bollo,bo) = mp~Im z + O(p~2(Im 2)?).

Using (5.14a) and (5.22) yields for the second term

2
{lo. Blbo]) = ~2ip(s2) + 20%(f2) + O(p* + Tm 2) = ~2ipar + 20 <;2>

where we used Id = Ps p + Qs r and (sf2, Ps p[sf2]) = 02 /{f2) + O(p~'Im z) by (5.17) in the last step.
For the third term, we use (5.14b) and E = O(p) which yields

+(sf2,Qurlsf2)) + O(p" + Tm 2),

(lo, EBo(Bo — Bold) Qo El[bo]) = (E*[lo], (Bo — Bold) "' Qo El[bo]) + O(Bo || E|?)
= (E*[lo], By ' QoE[bo]) + O(pIm 2)
= 452, F (10— CuF)™ Qo rlsf2]) + Olptm = + 7).

Here, we used (5.21) in the second step and (5.22) as well as (5.18) in the last step. Collecting the results for
the three terms in (5.23) and using Cs = C} as well as Cs[sf2] = sf? yield (5.15¢).

The bounds in (5.16) are directly implied by (5.15a) and (5.15b), respectively. This finishes the proof of the
corollary. O

The following corollary has appeared prior to this work in [8, Proposition 4.4]. We include its short proof for
the reader’s convenience.

Corollary 5.3 (Improved bound on B™'). Let Assumptions 4.5 hold true on an interval I C R for some
N« € (0,1]. Then, uniformly for all z € Hy ., we have
1
B2l + |1B7(2)| < : 5.24
1B7 @l H1EEN S S e@m o@D + o) T 24
Proof. If p > p, for some p, ~ 1 then (5.24) have been shown in (4.22) as |o| < 1. Therefore, we prove (5.24)

for p < p. and a sufficiently small p. ~ 1. By ||S|l2— .| < 1 and Lemma B.2 (ii), it suffices to show the bound
for || - ||2. We follow the proof of (4.22) until (4.23). Hence, for the improved bound, we have to show that

L= [FlofCLLMI 2 plp+ lo]) + p~'Tm = (5.25)
We have |1~ | Fllo(fC5[f))] 2 max{l — |[Flla. [1 — (FCALA)]} 2 p~"Tmz +[1 — (FC;[))] by (45). We continue
11— (FCLIN] = 11 — (fu” fu)| 2 (Fimufima) + |[(FimufRew)| 2 p* + plo| + O(p* + m ).

Here, we used 1 > (fReufReu) due to || f||2 = 1, (4.21) as well as (fImufReu) = p| fulls 2(f35) +O(p® +Im 2)
by (5.9) and (5.2). By possibly shrinking p. ~ 1, we thus obtain (5.25). This completes the proof of (5.24). O

The remainder of this section is devoted to several results about the behaviour of p(z), o(z) and ¥(z) close
to the real axis. They will be applied in the next section. We now prepare these results by extending q, u, fy,
and s to the real axis.

Lemma 5.4 (Extensions of ¢, u, f,, and s). Let I C R be an interval, 6 € (0,1] and Assumptions 4.5 hold true
on I for some n. € (0,1]. We set Iy := {7 € I: dist(r,0I) > 0}. Then we have

(i) The functions q, u and f,, have unique uniformly 1/3-Hélder continuous extensions to EIQW*.

(ii) The function z ~ p(z)"'Imz has a unique uniformly 1/3-Hélder continuous extension to Hy, ... In
particular, we have
lim p(z) 'Imz =0 (5.26)

zZ—To

for all 1o € suppp N Iy. Moreover, for z € ﬁle,nw we have

dist(z,suppp) = 1 = p(z) mz > 1.
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(i) There is a threshold p. ~ 1 such that s = sign(Reu) has a unique uniformly 1/3-Hélder continuous
extension to {w € Hy, . : p(w) < pi}.

Proof. For the proof of (i), we will show below that

fm(2) = p(2) " Imm(z)

is uniformly 1/3-Holder continuous on Hy, ,,.. Indeed, this suffices to obtain the Hélder-continuity of ¢ and u
since their definitions in (3.1) can be rewritten as

_ — . _ IR 1/4
g = Pgh ™2 0P = (p(2)P 1+ £ gt e ) R,

pR)w  ip()L+ g fn (5.27)
el fip() 1 + fm g fm?|

where g = Rem, h = Imm, w is defined in (3.1) and z € H is arbitrary. Since |p(z)w| ~ 1 and f,, ~ 1 on Hy, .
by (4.21) as well as (4.17) and m, hence p and Rem are Holder-continuous on Iy X i[0, 00) (Proposition 4.7), it
thus suffices to show that f,, is uniformly Hélder-continuous to conclude from (5.27) that ¢ and u are Hélder-
continuous. As f, = p~'Imu = (¢*)"'fng™!, the Holder-continuity of f,,, the Holder-continuity of ¢ and the
upper and lower bounds on ¢ from (4.21) imply that f, can be extended to a 1/3-Holder continuous function
on ﬁlem* .

Therefore, we now complete the proof of (i) by showing the 1/3-Holder continuity of f,,. To that end, we
distinguish three subsets of Hy, ,,. .

Case 1: On the set {z € Hy, .. : p(z) > ps} for any p. ~ 1, the uniform 1/3-Holder continuity of f,, follows
from p(z) 2 1 and the 1/3-Holder continuity of m from Proposition 4.7.

Case 2: In order to analyze f,, on the set {z € Hy,,. : p(2) < p.} for some p. ~ 1 to be chosen later, we
take the imaginary part of the Dyson equation, (2.3), at z € H and obtain

B.[Imm] = (Im z)m*m, B, :=1d — Cpp» S, (5.28)
where m = m(z). From m = ¢*ug, we obtain the representation
Id — Crpe S = Cye g(Id — Co= o F)Ct

Hence, (4.5), Lemma 4.8 (ii) and Lemma B.2 (ii) yield the invertibility of B, for each z € Hj ,, as well as

_ _ 1 p(z)
B! B! < < 2
1B @l + 1B S 777 S o (5.29)

for all z € Hy,, (compare the proof of (4.22)). Owing to the invertibility of B,, we conclude from (5.28) that

- Im m(2) - B Ym*m]
fm(2> = (Imm(z)> <B;1[m*m]>

(5.30)

for all z € Hy, ..

On the set {z € Hy, ,. : p(z) " 'Im z > p,} for any p. ~ 1, By '[m*m] is uniformly 1/3-Hélder continuous due
to (5.29) and the 1/3-Holder continuity of m. Moreover, from (4.5) and Imu ~ pl, we see that 1 — || F|j2 ~ 1
if p(2)"'Im 2 > 1. Hence, by Lemma B.3 in Appendix B below, (Id — Cy« ., F)~! is positivity-preserving and
satisfies

(Id — Cy= o F) Haa*] > xa* (5.31)

for any € A. We conclude that By = Cy= 4(Id — Cu*7uF)*1C;17q is positivity-preserving. Together with
(4.21), (5.31) implies (B [m*m]) > 1 as [|[m(z) 7Y <1 by |lal] £ 1, [|S|| £ 1 and (2.3). Thus, (5.30) yields the
uniform 1/3-Hélder continuity of f,,, on {z € Hy, ,,. : p(2) ' Im 2 > p,} for any p. ~ 1.

Case 3: We now show that f,, is Holder-continuous on {z € Hy, ,. : p(z) + p(z) 'Imz < p,} for some
sufficiently small p, ~ 1. In fact, Lemma 5.1 applied to T = B, yields the existence of a unique eigenvalue
B« of B, of smallest modulus. Inspecting the proof of Corollary 5.2 for B reveals that this proof only used
B = By + O(p) about B. Therefore, the same argument works if B is replaced by B, since B, = By + O(p)
(compare the proof of Lemma 5.1). We thus find a right eigenvector b, and a left eigenvector I, of B, associated
to B, i.e.,

B, [b.] = Buby, (By)"[l+] = Bils,
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which satisfy

be =bo+ O(p) = ¢* fuqg+ O(p+ p~'Im 2), (5.32a)
L=1lo+0(p) =q¢  fulg) ' +O(p + p'Tm 2), (5.32b)
Billa,by) = mp ' Imz + O(p + p~2(Im 2)?). (5.32¢)
Moreover, we have
IB1Qu] + 1B Qull2 S 1, (5.33)

where @), denotes the spectral projection of B, to the complement of the spectral subspace of ..
Therefore, as 8. # 0 (cf. (5.29)) if Im z > 0, we obtain

Ly, m* _ y
Consequently, as Imm > 0, we have

Imm (L., m*m)b, + B.(ls,b.) B Q. [m*m]
(Imm) (I, ;m*m)(b.) + Bu(ls ,b.)(Bx ' Qu[m*m])’

(5.34)

which together with (5.30) shows that f,, is uniformly 1/3-Holder continuous on {z € Hy, .., : p(2)+p(z) 'mz <
p«}. Here, we used that B, and, thus, B, l., b, and B;'Q, are 1/3-Holder continuous and the denominator in
(5.34) is = 1 due to

(Le,m*m) = (¢ fuld®) ' ¢*uqq ug) + O(p + p~'Im 2)

= p Mm (¢*uuu*q) + O(p+p Imz) =7+ O(p + p~'Im 2)

by (5.32a) and (5.32b) as well as (b.) = m + O(p + p~'Im z) by (5.19). Here, we also used (5.32¢) and (5.33).
This completes the proof of (i).
For the proof of (ii), we multiply (5.28) by p(z)~!(m*m)~! which yields

p(=) " mz = (m*m) " Bu[fu.

Owing to m*m > ||m™1||72 > 1 as well as the 1/3-Holder continuity of m, B, and f,,, we obtain the same
regularity for z +— p(z)'Im z. Since lim,, ;o p(7+in)~'n = 0 for T € supp pNly satisfying p(7) > 0, the continuity
of p(z)™'Im z directly implies (5.26). If dist(z,supp p) > 1 then p(2)~'Im z > 1 as p(z) < Im z/ dist(z, supp p)?
which can be seen by applying (-) to the second bound in (3.7). Conversely, if dist(z,suppp) < 1 then the
Hélder-continuity of p(z)~'Im z and (5.26) imply p(z) " 'Im z < 1.

We now turn to the proof of (iii). Owing to the first relation in (5.2), there is p, ~ 1 such that [Reu| > 11
if z € Hy, ,,, satisfies p(z) < p.. Therefore, we find a smooth function ¢: R — [—1,1] such that ¢(t) = 1 for
all t € [1/2,00), ¢(t) = —1 for all t € (—o0,—1/2] and s(z) = sign(Reu(z)) = ¢(Reu(z)) for all z € Hy, ,,
satisfying p(z) < p.. Since ¢ is smooth, we conclude that ¢ is an operator Lipschitz function [5, Theorem 1.6.1],
ie., [lo(z) — py)|l < Cllz — y|| for all self-adjoint z,y € A. Hence, we conclude

Is(21) = s(22)[l = llp(Reu(z1)) — p(Reu(z2))l| S ll1 — 22|"/?,

where we used that ¢ is operator Lipschitz and w is 1/3-Ho6lder continuous in the last step. This completes the
proof of Lemma 5.4. [l

Lemma 5.5 (Properties of ) and o). Let I C R be an interval and § € (0,1]. If m satisfies Assumptions 4.5
on I for some n. € (0,1] then there is a threshold p. ~ 1 such that, with

Hsman = {Z € HIe,n* : p(z) + p(z)illmz < P*},
we have

(i) The functions o and v defined in (5.12) have unique uniformly 1/3-Hélder continuous extensions to
{z € Hy, 5. : p(2) < ps} and Hgman, respectively.

(ii) Uniformly for all z € Hgman, we have
Y(2) +o(2)* ~ 1. (5.35)
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Proof. For the proof of (i), we choose p. ~ 1 so small that all parts of Lemma 5.4 are applicable. Thus,
Lemma 5.4 and o = (sf3) yield (i) for o. Similarly, since g is now defined on Hy, ,,., we can define F' via (3.4)
on this set as well. Moreover, owing to the uniform 1/3-Holder continuity of ¢ from Lemma 5.4, F' is uniformly
1/3-Hoélder continuous on H Io.n.- Hence, using Lemma 5.1 for T' = Id — C, F, the Holder-continuity of s and f.,
the function v has a unique 1/3-Ho6lder continuous extension to Hgman. This completes the proof of (i) for .

We now turn to the proof of (ii). In fact, we will show (5.35) only on {w € Hy, ,,, : p(w) + p(w) 'Imw < p,},
where p, ~ 1 is chosen small enough such that Lemma 5.1 is applicable. By the continuity of ¢ and 1, the
bound (5.35) immediately extends to the closure of this set. Instead of (5.35), we will prove that

(@, (Id + F)(Id = CsF) ™' Qs pla]) + (fu, 2)? ~ |3 (5.36)

for all z € A satisfying Cs[x] = x and x = z*. Since these conditions are satisfied by z = sf2, (5.36) immediately
implies (5.35). In fact, the upper bound in (5.36) follows from ||(Id—CsF)~'Q; r|l2 < 1 by Lemma 5.1, || F[2 < 1
and f, ~ 1 due to (5.8).

From C;[z] = x, we conclude

(z,(Id+ F)(Id — CsF) Qs rl]) = (z,(Id + CsF)(Id — CsF) ™' Qs plx])
= (z,((CsF —1d) + 21d)(Id — C.F) ' Qs rlz]) (5.37)
= (z,(~Id + 2(Id — C,F) "1 Q, plz]).

Using (5.17) and Cs[f.] = fu, we see that
CsPs plz] = Py plz] + O(p~'Im 2), CsQs.rlz] = Qs.rlr] + O(p ' Im 2) (5.38)

for x € A satisfying Cs[z] = x. When applied to (5.37), the expansion (5.38) and (Id — FC,)~! = C,s(Id —
CyF)~1C, yield
(x,(1d + F)(Id = CsF)™1)Qs,r[x])
= (Qs,rl2], (-1d + (Id = CsF) ™! + (Id = FC,) 1) Qs rlz]) + O(||z]3p™ Im 2)
= (Qupla], (10 — FC) 11 — F2)(Id — CF)*Qu ple]) + O(|lal2p~ T 2)
= (14— CF) ' Qu pla], @(1d — F3)Qy(1d — C,F) Qe pla]) + O(l2]3p T 2)
2 1Qs(1d — CsF)7'Qs pla]ll3 + O([[z]3p™  Im 2)
2 Qs plalll3 + O(||z]3p™  m ).

(5.39)

Here, in the first step, we also used the second and third relation in (5.17). In the third step, we then defined
the orthogonal projections Py := (f,-)f and Qf :=Id — Py, where F'f = | F||2f (cf. Assumptions 4.5 (ii)), and
inserted @y using

P;Qsr = O(p 'Im 2) (5.40)

which follows from (5.9) and (5.17). We also used that Q, r commutes with (Id — CsF)~!. The fourth step is
a consequence of (4.7) and (4.18). In the last step, we employed QQs r = Q5.7 + O(p~'Imz) by (5.40) and
[1d — C,Fl|2 < 2.

By (5.17), we have ||Ps.r[z]l|3 = (fu,z)? + O(||z||3p " Im 2) if # = z*. Combining this observation with
(5.39) proves (5.36) up to terms of order O(||x||3p~'Im 2). Hence, possibly shrinking p, ~ 1 and requiring
p(2)71Im 2z < p, complete the proof of the lemma. O

Remark 5.6 (Auxiliary quantities as functions of m). Inspecting the proofs of Lemma 5.4 and Lemma 5.5
reveals that ¢, u, f, and s as well as o and v are Lipschitz-continuous functions of m. More precisely, we have
the following statements:

(i) Let c1,c,c3 > 0 satisfy ¢; < ¢ and M1 = MM (¢, ¢9,¢3) C A be a nonempty subset of A satisfying
that
Immq Immo

I c , I 1<I < o (I 1, -
mmy € Ay cl(mml) < mm1_cz(mm1> H(Imm1> (Im m5)

‘ < 03Hm1 —m2|| (541)

hold true for all my,mo € MM, Then ¢, v and f, are uniformly Lipschitz-continuous functions of m on

M),
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ii) For some p, > 0, let = C1,C2,C3, Px) C e a subset o satistying or all mi,mo €
F 0, let M3 = M®@ Ab bset of A satisfying (5.41) for all
M3 and (Imm) < 7p, for all m € M@, Then there is a (small) p, ~ 1 such that s and o are uniformly
Lipschitz-continuous functions of m on M®) C A.

(iii) Fix ¢4 > 0. Let MG = M(3)(01,02,03,C4,p*) be a subset of a set M® from (ii) with p. ~ 1 chosen
as in (ii) such that, for any m € M®), the operator Id — Cs(m)F (m) has a unique eigenvalue of smallest
modulus and this eigenvalue is simple (recall that F' = C 4« SCy- 4 is a function of m via ¢ = g(m)). Let
Qm denote the spectral projection of Id — C(y,y F'(m) onto the complement of this eigenvalue. Moreover,
we require that

|(Td = Cymy) F(m1) " Quny — (Id = Cogny) F(m2)) ™ Qs || < callma — mo| (5.42)
holds true for any mq, mo € M®) . Then 1 is a uniformly Lipschitz-continuous function of m on MG,

We always consider M®), i = 1,2, 3, with the metric induced by the norm ||-|| on .A. The constants in the
Lipschitz-continuity estimates as well as p, given in (ii) only depend on the control parameters ¢1, ca, cs and
Cq.

The careful analysis of the operator B and its inverse allows for the precise bounds on the derivatives of m
in the following lemma.

Lemma 5.7 (Derivatives of m). Let I C R be an open interval and 6 € (0,1]. If Assumptions 4.5 hold true on
I for some n, € (0,1] then there is C ~ 1 such that

CkE!
()2 (p(r) + [o (7))

uniformly for all T € Iy satisfying p(7) > 0 and all k € N satisfying k > 1. Here, we set |o(7)] := 0 if p(7) > px
with p,. as in Lemma 4.5.

[oZm(r)I| <

Proof. To indicate the mechanism, we first prove that, for all 7 € Iy satisfying p(7) > 0, we have
[@-m(T)l S p~ o+ 1o Zm(n) S p P (p+ o)), 02m()]| < p>(p + o) 72, (5.43)

where p := p(7) and o := o (7).
Since p(7) > 0, m is real analytic around 7 by Proposition 4.7 and we can differentiate the Dyson equation,
(2.3), with respect to z and evaluate at z = 7. Differentiating (2.3) iteratively yields

B[0,m] = m?, B[0?m] = 2(0,m)m™*(d.m),

3 B 3 3 (5.44)

B[93m] = —6(0,m)m ™ (9.m)m ™1 (0.m) + 3(9?m)m ™~ (d.m) + 3(8.m)m ™1 (9>m)
where B = Id — C},,S and m := m(7). Since p(r) > 0, B is invertible by (5.24), (5.26) and the 1/3-Hoélder
continuity of m by Proposition 4.7.

We set p := p(7). If p > p. for some p, ~ 1 then (5.43) follows trivially from (5.44), [|B7|| < 1 by (5.24)
and [[m] + m~1) S 1.

We now prove (5.43) for p < p. and some sufficiently small p, ~ 1. Under this assumption, Lemma 5.1 and
Corollary 5.2 are applicable. In the remainder of this proof, the eigenvalue 3, the eigenvectors [ and b as well
as the spectral projections P and ) are understood to be evaluated at 7. We will now estimate the image of
B~! applied to the right-hand sides of (5.44) in order to prove (5.43).

Inserting P + @ = Id on the right-hand side of the first identity in (5.44), inverting B and using

_ <la >
RN
as well as B7L[b] = B71b yield
om = LT L B1gm?) (5.45)
: B(L,b) ' '

We will now estimate (I, m?) and 3(I,b). From m = ¢*sq+ O(p) by (5.2), (5.14a), (5.15b) and (5.26), we obtain

(1,m?) = (fusaq"s) + O(p) = 7 + O(p), (5.46)
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where we used sf,s = fus? = f, and (5.19) in the last step.
From (5.15¢) and (5.26), we conclude

0.2

(f&)

Here and in the remainder of the proof, o, ¥, f,, ¢ and s are understood to be evaluated at 7.

Since o and v are real, we conclude |3(l,b)| ~ p(p + |o|) for p. ~ 1 sufficiently small. As |B~'Q|| <1 and
I]] < 1, we thus obtain ||0.m|| < p~t(p+ |o|)~! from (5.45).

Using (5.44), (5.45), [|9-m|| < p~'(p +|o|)~" and [[B7*] < p~(p+|o])~! by Corollary 5.3 yield

B, bY = —2ipo + p? (w + ) +O(p?). (5.47)

(I, m?)*(l, bm~'b)

0*m =2 b+0(p 2(p+ o))" =0(p 3 (p+ o)) 7?). 5.48
L (520 +10)72) = 00 (p + lo) ) (5.48)

Here, in the last step, we used ||b]| < 1 and [{I,bm~1b)| < |o| + p due to the expansion
(I, om=0) = (g7 fulg") " q" fugg ' s(6") T " fug) + O(p) = o + O(p) (5.49)

as well as [B(L,b)| ~ p(p + |o|) and (I,m?) = O(1). The proof of (5.49) is a consequence of (5.14a), (5.15a),
(5.15b), (5.26), m™' = ¢~ 's(¢") ™! + O(p) by (5.2) as well as g ~ L.
Similarly, owing to (5.44), (5.45) and (5.48), we obtain

(I, m2y3(l,bm=1b)?
(6(1,0))°

We now estimate 0%m(z) for k > 3. To that end, we will fix a parameter o > 1 and prove that there are
px ~1, Cp ~, 1 and Cy ~, 1 such that, for £ € N, we have

93m =12 b+ O (p+ o)) = O(p~(p+ lo])*).

m® = 0Fm = Brb + qu, (5.50)
where m = m(7) for 7 € Iy satisfying p := p(7) < p, and S € C and g € ran Q satisfy

kKlcy,ok-t _
17;[) K2 (p+ o) F. (5.51)

klclcgil —2k+1
P z

o (p+lo)7*, llgrll <

1Br| <
Here, ~ indicates that the constants in the definition of the comparison relation ~ will depend on a.
Before we prove (5.50) below, we note two auxiliary statements. First, as ,m~! = —m~1(9,m)m~! it is
easy to check the following version of the usual Leibniz-rule:

k
k!
k. —1 __ M oy, 1, (a1),,,—1,,,(a2) -1, (an),,,—1
a;m *Z Z al!.“an!( DPm™ m Y m™ m ) omT I m 9 m (5.52)
n=1 a1+...+a,=k
1<a; <k
for any k£ € N. Here, in the sum over a; + ...+ a, = k, the order of aq,...,a, has to be taken into account

since m~! and m(® do not commute in general.
Second, we also have the following auxiliary bound. For all k € N, n € N with n < k and o > 1, we have

1 2a+1 n—1
) < FTcle) , (5.53)
a?‘ e a% ka
ar+...+an=k
1<a; <k

where ((a) =77 n~“ is Riemann’s zeta function. The bound in (5.53) can be proven by induction.

We now show (5.50) and (5.51) by induction on k. The initial step of the induction with & = 1 has been
established in (5.45) with 81 = (I,m?)/(B(l,b)), ¢ = B~1Q[m?] and some sufficiently large C; ~ 1. Next,
we establish the induction step by proving (5.50) and (5.51) under the assumption that they hold true for all
derivatives of lower order. From the induction hypothesis, we conclude

RGOS bl +p

()| <
m
L T PERIE

(5.54)

for all @ € N satisfying 1 <a <k —1.
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For k > 2, we differentiate (2.3) k-times and obtain
BoFm] = 1 = 0Em + m(95m ™ )m. (5.55)

By separating the contributions for n = 1 and n > 2 in (5.52), we conclude

k k—1
k! k!
:E E " 1\ pla) -l -1, (an) (a),,,—1, (k—a)
" il DT M me +Za!(k_a)!m m~tm"me (5.56)
n=3 a1+...+an=k a=1
1<a;<k—1

Since n is at least 3 in the first sum, we obtain from (5.54) and (5.53) that

k k

D k! a1), - 1, (a Ko bll+p S ermpick
m“m( )m 1...m 1m( ")HS —)k ClMa 105 s (557)
Lo Qp- 3

! Lo ,2k—3
n=3 a1+...+a,=k ke p (p + |U|
1<a;<k—1

where M, := 2°T2((a)||m™Y|(||b]| + p). A similar argument yields
k-1
k! _ _ k! o]l + p _
e (a) 1 (k—a)) < _—CQM Ck 2.
2 a1 S i G o M

a=1
Thus, we choose Cy > 2M,C4 and conclude

< KL bl M, CPCE
= ke 2o+ o )F C3(1 - MaC:/Co)

Therefore, we obtain the bound on ||q|| in (5.51) for Cy ~ 1 sufficiently large since g, = Q[0¥m] = B~1Q[ri]
and [B~1Q[ S 1.

Moreover, S, = (I, 7)/(8(l,b)). Hence, by using the decomposition of 7 in (5.56) and (5.57), we obtain

KGOy bl +p [lElp? CYMZ kil K[, m@m ke
al(k

ke 1o+ |oDF 180, 0) C2(1 = MaCi/Ca) —a) 8¢, 0)]

|Bk] <

a=

We use (5.50) for m(®) and m*~ in the argument of the last sum, which yields

L [m@m=tm ) |Ba| Br—al |{L,bm~"b)] CiCy~? Pl lm
b
qE—a) PR S a o)l BEE] e e s o)F (aa.n i)
CiCy~? plp+ o)) (|{t,bm~"b)] 4
T pa ity s P8 | e [ELTRR2)

Here, we applied (5.51) to estimate ¢, and gx—, as well as 3, and Sx_,. Since |5(l,b)| ~ p(p + |o|) as shown
below (5.47) and [{I,bm™1b)| < |o| + p due to (5.49), we obtain the bound on |8k| in (5.51) by using (5.53) to
perform the summation over a. This completes the induction argument, which yields (5.50) and (5.51) for all
k € N by possibly increasing Cs ~ 1. By choosing, say, @ = 2, we immediately conclude Lemma 5.7 for 7 € Iy
satisfying p(7) < pi. If p(7) > p. then || B~1|| < 1. Hence, a simple induction argument using (5.55) and (5.56),
which hold true for p(7) > p. as well, yields some C' ~ 1 such that

[oFm(r)|| < KIC*

for all k € N satisfying k > 1. Since p(7) < 1 for all 7 € Iy, we obtain Lemma 5.7 in the missing regime. O

6. The cubic equation

The following Proposition 6.1 is the main result of this section. It asserts that m is determined by the solution
to a cubic equation, (6.3) below, close to points 79 € supp p of small density p(7p). In Section 7, this cubic
equation will allow for a classification of the small local minima of 7+ p(7). To have a short notation for the
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elements of supp p of small density, we introduce the set
D.g:={r €supppnlIl:p(r) € [0,e], dist(r,0I)> 6}

for e > 0 and 6 > 0.
The leading order terms of the cubic and quadratic coefficients in (6.3) are given by ¥(79) and o(79), respec-
tively. For their definitions, we refer to Lemma 5.5 (i) and (5.12).

Proposition 6.1 (Cubic equation for shape analysis). Let I C R be an open interval and 0 € (0,1]. If
Assumptions 4.5 hold true on I for some n, € (0,1] then there are thresholds p. ~ 1 and 04 ~ 1 such that, for
all 1o € Dy, 9, the following hold true:

(a) For all w € [—0s,0.], we have
m(mo + w) — m(1) = O(w)b + r(w), (6.1)

where ©: [—04,0.] = C and r: [—d«, ] = A are defined by

Ow) = (7 -l +w) =m(m)). () = Qfm(ro +) = ()] (62)

Here, | =1(70), b = b(19) and Q = Q(79) are the eigenvectors and spectral projection of B(ty) introduced
in Corollary 5.2. We have b = b* + O(p) and | = 1* + O(p) as well as b+ b* ~ 1 and I +1* ~ 1 with
p = p(r0) = (Imm(r))/m.

e function © satisfies the cubic equation
(b) The f (C] fies th b
130%(w) + 126°(@) + 11O (W) + wE(w) = 0 (6.3)

for all w € [=d«,0.]. The complex coefficients us, p2, p1 and = in (6.3) fulfill

s =¥+ O(p), (6.4a)
p = o +ip(30 + &—2>) +O(p?), (6.4b)
p = 2ipo — 2p? (1/1 + &—2>) + O(p?), (6.4c)
Ew) =7(1+v(w))+ O(p), (6.4d)

where 0 = o(79) as well as ¥ = 1p(70). For the error term v(w), we have
V(@) S 10W)l + lw| < lwl'/. (6.5)

for all w € [=04,0,]. Uniformly for 7o € D,, g, we have

Y+o*~ 1 (6.6)
(¢) Moreover, ©(w) and r(w) are bounded by
. (|w
O] < min {15], w2}, (6.72)
Ir(@)]l S 10(w)I* + |wl, (6.7b)

uniformly for all w € [—6x, d.].
(d1) If p > 0 then © and r are differentiable in w at w = 0.
(d2) If p =0 then we have
mOw) =20,  [Imy(w)] SImOW),  [[Imrw)] < (1OwW)]+ |w])inO(w), (6.8)

for allw € [=d.,04] and Re © is non-decreasing on the connected components of {w € [—dy,d:]: InO(w) =

0}.
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(e) The function o: D, ¢ — R is uniformly 1/3-Hélder continuous.

The previous proposition is the analogue of Lemma 9.1 in [1]. It should also be compared to [8, Proposi-
tion 4.12], where the shape analysis was performed only in a neighbourhood of an edge and thus a lower order
accuracy was sufficient. The cubic equation for O, (6.3), will be obtained from an A-valued quadratic equation
for A :=m(19 +w) — m(7p) and the results of Section 5. In fact, we have

(Id — G, S)[A] = wm? + g(mA + Am) + = (mS[AJA + AS[A]m), (6.9)

N | =

where 79, 70 +w € Iy := {7 € I: dist(r,0I) > 0} and m := m(79) (see the proof of Proposition 6.1 in Section 6.3
below for a derivation of (6.9)). Projecting (6.9) onto the direction b and its complement, where b is the unstable
direction of B defined in Corollary 5.2, yields the cubic equation, (6.3), for the contribution © of A parallel with
b. In the next subsection, this derivation is presented in a more abstract and transparent setting of a general
A-valued quadratic equation. After that, the coefficients of the cubic equation are computed in Lemma 6.3 in
the setup of (6.9) before we prove Proposition 6.1 in Section 6.3.

6.1. General cubic equation

Let B,T: A — A be linear maps, A: A x A — A a bilinear map and K: A x A — A amap. For Aje € A, we
consider the quadratic equation

BIA] — A[A, A] - T[e] — Kle,A] = 0. (6.10)

We view this as an equation for A, where e is a (small) error term. This quadratic equation is a generalization
of the stability equation (6.9) for the Dyson equation, (2.3) (see (6.23) and (6.28) below for the concrete choices
of B,T, A and K in the setting of (6.9)).

Suppose that B has a non-degenerate isolated eigenvalue 8 and a corresponding eigenvector b, i.e., B[b] = b
and D, (8) N Spec(B) = {8} for some r > 0. We denote the spectral projection corresponding to S and its
complementary projection by P and @, respectively, i.e.,

1 _ {a,-)
P=—-— B —wld) tdw = *2-Lb, Q =1d-P. 6.11
2mi aDr(m( : (1,b) (6.11)
Here, [ € A is an eigenvector of B* corresponding to its eigenvalue f, i.e., B*[I] = fI. In the following, we will

assume that
IBT1QLAN < Nl=ll, K0 bl S 1, AR ol S Nllllyll, 1Tl S llell, 11K e, ylll < llellllyll (6.12)

for all z,y € A and the e € A from (6.10). The guiding idea is that the main contribution in the decomposition

A=0b+QA], ©:= % (6.13)

is given by O, i.e., the coefficient of A in the direction b, under the assumption that A is small. f A=K =0
then this would be a simple linear stability analysis of the equation B[A] = small around an isolated eigenvalue
of B. The presence of the quadratic terms in (6.10) requires to follow second and third order terms carefully. In
the following lemma, we show that the behaviour of © is governed by a scalar-valued cubic equation (see (6.14)
below) and that Q[A] is indeed dominated by ©. The implicit constants in (6.12) are the model parameters in
Section 6.1.

Lemma 6.2 (General cubic equation). Let 5 be a non-degenerate isolated eigenvalue of B. Let A € A and
e € A satisfy (6.10), © be defined as in (6.13) and the conditions in (6.12) hold true. Then there is € ~ 1 such
that if ||A|| < e then © satisfies the cubic equation

1303 + 12 0% + 11 O + g = ¢, (6.14)
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with some é = O(|O* + |O]|le|l + |le]|?) and with coefficients

u3 = <17A[bvBilQA[bv b]] + A[BilQA[bv b]vb]>a

— (1, Alb, b)),
o = (L, Afb,B) 615)
M1 = _ﬁ<l7b>a
wo = (1, Tlel).
Moreover, we have
Q[A] = B'QTe] + O(|Of + [le]?). (6.16)
If we additionally assume that In A € Ay, | =1* and b = b* as well as
Blz]" = Bla™], Alz,y]" = Alz",y"], Tle]" =Tle], Kle,y]" = Kle,y"] (6.17)
for all x,y € A then there are € ~ 1 and § ~ 1 such that [|A]| < e and |le]| < also imply
M QA < (18] + [le])Im ©, (6.18a)
tmé| < (|0 + |lef)Ime. (6.18b)
Proof. Setting r := Q[A], the quadratic equation (6.10) reads as
Opb+ Br = Tle] + A[A, Al + Kle, A]. (6.19)

By applying @ and afterwards B~! to the previous relation, we conclude that
r=B7'QTe] +O©*B'QA[b, b +e1,  e1:=0OB'Q(ADb, 7]+ Alr,b])+ B 'QA[r,r]+ B 'QKle, A]. (6.20)

We have |le1] < [I7]|[©] + [|I7]12 + llell|All and ||r]| < |lell + [©] + |le1]|. From the second bound in (6.12), we
conclude [|P|| + [|Q|| £ 1 and, thus, ||| < ||A|. By choosing € ~ 1 small enough, assuming |[|A]| < & and using
[I”Il < |AJ|, we obtain

el S 10 +llell, — llesll S 1OF + llell|©] + [le]l*. (6.21)
This proves (6.16). Defining ey := €1 + B~ 1QTe] yields A = Ob+ ©2B~1QAIb, b] + e2. By plugging this into
(6.19) and computing the scalar product with (I, - ), we obtain

OB, b) = (I, Tle]) + O, Alb,b]) + ©*(1, Alb, B~1QA[b, b]] + A[B~'QA[b, b, b)) — &, (6.22a)

é:=—(1,K[e, Al + ©*A[BT'QAb,b], BT'QAb, b]] + A[A, €3] + Alea, A] — Alea, ea]). (6.22b)

Since [lez|| < |O]* + fle|| and [|A]l < [O] + [le]l by (6.21) and (6.16), we conclude & = O(|O* + |O][e]| + [|e]|*).
Therefore, O satisfies (6.14) with the coefficients from (6.15).

For the rest of the proof, we additionally assume that the relations in (6.17) hold true. Taking the imaginary
part of (6.20) and arguing similarly as after (6.20) yield

[Mes || S ([l + [0+ [lel)(Im © + [Tmr(}), — [Imr|| S [OIm O + [[Im ey .

Hence, (6.18a) and ||Imeq|| < (O] + |le|)Im © follow for ||A]| < e and |le]| < § with some sufficiently small
e ~1and ¢ ~ 1. From this and taking the imaginary part in (6.22b), we conclude (6.18b) as [|[Im Al < Im©
by (6.18a) and Im es = Im e;. This completes the proof of Lemma 6.2. O

6.2. Cubic equation associated to Dyson stability equation
Owing to (6.15), the coefficients pug, pe and py are completely determined by the bilinear map A and the
operator B. For analyzing the Dyson equation, (2.3), owing to (6.9), the natural choices for A and B are

B:=1d - C,S, Alx,y] == %(mS[m]y + yS[xlm) (6.23)

with 2,y € A. In particular, @ in (6.11) has to be understood with respect to B = Id — C,,,S. In the next
lemma, we compute u3, ue and p; with these choices. This computation involves the inverse of Id — CsF'.

In order to directly ensure its invertibility, we will assume Im z > 0. This assumption will be removed in the
proof of Proposition 6.1 in Section 6.3 below.
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Lemma 6.3 (Coefficients of the cubic for Dyson equation). Let A and B be defined as in (6.23). If Assump-
tions 4.5 hold true on an interval I C R for some 1. € (0,1] then there is a threshold p. ~ 1 such that, for
z € Hy,,, satisfying p(z) + p(z) 'Im z < p,, the coefficients of the cubic (6.14) have the expansions

ps =0+ O(p+p mz), (6.24a)

_ : o’ 2 -1
fo =0 + 1p(3w + v ) FO(p” +p~ ' Imz), (6.24b)

(fa)

o2

p1 = —mp Im z + 2ipo — 2p? (w + <f2>) + O(p® +Tm z + p~2(Im 2)?). (6.24c)
Moreover, we also have

2

(1 mS[bje) = o +ip (36 + {;—2>) +O(p? + pIm 2). (6.25)

Proof. In this proof, we use the convention that concatenation of maps on A and evaluation of these maps in
elements of A are prioritized before the multiplication in A, i.e.,

if A and B are maps on A and b,c € A. We will obtain all expansions in (6.24) from (6.15) by using the
special choices for A and B from (6.23). Before starting with the proof of (6.24a), we establish a few identities.
Recalling m = ¢*uq from (3.2) and (3.4), we first notice the following alternative expression for A

1 _ _ _ _
Alx,y] = §C’q*7q [uFCq*%q [:L']Cq*l,q [y] + C’q*%q [y]FC’qJ’q [2]u] (6.26)

with z,y € A. Owing to (4.21), the operators Cy« 4 and qulq are bounded. We choose p. ~ 1 small enough so
that Lemma 5.1 is applicable. By using u = s+ ilmu + (’)(pé) due to (5.2) as well as (5.4), (5.5) and (5.14a) in
(6.26), we obtain

Albo,bo] = Cye alsF2 +ipf3] + O(p? + p~'Tm 2). (6.27)

Combining (6.27) and (5.18) implies
By ' QuAlbo, bo] = Co- g(Id — CsF) 7' Qs plsfi] + O(p + p~ ' Im z).

We now prove the expansion (6.24a) for us by starting from (6.15) and using I =l + O(p), b = by + O(p) by
(5.15), B'Q = By 'Qo + O(p) due to B = By + O(p) and Lemma 5.1 and the previous identities. This yields

us = (lo, A[By ' Qo A[bo, bol, bo] + Albo, By ' QoAlbo, bol]) + O(p)
= <fu7UF(Id - CSF)ilQS,F[SfS]fu =+ UF[fu](Id - CSF)ilQS,F[szp =+ O(p + pillm Z)
— (52, (1 + F)(Id — CoF) 7 Qu r[sf2]) + O(p + p~'Tm 2).

Here, we also used F[f,] = fu + O(p~'Imz) by (8.5) and u = s + O(p) by (5.2). This shows (6.24a).

In order to compute ps, we define
by = 2ipCy o(Id = CF) ' Qu plsfa], = —2ipC, .. (Id = FC,) ™' Q% pFlsfr].
Then we use (5.15a) as well as (5.15b) and obtain

(L, A[b, b)) = (lo, Albo, bo]) + (I1, A[bo, bo]) + (Lo, A[b1, bo]) + (lo, Albo, b1]) + O(p* + Im 2)

= (sfu) +ip(fu) + 2ip(sfy, (Id + 2F)(Id — CsF) ' Qs p[sf3]) + O(p® + p~'Im 2)

0.2

(f2)
Here, in the second step, we used (5.14a), (6.27) and the definition of I; to compute the first and second term,

:U—i-ip(?np—i— ) +O(p? + p~Im 2).
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(5.14a), the definition of b; and (6.26) to compute the third and fourth term. In the last step, we then employed

(fa) + (sf2,2(1d + 2F)(1d = CsF) ' Qs r[s f2])

= (sfu, (Id+2(1d + 2F)(Id — CsF) ") Qs,p[sf21) + (sfa, Ps,rlsfil)
52
(fa)
Here, we applied (5.17), Cs = C* and Cs[sf2] = sf2. Since ps = (I, A[b,b]) by (6.15), this completes the proof
of (6.24b). A similar computation as the one for s yields (6.25).

Since p1 = —p(l, b) by (6.15), the expansion in (5.15¢) immediately yields (6.24c). This completes the proof
of the lemma. |

= 3(sf2,(Id 4+ F)(Id — C.F) ' Q. r[sf?]) + + O(p~'m 2).

6.3. The cubic equation for the shape analysis

In this subsection, we will prove Proposition 6.1 by using Lemma 6.2 and Lemma 6.3. Therefore, in addition
to the choices of A and B in (6.23), we choose A = m(m9 + w) — m(7p), 70,70 +w € I, e = w1 and

Tlz] = a2m?, Klz,y] = %(mmy + ymz) (6.28)

for z,y € A with m = m(7) in (6.10).

Proof of Proposition 6.1. We choose p, ~ 1 such that Lemma 5.1 and Corollary 5.2 are applicable. We fix
70 € D, 6 and set m = m(79). The statements about [ and b in (a) of Proposition 6.1 follow from Corollary 5.2.
In particular, |{l,b)| ~ 1. Thus, the conditions in (6.12) are a direct consequence of Assumptions 4.5, (4.21),
Lemma 5.1 and Corollary 5.2. Furthermore, if p = 0 then we have m = m™* and, thus, (6.17) follows. For
w € [—dx,04], 6 = 0/2, we set A = m(79 +w) —m. Since O(w)b = P[A], r(w) = Q[A] and P+ Q = Id, we
immediately obtain (6.1). This proves (a).

Next, we derive (6.9) for A := m(zo +w) —m(2o) and m := m(zo) with 2o := 19 +1in, 70 € D, 9, w € [—0s, 04]
and n € (0,7,]. We subtract (2.3) evaluated at z = zg from (2.3) evaluated at z = zp + w and obtain (6.9) with
A and m defined at zg = 79 + in. Directly taking the limit 7 | 0 yields (6.9) with the original choices of A and
m at zy = 7o by the Holder-continuity of m on Hy ., I' := {7 € I: dist(r,dI) > 0/2}, due to Proposition 4.7.

Lemma 6.2 is applicable for |w| < d, with some sufficiently small d, ~ 1 since this guarantees ||A| < ¢ owing
to the Holder-continuity of m. Hence, Lemma 6.2 yields a cubic equation for © as defined in (6.2) with [ = I(2),
b = b(zp) and zg = 19 +in. The coefficients of this cubic equation are given in Lemma 6.2. Owing to the uniform
1/3-Hélder continuity of z — m(z) on Hy ., we conclude from the definition of © and r := Q[A] in (6.2), the
boundedness of @ and B~'Q as well as (6.16) that |O(w)| < |w|'/3, i.e., the second bound in (6.7a), and (6.7h)
uniformly for n € [0,7.].

We now compute the coefficients of the cubic in (6.3) for 9 € D, 9. Set zyp := 79 + in. Note that for
n = Im zy > 0 these coefficients were already given in (6.24), so the only task is to check their limit behaviour
as | 0. Owing to (5.26), the expansions in (6.4a), (6.4b) and (6.4c) follow from (6.24a), (6.24b) and (6.24c),
respectively, using the continuity of o, ¥ and f,, on Hgman by Lemma 5.5 and Lemma 5.4, respectively. We now
show (6.4d). With the definitions of € and po from Lemma 6.2 (see (6.22b) and (6.15), respectively), we set
E(w) == w (g — &) for arbitrary |w| < d,. Since [ = C;;* [fu] + O(p + p~1n) due to (5.14a) and (5.15b), as
well as m? = (Rem)? + O(p) = Cy- 4Cslaq*] + O(p) due to Imm ~ pl and (5.2), we have

w o = ('m?) = (fuqq™) + O(p+ p~ ') =+ Olp+ p~'1). (6.29)

Here, we also used Cs[f,] = f. in the second step and (5.19) in the last step. We set v(w) == —(wm)" 1. We
recall e = wl. Since é = O(|O(w)|* + |0 (w)||w| + |w|?) and |O(w)| < |w|'/3, we obtain (6.5). This yields (6.4d)
by using (5.26) in (6.29). Since (5.35) implies (6.6), this completes the proof of (b) for 7y € D, ¢ and we assume
1 = 0 in the following.

If p = p(19) > 0 then (4.20) yields the missing first bound in (6.7a) completing the proof of part (c).
Moreover, in this case, the definitions of © and r imply their differentiability at w = 0 due to Proposition 4.7.
This shows (d1).

We now verify (d2). Since p = 0, we have Imm(79) = 0 and thus Im ©(w) > 0 by the positive semidefiniteness
of Imm(7g + w). Since pg is real as [ and T[e] are self-adjoint, we obtain the second bound in (6.8) directly
from (6.18b) and |©(w)| < |w|'/3. The third bound in (6.8) follows from (6.18a) and e = wl. Since p = 0
and hence b = Cy 4[fy] by (5.15a) and | = C;;* [fu] by (5.15b) are positive definite elements of A, Re O(w) +
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(I,m(70))/(l,b) is the real part of the Stieltjes transform of a positive measure p evaluated on the real axis. The
real part of a Stieltjes transform is non-decreasing on the connected components of the complement in R of the
support of its defining measure. Therefore, as the support of i is contained in R\ int({w € [—d,, d]: ImO(w) =
0}), where int denotes the interior, due to Imm(rp) = 0, we conclude that Re ©(w) is non-decreasing on the
connected components of {w € [0, d,]: ImO(w) = 0}.

Lemma 5.5 (i) directly implies the Holder-continuity in (e), which completes the proof of Proposition 6.1. O

7. Cubic analysis

The main result of this section, Theorem 7.1 below, implies Theorem 2.5 and gives even effective error terms.
Theorem 7.1 describes the behaviour of Imm close to local minima of p inside of supp p. This behaviour is
governed by the universal shape functions Wegge: [0,00) — R and ¥pin: R — R defined by

_ TS
12242/ 0P a2 -2/ 00 11
VIt Az

N e CF U e eR e (710)

For the definition of the comparison relation <, 2 and ~ in the following Theorem 7.1, we refer to Conven-

tion 3.4 and remark that the model parameters in Theorem 7.1 are given by ¢;, ¢z and c3 in (3.10), k3 in (4.16)
and 6 in the definition of Iy in (7.2) below.

‘Iiedgeo\) ;

(7.1a)

Theorem 7.1 (Behaviour of Imm close to local minima of p). Let (a,S) be a data pair such that (3.10) is
satisfied. Let m be the solution to the associated Dyson equation (2.3) and assume that (4.16) holds true on
Hy . for some interval I C R and some n, € (0,1]. We write v :=n"'Imm and, for some 6 € (0,1], we set

Ip :={r € I: dist(r,0I) > 6}. (7.2)

Then there are thresholds p. ~ 1 and 6, ~ 1 such that if 19 € suppp N Iy is a local minimum of p and
p(70) < ps then

0(10 +w) = v(10) + h¥(w) + O p(ro) w|/#1(w| S p(r0)*) + (w)?) (7.3)

for w € [=6x,0.] N D with some h = h(1y) € A satisfying h ~ 1. Moreover, the set D and the function ¥ depend
only on the type of 17y in the following way:

(a) Left edge: If 79 € (Osuppp) \ {infsupp p} is the infimum of a connected component of suppp and the
lower edge of the corresponding gap is in Iy, i.e., 71 := sup((—oo, 79) Nsupp p) € Iy, then (1.3) holds true
with v(1p) =0, D = [0,00) and

U(w) = A1/3\1/edge(%)

where A := 19 —11. If 79 = inf supp p, or more generally p(t) =0 for all T € [19 — &, 70] with some e ~ 1,
then the same conclusion holds true with A :=1.

(b) Right edge: If 79 € O supp p is the supremum of a connected component then a similar statement as in the
case of a left edge holds true.

(c) Cusp: If 7o ¢ Osupp p and p(o) = 0 then (1.3) holds true with D = R and ¥(w) = |w|/3.

(d) Internal minimum: If 79 ¢ Osupp p and p(79) > 0 then there is p ~ p(70) such that (1.3) holds true with
D =R and

U(w) = ﬁq/mm(p%).

If the conditions of Theorem 7.1 hold true, i.e., the data pair (a,S) satisfies (3.10) and m satisfies (4.16) on
Hr,y., then Assumptions 4.5 are fulfilled on Hy ,, (compare Lemma 4.8 (ii)). In fact, Theorem 7.1 holds true
under Assumptions 4.5 which will become apparent from the proof.

Theorem 7.1 contains the most important results of the shape analysis. When considering p = (v) instead of
v the coefficient in front of ¥(w) in (7.3) can be precisely identified as demonstrated in part (i) of Theorem 7.2
below. Moreover, Theorem 7.2 contains additional information on the size of the connected components of
supp p and the distance between local minima; these are collected in part (ii). Note that the same information
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were also proven in the commutative setup in Theorem 2.6 of [1] and Theorem 7.2 shows that they are also
available in our general von Neumann algebra setup.
We remark that Upin(w) = VUi (—w) for w € R and, for w > 0, A > 0 and p > 0, we have

1/2

w . w
Al/g\Pedge(Z) ~ min { AL/6 ,wl/g}, (7.4a)
2
ﬁ\pmin(p%) ~ min {%,wl/g}. (7.4b)

The comparison relations ~, < and 2 in the following Theorem 7.2 are understood with respect to the
constants ki, ..., ks from Assumptions 4.5 and 6 in the definition of Iy in (7.2).

Theorem 7.2 (Behaviour of p near almost cusp points; Structure of the set of minima of p). Let I C R be an
open interval and 6 € (0,1]. If Assumptions 4.5 hold true on I for some n. € (0,1] (in particular, if the data
pair (a,S) satisfies (3.10) and m satisfies (4.16) on Hy ., ) then the following statements hold true

(i) There are thresholds p. ~ 1, 0. ~ 1 and 6, ~ 1 such that if 79 € suppp N Iy is a local minimum of p
satisfying p(10) < px then we set T' := /27w /(2¢) with ¢ = ¢¥(70) defined as in Lemma 5.5 and have

(a) (Left edge with small gap) If 7o € dsupp p \ {inf supp p} is the infimum of a connected component of
supp p, |o(10)| < o« and the lower edge of the gap lies in Iy, i.e., 71 := sup((—o0, 79) Nsupp p) € Iy,
then

plTo +w) = (41")1/3\I/(w) + O (|o(70)| ¥ (w) + \If(w)2) , U(w) := A1/3\I/edge(%) (7.5a)

for allw € [0,6,]. Here, T'~ 1 and ¢ ~ 1.

1ght edge with small gap Top € Osupp p \ {supsupp p} is the supremum of a connected component
b) (Right ed ith ll If 0 is th f d
then a similar statement as in the case of a left edge holds true.
(c) (Cusp) If 19 ¢ Osupp p and p(19) = 0 then
rvs 1/3 2/3
p(To +w) = 41ﬁ|w| 3+ O(Jw]*/?) (7.5Db)

for allw € [=6.,0.]. Here, ' ~ 1 and ¢ ~ 1.
(d) (Nonzero local minimum) If 19 ¢ Osupp p and p(19) > 0 then

P W) (14 0(pm)V2)), if fwl S o),

plro +w) = plm) + ¢ VW) (14 O(225) ). if p(r)/2 S || £ (),
T30 (w) (1 4+ O(T(w))), if p(r0)> S || < 6., (7.5¢)
~ w ~ _ p(m)
\II(W) = pWpin (p%) ) p = F1/03

for allw e R. Here, I' ~ 1 and ¢ ~ 1.

(i) If supp pN Iy # & then supp pN Iy consists of K ~ 1 intervals, i.e., there are o, ..., ax € dsupp pUdIly
and B1,...,8x € OsupppUdly, a; < fB; < ayy1, such that

K
supp p (1T = | [0, 5] (7.6)

i=1
and B; — a; ~ 1 if B; # sup Iy and «; # inf Iy.
For p, > 0, we define the set M,, of small local minima T of p which are not edges of supp p, i.e.,

M,, == {7 € (suppp \ dsupp p) N Iy: p(7) < p«, p has a local minimum at T}. (7.7)

There is a threshold p. ~ 1 such that, for all y1,v2 € M,, satisfying v1 # v2 and for allt=1,..., K, we
have
m="l~1  Ja-m[~1,  [Bi-m|~1 (7.8)
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if a; # inf Iy and B; # sup Iy.

The factors 4'/3 and 4=1/3 in the cases (a) and (c) of part (i) of Theorem 7.2 can be eliminated by redefining
T, Weqge and Wi, to bring the leading term on the right-hand sides into the uniform T''/3W(w) form. We have
not used these redefined versions of I', Weqge and Wpin here in order to be consistent with [1].

We remark that part (i) (a) and (b) of Theorem 7.2 cover only the case of 79 € 9 supp p with sufficiently
small |o(19)|. We will establish later that the smallness of |o(79)| corresponds to the smallness of the adjacent
gap 79 — 71 (see Lemma 7.15 below). Together with the cusps and the small nonzero local minima, they form
the almost cusp points of p (see the set Peygp in (10.4) later). At the extreme edges inf supp p and sup supp p,
o is not so small. Thus, the exclusion of these edges in the statement of Theorem 7.2 (a) and (b) is in fact
superfluous. If |o(7p)| is not so small then p(y + w) is well approximated by a rescaled version of (w.)'/?
(positive and negative part of w for left and right edge, respectively). The precise statement and scaling are
given in Proposition 7.18 below.

Remark 7.3 (Scaling relations for p(z)). Let I C R be an open interval, 6 € (0,1] and p(z) := (Imm(z)) /7 for
z € H. If Assumptions 4.5 hold true on I with 7, = 1 then there are € ~ 1 and p, ~ 1 such that

(i) (Inside support around an edge with small gap) Let 79, 71 € supp pNlIy satisfy 79 < 71 and (79, 71 )Nsupp p =
@. We set A := 1 — 79. For w € [0,¢], we have

, . (w+n)'?

pT0 =) T o)~ (R

(ii) (Inside a gap) Let 19,71 € supp pN Iy satisfy 79 < 71 and (19, 71) Nsupp p = . We set A := 1 — 79. Then,
for 7 € [19,71] and 1 € [0, ], we have

p(T+1in) ~ " ( L + ! )
G\t o)

(iii) (Around a left edge with large gap) Let 79 € Iy N O supp p satisfy p(7) = 0 for all T € [y — 4, 7p] and some
d ~ 1. Then, for w € [0,¢], we have

p(To + w +in) ~ (w +n)*/?,
"

p(To — w +in) ~ @2

A similar statement holds true for a right edge 79, i.e., if p(7) = 0 for all 7 € [y, 70 + J] and some § ~ 1.

(iv) (Close to a local minimum) If 7o € supp p \ Osupp p is a local minimum of p such that p(m9) < p. then,
for all w € [—¢,¢] and 7 € [0, €], we have

p(To +w +1in) ~ p(7o) + (Jw| +n)*/3.

These scaling relations for p(z) = (Imm(z))/m are proven in the same way as the corresponding ones in
Corollary A.1 of [1]. The proof in [1] simply relied on the fact that (Imm(z)) is the harmonic extension of 7p
to the complex upper half-plane and the behavior of p close to its local minima and thus is applicable equally
well in the current situation, due to Theorem 7.2.

7.1. Shape regular points

In the following definition, we introduce the notion of a shape reqular point which collects the properties of m
necessary for the proof of Theorem 7.1. Proposition 7.5 below explains how the statements of Theorem 7.1
are transferred to this more general setup. In fact, Lemma 4.8 (ii) and Proposition 6.1 show that, under the
assumptions of Theorem 7.1, any point 79 € supp pNI of sufficiently small density p(79) is a shape regular point
for m in the sense of Definition 7.4 below. By explicitly spelling out the properties of m really used in the proof
of Theorem 7.1 we made our argument modular because a similar analysis around shape regular points will be
applied in later works as well.

This modularity, however, requires to reinterpret the concept of comparison relations. In earlier sections we
used the comparison relation ~, < and the O-notation introduced in Convention 3.4 to hide irrelevant constants
in various estimates that depended only on the model parameters ¢, ¢z, cs from (3.10), ks from (4.16) and 6
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from (7.2), these are also the model parameters in Theorem 7.1. The model parameters in Theorem 7.2 are
given by ki, ..., ks in Assumptions 4.5 and @ in the definition of Iy.

The formulation of Definition 7.4 also involves comparison relations instead of carrying constants; in the
application these constants depend on the original model parameters. When Proposition 7.5 is proven, the
corresponding constants directly depend on the constants in Definition 7.4, hence they also indirectly depend
on the original model parameters when we apply it to the proof of Theorem 7.1. Since these dependences are
somewhat involved and we do not want to overload the paper with different concepts of comparison relations,
for simplicity, for the purpose of Theorem 7.1, the reader may think of the implicit constants in every ~-relation
depending only on the original model parameters ¢y, c2, c3, k3 and 6.

Definition 7.4 (Admissibility for shape analysis, shape regular points). Let m be the solution of the Dyson
equation (2.3) associated to a data pair (a,S) € As, x 2.

(i) Let 70 € R, J C R be an open interval with 0 € J, ©: J — C and r: J — A be continuous functions and
b e A. We say that m is (J, ©,b, r)-admissible for the shape analysis at 79 if the following conditions are
satisfied:

(a) The function m: H — A has a continuous extension to 79 + J, which we also denote by m. The
relation (6.1) and the bounds (6.7a) as well as (6.7b) hold true for all w € J.

(b) The function O satisfies the cubic equation (6.3) for all w € J with the coefficients

ps =1+ O(p),

p2 = o +i3¢p + O(p* + plo]),

= —2p*p +ir1po + O(p° + p?lo]),
E(w) =r(1+vw))+0(p),

where p := (Imm(7g))/7 and ¢,k > 0 as well as 0, k1 € R are some parameters satisfying (6.6) and
K, |k1] ~ 1. The function v: J — C satisfies (6.5).

(¢) The element b € A in (6.1) fulfils b = b* + O(p) and b+ b* ~ 1.

(d1) If p > 0 then © and r are differentiable in w at w = 0.

(d2) If p = 0 then (6.8) holds true for all w € J and Re © is non-decreasing on the connected components
of {we J: ImB(w) = 0}.

(ii) Let 70 € R and J C R be an open interval with 0 € J. We say that 79 is a shape regular point for m on
J if m is (J, ©,b, r)-admissible for the shape analysis at 7 for some continuous functions ©: J — C and
r:J— Aaswellas b € A.

The key technical step in the proof of Theorem 7.1 is the following Proposition 7.5; it shows that Theorem 7.1
holds under more general weaker conditions, in fact shape admissibility is sufficient. For the proof of Theorem
7.1 we will first check shape regularity from Proposition 6.1 and then we will prove Proposition 7.5; both steps
are done in Section 7.4 below.

Proposition 7.5 (Theorem 7.1 under weaker assumptions). For the solution m to the Dyson equation (2.3),
we write v =7 Tmm, p = (v).

There are thresholds p. ~ 1 and §, ~ 1 such that if p(10) < p« and 7o € supp p is a local minimum of p as
well as a shape regular point for m on J with an open interval J C R satisfying 0 € J then (1.3) holds true for
all w € [—04,0,)|NJ N D. Here, as in Theorem 7.1, h = h(m) € A with h ~ 1 and D as well as U depend only
on the type of 19 in the following way:

Suppose that 19 € Osupp p is the infimum of a connected component of supp p. If p(t) = 0 for all T € [19—e, T9]
with some e ~ 1 (e.g. 7o = inf supp p) and |inf J| 2 1, then the conclusion of case (a) in Theorem 7.1 holds true
with A =1 and v(79) = 0.

If 79 # inf supp p and 71 := sup((—o0, 70) Nsupp p) is a shape reqular point for m, A <1 with A =19 — 71
and |o(10) — o(11)| < |70 — 71|*/? then the conclusion of case (a) in Theorem 2.1 holds true with this choice of
A as well as v(m) = 0.

Similarly to (a), the statement of case (b) in Theorem I.1 can be translated to the current setup. The cases
(¢) and (d) of Theorem 1.1, cusp and internal minimum, respectively, hold true without any changes.

Furthermore, suppose that 79 € supp p is a shape regular point for m and p(t9) = 0, then 19 s a cusp if
o(10) =0 and 19 is an edge, in particular 7o € dsupp p, if o(19) # 0.
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Similarly, the following Proposition 7.6 is the analogue of Theorem 7.2 under the sole requirement of shape
admissibility. Owing to the weaker assumptions, the error term in (7.9) as well as the result in (7.10) of
Proposition 7.6 are weaker than the corresponding results in Theorem 7.2. We will first show Proposition 7.6
and then conclude Theorem 7.2 by using extra arguments for the stronger conclusions; both proofs will be
presented in Section 7.5 below.

At a shape regular point 79 € R, we set I := v/27k/(21) (cf. Theorem 7.7 (i) below), where x = k(1) and
1 = 1(19) are defined as in Definition 7.4 (i) (b).

Proposition 7.6 (Behaviour of p near almost cusp points, set of minima of p under weaker assumptions). Let
m be the solution to the Dyson equation, (2.3), and p = m—(Imm). The following statements hold true

(i) There are thresholds p. ~ 1, o ~ 1 and §, ~ 1 such that if 7o € supp p is a shape regular point for m on
an open interval J C R with 0 € J, p(19) < ps and 79 is a local minimum of p then we have

(a) (Left edge with small gap) If 79 € Osupp p \ {inf supp p} is the infimum of a connected component of
supp p, |o(10)| < o« and 71 := sup((—oo, 79) Nsupp p) is a shape regular point satisfying A < 1 for
A =19 —7 and |o(0) — o(11)| < |70 — 71|13 then (L5a) for all w € [0,0.]N J.

(b) (Right edge with small gap) If 7o € Osupp p\ {supsupp p} is the supremum of a connected component
then a similar statement as in the case of a left edge holds true.

(c) (Cusp) If 19 ¢ Osupp p and p(79) = 0 then (1.5b) holds true for all w € [—d4, 6] N J.
(d) (Internal minimum) If 7o ¢ Osupp p and p(19) > 0 then

o7+ ) = p(ro) + T30 (w) + O (%w < p(ro)) + \P(w)?) ,
w O p(10) (79)

for all w € [=04, 0, N J.

(i) Let I C R be an open interval with supp pNI # @ and |I| < 1 and let m have a continuous extension to the
closure I of I. Let J C R be an open interval with 0 € J and dist(0,0J) > 1 such that J+ (0 supp p)NI C I.
We assume that all points in (Osuppp) NI are shape regular points for m on J and all estimates in
Definition 7.4 hold true uniformly on (dsuppp) N 1. If |o(10) — o(m1)| < |70 — 71Y3 uniformly for all
70,71 € (Osupp p) NI then supp pNI consists of K ~ 1 intervals, i.e., there are aq,...,ax € dsupp pUoI
and Bi,...,Px € OsupppUII, a; < B;i < aiy1, such that (2.6) holds true with Iy replaced by I and
Bi —a; ~14f B; £supl and a; # inf I.

If M, is defined as in (1.1) then there is a threshold p, ~ 1 such that if, in addition to the previous
conditions in (it), all points of (M,, Udsupp p) NI are shape regular points for m on J and all estimates
in Definition 7.4 hold true uniformly on (M,, Udsupp p) NI then, for v € M, , we have |a; — | ~ 1 and
1Bi =¥l ~ 1 if a; #inf I and B; # sup I. Moreover, for any v1,7v2 € M,,, we have either

=l ~1 or =2l Smin{p(n), ()} (7.10)
If p(71) =0 or p(y2) = 0 then, for 41 # 72, only the first case occurs.

An important step towards Theorem 7.1 and Proposition 7.5 will be to prove similar behaviours for © as Im ©
is the leading term in v. These behaviours are collected in the following theorem, Theorem 7.7. It has weaker
assumptions than those of Theorem 7.1 and those required in Proposition 7.5 — in particular, on the coefficient
p1 in the cubic equation (6.3). However, these assumptions will be sufficient for the purpose of Theorem 7.7.

Theorem 7.7 (Abstract cubic equation). Let ©(w) be a continuous solution to the cubic equation
130(W)? + p20(W)? + O (w) + wE(W) = 0 (7.11)
for w e J, where J C R is an open interval with 0 € J. We assume that the coefficients satisfy

s =¥+ O(p),

p2 = o + 3ivp + O(p* + plo]),

= =2p"Y + O0(p® + plo]),
=) = #(1 +1(w)) + O(p)
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with some fized parameters ¥ >0, p > 0, 0 € R and k ~ 1. The cubic equation is assumed to be stable in the
sense that

Y+o*~ 1. (7.12)
Moreover, for all w € J, we require the following bounds on v and ©:
() S lwl'?, (7.13a)
Ow)| < lw|'/?. (7.13D)
Then the following statements hold true:

(i) (p > 0) For any 1L, ~ 1, there is a threshold p. ~ 1 such that if p € (0, p] and |o| < L. p? then we have
T O(w) = pWnin (T ) + O (min{p~" e, |w[>/ 14
m (w) = P¥min 3 + (mln{p |w|a |w| })7 (7- )

with T := /27 /(24). Note that T ~ 1 if p. ~ 1 is small enough.

(i) (p =0) If p = 0 and we additionally assume ImO(w) > 0 for w € J, Re© is non-decreasing on the
connected components of {w € J: ImO(w) = 0} as well as

Im v(w)] < Im O(w) (7.15)

for all w € J then we have
(a) If o = 0 then Im O(w) has a cubic cusp at w =0, i.e.,

Im O (w) = §(%)1/3|w|1/3 +O(Jw[??). (7.16)

(b) If o0 # 0 then Im ©(w) has a square root edge at w = 0, i.e., there is ¢, ~ 1 such that

Im O(w) c£1/3\pedge(%) + O((Jv(w)] + e(w))e(w)), if signw = signo, (7.17)
0, if w € —sign o]0, ci|o|?],
where A € (0,00), ¢ € (0,00) and e: R — [0,00) are defined by
A = min{;—ﬁ%,l}, c= 3\/5@;1//62, g(w) == min{%,|w|l/3}. (7.18)
We have A ~ |o|? and ¢ ~ 1. Moreover, for signw = sign o, we have
O(w)] < ew). (7.19)

7.2. Cubic equations in normal form

The core of the proof of Theorem 7.7 is to bring (7.11) into a normal form by a change of variables. We will
first explain the analysis of these normal forms, especially the mechanism of choosing the right branch of the
solution based upon selection principles that will be derived from the constraints on © given in Theorem 7.7.
Then, in Section 7.3, we show how to bring (7.11) to these normal forms.

In the following proposition, we study a special solution () to a one-parameter family of cubic equations
in normal forms with constant term A(A) (or 2A())), where A()\) is a perturbation of the identity map A — A.
Here, a-priori, the real parameter X is always contained in an (possibly unbounded) interval around 0. This
range of definition will not be explicitly indicated in the statements but will be explicitly restricted for their
conclusions. We compare the solution to this perturbed cubic equation with the solution to the cubic equation
with constant term A. Depending on the precise type of the cubic equation, the choice of the solution is based
on some of the following selection principles

SP1 X — Q(\) is continuous

SP2 Q(0) = Qg for some given 5 € C
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SP3 Im(Q()\) — Q(0)) >0,

SP4’ ImA(N)| < 4|AImQ(N) for some v > 0 and Re()\) is non-decreasing on the connected components of
{A: Im Q(\) = 0}.

We use the notation SP4’ to distinguish this selection principle from SP-4 which was introduced in Lemma 9.9
of [1].
We will make use of the following standard convention for complex powers.

Definition 7.8 (Complex powers). We define C\ (—00,0) — C, ¢+ (" for v € C by (7 := exp(ylog (), where
log: C\ (—00,0) — C is a continuous branch of the complex logarithm with log1 = 0.

With this convention, we record Cardano’s formula as follows:

Proposition 7.9 (Cardano). The three roots of Q* — 3Q +2(, ¢ € C, are ﬁ+(§), (AZ_(Q) and ﬁo(g) which are
defined by

iv3

0(Q) = 5(24(Q) + 2 () £ (@1 ()~ B(Q), Do) = —~(@4() +8-(),  (7:20)

N =

where

(C£/C-1)V3, if Re¢ > 1,
(C£iV/1=C)Y3,  if|Re(| <1,
~(=¢FVE =D ifRe(< -1

Proposition 7.10 (Solution to the cubic in normal form). Let Q()\) satisfy SP1 and SP2.

D4(C)

(i) (Non-zero local minimum) Let Qo = /3(1 + x1) in SP2 and Q(\) satisfy
QA)? 43N +2AN) =0,  AX) = (1+ x2 + w(A)A + x3, (7.21)
with |u(N)| < A3, a > 0. Then there exist § ~ 1 and x. ~ 1 such that if o, |x1l, [x2l, |x3] < x» then
Q) = Q0 = Q) = iVB+ O((a + |xa| + |xs]) min{|Al, [A[*/*}) (7.22)

for all X € R satisfying |\| < §/a3, where ﬁ(/\) = Dqa(N) +iV3Peyen(N) and Pogq and Peyen are the odd
and even part of the function ®: C — C, ®(¢) = (/1 + 2+ )3, respectively.
Moreover, we have for |\| < &/a® that

12(X) — Qo] < min{|A[, A/}, (7.23)
In the following, we assume that Q(N\), in addition to SP1 and SP2, also satisfies SP3 and SP’.
(i) (Simple edge) Let Qo = 0 in SP2 and Q(X) be a solution to
Q*(\) +A(N) =0, AN = (14 p(\)A. (7.24)

If |V < A22INY3 for the v > 0 of SP4’ then there is c. ~ 1 such that

00 = A0) + O(HMINY), ) = {f:i)m, pheer ) )
Moreover, we have Tm Q(X\) = 0 for X € [—c.y™2,0].
(iii) (Sharp cusp) Let Qo = 0 in SP2, v ~ 1 in SP4’ and Q()) be a solution to
D)+ AN =0, AN = (14 (W)X (7.26)
If |p(N)| S INY/2 then there is 6 ~ 1 such that
00 = 00) + ORI, D) = 2 {Elffﬁi?f ATy
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(iv) (Two nearby edges) Let Qo = s for some s € {£1} in SP2, v ~ 1 in SP4’ and Q(\) be a solution to
QN\)? = 3Q(\) +2A(N) =0, AN = (14 p(A)A + s. (7.28)

Then there are § ~ 1, o ~ 1 and v, ~ 1 such that if |u(\)| S F|NY3 for some 7 € [0,7.] then

(a) We have
Q) = Qi (1 +A]) + O(lu(A)| min{ A2, |N[2}), (7.29)
for all X € $(0,28/3%). (Recall the definition of Qy from (2.20).) Moreover, for all A € s(0,25/33],

we have
Q) = Qo| < min {|A[V/2,[A]"/%}. (7.30)

(b) For all A € —s(0,2 — ¢7], we have

Im Q(\) <52 (7.31)

(c) We have
Im Q(—s(2 + ¢7)) > 0. (7.32)

The core of each part in Proposition 7.10 is choosing the correct cubic root. For the most complicated part
(iv), we state this choice in the following auxiliary lemma. For its formulation, we introduce the intervals

Il = 78[7)\1,0), IQ = 78(0, )\2], Ig = 75[)\3,)\1], (733)

where we used the definitions

0

Ap = 2¥, A2 =2 — 07, Az =24 07. (7.34)

These definitions are modelled after (9.105) in [1]. We will choose 7 = Al/3 in the proof of Theorem 7.7 below.
Then A; corresponds to an expansion range d in the w coordinate. Note that with the above choice of 7, we
obtain the same A\; as in (9.105) of [1]. However, Ay and Ag differ slightly from those in [1], where A 3 were set
to be 2 F g|o|. Nevertheless, we will see below that 5 ~ |o| but they are not equal in general.

For given §, o ~ 1, we will always choose 7, ~ 1 so small that 7 < v, implies
)\124, 1< <2< A3 <3

Therefore, the intervals in (7.33) are disjoint and nonempty.

Lemma 7.11 (Choice of cubic roots in Proposition 7.10 (iv)). Under the assumptions of Proposition 710 (iv),
there are 0, 0,7V« ~ 1 such that if 7 < 7. then we have

Qlfk = Q-i- o A|Ik
for k=1,2,3. Here, (AZ+ is defined as in (1.20).
Proof. The proof is the same as the one of Lemma 9.14 in [1] but SP-4 in [1] is replaced by SP4’ above. In

that proof, SP-4 is used only in the part titled “Choice of as” We redo this part here. Recall that az = 0, =+
denoted the index such that Q|;, = Q,, o A|;, and our goal is to show as = +. Similarly as in [1], we assume
without loss of generality s = —1. Since limy;_; _(A) = 2 and ©(0) = —1 by SP2, we conclude a3 # —. (In
the corresponding step in [1], there was a typo: €24 (—1 4 0) = 2 should have been Q_(—1 4 0) = 2, resulting
in the choice az = +. This conclusion is only used in the bound (9.137) of [1] which still holds true. The rest
of the proof is unaffected.)

We now prove as # 0. To that end, we take the imaginary part of the cubic equation, (7.28), and obtain
3(Re)? — 1)Im Q = —2AIm p(\) + (Im Q)3. (7.35)
Suppose that a; = 0. From the definition of g, A(A) = (14 u(A\)A — 1 and |u(A)] < F|AY/3 we obtain

ReQo(A(N) < =1 — ¢|A[Y2+ CFY20¥3, |Im Qo(A(N)| S 723, (7.36)
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(compare (9.120) in [1]). Thus, from (7.35), we conclude
A2 Im Q < [AIm Q

for small A as |Tm p(A)| < Im Q by SP4” and |Im A| = |A||Im p|. Hence, Im Q(\) = 0 for small enough |A|. Thus,
Re ) is non-decreasing for such A by SP4’, but from 2(0) = —1 and the first bound in (7.36) we conclude that
Re () has to be decreasing if Q(\) = Qo(A(A)). This contradiction shows ay # 0, hence, ay = +. The rest of the
proof in [1] is unchanged. O

Proof of Proposition Z.10. For the proof of (i), we mainly follow the proof of Proposition 9.3 in [1] with v4 = x1,
5 = X2 and v = x3 in (9.35) and (9.37) of [1].

Following the careful selection of the correct solution of (7.21) (cf. (9.36) in [1]) by the selection principles
till above (9.50) in [1] yields Q(A) = Q(A())) and hence, in particular, Q(xs) = Qo = V3(i+ x1). (2= Q4 in
[1].) By defining

Ao(A) = (14 x2 + (M)A
and using |u(N)] < a|A\|'/? instead of (9.54) in [1], we obtain

A 5

Q(80(N) = ©(0) = QN ~ 2(0) + O <<|><2| + IO W) = Q(N) —(0) + O((ar + [xl) min{|Al, A/*})

instead of (9.56) in [1]. Thus, (9.57) in the proof of Proposition 9.3 in [1] yields
Qxs + Ao(N) = Qxs) = 2N) = O(0) + O((a + xal + [xsl) min{|Al, A*/2}).

Thus, we obtain (7.22) since Q(x3) = Qo and Q(0) = iy/3. We remark that (7.23) is exactly (9.53) in [1].

The proof of (ii) resembles the proof of Lemma 9.11 in [1] but we replace assumption SP-4 of [1] by SP4’.
Since Q(\) solves (7.24), there is a function A: R — {+} such that Q(\) = (NZA()\) (A(N)) for all A € R. Here,
ﬁi: C — C denote the functions

icl/2, if Re¢ > 0,

Qe(Q) == {(C)”Qv if Re¢ < 0.

(Note that they were denoted by € in (9.78) of [1]). By assumption, there is ¢, ~ 1 such that |u())] < 1 for
all |\| < c.y~2. Hence, by SP1, we find at,a_ € {£} such that A(\) = ax for A € £[0, c.y~2].
For A > 0, we have
ImQ_(A(N) = =AY2 4 O(u(A)AV?).
Thus, possibly shrinking ¢, ~ 1, we obtain ImQ_(A(X)) < 0 for A € (0, ¢,y~2]. Therefore, the choice a; = —
would contradict SP3 and we conclude a4 = +.

We now prove that a_ = +. Assume to the contrary that a_ = —. For small enough ¢, ~ 1, we have

Re @ (A(V) = [AY*Re (1 + u(X)/2 ~ ]A[/2,
Im @ (AQV) = [AY2Im (14 (W) /) < A/

for A € [—c,y~2,0) by the definition of O_ and A. Hence, taking the imaginary part of (7.24) and using SP4’
yield
AP Im Q(A) S v[AIm Q(N)

for A € [—c,y72,0). By possibly shrinking ¢, ~ 1, we obtain ImQ(\) = 0 for A\ € [—c,y~2,0). Thus, SP4’
implies that Re €2 is non-decreasing on [—c¢,v~2,0) which contradicts Re Q_(0) = 0 and Re Q_(A(X)) ~ |A[/2 >
0 for A € [—c,y~2,0) with small enough ¢, ~ 1. Hence, a_ = + which completes the selection of the main term
Q = QO in (2.25). The error term in (7.25) follows by estimating Q(A())) directly.

For the proof of (iii), we select the correct root of (7.26) as in the proof of Lemma 9.12 in [1] under SP4’
instead of SP-4. Since Q(\) solves (1.26) there is a function A: R — {0, +} such that

Q) = Qan(A(N)
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for all A € R. Here, we introduced the functions Qa: C — C, a=0,+£, defined by

Q0(¢).

O g s
— (=03, if Re¢ <0, 2
(Note that they were denoted by €, a € {0,£}, in (9.87) of [1]
A(X) = 0. By choosing 6 ~ 1 small enough and using |pu(A)| < |
some constants ax and for all A € (0, d].

We will now use SP3 and SP4’ to determine the value of a4 and a_. As in (9.91) of the proof of Lemma
9.12 in [1], we have

.) By SP1, A can only change its value at \ if
M3, we have A(\) = a; and A(—)\) = a_ for

V3

= A O(A?) = V2 — CAP2.

+(sign A)Im Q4 (A(N))
By possibly shrinking & ~ 1, we conclude Im Q_(A(X)) < 0 for A € (0,6] and Im Q4 (A(N)) < 0 for X € [—6,0).
Hence, owing to SP3, we conclude a4 # — and a_ # +.
Next, we will prove a; # 0. For A > 0, we have

ReQo(A(N) < —AY3 4+ CA23, ImQo(A(N)) S A%/5.
Thus, assuming ©(A) = Qo(A())) and estimating the imaginary part of (7.26) yield
A2BIm Q) < (Im Q)2 + [Tm AN)] < [ATm Q).

Hence, we possibly shrink § ~ 1 and conclude Im Q(\) = 0 for A € [0, §]. Therefore, Re 2(\) is non-decreasing
on [0,6] by SP4’. Combined with €y = 0 and ReQy(A(N)) < —A/3, we obtain a contradiction. Hence, this
implies a4+ # 0, i.e., ay = +.

A similar argument excludes a_ = 0 and we thus obtain a_ = —. Now, (7.27) is obtained from the definition
of O = (~2+, which completes the proof of (iii).

For the proof of (iv), we remark that all estimates follow from Lemma 7.11 in the same way as they followed in
[1] from Lemma 9.14 in [1]. Indeed, (7.29) is the same as (9.129) in [1]. The bound (7.30) is shown analogously
to (9.129) and (9.130) in [1]. Moreover, (2.31) is (9.137) in [1] and (7.32) is obtained as (9.109) in [1]. This
completes the proof of Proposition 7.10. O

7.3. Proof of Theorem 1.7

Before we prove Theorem 7.7, we collect some properties of Wegge and Wp,i, which will be useful in the following.
We recall that Weqge and Ui, were defined in (7.1).

Lemma 7.12 (Properties of Uiy and Weqge).  (7) Let Q be defined as in Proposition Z.10 (i). Then, for any

A € R, we have

Vin(A) = —=Im [2N) — Q(0)]. (7.37)

3
(i) Let §+ be defined as in (1.20). Then, for any A\ > 0, we have

1 ~
Uedge(A) = S5 QL (14 2)). (7.38)

(i@i) There is a function E [0,00) — R with uniformly bounded derivatives and \TI(O) = 0 such that, for any
A >0, we have

A\1/2 ~ ~
Weage(\) = 5= (1+ (), [FN)] < min{), A3 (7.39)
(iv) There is e, ~ 1 such that if |e| < e, then, for any A > 0, we have
Vedge((1+)A) = (1 + )2 Wegge(N) + O(e min{ N>/, A\1/3}). (7.40)

We remark that (7.38) was present in (9.127) of [1] but the coefficient 1/(2v/3) was erroneously missing there.
The relation in (7.40) is identical to (9.145) in [1]. Moreover, we use the proof of [1].
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Proof. The parts (i), (i) and (iii) are direct consequences of the definitions of Wi, €, Uodge and Q..

For the proof of (iv), we choose e, < 1/2 such that 1 +¢ ~ 1 for |¢] < e,. If 0 < XA < 1 then (7.40) follows
from (7.39). For A > 1, we choose ¢, = 1/3 and then (7.40) is a consequence of (7.38) above as well as the
stability of Cardano’s solutions, (9.111) in Lemma 9.17 of [1]. O

In the following proof of Theorem 7.7, we will choose appropriate normal coordinates 2 and A in each case
such that (7.11) turns into one of the cubic equations in normal form from Proposition 7.10. This procedure
has been similarly performed in the proofs of Proposition 9.3, Lemma 9.11, Lemma 9.12 and Section 9.2.2 in
[1]. However, owing to the weaker error bounds here, we include the proof for the sake of completeness.

Proof of Theorem 2.7. We start with the proof of part (i) (cf. Proposition 9.3 in [1]). Owing to (Z.13b) and
[T min(N)| < [A|Y/3, the statement of (7.14) is trivial for |w| > 1 since the error term dominates. Therefore, it
suffices to prove (7.14) for |w| < § with some § ~ 1.

By possibly shrinking p. ~ 1, we can assume that |o| < IL.p? is small enough such that ¢ ~ 1 by (7.12). In
the following, we will choose w-independent complex numbers 7,, 7,71, ..,77 € C such that certain relations
hold. For each choice, it is easily checked that |yx| < p for k = v,0,1,...,7. We divide (7.11) by p3 and obtain

©° +i3p(1 +12)0% = 20°(1+7)O + (1 + 70 + (1 + %)u@u))gw =0, (7:41)
using |ps| ~ 1 and |o| < II.p?%. We introduce the normal coordinates
w 1 _/p? .
A=T50 o) = \/5[(1—1—73);@(?)\) +1+74}, (7.42)

where I' == \/27x/(21)). Note that T' ~ 1 since ¢ ~ 1. A straightforward computation starting from (7.41)
shows that Q(X) and A(X) satisfy (7.21) with

e
AN = (1475 + p(AN)A + 76, N@%:O+Vﬂ(?ﬂ)

ie, X2 =75, x3 = 76 and a = p by (7.13a). Hence, from (7.22) and (7.42), we obtain 6 ~ 1 and x. ~ 1 such
that

p 1 w o . 1/3 2. 2/3
ImO(w) =Im —[QN) — Q| = \Pmin(F—)+O( min{|A[, |\ + p“ min{| A, A )
(w) 1+%¢§() ol=p pe p”min| AL, [A[/7} + p” min{[A], A7}
for [A\| < §/p3 if p < min{x.,p«}. Here, we also used (7.23) to expand p/(1 + v3) and (7.37). By employing
(7.42) again and replacing p,. by min{x«, p«}, we conclude (7.14).

We now turn to the proof of part (ii) of Theorem 7.7. Since p = 0, the cubic equation (7.11) simplifies to the

following equation
PO(w)? + 0O (w)? + k(1 + v(w))w = 0. (7.43)

We now prove Theorem 7.7 (ii) (a), i.e., the case 0 = 0 (cf. Lemma 9.12 in [1]). For any ¢ ~ 1, the assertion is
trivial for |w| > ¢ since the error term dominates |w|'/? and Tm ©(w) in this case (compare (Z.13b)). Therefore,
it suffices to prove the lemma for |w| < § with some § ~ 1. We choose the normal coordinates

oo = (9) e,

K

Ai=w

and notice that the cubic equation (7.43) becomes (7.26) with u(A) = v(\). The bound (Z.13a) implies |u(X)] <
IA|['/3. Thus, (Z.16) is a consequence of Proposition 7.10 (iii). This completes the proof of (ii) (a).
For the proof of Theorem 7.7 (ii) (b), we first show the following auxiliary lemma (cf. Lemma 9.11 in [1]).

Lemma 7.13 (Simple edge). Let the assumptions of Theorem 1.7 (ii) hold true. If o # 0 then there is ¢, ~ 1
such that

VEIZ[ 4 0((vw) + ol Ow))[2]%),  if signw = signa, [w] < e.lof,

0, if signw = —signo, |w| < co]?.

ImO(w) = { (7.44)

Moreover, we have |©(w)| < |w/a|Y/? for |w| < cio]?.
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Proof. Dividing (7.43) by ko yields

(1 + %e(m) IO y(m)g —0. (7.45)

K

We introduce A, Q(A) and p(A) defined by

w 1 14+v(oA)
A= — Q(A) = —=06(cA A)i=——————— —1
O" ( ) \/E (U )) /'[/( ) 1 +1/)O'71®(O'A)
In the normal coordinates A and Q()), (7.45) viewed as a quadratic equation, fulfills (7.24) with the above
choice of p()). Since [1po10(oN\)| < |o|~2/3|A\[*/? by (Z.13h), there is ¢, ~ 1 such that

[N S (X)) + 1ol O] S [ol *2AM2, Imp(V)] < lo] " Tm ©(a)) (7.46)
for |\ < cilo|? by (Z.13a), (7.13b) and (7.15). Hence, we apply Proposition 7.10 (ii) with v ~ |o|~! in SP4’

and obtain (7.44) with an error term O(|u(\)||A|*/?) instead, as well as |O(w)| < |o|~1/?|w|*/2. Thus, the first
bound in (7.46) completes the proof of (7.44). O

From the second case in (7.44), we conclude the second case in (7.17). The first case in (7.17) and (7.19) are
trivial if |w| = 1 due to (7.13b) and (7.4a). Hence, it suffices to prove this case for |w| < § with some § ~ 1. If
|o| > 1 then the first case in (7.17) also follows from (7.44) with § := c.|o|?. Indeed, from (7.39), we conclude

w2 5 2
ot — /3 hed} 3/2
VE[E]T = Ao < )+ Oll*2),

where ¢ and A are defined as in (7.18). Since |w| < e(w) for |w| < § and e(w) defined as in (7.18) we obtain the
first case in (Z.17) if |o| > 1. Similarly, |©(w)| < |w/c|'/? by Lemma 7.13 yields (7.19) if |w| < 6 and |o| 2 1.
Hence, it remains to show the first case in (7.17) and (7.19) if |o] < o, for some o, ~ 1. In fact, we choose
ox« ~ 1 so small that ¢ ~ 1 by (£.12) and A < 1 for |o| < 0. In order to apply Proposition 7.10 (iv), we
introduce

%w, Q) :3%@(%\)%1@0, u(N) :y(%x) (7.47)

(cf. (9.96) and (9.99) in [1]). The cubic (7.43) takes the form (7.28) in the normal coordinates A and Q(\) with
the above choice of u(A) and s = signo in (7.28). By (Z.13a), we have |u(A)| < £1/3|)\|1/3. We set 7 := A1/3,
Therefore, Proposition 7.10 (iv) and (7.38) yield § ~ 1 and possibly smaller o, := min{oy, .} ~ 1 such that the
first case in (7.17) holds true for |o| < 0. and |w| < § as p(N\) = v(w) and A ~ |o|3. Moreover, (7.30) implies
(7.19) for |w| < 4. This completes the proof of (ii) (b) and hence of Theorem 7.7. O

A=

7.4. Proof of Theorem 7.1 and Proposition 7.5

In this section, we prove Theorem 7.1 and Proposition 7.5. Some parts of the following proof resemble the
proofs of Theorem 2.6, Proposition 9.3 and Proposition 9.8 in [1]. However, owing to the weaker assumptions,
we present it here for the sake of completeness.

Proof of Theorem Z.1 and Proposition Z7.5. We will only prove the statements in Proposition 7.5. Theorem 7.1
is a direct consequence of this proposition as well as Lemma 4.8 (ii) and Proposition 6.1.

Along the proof of Proposition 7.5, we will shrink 4, ~ 1 such that (7.3) holds true for all w € [—d,, d.]NJND.
We will transfer the expansions of © in Theorem 7.7 to expansions of v by means of (6.1). To that end, we take
the imaginary part of (6.1) and obtain

v(10 +w) = v(10) + 7 'Reblm O(w) + 7 TmbRe O(w) + 7~ Tm r(w). (7.48)

We first establish (7.3) at a shape regular point 7y € (supp p) \ 9 supp p which is a local minimum of 7 — p(7).
If p = p(19) = 0, ie., the case of a cusp at 79, case (c), then o = 0. Indeed, if o were not 0, then, by the
second case in (7.17), Im ©(w) would vanish on one side of 79. By the third bound in (6.8), this would imply
the vanishing of p as well, contradicting to 79 € supp p \ dsupp p. Hence, for any 6. ~ 1, (Z.16) and (7.48)
immediately yield (7.3) for w € [~6,,d.] N J N D with h = (27)~'bv/3(k/4)'/? using (6.7a), (6.7b) and b = b*
due to p = 0.
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We now assume p > 0 which corresponds to an internal nonzero minimum at 79, case (d). Thus, the following
lemma implies that the condition |o| < IL.p?, 0 = 0(79), needed to apply Theorem 7.7 (i) is fulfilled. We will
prove Lemma 7.14 at the end of this section.

Lemma 7.14 (Bound on |o| at nonzero local minimum). There are thresholds p. ~ 1 and I, ~ 1 such that
|o(70)| < ILp(70)?

for each shape regular point 19 € supp p which is a local minimum of p and satisfies 0 < p(10) < px.

Hence, (7.14), (7.48) and (6.7b) yield (7.3) with p = pI'~'/% and h = 7~ 'T''/3Reb. Here, we also used
PlOW)| +10(w)I* + |w| +min{p~fwl, [w[**} S %1(le SP°)+ (W) (7.49)

which is a consequence of (6.7a), (Z.4b) for |w| < 1, as well as Reb ~ 1 and Imb = O(p). This completes the
proof of (7.3) for shape regular points 7y € (supp p) \ dsupp p, cases (c¢) and (d).

We now turn to the proof of (7.3) at an edge 79, case (a), i.e., for a shape regular point 79 € dsupp p. We
first prove a version of (7.3) with A in place of A, (7.50) below. In a second step, we then replace A by A to
obtain (7.3).

Since 19 € dsupp p, we have p = p(79) = 0. Therefore, v(79) = 0 since (-) is a faithful trace and v(7p) is pos-
itive semidefinite. As 79 € dsupp p, we have (1) # 0. Indeed, assuming o(79) = 0, using Theorem 7.7 (ii) (a),
taking the imaginary part of (6.1) as well as applying the third bound in (6.8) and the second bound in (6.7a)
yield the contradiction 79 € (supp p)\ 9 supp p. Recalling the definitions of A and ¢ from (7.18), (7.48) and (7.17)
yield

v(1o +w) = 1Ll (w)b + O(T(w)?), T(w) = 31/3\pedge(%) (7.50)
for any w € [—d,0.] N J N D with signw = signo and some J, ~ 1. Here, we also used b = b* ~ 1, the first
bound in (6.5), (7.19) and e(w) ~ ¥(w) by (Z.4b) to obtain

18@W)I* + lw| + (1I8(W)| + [w] + e(w))e(w)  F(w)”

for any w € [0, 0] N J N D with signw = signo and some d, ~ 1. This means that we have shown (7.3) with
¥ replaced by .

We now replace A by A in (2.50) to obtain (7.3). To that end, we first assume that |o] 2 1 and A < 1.
The second part of (7.17) implies o> < A <1 and thus |0 ~ A ~ 1. Since |o|> ~ A we conclude A ~ A.
Therefore, we obtain

&1/3qfedge(%) - (%)I/GAl/quedge(%) + O(min{|w]?'2, |w]/3}).

Here, we used Weqge(|A]) < [A|V/3 for |A| 2 1 and (7.39) otherwise. Applying this relation to (7.50) yields (7.3)
for w € [~64,6.] NJ N D with signw = signo, 8, ~ 1 and h:==71"'c(A/A)Y/6b ~ 1 for |o| > 1 and A < 1.

The next lemma shows that |o| 2 1 at the edge of a gap of size A 2 1. We postpone its proof until the end
of this section.

Lemma 7.15 (o at an edge of a large gap). Let 9 € dsupp p be a shape regular point for m on J. If |inf J| 2 1
and there is € ~ 1 such that p(17) = 0 for all T € [19 — &, 7] then |o| ~ 1. We also have |o| ~ 1 if supJ 2 1 and
p(1) =0 for all T € [19,70 + €] and some € ~ 1.

Under the assumptions of the previous lemma, we set A := 1 and obtain trivially A~1~A. Thus, (7.50)
implies (7.3) by the same argument as in the case A < 1.

For |o| < o, with some sufficiently small o, ~ 1, we will prove below with the help of the following Lemma 7.16
and (7.40) that replacing A by A in (7.50) yields an affordable error. We present the proof of Lemma 7.16 at
the end of this section.

Lemma 7.16 (Size of small gap). Let 79,71 € dsupp p, 11 < To, be two shape regular points for m on Jy and J,
respectively, where Jy, J1 C R are two open intervals with 0 € JoN Jy. We assume |inf Jo| 2 1 and supJ; 2 1

~

as well as (11,79) Nsuppp = &. We set A(rg) := 170 — 71. Then there is & ~ 1 such that if |o(m0)| < & and
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lo(m0) —o(m)| S |10 — 71|1/3 then
A(7o)

A(o)

The same statement holds true when 1o is replaced by 7 with A(11) == 710 — T1.

=14+ O(o(m)).

From Lemma 7.16, we conclude that there is v € C such that |y| < 1 and A = (1 + 'y|o|)£. By possibly
shrinking o, ~ 1, we can assume that |yo| < e, for |o| < oy, where €, ~ 1 is chosen as in Lemma 7.12 (iv).
Thus, (7.40) yields

ﬁl/wedge(%) = (%)USAl/?’\Ifedge(%) +O(min{|ZL3//62, wl¥2}).

Hence, choosing h := 7~ Lc(A/A)Y/Sb as before and noticing h ~ 1 yields (Z.3) in the missing regime. This
completes the proof of Proposition 7.5. As we have already explained, Theorem 7.1 follows immediately. [l

The core of the proof of Lemma 7.14 is an effective monotonicity estimate on v, see (7.51) below, which is
the analogue of (9.20) in Lemma 9.2 of [1]. Owing to the weaker assumptions on the coefficients of the cubic
equation, we need to present an upgraded proof here. In fact, the bound in (9.20) of [1] contained a typo. It

should have read as 1

(o(r))( + o (T)])

for 7 € D, satisfying II(7) > II.. However, this does not affect the correctness of the argument in [1].

(signo(7))dro(r) 2

Proof of Lemma 7.14. In the whole proof, we will use the notation of Definition 7.4. We will show below that
there are p, ~ 1 and II, ~ 1 such that

(sign k10(7))0rv(T) = p(T)~" (7.51)

for all 7 € R which satisfy p(7) € (0, p.] and |o(7)| > IL.p(7)? and are admissible points for the shape analysis.

Now, we first conclude the statement of the lemma from (7.51) through a proof by contradiction. If 7y satisfies
the conditions of Lemma 7.14 then 9, p(m9) = 0 as 7o is a local minimum of p. Assuming |o(70)| > IL.p(79)?
and applying (-) to (Z.51) yield the contradiction 9, p(9) > 0.

For the proof of (7.51) we start by proving a relation for d,v(7). We divide (6.1) by w, use ©(0) = 0 and
r(0) = 0 as well as take the limit w — 0 to obtain d,m(7) = b9,,0(0) + 9,,7(0). Taking the imaginary part of
the previous relation yields

70;v(7) = Im [b0,,0(0)] 4+ Im I, 7(0). (7.52)

We divide (6.7b) by w, employ the first bound in (6.7a) and obtain

2
\F&QH51+\9&2\51+B4-
w w p
By sending w — 0 and using (0) = 0, we conclude
IIma,r(0)] < 1. (7.53)

We divide (6.3) by piw, take the limit w — 0 and use lim,_,o ©(w) = ©(0) = 0 to obtain

CEOa _ (k4 O(p))(ik1po +20°% + O(p® + p?|o]))
lal® Ap*l + O(p +|o])|? + p?[r10 + O(p* + plo])|?
K ik10 + 2p¢ + O(p* + plo])
A2+ Op + o)) + [k + O(p? + plo])[?’

9.,0(0) =

(7.54)

where we employed |u1|2 = 4p*|) + O(p + |o|)|? + p?|k10 + O(p? + plo])|? as p,¢, k1,0 € R. Thus, we obtain

pRed,0(0)| < Pt plo]

. 7.55
S T 0G T IoDE + ko ¥ O 1 o]l (7.35)
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Therefore, using b = b* + O(p), b+ b* ~ 1, k ~ 1 and |k1| ~ 1 yields

-1

. p_lol+O(p+|o]) + O(p + plo]) lo| 1
sign k10)Im [b0,0(0)] = 2 -
(gl BO.OON 2 1252 1 pllZ + 216 + Olp + 10D F < o2 + 72 »

Here, in the first step, the error term O(p + p|o|) in the numerator originates from the second term in

(sign k10)Im [b0,,0(0)] = (sign k10) (Re bIm 0,,0(0) + Im bRe 9,,0(0))

(7.56)
2 (sign £10)Im 9,,0(0) — p|Re 9,,60(0)]

and applying (7.55) to it. We applied (7.54) to the first term on the right-hand side of (7.56). In the last
estimate, we used v, |o|,p <1 and |o| > I1,p? for some large IT, ~ 1 as well as p < p, for some small p, ~ 1.
Employing |o| > IL.p? once more, the factor |o|/(|o|> + p?) on the right-hand side scales like (1 + |o])~ > 1.
Hence, we conclude from (7.52) and (7.53) that

(signk10)0;0(7) 2 % +0(1).

By choosing p, ~ 1 sufficiently small, we obtain (7.51). This completes the proof of Lemma 7.14. O

Proof of Lemma Z.15. We prove both cases, p(7) = 0 for all 7 € [rg — &, 79| or for all 7 € [rg, 70 + €], in parallel.
We can assume that |o| < 7 for any & ~ 1 as the statement trivially holds true otherwise. We choose (4, g, vx)
as in Proposition 7.10 (iv), A as in (7.18), normal coordinates (X, (X)) as in (7.47) as well as 7 = A3 and
s =signo. We set A := 2+ oAl/3 (cf. (7.34)) and w3 := A)3/2. There is & ~ 1 such that A < 3 for |o| < &
due to A ~ |o]? by (6.6) and the definition of A in (7.18). Hence, w3 < C|o|® and, by possibly shrinking
o ~ 1, we obtain —wzsigno € J for |o| < 7 due to the assumption on J (|inf J| 2 1 or supJ = 1). From
(7.32), we obtain Im Q(—A3signo) > 0. Hence, Im O(—wssigno) > 0. From the third bound in (6.8), the
second bound in (6.7a) and w3 < |o]3, we conclude v(—wssigno) > 0 for |o| < & and sufficiently small & ~ 1.

Thus, p(—wssigno) > 0 which implies w3 > €. Therefore, |o|> > w3 > ¢ ~ 1 which completes the proof of
Lemma 7.15. ([l

We finish this section by proving Lemma 7.16. It is similarly proven as Lemma 9.17 in [1]. We present the
proof due to the weaker assumptions of Lemma 7.16. The main difference is the proof of (7.58) below (cf. (9.138)
in [1]). In [1], © could be explicitly represented in terms of m, i.e,

Ow) = (f,m(r0 +w) —m(n))

(cf. (9.8) and (8.10c) in [1] with & = 0). In our setup, b and r do not necessarily define an orthogonal
decomposition (cf. (6.1)).

Proof of Lemma Z.16. Let (0, 0,7x) be chosen as in Proposition 7.10 (iv). We choose A as in (7.18) and normal

coordinates as in (Z.47) as well as 7 = A/3 and s = signo. We assume A < ~3 in the following and define
Az as in (7.34). By using |inf Jy| 2 1 as in the proof of Lemma 7.15, we find & ~ 1 such that —ws € Jy for

w3 = )\33/2 and |o| <. Thus, —A =71 — 719 € Jg. We set
Ao == 1inf{A > 0: ImQ(\) > 0}

and remark that A\g = 2A/ A due to the definition of A and the third bound in (6.8). From (7.32), we conclude
Ao < Az. Thus, A < 8(1 +07®)) = 8(1 + O(|o])) as 0 ~ 1 and 7 ~ |o|. Therefore, it suffices to show the
opposite bound,

A > A1+ 0O(|o))). (7.57)

If Ao > Ay := 2 — oA/3 (cf. (2.34)) then we have (7.57) as A/3 ~ |o| and o ~ 1. If Ay < A2 then we will prove
below that
Im QN + &) > £1/2 (7.58)

for € € [0,1]. From (7.31), we then conclude

Co()\g — )\0)1/2 S ImQ()\g) S C'1|0'|1/2
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as 4 ~ |o|. Hence,
)\0 Z AQ - (Cl/CO>2|O'| Z 2— C|O’|,
where we used A2 = 2 — ¢y and g ~ 1 in the last step. This shows (7.57) also in the case A\g < A3. Therefore,
the proof of the lemma will be completed once (7.58) is proven.
In order to prove (7.58), we translate it into the coordinates w relative to 79 and v. From Ay < Aa, we obtain

A< (1= oAV)A 5ol (7.59)
Since
(g — A — @) =bImO(—A — @) + Imr(—A — &),
the bound (7.58) would follow from

(o — A — &) 2 A(ro)~V0|&| /2 (7.60)

for sufficiently small A < |o]® < &% and & < 4 due to the third bound in (6.8). Since v(m1) =0and 71 =79 — A
is a shape regular point, we conclude from (7.50) that

olm = @) 2 Alr) o2
for |w| < §. Therefore, it suffices to show that
A(m) £ Alro) (7.61)
in order to verify (2.60). Owing to |o(79) — o(m1)| < AY3 and (1.59), we have
jo(m)] S lo(70)] + AY? < o (o).

We allow for a smaller choice of & ~ 1 and assume t(71) ~ (1) ~ 1 by (6.6). Assuming without loss of
generality A(79) < 1 and A(71) < 1, we obtain (7.61) by the definition of A in (7.18). We thus get (7.61) and
hence (7.60). This proves (7.58) and completes the proof of Lemma 7.16. O

7.5. Proofs of Theorem 7.2 and Proposition 7.6

Proof of Proposition 7.6. We start with the proof of part (i). We apply (-) to (7.3), use p = (v) and obtain (h)
from the definitions of A in the four cases given in the proof of Proposition 7.5. Indeed, by using the relations

by =7+ O(p), 3 =4r, (7.62)

which are proven below, as well as Lemma 7.16 in the cases (a) and (b) and the stronger error estimate (7.49)
in case (d), we conclude part (i) of Proposition 7.6 up to the proof of (7.62).

The first relation in (7.62) follows from applying (-) to (5.15a) and using (5.14a), Corollary D.2 with 75 €
supp p, the cyclicity of (-) and (5.19). The second relation in (7.62) is a consequence of the definition of ¢ in
(7.18) and the definition of T" in Theorem 7.7 (i). This completes the proof of part (i).

We now turn to the proof of part (ii) of Proposition 7.6 and assume that all points of (9 supp p) NI are shape
regular for m and all estimates in Definition 7.4 hold true uniformly on this set. As in the proof of Proposition
1.5, we conclude o(79) # 0 for all 7o € (Osupp p) NI. Owing to dist(0,0J) 2 1 and the Holder-continuity of o
on (dsupp p) N I, Proposition 7.5 is applicable to every 79 € (Osuppp) N I. Hence, (7.4a) and dist(0,0J) 2 1
imply the existence of d1,c; ~ 1 such that

p(10 + w) > e1|w|/? (7.63)

for all w € —signo(79)[0,61] and 79 € (Osuppp) N I. In particular, 7o — signo(79)[0,d1] C suppp for all
70 € (Osuppp) NI. Since |I| < 1, this implies that supp p N I consists of finitely many intervals [a;, 5;] with
lengths 2 1, and, thus, their number K satisfies K ~ 1 as §; ~ 1 and f8; — «; > 81 if 5; #sup [ and «; # inf I.
Additionally, we now assume that the elements of M, are shape regular points for m on J and all estimates
in Definition 7.4 hold true uniformly on M, . By possibly shrinking p, ~ 1, we conclude from (7.63) that
|o; =] ~1land |f; —v|~1foranyi=1,...,K and y € M,,.
Suppose now that 7o € M, with p(79) = 0. Then part (i) and dist(0,9J) 2 1 yield the existence of d2,cp ~ 1
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such that
1/3

p(T0 + w) > cofw]
for all |w| < 2. By possibly further shrinking p. ~ 1, we thus obtain |7 —y| ~ 1 for all v € M, \ {70}. We
thus conclude (7.10) in this case.
Finally, let 71,72 € M, with p(y1), p(y2) > 0. Then applying (i) with 79 =1 and 79 = 72 yields

Uy (w) + Ta(w) S w2 (p(y)1(jwl S p(11)%) + p(12)1(|w] S p(12)%)) + W1 (w)? + Ta(w)?,
where we defined w = 5 — 1 and

~ w . w
\Ifl(W) = plq/min(tﬁ_|), \Ifg(w) = leI/min(Lﬁ_|)
P1 P2

with p1 ~ p(v1) and pa ~ p(7y2) (cf. Corollary 9.4 in [1]). Thus, we obtain either |w| ~ 1 or |w| < min{p(y1), p(72)}*.
This completes the proof of (Z.10) and hence the one of Proposition 7.6. O

Finally, we use Proposition 7.6 and a Taylor expansion of p around a nonzero local minimum 7y to obtain the
stronger conclusions of Theorem 7.2.

Proof of Theorem 7.2. We start with the proof of part (i). Let 79 € suppp N Iy satisfy the conditions of
Theorem 7.2 (i). Then, by Proposition 6.1, the conditions of Proposition 7.6 (i) are fulfilled and all conclusions
in Theorem 7.2 (i) apart from the case |w| < p(79)7/2 in (Z.5¢) follow from Proposition 7.6 (i) and (Z.4b).

For the proof of the missing case, we fix a local minimum 7o € supp p N Iy of p such that p(r9) < p.. We set
p = p(1p). Owing to the 1/3-Holder continuity of p by Proposition 4.7, there is € ~ 1 such that p(ro +w) ~ p if
lw| < ep?. In particular, p(1o +w) > 0 and using Lemma 5.7 with k& = 2,3 to compute the second order Taylor
expansion of p around 7y yields

c w3
(@) = ol + ) = plrw) = 52 + 041 ) (7.64)
for all w € R satisfying |w| < ep3, where ¢ = ¢(79) satisfies 0 < ¢ < 1.
On the other hand, 7y is a shape regular point by Proposition 6.1 and a nonzero local minimum of p. Hence,
Proposition 7.6 (i) (d) implies

w |w] I wl® | Jwl
(@) = pWin (T55) + 0(2) = 7—=w? + 0(S- + =) 7.65
fro@) =p 7)) = Oy (7.65)
for |w| < ep?®, where I' = I'(7p). Here, we also used the second order Taylor expansion of W,,;, defined in (7.1h)
in the second step. Note that I' ~ 1 since 9 + 0® ~ 1 by (5.35) and |o| < p? by Lemma 7.14.
We compare (7.64) and (7.65) and conclude

C 2 r? 2 |W|3 |w|
crm Dol 4 el
PP 18p° P p

for |w| < ep®. Choosing w = p7/? and solving for ¢ yield

_ I 1/2
c=—+0(p"'). (7.66)
18
By starting from the expansion of f,, in (7.64), using the Taylor expansion of ¥,,;, and (7.4h), we obtain (7.5¢)
in the last missing regime |w| < p7/2.

We now turn to the proof of (ii) of Theorem 7.2. By Proposition 6.1, the conditions of Proposition 7.6 (ii)
are satisfied on I’ := I N [~3k,3k], where s := ||a|| 4 2||S||'/2. Since |a|| < 1 and ||S|| < 1Slle=p S 1 by
Assumptions 4.5, we have |I'| < 1. Moreover, suppp C I’ by (2.5a). Hence, by Proposition 7.6, it suffices to
estimate the distance |y1 — 2|, where v1, 72 € M, satisfy v1 # 72.

Let v1,7v2 € M,,. By (Z.10) in Proposition 7.6 (ii), we know a dichotomy: either |y1 — 2| 2 1 or |y1 — 72| S
min{p(y1), p(72)}%. For 71 # 72, we now exclude the second case by using the expansions obtained in the proof
of (i). If p. ~ 1 is chosen sufficiently small then ¢(y;) ~ 1 and ¢(y2) ~ 1 by (7.66). Hence, by assuming
|71 — 2| < min{p(n), p(72)}*, we obtain p(y2) > p(v1) from the expansion of f,, (w) in (7.64) with 7o = v, and
w = v2 — 1. Similarly, as ¢(72) ~ 1, the expansion of fr,(w) in (2.64) with 79 = 72 and w = 71 — 2 implies
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p(71) > p(v2). This is a contradiction. Therefore, the distance of two small local minima of p is much bigger
than min{p(y1), p(72)}* and the dichotomy above completes the proof of (ii). O

7.6. Characterisations of a regular edge

In this subsection, we introduce the concept of regular edges of the self-consistent support and give several
equivalent characterisations relying on the cubic analysis of the previous sections. We assume that .S is flat and
a is bounded, i.e., that (3.10) is satisfied. In particular, owing to Proposition 2.3, there is a Holder continuous
probability density p: R — [0, 00) such that

where m is the solution to the Dyson equation, (2.3).
We now define regular edges of p as in [§].

Definition 7.17 (Regular edge). We call 79 € Osupp p a reqular edge if the limit

3/2
lim PT) _ _ Dedse
supp p37—To |7— — 7—0| s

exists for some Yeqge that satisfies 0 < ¢, < Yedge < ¢* < 00 for some constants ¢, and c*.
The following proposition provides several equivalent characterisations of a regular edge.

Proposition 7.18 (Characterisations of a regular edge). Let a and S satisfy (3.10) and m be the solution of
the corresponding Dyson equation, (2.3). Suppose for some 179 € Osupp p, there are m, > 0 and § > 0 such that

[m(7 +in)|| < m. (7.67)
for all 7 € [to — 6,70 + 8] and n € (0,6]. We set o := o(19). Then the following statements are equivalent:
(i) The point 1o is a reqular edge of p.

(it) There are 0 < ¢, < ¢* < 00 such that

ce < liminf p(7) < limsup p(7) <c*

T suppp3T=T0 /|7 — To| T supppdT—oTo /T — To|

(iii) There are positive constants o, and o* such that

oy < |o| < o*.

(tv) There is 6, > 0 such that

/2 Lo :
(o +w) = W|w|1/2+0(|w|), if signw = signa,
0, if signw = —signao,

for all w € [64,0.]. In particular, we have Yeage = 7/|o|/>.

(v) There is dgap > 0 such that
p(r) =0

for all T € [19, 7o + Ogap| o7 for all T € [To — bgap, T0].

All constants in (i) — (v) depend effectively on each other as well as possibly c1, c2, c3 from (3.10) as well as §
and m, from (1.67).

In our recent work [8] on the universality of the local eigenvalue statistics at regular edges parts of Propo-
sition 7.18 have already been proven. In fact, in Theorem 4.1 of [8], we showed that (i) implies (iii) and (iv).
The new implications in Proposition 7.18 however, require the cubic shape analysis of the previous subsections
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which was not available in [8]. Using our preceding analysis, the proof of Proposition 7.18 is quite short. In the
proof, the comparison relation ~ is understood with respect to ¢, co, c3 from (3.10) as well as § and m, from

(Z.67).

Proof. For the entire proof, we remark that, by Lemma 4.8 (ii), the conditions of Proposition 6.1 are satisfied.
Moreover, p(79) = 0 due to the continuity of p and 79 € dsupp p. Before establishing the equivalence of (i) —
(v), we show that o # 0 and there is ¢ ~ 1, depending only on the constants in (3.10) as well as § and m., such

that e
4 1/2 |w] . .
p(ro +w) =< [of'/? el JrO(|a|2)’ if signw = signo,

0, if signw = —signo,

(7.68)

for all w € [—c|o]3, c|o]?].
By Proposition 6.1, we find §p ~ 1, depending only on the constants in (3.10) as well as § and m., such that
taking the imaginary part of (6.1) and applying (-) to the result yield

p(10 4+ w) =Im (O(w)7~ b)) + 7 {Im7(w)) = Im O(w) + O((|O(w)| + |w|)Im O (w)) (7.69)

for |w| < . Here, we used (b) = 7 by (1.62) in the proof of Proposition 7.6 as well as the third bound in (6.8)
in the second step.

By Proposition 6.1 the assumptions of Theorem 7.7 (ii) are satisfied with k = . Hence, from Theorem 7.7 (ii)
(a), (2.69) and |©(w)| < |w|*/? by (6.7a), we conclude that o # 0 as 7o € dsupp p. From (7.69) and Lemma 7.13,
we, thus, conclude (Z.68) as |o| < 1, |O(w)| < |w/o|'/? by Lemma 7.13 and, hence, |v(w)| < [Ow)| + w| <
|w/a|'/? by the first bound in (6.5). This completes the proof of (7.68).

We now show that the statements (i) — (v) are equivalent. Trivially, (i) implies (ii). Moreover, if (ii) holds
true then (7.68) yields (iii). Clearly, (iv) is implied by (iii) due to (Z.68). Furthermore, (v) is trivially satisfied
if (iv) holds true. We now prove that (v) implies (iii). By Proposition 6.1, 7o is a shape regular point. Thus,
(iii) is a consequence of (v) by Lemma 7.15. Finally, (iii) implies (i) due to (Z.68). This completes the proof of
Proposition 7.18. O

8. Band mass formula — Proof of Proposition 2.6

Before proving Proposition 2.6, we state an auxiliary lemma which will be proven at the end of this section.

Lemma 8.1. Let (a,S) be a data pair, m the solution of the associated Dyson equation (2.3) and p the corre-
sponding self-consistent density of states. We assume ||a|| < ko and S[z] < k1(z)1 for all x € Ay and for some
ko, k1 > 0. Then we have

(i) If T € R\ supp p then there is m(7) = m(7)* € A such that
lim||m(7 + in) — m(7)|| = 0.
0
Moreover, m(r) is invertible and satisfies the Dyson equation, (2.3), at z = 7. There is C > 0, depending
only on ko, k1 and dist(7,supp p), such that ||m(7)|| < C and ||[(Id — (1 — t)Cyp()S) | < C all t € [0,1].
(i) Fiz T € R\ suppp. Let my be the solution of (2.3) associated to the data pair
(at, St) == (a — tS[m(7)], (1 — t)S)
for t € [0,1] and p: the corresponding self-consistent density of states. Then, for any t € [0,1], we have
lim||m (7 +in) — m(7)|| = 0. (8.1)
70
Moreover, there is ¢ > 0, depending only on ko, k1 and dist(T,supp p), such that dist(r,supp p:) > ¢ for
all t €[0,1].

Proof of Proposition 2.6. We start with the proof of (i) and notice that the existence of m(7) has been proven
in Lemma 8.1 (i). In order to verify (2.10), we consider the continuous flow of data pairs (a, S;) from Lemma
8.1 (ii) and the corresponding solutions m; of the Dyson equation, (2.3), and prove

pi((=00,7)) = (L(—00,0) (M1 (7)) (8.2)
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for all t € [0,1]. Note that dist(r,supp p;) > ¢ for all ¢ € [0,1] by Lemma 8.1 (ii).

In particular, by Lemma 8.1 (ii), m.(7) = m(7) is constant along the flow, and with it the right-hand side
of (8.2). The identity (8.2) obviously holds for ¢ = 1, because my(z) = (a — Sm(r) — 2)~! is the resolvent of
a self-adjoint element and m(7) satisfies (2.3) at z = 7 by Lemma 8.1 (i). Thus it remains to verify that the
left-hand side of (8.2) stays constant along the flow as well. This will show (8.2) for ¢ = 0 which is (2.10).

First we conclude from the Stieltjes transform representation (2.4) of m; that

((=00,7) = —o0 & (my(2)) dz, (8.3)

27
where the contour encircles [min supp pt, 7) counterclockwise, passing through the real line only at 7 and to the
left of min supp p¢, and we extended my(z) analytically to a neighbourhood of the contour (set m(z) := my(z)*
for 2 € H and use Lemma D.1 (iv) close to the real axis to conclude analyticity in a neighbourhood of the
contour).
We now show that the left-hand side of (8.3) does not change along the flow. Indeed, differentiating the
right-hand side of (8.3) with respect to ¢ and writing m; = m;(z) yield

G Plmeds = dlomi(@)dz = $((Ct — 87 1) Slm(r)] - Slm)ds

- %((azmt)(s[m('r)] — Smy]))dz = j{@z ((mtS[m(T)D - %<mtS[mt]>) dz = 0.

Here, in the second step, we used dymy(z) = (C,} — Sp) 7' [—=S[m,] — S[m(7)]] obtained by differentiating the
Dyson equation, (2.3), for the data pair (a, S:) defined in Lemma 8.1 (ii) and the definition of the scalar
product, (2.1). In the third step, we employed (C’;tl —S¢)7H1] = (8.m4(2))* which follows from differentiating
the Dyson equation, (2.3), for the data pair (a¢, St) with respect to z. Finally, we used that m; is holomorphic
in a neighbourhood of the contour. This completes the proof of (i) of Proposition 2.6.

For the proof of (ii), we fix a connected component J of supp p. Let 71,72 € R\ supp p satisfy 71 < 72 and
[11, 2] Nsupp p = J. By (2.10), we have

np(J) =n(p((—o00, 7)) — p((—o0,71))) = Tr(P2) — Tr(P1) = rankP, — rank P,

where P; = 7(1(_o0,0)(m(7;))) are orthogonal projections in C"*™ for i = 1,2. Hence, np(J) € Z. Since
0 < np(J) < n by definition of supp p, we conclude np(J) € {1,...,n}, which immediately implies that supp p
has at most n connected components. This completes the proof of Proposition 2.6. [l

Proof of Lemma 8.1. In part (i), the existence of the limit m(7) € A follows immediately from the implication
(v) = (iii) of Lemma D.1. The invertibility of m(r) can be seen by multiplying (2.3) at z = 7 + in by
m(7 + in) and taking the limit n | 0. This also implies that m(r) satisfies (2.3) at z = 7. In order to bound
[[(Id — (1= t)Cy(r)S) "], we recall the definitions of ¢, u and F from (3.1) and (3.4), respectively, and compute

Id — (1 = t)CrS = Cyge o(Id — (1 — t)C, F)C 2,

for m = m(z) with z € H. Hence, by (D.1), Lemma 4.8 (i) and Lemma B.2, we obtain ||(Id — (1 —#)C,,,9) 7} <
1—1=t)||F]2) "t <1 —]|F|l2)~* < C for all z € 7+iN, where the set N C (0, 1] with an accumulation point
at 0 is given in Lemma D.1 (ii). Taking the limit 7 | 0 under the constraint € N and possibly increasing C'
yield the desired uniform bound. This completes the proof of (i).

We start the proof of (ii) with an auxiliary result. Similarly as in the proof of (i), we see that Id—(1—1)Cpp« S
is invertible for m = m(z), z € 7 +iN with N as before. Since ||F(z)|] < 1—C~! for 2 € 7 +iN as in the
proof of (i), Lemma B.3 implies that (Id — (1 — ¢)Cys ,F) ™!, F = F(2), and, thus, (Id — (1 — ¢)Cppr nS) ™1 =
Cyr o(Id — (1 — t)Cu*,uF)_lch%q are positivity-preserving for z € 7 +ilN. Taking the limit n =Imz [ 0 in N
shows that (Id — (1 —t)Cy,(-)S) ™" is positivity-preserving for any ¢ € [0,1]. Moreover, (B.10) with z = 1 yields

(Id = (1 = )Crn= nS) 1] = Cgr g(Id = (1 = )Cyp o F) 1 C2" [1] > 1. (8.4)
Since (8.4) holds true uniformly for z € 7+ 1N and ¢ € [0, 1], taking the limit n =Im z | 0 in N, we obtain
(10— (1~ )CryS) (1] > 1 (8.5)

for all t € [0,1].
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We fix t € [0,1]. We write m = m(7) and define ®;: A x R — A through
i 1
By(A,n) = (Id — (1 — )CnS)[A] — g(mA + Am) —impm? — 5 (1= ) (AS[Alm +mS[A]A)

In order to show (8.1), we apply the implicit function theorem (see e.g. Lemma D.4 below) to ®:(A,n) = 0. It
is applicable as ®;(0,0) = 0 and 9;9+(0,0) = Id — (1 — ¢)C},,.S which is invertible by (i). Hence, we obtain an
e > 0 and a continuously differentiable function As: (—¢,¢) — A such that ®,(A¢(n),n) =0 for all n € (—¢,¢)
and A;(0) = 0. We now show that Ay(n)+m(7) = my(7 +in) for all sufficiently small 7 > 0 by appealing to the
uniqueness of the solution to the Dyson equation, (2.3), with the choice z = 7+in, a = a; and S = S; = (1—¢)S.
In fact, m = m(7) and m; = m:(7 + in) with 1 > 0 satisfy the Dyson equations

L—r—a+48m], —-m;'=71+4inp—a+tS[m]+ (1 —1t)S[my] (8.6)

J— m7
and m; is the unique solution of the second equation under the constraint Imm; > 0 (compare the remarks
around (2.3)). A straightforward computation using the first relation in (8.6) and ®;(A¢(n),n) = 0 reveals that
A¢(n) +m(7) solves the second equation in (8.6) for m;. Moreover, differentiating ®;(A:(n),n) = 0 with respect
to n at n = 0 yields

Oym Ay(n = 0) = (Id — (1 — )CyS) " [m?] = [lm~"[|>(1d — (1 — )G §) " [1] > ] 721

Here, we used that (Id—(1—t)C,,,S)~! is compatible with the involution * and m = m* in the first step. Then we
employed the invertibility of m, m? > ||m~=!|| 721 and the positivity-preserving property of (Id — (1 —)C,,S) !
in the second step and, finally, (8.5) in the last step. Hence, Im (A¢(n) +m(7)) = Im As(n) > 0 for all sufficiently
small 7 > 0. The uniqueness of the solution to the Dyson equation for my, the second relation in (8.6), implies
A:(n) + m(1) = my(r +1in) for all sufficiently small > 0 and all ¢ € [0, 1]. Therefore, the continuity of A; as a
function of n, Ai(n) — A(0) = 0, yields (8.1).

We now conclude from the implication (iii) = (v) of Lemma D.1 that dist(r,supp p;) > € for some € > 0.
Lemma D.1 is applicable since ||a:|| < ko+k1C (cf. Lemma B.2 (i) and Lemma 8.1 (i)) and Si[z] < S[x] < ki (x)1
for all z € A,. For any ¢ € [0, 1], statement (jii) in Lemma D.1 holds true with the same m = m(7) by (8.1) and
S replaced by S; = (1 —1t)S. By (i), ||m| < C and ||(Id — (1 —)C,,S)~1|| < C for all t € [0,1]. Hence, owing to
Lemma D.1 (v), there is € > 0, depending only on ko, k1 and dist(7,supp p), such that dist(7,supp p;) > € for
all t € [0,1]. Here, e depends only on kg, k1 and dist(7, supp p) due to the exclusive dependence of C from (i)
on the quantities and the effective dependence of the constants in Lemma D.1 on each other (see final remark
in Lemma D.1). The uniformity of ¢ in ¢ is a consequence of the uniformity of C' from (i) in ¢. This completes
the proof of Lemma 8.1. O

9. Dyson equation for Kronecker random matrices

In this section we present an application of the theory presented in this work to Kronecker random matrices,
i.e., block correlated random matrices with variance profiles within the blocks, and their limits. In particular, in
Lemma 9.1 and Lemma 9.3 below, we will provide some sufficient checkable conditions that ensure the flatness
of S and the boundedness of ||m(z)||, the main assumptions of Proposition 2.4, Theorem 2.5 and Theorem 7.1,
for the self-consistent density of states of Kronecker random matrices introduced in [7].

9.1. The Kronecker setup

We fix K € N and a probability space (X, 7) that we view as a possibly infinite set of indices. We consider the
von Neumann algebra
A= CF R gL> (%), (9.1)

with the tracial state

(k®f) = %/xfdﬂ.

For K = 1 the algebra A is commutative and this setup was previously considered in [1, 2]. Now let
(au)ff:u (8,)'2, be families of matrices in C**¥ with a,, = oy, self-adjoint and let (s“)f}:l, (t")%2_| be families

of non-negative bounded functions in L>°(X?) and suppose that all s# are symmetric, s*(z,y) = s*(y,z). Then
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we define the self-energy operator S : A — A as

41 L2
S(’i & f) = Z ko @ S;Lf + Z(ﬂv“ﬂ: QT f+ ﬂ:’iﬂu & Tu*f) s (9-2)

,U.:l v=1

where the bounded operators S,,, T, T, : L>°(X) — L*°(X) act as

(Spf)(z) = AS“(w,y)f(y)W(dy), (T, f)(x) = /xt”(w,y)f(y)ﬂ(dy), (T7 f)(x) = Lt”(y,w)f(y)ﬂ(dy)-

Furthermore we fix a self-adjoint a = a* € A. With these data we will consider the Dyson equation, (2.3).

The following lemma provides sufficient conditions that ensure flatness of S and boundedness of |[m(z)]|
uniformly in z up to the real line. We begin with some preparations. We use the notation z — v, for z € X
and an element v € CE*X @ L>°(X), interpreting it as a function on X with values in CX*% . We also introduce
the functions v € L>°(X?) via

) = ([ ) = #0416 ) = P ) = e CPian) T 03)

and I' : (0,00)% — L>®(X), (A, 7) — I'a_.(7) through

Pasr) = ( [(3+1ar = ayll+2(00)) ntan)) " (949

Here, we denoted by || - || the operator norm on CX*¥ induced by the Euclidean norm on CX. The two functions
~ and T" will be important to quantify the modulus of continuity of the data (a,.S).

Lemma 9.1. Let m be the solution of the Dyson equation, (2.3), on the von Neumann algebra A from (9.1)
associated to the data (a,S) with S defined as in (9.2).

(i) Define I'(t) == Ci, essinf, I'y ,(7) with Ok, == (4+4K (€1+ o) max,, , (||a,. |2+ ||8.]12)) /2, where T .(7)
1

was introduced in (9.4) and assume that for some z € H the L2-upper bound ||m(z)||2 < A for some A >
is satisfied. Then we have the uniform upper bound

Im(z) < &)

< —= (95)

where we interpret the right-hand side as oo if A is not in the range of the strictly monotonously increasing
function T.

(i) Suppose that the kernels of the operators S* and T, used to define S in (9.2), are bounded from below,
i.e., essinf, , s*(x,y) > 0 and essinf, , t"(z,y) > 0. Suppose further that

inf —— (Z ko, + Z BukBE + B mﬁy)) (9.6)

where the infimum is taken over all positive definite k € CK*K. Then S is flat, i.e., S € Yqas (cf (2.2h)).
(iit) Let S be flat, hence, A := 1+ sup,cy|m(z)|l2 < co. Then (9.5) holds true with this A.
(iv) If a = 0 then, for each € >0, (9.5) holds true on |z| > e with A =1+ 2%

Proof of Lemma 9.1. We adapt the proof of Proposition 6.6 in [1] to our noncommutative setting in order to
prove (i). Recall the definition of v(z,y) in (9.3). Estimating the norm ||m||z from below, we find

(dy) Ci, m(dy)

=t [ o [ "
T e A (T R PPN R e N

> CZ, (Tmfae(llmal))?
(9.7)
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for m-almost all z € X, where we used

Lo

1M (my)™" < mzH(my) ™+ (ay — ax)(ay — az)* + ((Sm)e — (Sm),)((Sm). — (Sm)y)*
(9.8)

< mgt(my) T+ llas — ay[* + K (6 + £2) mﬂé}jX(llOmH2 1B 1)y (@, y)* Imll3 -

We conclude A > AT (A||m.||) for any upper bound A > 1 on ||m||2. In particular, (9.5) follows.
We turn to the proof of (ii). We view a positive element r € A as a function r : [0, 1] — CE*X with values
in positive semidefinite matrices. Then we find

4y l2
(50 = ¢ [ (S aura + (B + firy) Jn(d).
pn=1 v=1

as quadratic forms on CE*X for almost every x € X. The claim follows now immediately from (9.6). Part (iii)
is a direct consequence of (i) and (ii) as well as (3.11). For the proof of part (iv), we use part (i) and (2.6) if
a=0. O

9.2. N x N-Kronecker random matrices

As an application of the general Kronecker setup introduced above, we consider the matriz Dyson equation
associated to Kronecker random matrices. Let X,,Y, € CNXN he independent centered random matrices
such that Y, = (y;;) has independent entries and X, = (xf]) has independent entries up to the Hermitian

symmetry constraint X, = X . Suppose that the entries of vV NX,, v NY, have uniformly bounded moments,
E(|25[ + |y |?) < N=P/2C,, and define their variance profiles through

s"(i,§) = NE[a |, t(i,5) == NE[y%]?.

Then we are interested in the asymptotic spectral properties of the Hermitian Kronecker random matrix

ll 22
Hi=A+) a,0X,+> (B, 0Y, +B,0Y;) e CK* KoV, (9.9)
p=1 v=1

as N — oo. Here the expectation matrix A is assumed to be bounded, ||A|| < C, and block diagonal, i.e.

N
A=) a;®E;, (9.10)

i=1

with B = (0u6ix)N,—; € CV*N and a; € CE*E. In [7] it was shown that the resolvent G(z) = (H — 2)7*
of the Kronecker matrix H is well approximated by the solution M (z) of a Dyson equation of Kronecker type,
i.e., on the von Neumann algebra A in (9.1) with self-energy S from (9.2) and a = A € A, when we choose
X = {1,...,N} and 7 the uniform probability distribution. In other words, L>°(X) = CV with entrywise
multiplication.

9.3. Limits of Kronecker random matrices

Now we consider limits of Kronecker random matrices H € CN*¥ with piecewise Holder-continuous variance

profiles as N — oo. In this situation we can make sense of the continuum limit for the solution M(z) of
the associated matrix Dyson equation. The natural setup here is (X,7) = ([0,1],dz). We fix a partition
(I)E, of [0,1] into intervals of positive length, i.e., [0,1] = U;I; and consider non-negative profile functions
sH t¥ 1 [0,1]2 — R that are Holder-continuous with Hélder exponent 1/2 on each rectangle I; x I,. We also
fix a function a : [0,1] — CE*E that is 1/2-Hélder continuous on each I;. In this piecewise Holder-continuous
setup the Dyson equation on A with data pair (a, S) describes the asymptotic spectral properties of Kronecker
random matrices with fixed variance profiles s* and t”, i.e., the random matrices H introduced in Subsection 9.2
if their variances are given by

1 i j 1 i
EH.2:_H(__) E.V.Qz_tu(__)
sl = v (v N vl = ¥ (v %)
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and the matrices a; in (9.10) by a; = a(%).

Lemma 9.2. Suppose that a, s* and t¥ are piecewise Holder-continuous with Hélder exponent 1/2 as described
above. The empirical spectral distribution of the Kronecker random matriz H, defined in (9.9), with eigenvalues
(A B converges weakly in probability to the self-consistent density of states p associated to the Dyson equation
with data pair (a,S) as defined in (9.2), i.e., for any e > 0 and ¢ € C(R) we have

| EN
]P’<‘ﬁ;<p()\z) — /chdp‘ > €> — 0, N — .

Proof of Lemma 9.2. 1t suffices to prove convergence of the Stieltjes transforms, i.e., in probability ﬁ Trgn G(z) —
(m(z)) for every fixed z € H, where G(z) = (H — z)~! is the resolvent of the Kronecker matrix H and m(z) is
the solution to the Dyson equation with data (a, S).

First we use the Theorem 2.7 from [7] to show that == Trxny G(2) — % SN Trimi(z) — 0 in probability,
where My = (mi,...,my) € (CEXE)N denotes the solution to a Dyson equation formulated on the von
Neumann algebra CK*¥ @ CV with entrywise multiplication on vectors in CV as explained in Subsection 9.2.

We recall that in this setup the discrete kernels for S, and T, from the definition of S in (9.2) are given by

NE|zf;|*> and NE|y¥;|?, respectively, and a = SN, a(&) ® e;. To distinguish this discrete data pair from the

continuum limit over CEX*X ® L>°[0,1], we denote it by (ax,Sy). Note that in Theorem 2.7 of [7] the test
functions were compactly supported in contrast to the function 7+ 1/(7 — z) that we used here. However, by
Theorem 2.4 of [7] and since the self-consistent density of states is compactly supported (cf. (2.5a) and ||S|| < 1)
no eigenvalues can be found beyond a certain bounded interval, ensuring that non compactly supported test
function are allowed as well.

Now it remains to show that (My) — (m) as N — oo for all z € H. For this purpose we embed C¥ into
L*°[0,1] via Pv := Zf;l vil{i—1)/N,i/n)- With this identification My and m satisfy Dyson equations on the
same space CEX*K © 1,>°[0, 1]. Evaluating these two equations at z + in, for a fixed z € H and any n > 0, and
subtracting them from each other yield

BIA] = m(Sy — S)[m]A + Cp(Sx — S)[A] + mSN[AJA + Cp(Sy — S)[m] — m(an — a)A — Cplan — al,

where m = m(z +1in), My = My(z +in), B=1d — C,,S and A = My — m. Using the imaginary part of z we
have dist(z +in, supp p) > Im z > 0. By (3.22), (3.23), (3.11a) and (3.11c) of [7] we infer ||m|| + || B2 < C for
all > 0 with a constant C' depending on Im z. Note that although the proofs in [7] were performed on CN*¥
all estimates were uniform in IV and all algebraic relations in these proof translate to the current setting on a
finite von Neumann algebra. Using ||Sy — S|l2 < ||Sy — S| as well as ||Sn|| < C and possibly increasing C, we
thus obtain

1Al < C(y + A1), Wy = llay — afl + Sy — I

where A = A(z +1in), for all n > 0. We choose Ny sufficiently large such that 2¥ xyC? < 1/4 for all N > Ny and
define 7, :=sup{n > 0: [|A(z +in)|2 > 2CTN}. Since ||My|| + ||m|| — 0 for n — oo, we conclude 7, < .

We now prove 7, = 0. For a proof by contradiction, we suppose 7, > 0. Then, by continuity, ||A(7 +in.)||2 =
2CUy. Since 2UnC? < 1/4, we have ||A(z + in)|l2 < 4CUN/3 < 2CUxN = [|A(2 + ins)|2. From this
contradiction, we conclude 7, = 0. Therefore, for N > Ny, we have

|Mn(2) —m(2)] < |A(z)]2 <200y = 2C([|Sy — S| + [lay —al]) -

Since the right-hand side converges to zero as N — oo, due to the piecewise Holder-continuity of the profile
functions, and since z was arbitrary, we obtain (My) — (m) as N — oo for all z € H. This completes the proof
of Lemma 9.2. |

The boundedness of the solution to the Dyson equation in L2-norm already implies uniform boundedness in
the piecewise Holder-continuous setup.

Lemma 9.3. Suppose that a, s* and t¥ are piecewise 1/2-Hoélder continuous and that sup,cp|lm(z)||2 < oo for
some domain D C H. Then we have the uniform bound sup,cp|m(z)|| < co.

In particular, if the random matrix H is centered, i.e., a = 0, then m(z) is uniformly bounded as long as z is
bounded away from zero; and if H is flat in the limit, i.e., S is flat, then sup,cy|m(2)|| < oco.

Proof. By (i) of Lemma 9.1 the proof reduces to checking that lim, .., I'(7) = oo for piecewise 1/2-Hélder
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continuous data in the special case (X, 7) = ([0, 1], dz). But this is clear since in that case ||a; —ay||*+7(z,y)? <
Cl|z — y| implies that the integral in (9.4) is at least logarithmically divergent as 7 — oo. O

Corollary 9.4 (Band mass quantization). Let p be the self-consistent density of states for the Dyson equation
with data pair (a,S) and 7 € R\ supp p. Then

p((—00,7)) € {%Zkﬂm k= 1,...K}.

In particular, in the L = 1 case when s*,t* and a are 1/2-Hélder continuous on all of [0,1]? and [0,1],
respectively, then p(J) is an integer multiple of 1/K for every connected component J of supp p and there are
at most K such components.

Proof. Fix 7 € R\ supp p. We denote by = — my(7) the self-adjoint solution m(7) viewed as a function of
x € [0, 1] with values in CEX*¥. As is clear from the Dyson equation this function inherits the regularity of the
data, i.e., it is continuous on each interval I;. By the band mass formula (2.10) we have

L L
1 1
p((—00,7)) = EZ . Tr1(—o0,0)(ma(7))dz = gzk‘ﬂzla
=170 =1
where k; = Tr1(_q 0)(m2(7)) € {0,..., K} is continuous in € I; with discrete values and therefore does not
depend on z. O

Remark 9.5. We extend the conjecture from Remark 2.9 of [2] to the Kronecker setting. We expect that in
the piecewise 1/2-Holder continuous setting of the current section, the number of connected components of the
self-consistent spectrum supp p is at most K (2L — 1).

10. Perturbations of the data pair

In this section, as an application of our results in Sections 4 to 7, we show that the Dyson equation, (2.3),
is stable against small general perturbations of the data pair (a,S) consisting of the bare matrix a and the
self-energy operator S. To that end, let T' C R contain 0, S;: A — A, t € T, be a family of positivity-preserving
operators and a; = af € A, t € T, be a family of self-adjoint elements. We set S := S;—¢ and a := a;~o and will
always assume that there are cq,...,c5 > 0 such that

c1(z)1 < S[z] < ea(x)1, la]] < es, IS — S|l < eat, lla — a¢|| < cst (10.1)

for all z € A, and for all t € T. For any t € T, let m; be the solution to the Dyson equation associated to the
data pair (at, St), i.e.,
—my(2) "t = 21 — ay + Si[me(2)] (10.2)

for z € H (cf. (2.3)). We also set m := m;—o.

The main result of this section, Proposition 10.1 below, states that ||m:(z) — m(z)]| is small for sufficiently
small ¢ and all z away from points, where m(z) blows up. Depending on the location of z, there are three cases
for the estimate: we obtain the best estimate of order |t| on ||m:(z) — m(z)]| in the bulk, the estimate is weaker,
of order [t|'/2, if z is close to a regular edge and the weakest, of order |t|'/3, if z is close to an (almost) cusp
point.

We now introduce these concepts precisely. For a given m, > 0, we define the set P, := P/’ C H, where
|[m(z)]| is larger than my, i.e.,

P = {r e R:sup|m(r +in)|| > m.}.
n>0

For any fixed m, > 0 and § > 0, we introduce the set Dpqq of points of distance at least ¢ from P,,, i.e.,
Dpaq = D" o= {z € H: dist(z, P) > 6} (10.3)
Note that ||m(z)|| < max{m.,d"1} for all z € Dypaq as ||m(z)|| < (dist(z,suppp))~* by (3.7).
We now introduce the concept of the bulk. Since S € Xa,¢, the self-consistent density of states of m (cf.

Definition 2.2) has a continuous density p: R — [0, 00) with respect to the Lebesgue measure (cf. Proposition
2.3). We also write p for the harmonic extension of p to H which satisfies p(z) = (Imm(z))/m for z € H. For
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px > 0 and §s > 0, we denote those points, where p is bigger than p, or which are at least 65 away from supp p,
by

Dy == Dy = {z € H: p(2) > ps}, Dout == ID)gflt = {z € H: dist(z,suppp) > s},
respectively. We remark that, for fixed p, and ds, we have the inclusion Dpyix U Doyt C Dpaq for all sufficiently
large m, and sufficiently small § by (3.12).

For 7 € R\ supp p, let A(7) denote the size of the largest interval that contains 7 and is contained in R\ supp p.
For p, > 0 and A, > 0, we define the set Peysp = Pp2« C R of almost cusp points through

cusp

P8 .= {7 € supp p\@supp p : 7 is a local minimum of p, p(7) < p,}U{r € R\suppp: A(1) < A,}. (10.4)

cusp

For some d. > 0, we denote those points which are at least d. away from almost cusp points by
]D)nocusp = {Z cH: diSt(Z, Pcusp) > (55}

We remark that D = Dpqq N Deysp, where I denotes the set of points which are away from P,, and Peysp. More
precisely, for some § > 0, we define

D :={z e H:dist(z, Py) > ¢, dist(z, Peusp) > 9}.

In this section, the model parameters are given by c1,...,¢s from (10.1) as well as the fixed parameters m.,
0, px, 0s, Ay and 0. from the definitions of Py, Dybdd, Dbulk, Douts Peusp, and Dpocusp, respectively. Thus, the
comparison relation ~ (compare Convention 3.4) is understood with respect to these parameters throughout
this section.

Proposition 10.1. If the self-adjoint element a = a;—g, a; in A and the positivity-preserving operators S =
Si—o, St on A satisfy (10.1) for each t € T then there is t, ~ 1 such that

(a) Uniformly for all z € Dypaq and for all t € [—t., t.] NT, we have
Ime(z) = m(2)I| S 62
In particular, ||my(2)|| S 1 uniformly for all z € Dpaa and for all t € [—t.,t.]NT.
(b) (Bulk and away from support of p) Uniformly for all z € Dyux UDout and for all t € [—t., t.]NT, we have

lme(2) —m(2)] < [t].
(c) (Away from almost cusps) Uniformly for all z € Dyocusp N Dpaa and for all t € [—t., t.] N T, we have

Ime(2) —m(2)I| S ¢/,

In order to simplify the notation, we set Am; = Amy(z) = my(z) — m(z). The behaviour of Am; will be
governed by a scalar-valued cubic equation (see (10.6) below). This is the origin of the cubic root |t|'/? in the
general estimate on ||m(z) —m(z)| in Proposition 10.1. In the special cases, z € Dyuik U Doyt and z € Dyocusp,
the cubic equation simplifies to a linear or quadratic equation, respectively, which yield the improved estimates
|t| and |t|'/2, respectively.

We now define two positive auxiliary functions &;(z) and &(z) for z € Dpaq which will control the coefficients
in the cubic equation mentioned above. For their definitions, we distinguish several subdomains of Dy,qq. The
slight ambiguity of the definitions due to overlaps between these domains does, however, not affect the validity
of the following statements as the different versions of {; as well as & are comparable with each other with
respect to the comparison relation ~ and &; as well as & are only used in bounds with respect to this comparison
relation. For p, ~ 1 and 6§, ~ 1, we define

e Bulk: If z € Dy U Dyt then we set _ _
&i1(2) = &(z) = 1. (10.5a)

e Around a regular edge: If z = 1) + w + i € Drocusp N Dbaa with some 79 € 9 supp p, w € [—d,0.] and
n € (0,0,] then we set

&(2) = (| +m)"?, &(z)=1. (10.5b)
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e Close to an internal edge with a small gap: Let «, 8 € (Osuppp) \ P, satisfy < « and (§,a) N
suppp = . We set A := o — . If z € Dpyq satisfies 2 = a —w +in or z = f + w + in for some
w € [—0s,A/2] and n € (0, d.] then we define

€1(2) = (lw| +m)"?(lw| + 1+ &), &(2) == (Jw| + 1+ A)/3 (10.5¢)

e Around a small internal minimum: If z = 79 + w + in € Dyqq, where 79 € supp p \ dsupp p is a local
minimum of p with p(79) < ps, w € [—d4, dx] and n € (0,0,] then we define

€1(2) = (p(r0) + (lw| + )"/, &2(2) = p(ro) + (|lw| + ) /3. (10.5d)

We remark that 79 € dsupp p is a regular edge if p(7) = 0 for all 7 € [79 — €, 0] or T € [0, 70 + €] for some
e ~ 1. In fact, Dyocusp N Dpaa N O supp p consists only of regular edges.

In the proof of Proposition 10.1, we will use the following two lemmas, whose proofs we postpone until the
end of this section.

Lemma 10.2. Let Dpaq be defined as in (10.3). Let a, S and (at)ter and (St)ier satisfy (10.1). Then there is
g1 ~ 1 such that if ||Ame(z)|| < &1 for some z € Dpaqg, t € T, then there are ,b € A depending on z such that
O := (I, Amy) /{1, b) satisfies a cubic inequality

07 4+ 607 + 664 S It (10.6)

with complex coefficients & and & depending on z and t. The function ©, depends continuously on Im z and
we also have |0 S ||Amy|| as well as ||Amy|| SO + |t for allt € T.

The coefficients, &1 and &, behave as follows: There are 6, ~ 1, p. ~ 1 and ¢, ~ 1 such that, with the
appropriate definitions of & and & from (10.5), we have

o If 2 € Dyga satisfies the conditions for (10.5a) or (10.5¢) with w € [c. A, A/2] then we have
G1(2) ~ &), ()] S Gal2). (10.7a)

o If z € Dyaq satisfies the conditions for (10.5¢) with w € [—dx, c.A] or (10.5b) or (10.5d) then we have

G(2) ~ &), &)~ &(2). (10.7b)

All implicit constants in this lemma are uniform for anyt € T'.

Lemma 10.3. For0 < n. < n* < oo, let £1,&2: [0+, n*] = C be complez-valued functions and &1, 6,d: [, 7*] —
R* be continuous.
Suppose that some continuous function ©: [n.,n*] — C satisfies the cubic inequality

|03 + 6,02 + 60| <d (10.8)

on [n«,n*] as well as

P d } (10.9)

0] < min dl/g,—,r
{ 3/2 &

at n.. If one of the following two sets of relations holds true:
1) (i) &/d, &/d?, £2/(d&) are monotonically increasing functions,
(ii) 1&] ~ &, |&] ~ &,
(iti) d?/€3 + d&x /€2 at n* is sufficiently small depending on the implicit constants in 1) (ii) as well as
(10.8) and (10.9).
2) (i) €/d? is a monotonically increasing function,
(ii) 16| ~ &, Jeal S &
then, on [n«,n*], we have the bound
d'/? d

o] < min{d1/3,%,r}. (10.10)
52 51
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Proof of Proposition 10.1. We start the proof by introducing the control parameter M (t). Let El and EQ be
defined as in (10.5). For t € R, we set

M(t) = min{[t|/3,& V2tV €71t} (10.11)

We remark that M also depends on z as §~1 and EQ depend on z.
We will prove below that there are t, ~ 1 and C' ~ 1 such that, for any fixed ¢ € [—t.,t.]NT \ {0} (if this set
is nonempty) and z € D44, we have the implication

|Ami(Rez +in)|| <e1 foralln>Imz = |[Am(2)|| < CM(2), (10.12)

where €1 ~ 1 is from Lemma 10.2.
Armed with (10.12), by possibly shrinking ¢, ~ 1, we can assume that 2013 < e;. We fix 7 € R and
t € [t t.]NT\ {0} and set

ne = sup{n > 0 [Ame(r + in)]| = 20M (1)}

Here, we use the convention 7, = —oo if the set is empty. Note that ||Am (7 +in)| < 2n~! since m and m, are
Stieltjes transforms. Hence, 0. < co as t # 0.

We prove now that n, < inf{Imz: z € Dpqq, Rez = 7}. For a proof by contradiction, we suppose that there
is 2z« € Dpag such that Re z, = 7 and Im 2, = 7. (note that if 7 +in € Dyqgq then 7+ in’ € Dyaq for any n’ > 7).
Since Am; is continuous in z, we have ||[Amq(z.)|| = 2CM (t). Thus, [|[Am:(7+in)|| < 2013 < ey for all p > 1,
by the choice of t.. From (10.12), we conclude ||[Amy(z.)|| < CM(t), which contradicts [|Am,(z.)| = 2CM(t).
Thus, 7. < inf{Imz: z € Dypga, Rez = 7}.

As 7 was arbitrary, this yields || Amy(2)| < 2CM (¢) for all z € Dygq, which proves part (a) of Proposition 10.1
up to (10.12). Since §~1(z) ~ 1 for z € Dpu U Doyt and gg(z) ~ 1 for z € Dpocusp N Dhaa, we also obtain part
(b) and (c) from the definition of M in (10.11).

Hence, it suffices to show (10.12) to complete the proof of Proposition 10.1. In order to prove (10.12), we use
Lemma 10.3 with ©(n) = ©,(Rez +1in), n > n. :=Imz, d = |t|, and &, & and §~1, §~2 are chosen as in (10.6)
of Lemma 10.2 and (10.5), respectively. As ||Am(Rez + in)|| < e; for all n > Im z, we conclude that (10.8) is
satisfied with d = |¢| due to (10.6).

We first consider z € DpuxUDoys. If 2 € DpuikUDoys then Re z+in € Dpu UDoys and & (Re z+in) = & (Re 2+
in) = 1 for all n > 7, and assumption 2) of Lemma 10.3 is always fulfilled. Since ||[Am:(Rez + in)|| < 2n~1
as remarked above and ¢ # 0, the condition in (10.9) is met for some sufficiently large n > 0. Hence, by
Lemma 10.3, there is C' ~ 1 such that |©.(z)| < CM(t). Possibly increasing C' ~ 1 and using |t| < ¢, ~ 1 yield
[[Am(2)|| < CM(t) due to ||[Amy|| < |©¢ + |¢| from Lemma 10.2.

For each z € Dypdd \ Dbulk U Doyt, due to (10.7), we have & (z5) ~ 1 and &(z5) ~ 1 for z5 := Rez + id.,
where d, ~ 1 is as in Lemma 10.2. Hence, we conclude |O:(z5)] < CM (t) as for z € Dpyk U Doye. For each
z € Dpaa \ Dbuk UDout, the validity of assumption 1) or assumption 2) of Lemma 10.3 can be read off from (10.7).
Lemma 10.3, thus, implies |0:(z)] < CM(t). As before, we conclude ||[Am(z)|] < CM(t) from Lemma 10.2.
This completes the proof of (10.12) and, hence, the one of Proposition 10.1. O

Proof of Lemma 10.2. We remark that a straightforward computation starting from (2.3) and (10.2) yields
B[Am,] = A[Amy, Amy] + K[AS, A% Amy] + T[A®, A%, (10.13)

where B :=Id — C,,, S, Alx,y] .= (mS[z]y +yS[x]m)/2 are defined as in (6.23), A := S, — S, A® := a; — a and

1
K[A®S A% Amy] = §(mAS[Amt]Amt + Am A5 [Amym 4+ mAS[m)Amy + Amy A% [m]m)

— %(mAaAmt + AmiA%m),

TIA®, A = mA¥[m]m — mA®m.

In the following, we will split Dpqq into two regimes and choose [ and b according to the regime. In both
cases, we use the definitions

0 = @t:%, P QA QemTd— )y (10.14)
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In particular, Am; = ©b+ r. We denote by p(z) the harmonic extension of p, i.e., p(z) = (Imm(z))/m.

If z is close to a regular edge or close to an almost cusp point then Am;(z) is governed by a quadratic or cubic
equation for Oy, respectively, where [ and b are a left and a right eigenvector of B, respectively. If z is in the
bulk or away from supp p then Am;(z) can be controlled by ©; with { = b = 1 and O is the solution of a scalar-
valued linear equation. Note that in the bulk and away from supp p the choice [ = b = 1 is arbitrary, in fact the
splitting Am; = ©.b + r is artificial since the stability operator does not have a distinguished “bad” direction
that needs to be treated separately. We still use this formalism in order to treat all three cases uniformly for
the sake of brevity. For a similar reason we will always write the equation for ©; as a cubic equation, sometimes
by adding and subtracting apparently superfluous (and negligible) terms.

Case 1: We first assume that z € Dyqq satisfies p(z) > p,. for some p, ~ 1 or dist(z,suppp) > § for some
§ ~1,ie, 2 € Dfry UD? . This implies that B is invertible and [[B™| < 1 due to (4.1), |S]lay S 1,

[lm(2)]| £ 1 and Lemma B.2 (ii). In this case, we choose [ = b = 1 and apply QB~! to (10.13) to obtain
r = QBT (A[Amy, Amy] + KA A%, Amy] + TIAS, A%) = O(O + ||| [ Ame | + [¢]),

where we used that [|m| <1 on Dypgq as well as [|A%] + ||A%|| < |t|. Shrinking &1 ~ 1, using ||Am|| < &1 and
absorbing ||7||||Am;|| into the left-hand side yield ||r|| < |©]2 + [t|. Thus, ||Amy| < |©| + [t|. Hence, applying
B~!and (-) to (10.13) and using (r) = 0 as well as ||Amy| < [O] + |¢], we find & € C such that |&| <1 =&
and

6 = —£0% + O(|t]|6] + |t]) = &0 + O(|t]).

Adding and subtracting ©3 on the left-hand side as well as setting & = 1 — ©2 show (10.6) in Case 1 for
sufficiently small €; ~ 1 as |0| < ||Amy|| < &1 implies |§1] ~ 1 = &. This completes the proof of (10.7a) for
z € Dpuik U Dout.

Case 2: We now prove (10.6) for z € Dypgq satisfying p(z) < p. and dist(z,suppp) < ¢ with sufficiently
small p, ~ 1 and 6 ~ 1. For any e, ~ 1, we find § ~ 1 such that p(z)"'Imz < e, for all z € H satisfying
dist(z,supp p) < § due to (5.26) and the 1/3-Holder continuity of z — p(z)~'Im z by Lemma 5.4 (ii). Therefore,
using p(z) < p., we see that Lemma 5.1 and Corollary 5.2 are applicable for sufficiently small p. ~ 1 and § ~ 1.
They yield [,b € A which we use to define © and r as in (10.14), i.e., Am; = Qb+ r and © = (I, Amy)/(l,b).

In order to derive (10.6), we now follow the proof of Lemma 6.2 applied to (10.13) instead of (6.10). Here, A®
and A play the role of e. In fact, by Lemma 5.1 and Corollary 5.2, the first two bounds in (6.12) are fulfilled.
Owing to ||m|| < 1, the third bound in (6.12) is trivially satisfied. Instead of the last two bounds in (6.12), we
use

ITIAS, A S A%+ Al [IK[A% A% Ame| < (1A% + [A])]| Amll,

due to [[m| < 1 and ||Amy| < 1. In fact, the last bound in (6.12) will not hold true for a general y € A
but in the proof of Lemma 6.2 it is only used with the special choice y = Am;. We choose ¢; < ¢ for ¢ from
Lemma 6.2 and obtain the cubic equation (6.14) from Lemma 6.2 with o = (I, T[A%, A%]) and ||¢|| replaced by
It| as |AS||+||A?|| < |t|. In particular, || < || We decompose the error term € = O(|O|* + [t]|O] + [t|?) from
(6.14) into € = €,03 + €3 with €1, €2 € C satisfying e1 = O(|©]) and éx = O([t||©] + |¢t|?). With the notation of
Lemma 6.2, the cubic equation (6.14) can be written as

(13 — €1)03 + 1202 + 1110 = —p1g + & = O(|t]).

Since A and B introduced above have the same definitions as in (6.23) and p3, p2 and py in (6.15) depend only
on A and B, Lemma 6.3 yields the expansions of us, p2 and p in (6.24) for sufficiently small p, ~ 1 and § ~ 1.
By possibly shrinking e; ~ 1, we find ¢ ~ 1 such that |3 — €1| + [u2| > 2c as |e1] S [O] S [[Amy|| < e1. Here,
we also used |us| + |u2| 2 ¥ + |o| by (6.24) as well as (5.35).

Consequently, we obtain (10.6), where we introduced

H2
—&

&= (2 + (13 =& = 1)0)1llpal > ) 4 21 < ),

"
&= mllpel = )+ —=1(|| < o).

Hence, we have |&3] ~ |uz| and [&1] ~ |u1| for sufficiently small &1 ~ 1 as |e1] < |O] and O] < [|[Amy|| < ;.
This completes the proof of (10.6) in Case 2.

It remains to show the scaling relations in (10.7) for z € Dyqq satisfying p(z) < p. and dist(z,suppp) < 6
in order to complete the proof of Lemma 10.2. Starting from [&1] ~ |u1] and |[€2] ~ |us2| proven in Case 2, we
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conclude as in the proof of (10.6) in [1] that

1] ~ p(2)* + |o(2)[p(2) + p(2) 'Imz,  |&] ~ p(z) + |o(2)],

where o is defined as in (5.12). Here, &; and & play the role of w1 and 7o, respectively, in [1]. Their definitions
differ slightly but this does not affect the straightforward estimates. Note that the proof in [1] relies on the
expansions of i, pe and pz from (8.33) in [1]. These are the exact analogues of (6.24), where p plays the role
of a from [1].

Note that according to Remark 7.3 the harmonic extension p(z) for z € H in the vicinity of the singularities
has the same scaling behavior as in Corollary A.1 of [1]. Similarly, the proof of (10.7) in [1] yields

o (B)] ~ lo(@)] ~ (a=B)2, ()| S plro)?, (10.15)

where o, 8 € (Osuppp) \ Py, satisfy 8 < « and (8,a) Nsuppp = @ and 79 € suppp \ dsuppp is a local
minimum of p and p(rg) < p.. Here, we use Lemma 716 above and |o| ~ Al/3 by Theorem 7.7 (i) (b)
instead of Lemma 9.17 in [1] and Lemma 7.14 above instead of Lemma 9.2 in [1]. We then follow the proof of
Proposition 4.3 in [3] and use the 1/3-Holder continuity of o proven in Lemma 5.5 (i). This yields the missing
scaling relations in (10.7).

We remark that ©; constructed above is not continuous in Im z due to the separation into two cases. However,
there is only one transition between Case 1 and Case 2 for z € Dpgq when Im z is varied while Re z is kept
fixed. Therefore, we obtain a continuous version of ©; by a simple interpolation between these two cases in
the vicinity of this transition point. We leave the details of this interpolation argument to the reader. This
completes the proof of Lemma 10.2. O

Remark 10.4 (Scaling of coefficients). The proof of Lemma 10.2 can equally well be carried out under Assump-
tion 4.5 instead of the flatness condition in (10.1). In particular, it shows that in the setting of Theorem 7.2,
there are 0, ~ 1, px ~ 1 and ¢, ~ 1 such that the following comparison relations hold for z € Iy + 1[0, 7.]:

o If z satisfies the conditions for (10.5a) or (10.5¢) with w € [c. A, A/2], then we have
p(2)* +1o(2)p(z) + p(z) "Tmz ~ &1(2),  p(z) +o(2)] S &l2).

o If z satisfies the conditions for (10.5¢) with w € [—d., ¢, A] or (10.5b) or (10.5d) with p(7p) < p., then we
have ~ ~
p(2)* +lo(2)lp(z) + p(2) Imz ~ &i(2),  p(2) +|o(2)] ~ &2(2).
Proof of Lemma 10.3. By dividing the cubic inequality through d and considering d1—®/3 instead of ©, we may
assume that d = 1. We fix ¢ € (0, 1) sufficiently small. First we prove the lemma under assumption 1). Owing to

~ 2
the smallness of E% + % at n* as well as the monotonicity of £&; and §~—1 there are 0 < 11, n2 < n* with the following
1 1 2

properties: (i) & > €4¢} on [n.,m]; (i) & < €€} on [m,n*]; (iii) €& < 1 on [n.,ma]; (iv) e€i > 1 on [z, 7],
Here the intervals [n.,n2] and [n.,n1] may be empty. We will now assume the bound |©] < min{1, ?%, gi} at
2 1

the initial value n* and bootstrap it down to n.. Now we distinguish two cases:
Case 1 (m >mn2): On [n1,n*] we have e& >1and & < 545?. Thus, by the cubic inequality
0] < min{l,%} implies [0 < i < min{g,fi—;}.
& &1 &
In particular, there is a gap in the values of |©| and by continuity all values lie below the gap on [711, n*].
The interval [n.,m] is split again, [1.,m] = [1., 73] U [n3,m], where 13 is chosen such that (i) &e? > 1 on

3,m]; (ii) €262 < 1 on [n.,n3]. Here one or both of these intervals may be empty. Using &, > €7 we see that
(73, m]; (i) & s 1) y pty. g i
on [ns, 1] the bound

1 1 1
< < i - -
53/25‘21/2 ~ mln{51/2’ 57/251 } '

Again the gap in the values of |©| allows us to infer from the bound |0] < min{1, ?L/Q, gi} at 11 that |©| satisfies
2 1

the same bound on [n3,11] up to an e-dependent multiplicative constant.

60



Finally, on [n.,n3] we have EQ < e 2and € < 746 < 5. Using the cubic inequality this immediately
implies |0|< 1<, min{1, < AT } Here and in the following, the notation <. indicates that the implicit constant

in the bound is allowed to depend on €.

Case 2 (m < m2):  On [n2,n*] we have 551 > 1 and §2 < 5451 So this regime is treated exactly as in
the beginning of Case 1. On [n,1n2] we have e& < land & < 52(772) < &% (n2)? = €2, which implies
|®|§€1< mln{lv 1/27 1}

Now we prove the lemma under assumption 2). In this case we choose 0 < 17, < n* such that (i) e& > 1 on

[n1,n*]; (i) e€1<1on [74,m1]. Here the interval [n., 1] may be empty.
On [n1,n*] the bound

1
|©] <1 implies &0 < 1—i—~l/2|®|2 < e V2412600 implies O] < — < e

Ve&

From the gap in the values of |©] and its continuity we infer |©| < min{\/e, N } On [1., ] we use & < e~

and |&] S ?/2 < e71/2 to conclude |0]< 1<, min{1, Z_i,} This finishes the proof of the lemma. O
1

Lemma 10.5 (Holder continuity of o and ¢ with respect to a and S). Let T C R contain 0. For each t € T,
we assume that the linear operator Sy: A — A satisfies

cr(z)1 < Si[z] < ea(x)1 (10.16)

for all z € Ay and some ca > ¢; > 0. Moreover, let a; = af € A be self-adjoint such that S; and a; satisfy
(10.1) with a := at—o and S := Si—g. Let m: be the solution to (10.2) and p(z) := Immg(z))/7 for z € H.

If o1 and ¢y are defined according to (5.12), where m 1is replaced by my, then there are p., ~ 1 and t, ~ 1
such that

o (21) — oo(z1)] S [tM/3, e (22) — o(22)| S [¢/3

for allt € [~t.,t.]NT and all 21,22 € DpaaN{z € H: |2| < c6} satisfying p(z1) < p« and p(z2)+p(z2) m 23 <
p«. Here, cg > 0 is also considered a model parameter.

Proof. We choose t, as in Proposition 10.1 and conclude from this result that ||m;(z)|| < k3 for all ¢ € [—t., t.]N
T, all z € Dpqq and some k3 ~ 1. Hence, owing to (10.1), (10.16) and Lemma 4.8 (ii), the conditions of
Assumptions 4.5 are met on Dpgq N {2z € H: |z] < ¢6}. Hence, from the proof of Lemma 5.4, it can be read
off that, after reducing p, ~ 1 and t, ~ 1 if necessary, M?) = {my(21): t € [~t.,t.] N T} and M®) =
{mi(z2): t € [—ts, t.] N T} satisfy the conditions of Remark 5.6 (ii) and (iii), respectively, uniformly for any
21,29 € Dpaa N {z € H: |2| < c6} such that p(z1) < p. and p(z2) + p(z2) "'Im 22 < p.. Therefore, the lemma is
a consequence of Remark 5.6 (ii) and (iii) as well as Proposition 10.1 (a). O

Remark 10.6. Combining Lemma 5.5 and Lemma 10.5, we obtain that m, ¢ and 1 are jointly Holder continuous
in all three variables (z, a, S) in the following sense. Suppose that m solves the MDE for some data pair (a, S)
satisfying Assumptions 4.5 on some I for some 7, € (0,1] and consider a one-parameter family of data pairs
(at,St), t € T, as described in Lemma 10.5. Then m = my(z), as well as of o4(21) and 9¢(z2) are uniformly
1/3-Hoélder continuous functions of ¢t € [—t,,t.| NT as well as z € Hy, ., 21 € {¢ € Hy, . : p(¢) < ps} and
20 € {¢ € Hy, . : p(C) + p(¢) "1 Im ¢ < p.}, respectively, for sufficiently small ¢, ~ 1 and p, ~ 1.

Remark 10.7 (Scaling of o). Let Assumptions 4.5 hold true for some interval I and n, € (0,1]. Let 6 € (0, 1].
(i) As in the proof of (10.15) in the proof of Lemma 10.2, we obtain that

o (70)| ~ lo ()] ~ (r1 —70)*/7,

if 79,71 € supp p N Iy satisfy 79 < 71 and (79,71) Nsupp p = &. Furthermore, there is p, ~ 1 such that
o (70)| S p(10)?,
if 79 € supp p N Iy is a local minimum of p satisfying p(79) < ps.

(ii) Owing to the 1/3-Holder continuity of o from Lemma 5.5 (i), we conclude that there is ¢ ~ 1 such
that |o(7)| ~ (11 — 10)"/3 for all 7 € supp p N Iy satisfying min{|r — 7|, |7 — 71|} < (71 — 70) for some
7o, T1 € supp p N Iy such that 79 < 71 and (79, 71) Nsuppp = &
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(iii) If 7 € Iy satisfies the assumptions of (ii) as well as p(7) > 0 then we write A := 7 — 7y and conclude from
(ii) and Lemma 5.7 that

1
|\67m(7')|| S p(T)(p(T) +A1/3)'

A. Stieltjes transforms of positive operator-valued measures

In this appendix, we will show some results about the Stieltjes transform of a positive operator-valued measure
on A.

We first prove Lemma 3.1 by generalizing existing proofs in the matrix algebra setup. Since we have not
found the general version in the literature, we provide a proof here for the convenience of the reader. In the
proof of Lemma 3.1, we will use that a von Neumann algebra is always isomorphically isomorphic as a Banach
space to the dual space of a Banach space. In our setup, this Banach space and the identification are simple to
introduce which we will explain now. Analogously to L? defined in Section 4, we define L' to be the completion
of A when equipped with the norm ||z||; := ((z*x)Y/?) = (|z|) for 2 € A. Moreover, we extend (-) to L' and
remark that xy € L! for z € A and y € L. Tt is well-known (e.g. [40, Theorem 2.18]) that the dual space (L')’
of L' can be identified with A via the isometric isomorphism

A= (LY, 2= ¢e, e L' = C, y— (ay). (A1)

We stress that the existence of this isomorphism requires the state (-) to be normal.

Proof of Lemma 3.1. From (3.5), we conclude that
n—00

for all z € A. Hence, z — (z,h(z)zx) is the Stieltjes transform of a unique finite positive measure v, on R with
0 (R) = |2z B
For any x € A, we can find z1,...24 € A4 such that © = 21 — x9 + izg — ixy. We define

vB(7) = vz (B) = vya3(B) + 1053 (B) — v /z(B) (A.2)

for B € B. This definition is independent of the representation of z. Indeed, for fixed = € A, any representation
T =y — 2o + izz — iy with z1,...,24 € Ay defines a complex measure ¢.(z) through B ~ pp(z) on R
via (A.2). However, extending h to the lower half-plane by setting h(z) := h(2)* for z € C with Imz < 0, the
Stieltjes transform of ¢.(x) is given by

dr (T . .
[ 2D (VD - (V)T + VS MWE) — (T V) = (1))
R T —
for all z € C\ R. This formula shows that the Stieltjes transform of ¢.(x) is independent of the decomposition
x = x1 — oo + ixg — izy. Hence, pp(z) is independent of this representation for all B € B since the Stieltjes
transform uniquely determines even a complex measure. A similar argument also implies that, for fixed B € B,
¢p defines a linear functional on A.
Since v_z(R) = (y) for y € A, we obtain for 2 = (Rez); — (Rez)_ +i(Imz)y —i(Imz)_ € A

l0B(@)] < v Ry (R) + v ree - (R) +v ey (R) + v /= (R)
< ((Rex)y + (Rew)- + (Imz)y + (Imz)-) < 2|y,

where we used that (Rex); + (Rex)— = |Rex| and (Imz); + (Ima)_- = [Imz|. Therefore, ¢ extends to a
bounded linear functional on L! as A is a dense linear subspace of L. Using the isomorphism in (A.1), for each
B € B, there exists a unique v(B) € A such that

for all z € A. For y € A, we conclude v, (B) = v g=(B) = ¢p(yy*) = (y,v(B)y) > 0, where we used that
vy = v s+ since they have the same Stieltjes transform. Since (v(B)y) > 0 for all y € A, we have v(B) € A4
for all B € B. Moreover, v, = (z,v(-)z), in particular, (z,v(R)z) = v,(R) = (z,x), for all z € A. The
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polarization identity yields that v is an A -valued measure on B satisfying (3.6) and v(R) = 1. This completes
the proof of Lemma 3.1. [l

Lemma A.1 (Stieltjes transform inherits Holder regularity). Let v be an A -valued measure on R and h: H —
A be its Stieltjes transform, i.e., h satisfies (3.6) for all z € H. Let f: I — A4 be a y-Holder continuous
function on an interval I C R with v € (0,1) and f be a density of v on I with respect to the Lebesgue measure,
i.€e.,

[£(m1) = f(72)ll < Colm — 72|, U(A):/ f(r)dr
A
for all 11,70 € I, some C > 0 and for all Borel sets A C I. Moreover, we assume that ||f(7)|| < C1 for all

Tel. Let 6 € (0,1].
Then, for z1,z2 € H satisfying Re z1, Re zo € I and dist(Re z;,0I) > 0, k = 1,2, we have

210,  4|ju(R)| 14C,
Y1 =) o1+ oAl

Ia(z) = hz2) | < ( )le1 = 2af. (A3)

Furthermore, for z1,ze € H satisfying dist(zx,suppv) > 0, k = 1,2, we have

2||v(R)

In(e1) — A=) < 2Oy o (A1)

We omit the proof of Lemma A.1 since it is very similar to the one of Lemma A.7 in [1].

B. Positivity-preserving, symmetric operators on A

Lemma B.1. Let T: A — A be a positivity-preserving, symmetric operator.

(i) If Ta] < C{a)1 for some C' >0 and all a € Ay then | T2 < 2C. Moreover, ||T||2 is an eigenvalue of T
and there is x € Ay \ {0} such that Tx] = ||T||22.

(i) We assume ||T||2 =1 and that there are ¢,C > 0 such that
c(a)l < Tfa] < C{a)l (B.1)

for all a € Ay. Then 1 is an eigenvalue of T with a one-dimensional eigenspace. There is a unique
x € Ay satisfying T[x] = x and ||z||]2 = 1. Moreover, x is positive definite,

cCTV <z < C1. (B.2)
Furthermore, the spectrum of T has a gap of size 0 := c8/(2(c® + 20%)C?)), i.e.,
Spec(T) C [-14+6,1 —0]U{1}. (B.3)
Lemma B.1 is the analogue of Lemma 4.8 in [4]. Here, we explain how to generalize it to the context of von
Neumann algebras. In the proof of Lemma B.1, we will use the following lemma.
Lemma B.2. Let T: A — A be a linear map.

(i) If T is positivity-preserving such that T[a] < C{a)1 for alla € Ay and some C > 0 then | T|| < || T||o— <
2C.

(ii) If T —wld is invertible on A for some w € C\ {0} and |[(T —wld) |2 < 00, || T||a—. < oo then we have

(T = wId) M| < fw] (14 (1T oo (T = wId) 7 l2).

We include the short proof of Lemma B.2 for the reader’s convenience. In fact, the first part is obtained as
n (4.2) of [4] and the second part as in (5.28) of [1].

Proof of Lemma B.2. Let a € A be self-adjoint, i.e., a = a*. Thus, a = a4 — a_ is the sum of its positive and
negative part, ay,a_ € Ay. We conclude

Tla] < Tlay] + Tla-] < Clay +a-) < Cllall
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since a4 + a— = |a|]. Hence, ||T[a]|] < C|lall2 as T[a] > —C|la||2 is shown similarly. For a general a € A, we
obtain ||T'[a]|] < 2C||al|2. As ||lall2 < ||a|| this completes the proof of part (i).

For the proof of (ii), we take an arbitrary z € A. We set y := (T — wId)~![z]. From the definition of the
resolvent, we conclude wy = T'[y] — x. This yields

Iyl < ol AT N lyllz + ) < Jol ™ Q@+ [Tl g T = wId) = l2) ],
where we used ||z||2 < ||z|| in the last step. Since z was arbitrary, we have completed the proof of (ii). O

Proof of Lemma B.1. For the proof of (i), we remark that Lemma B.2 (i) implies || T||2 < [|T |- < 2C.

Without loss of generality, we assume ||T'||2 = 1. Since T is positivity-preserving, we have T'[b] € A, for all b €
Asa. Tt is easy to check that, for each a € A, one may find b € Ag, such that ||a||2 = ||b]|2 and ||T[a]||2 < || T[b]||2-

Hence, ||T| ., ll2=||T]|2 =1 and 1 is contained in the spectrum of T': L2, — L2, where L2 = A ”2, due to
the variational principle for the spectrum of self-adjoint operators and [(b, T'[b])| < (|b],T[|b]]) for all b € As,.
This last inequality can be checked easily by decomposing b = by — b_ into positive and negative part.

Hence, due to the symmetry of T, there is a sequence (y,), of approximating eigenvectors in As,, i.e.,
Yn € Asa, [|ynll2 = 1 and T[yn] — yn converges to 0 in L? for n — co. We set x,, := |y,|. By using ||T|2 [l =1
and (b, T'[b]) < (|b],T[|b]]) for all b € Aga, we obtain ||T[z,] — 2,3 < 2||ynll2l|T[yn] — ynll2 and, thus,

nh_}rr;oHT[xn] — Zn|l2 = 0. (B.4)

Since the unit ball in the Hilbert space L? is relatively sequentially compact in the weak topology, we can
assume by possibly replacing (x,,), by a subsequence that there is x € L? such that x,, — x weakly in L?. From
Txy] < C{x,)1, we conclude

zp < (Id = T)[zn] + Clxn)1.

Multiplying this by \/z,, from the left and the right and applying (-) yields
1< (2, (Id = T)[z,]) + C{x,)>

Taking the limit n — oo, we obtain (z) > C~/2, due to (B.4). Hence, 2 # 0 and we can replace = by z/||z2
and z,, by x,/||z||2. For any b € L?, we have

(b, (1d — T)fa]) = Timm (b, (1d — T)[a,]) = 0
due to 2, — x and (B.4). Hence, T'[z] = 2. Since ||T||s—. < 2C, we have T'[b] € A for all b € L? and thus
r = T|z] € A. Owing to z,, — x and z,, € A4, we obtain € A,. This completes the proof of (i).

We start the proof of (ii) by using (B.1) with ¢ = z which immediately yields the upper bound in (B.2). As
(x) > C~'/2 the first inequality in (B.1) then yields the lower bound in (B.2).

In order to prove the spectral gap, (B.3), we remark that || T'||o—.; < 2C due to the upper bound in (B.1)
and Lemma B.2 (i). Hence, by Lemma B.2 (ii), the spectrum of T as an operator on A is contained in the union
of {0} and the spectrum of T" as an operator on L?. Therefore, we will consider T as an operator on L? in the
following and exclusively study its spectrum as an operator on L?. Hence, to prove the spectral gap, it suffices
to establish a lower bound on (y, (Id £ T)[y]) for all self-adjoint y € A satisfying ||yl = 1 and {(x,y) = 0. Fix
such y € A. Since y is self-adjoint we have

N
y= lim y", yN = Z )\fcvpiv (B.5)
k=1

N—o00

for some Ay € R and p}Y € A orthogonal projections such that pY pI¥ = p2 6y ;. Here, the convergence y™¥ — y is
with respect to ||-||. We can assume that ||y ||z = 1 for all N as well as (pY¥) > 0 for all k and (p?¥ +...+p¥) =1
for all V.

We will now reduce estimating (y, (Id & T')[y]) to estimating a scalar product on CV. On C¥, we consider
the scalar product (-, - ) induced by the probability measure 7(A) = >, ., (py') on [N], i.e.,

Ny = Nk (ph)
k=1

(CN><N

for A = (M) ;, u = (ur)_, € CVN. The norm on CV and the operator norm on induced by (-, -)n
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are denoted by || - || and | - ||, respectively. Moreover, Idy is the identity map on CV. With this notation, we
obtain from (B.5) that

N
(y, £y = lim > NN, (d£T)[p']) = lim WV, (Idy £ SV)A ),

N —o0 N —o0
k,l=1

where we introduced ANV = (AM)N_ € CV and the N x N symmetric matrix SV viewed as an integral operator
on ([N], ) with the kernel s& given by
v _ o TP

ST TN )

Since ||y™V||2 = 1, we have ||\ ||y = 1. By the flatness of T', we have

c< sy <C. (B.6)

In the following, we will omit the N-dependence of Ak, sg; and pg from our notation. By the definition of
(-,-)n, we have

A SN =D Mlpr)su () = (N, TN
k=1

Let s € CV be the Perron-Frobenius eigenvector of S satisfying Ss = || S|, ||s||x = 1. From (B.6), we conclude

c<{e,Se)ny <||S]| = (s, 5s)n <|[[T]]2 =1, (B.7)
where e = (1,...,1) € CV. Since ||s|xy =1 and ¢ < ||S||, we have
12,y 1/2
Ss)i _ O O (& C
max s; = (||S|)| s < > silpr) < = <Z<Pk>> (Z Si(Pk>> =2
k=1 k=1 k=1

As infy ; sk > ¢ by (B.6), Lemma 5.7 in [1] yields

c3 c3

Spec(S) € | = 111+ 5. 151 = 55| UAlISI}-

We decompose A = (1 — [|w||%)"/?s +w with w L s and obtain

3

3
C
[ SA | < IS = wllR) + (181 = &5 ) lellk < 1= S lwl?, (B:3)

where we used ||S|| <1 in the last step. Hence, it remains to estimate ||w|| .

Recalling T[z] = x, we set = ((zpx)/(px))_, and compute

(@, y™) =" Alapr) = (#, \)n.
k

Since the left-hand side goes to (z,y) = 0 for N — oo, we can assume that [(Z,\) x| < /e/2 for any fixed
¢ ~ 1 and all sufficiently large N. As &3 > ¢/v/C by (B.2), we obtain

(1- IIwII?v)% (Z 5k<pk>> < (1= wlR)@, o)k = (&, Ny — (T, w)n)* < 22|} [lwl} +e. (B.9)
k

Now, we use ¢ < (s, Ss)y from (B.7) to get

c<(s,S8)ny = ZSkSszl<pk><pl> <C <Z 5k<pk>> .

k,l k

By plugging this and [|Z|% < [|z]|* X, (px) = 1 into (B.9), solving the resulting estimate for ||w||% and choosing
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e = 3/(2C?), we obtain
2 c?
> .
||wHN = 2(63+202)
Therefore, from (B.8), we conclude

b

<1-—°
&SI <1 = o e ee

uniformly for all sufficiently large N € N. We thus obtain that

6

W WD) 2 3 Hen e

if y L z and |ly|]]2 = 1. We conclude (B.3), which completes the proof of the lemma. O
Lemma B.3. If T': A — A is a positivity-preserving operator such that [Tz < 1 and [|T|a— ). < oo then
Id — T is invertible as a bounded operator on A and (Id — T) ™! is positivity-preserving with

(Id — T) Ma*z] > a*x (B.10)
for all z € A.

Proof. Since ||T||2 < 1, Id — T is invertible on L? and we conclude the invertibility of Id — T on A from
Lemma B.2 (ii).

Moreover, for y € A with ||y*y||2 < 1, we expand the inverse as a Neumann series using ||T||2 < 1 and obtain

(1d-17)""y"y) = y"y + (Z T [y*y]) > y'y.
k=1

The series converges with respect to || - ||2. In the last inequality, we used that T* is a positivity-preserving
operator for all k& € N. Hence, by rescaling a general x € A, we see that (Id — T')~! is a positivity-preserving
operator on A which satisfies (B.10). O

C. Non-Hermitian perturbation theory

Let By: A — A be a bounded operator with an isolated, single eigenvalue 8y and an associated eigenvector by,
Hbo”g = 1, i.e.,
By[bo] = Bobo-

Moreover, we denote by Py and (o the spectral projections corresponding to Sy and Spec(By) \ {5o}. Note
that Py + Qo = Id but they are not orthogonal projections in general. If /g is a normalized eigenvector of Bj
associated to its eigenvalue (g, then we obtain

_ <l ")
) = <l§,b0>b0. (C.1)

For some bounded operator E': A — A, we consider the perturbation
B=DBy+E.

We assume E to be sufficiently small such that there is an isolated, single eigenvalue g of B close to 5y and that
B and Sy are separated from Spec(B) \ {f} and Spec(By) \ {0} by an amount A > 0. Let P be the spectral
projection of B associated to 3.

Lemma C.1. We define b := P[bo] and | := P*[ly]. Then b and | are eigenvectors of B and B* corresponding
to B and B, respectively. Moreover, we have

b=bo+bi+b+O(EI?), I=lo+hL+1=+O(|E]%), (C.2)
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where we introduced

br = — Qo(Bo — fold) ™" Elbo,

by = Qo(Bo — Bold) " E(By — Bold) ' QoE[bo] — Qo(Bo — Bold) >EPyE[bo] — PyEQo(Bo — Bold) > Elbo],

= — Q(By — Bold) " E*[l],

ly = Q3(Bg — Bold) ' E* (B — fold) "' Q4 E*[lo] — Q5 (By — Bold) > E* Py E*[lo] — Py E*Q5(Bs — Bold) E* [lo).

In particular, we have b;,l; = O(||E||*) for i = 1,2. Furthermore, we obtain
B(1.b) = Bollo, bo) + (lo, Elbo]) — (lo. EBo(Bo — Bold) *QoE[bo]) + O(| E|]®). (C.3)
The implicit constants in the error terms depend only on the separation A.

Proof. In this proof, the difference B —w with an operator B and a scalar w is understood as B —wld. We first
prove that

P=Py+ P +P+O(E|*, (C.4)
where we defined
Qo Qo
P = — EPy — PyE ,
! Bo—fo  ° """ Bo-fo
Py = PoE Qo B Qo n Qo ERE Qo n Qo B Qo EPR,
Bo—B0 Bo—B0 Bo—Bo Bo—80 Bo—pBo Bo—Bo
Qo Qo Qo
-— FPEPy - PP E————FEPy — P\ EP)E————.
(Bo—Bo)2 "7 T (Bo— B2 VT (By — fo)?
The analytic functional calculus yields that
1 d 1 1 1 1 1 1 1
=gt L E - E E Jaw + O(IBI),
27 Jy B—w 27 Jp By—w By—-w By—w By—w By—-w By—w

(C.5)
where T is a closed path that encloses only 5 and By both with winding number +1 but no other element of the
spectra of B and By. Integrating the first summand in the integrand of (C.5) yields Py. In the second and third
summand, we expand Id = Py + Qg in the numerators. Applying an analogue of the residue theorem yields P;
and P for the second and third summand, respectively. For example, for the second summand, we obtain

1 1 1 Qo Qo
YT o i Bo-w Bo—w Bo—fBo 0 " Bo—fo

The other two combinations of Py, Qo vanish. Using a similar expansion for the third term, we get (C.4).
Starting from (C.4) as well as observing b; = P;[bg] and I; = P[ly] for i = 1,2, the relations (C.2) are a direct
consequence of the definitions b = P[bg] and | = P*[ly] and (C.1).
We will show below that

BP = ByPy + By + B2 + O(| E||?), (C.6)
where we defined
Qo Qo
By = PyEPy — ( EPy + Py )
1 0EPy — fo Bo— Bo Ut T BT
Qo Qo Qo Qo Qo Qo
By := o PO E E + EPE + E EP,
2 O(O Bo—fo Bo—fo  Bo—fo  Bo—Po Bo—Po Bo—po O)
ByQo BoQo ByQo
-— —FPFPy— FWEF————FFPy— PP EP)F———.
(Bo—Bo)2 7 T By = B2 T YT (By — fo)?

Now, we obtain (C.3) by applying (C.2) as well as (C.6) to 8(l,b) = (I, BPb).
In order to prove (C.6), we use the analytic functional calculus with I" as defined above to obtain

1 wdw 1 1 1 1 1 1 1
BP = — — :—% (f E - E E )d O(||E|I*).
27 Jy B—w 27 Fw BofijBofw By—w By—w By—w By—w w+O(I1EI)

Proceeding similarly as in the proof of (C.4) yields (C.6) and thus completes the proof of Lemma C.1. O
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D. Characterization of supp p

The following lemma gives equivalent characterizations of supp p in terms of m. Note supp p = suppv due to
the faithfulness of (-). We denote the disk of radius ¢ > 0 centered at z € C by D.(z) == {w € C: [z —w| < €}.

Lemma D.1 (Behaviour of m on R\ supp p). Let m be the solution of the Dyson equation (2.3) for a data pair
(a,5) € Asa x & with |la]] < ko and S[z] < ki{x)1 for all x € Ay and some ko, k1 > 0. Then, for any fized
T € R, the following statements are equivalent:

(i) There is ¢ > 0 such that
lim sup n||Imm(7 4 in)|| ' > c.
740

(i) There are C > 0 and N C (0, 1] with an accumulation point 0 such that
Im()l < C; fm(z)7 <€, CHImm(2))1 < Imm(z) < C{Imm(2))1, [|F(z)[2<1-C7" (D.1)
for all z € T +iN. (The definition of F was given in (3.4).)

(iii) There is m = m* € A such that
hﬁ}”m(T +in) —m| = 0. (D.2)
7

Moreover, there is C > 0 such that ||m| < C and ||(I1d — C,,S)7!|| < C.

(iv) There are € > 0 and an analytic function f: D:(1) — A such that f(z) = m(z) for all z € D (1) NH and
f(z) = f(2)* for all z € D.(7). In particular, f(z) = f(2)* for z € D.(t) NR.

In other words, m can be analytically extended to a meighbourhood of T.
(v) There is € > 0 such that dist(7,supp p) = dist(r, suppv) > ¢.

(vi) There is ¢ > 0 such that
hmi%nanIm m(r +in)|~' >
n.

All constants in (i) — (vi) depend effectively on each other as well as possibly ko, k1 and an upper bound on |t|.
For example, in the implication (iii) = (v), € in (v) can be chosen to depend only on ki and C in (iii).

We remark that m in (iii) above is invertible and satisfies (2.3) at z = 7.
As a direct consequence of the equivalence of (i) and (v), we spell out the following simple characterization

of supp p.
Corollary D.2 (Characterization of supp p). Under the conditions of Lemma D.1, we have

lim || Tmm(7 + in)||~* = 0. (D.3)
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if and only if T € supp p(= suppv).

Remark D.3. In the proof of Lemma D.1, the condition S[z] < kq(x)1 for all z € A is only used to guarantee
the following two weaker consequences: First, this condition implies ||.S|[o— .| < 2k1. Moreover, this condition

yields, by Lemma B.1 (i), that ' = F(7 + in) has an eigenvector f € A corresponding to ||F||2, Ff = ||F|2f,
for any fixed 7 € R\ supp p and any n € (0,1]. If both of these consequences are verified, then the condition
S[z] < k1{(z)1 may be dropped from Lemma D.1 without any changes in the proof.

Lemma D.4 (Quantitative implicit function theorem). Let X, Y, Z be Banach spaces, U C X and V CY open
subsets with 0 € U, V. Let ®: U x V. — Z be continuously Fréchet-differentiable map such that the derivative
01 9(0,0) with respect to the first variable has a bounded inverse in the origin and ®(0,0) = 0. Let 6 > 0 such
that Bg( cU, Bg/ CcV and

(D.4)

)

N~

sup  [[Idx — (019(0,0)) 01 ®(z, y)|| <

(z,y)eBF xBY
where By and BY denote the §-ball around 0 in X and Y, respectively. We also assume that

1019(0,0)) 7| < C1, sup  [[022(z, y)|| < Co
(z,y)eBFxBY
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for some constants Cy, Cy, where Jo denotes the derivative of ® with respect to the second variable. Then
there is a constant € > 0, depending only on §, Cy and Ca, and a unique function f: BY — Bg( such that
O(f(y),y) =0 for all y € BY . Moreover, f is continuously Fréchet-differentiable and if ®(z,y) = 0 for some
(z,y) € B x BY then x = f(y). If ® is analytic then f will be analytic.

Proof. The proof is elementary and left to the reader. O

For 2,y € A and w € C, we define

! (@STyly + ySTyle). (D.5)

Duly,w) = (1 = CoS)ly] - wa? = 5 (wy +y2) — 5

We remark that ®,,.)(m(z +w) —m(z),w) =0 for all z € H and z +w € H (see (6.9)).

Proof of Lemma D.1. Lemma B.2 (i) yields ||S|lo < 1 due to S[z] < ki(z)1 for all z € Ay. Therefore,
lal < 1 and ||| < |[S|lz—; < 1 imply that suppv = suppp is bounded, i.e., sup{|7|: 7 € suppp} < 1
by (2.5a).

First, we assume that (i) holds true. We set N := {n € (0,1]: n|[Imm(r + in)||~! > ¢/2}. By assumption, N
is nonempty and has 0 as an accumulation point. In particular, we have

2n

Mmm(z)] < —, 7l $Imm(z) -1 (D.6)
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for all z € 7 +iN. The first bound is a direct consequence of the definition of N. The second bound follows
from (2.4) and the bounded support of v. Moreover, the first bound immediately implies the third bound. By
averaging the two last bounds in (D.6) and using Imm(7 + in) < n for n € N, we obtain the third and fourth
estimates in (D.1). In particular, p(z) ~ |[[Imm(2)|| for z € 7+iN. Owing to (2.4), for any z € H and z,y € L2,
we have

((x,lm m(z)x) + (y,Im m(z)y>) <

1/ (z,v(d7)z) + (y, v(dT)y) < (lll13 + llyll3)-
R

[, m()) < 5 L

oI

Here, we used that v has a bounded support and (2.4) in the second step and the first bound in (D.6) in the
last step. This proves the first bound in (D.1). The second estimate in (D.1) is a consequence of (2.3) as well as
llall S 1, |S|| < [|S]l2=. S 1 and the first bound in (D.1). We recall the definitions of ¢ = ¢(2) and u = u(z)
in (3.1). Owing to Lemma 4.8 (i), the bounds in (D.1) yield

lal <1, g 'lIs1, Imu~ (Imu)d~pl (D.7)

uniformly for all z € 7 +iN. Thus, for all 2z € A, and z =7 +ipandn € N, F = F(z) satisfies F[z] < (z)1
due to S[z] < (z)1. Hence, Lemma B.1 (i) yields the existence of an eigenvector f € A4, i.e., Ff = || F|2f. By
taking the imaginary part of (3.3) and then the scalar product with f as well as using the symmetry of F, we

get
f,aq* _
L Fll = -9 ()| 2 ¢ (D.8)

(f,Imu)
for z = 7+ ip and n € N (compare (4.5)). Here, we also used f € Ay, (D.7), p(z) ~ |[Imm(z)| and the
definition of N. This completes the proof of (i) = (ii).

Next, let (ii) be satisfied. As before, Lemma 4.8 (i) implies (D.7) for all z € 7 +iN due to the first four
bounds in (D.1). Thus, inspecting the proofs of Lemma 4.8 (iii) and Proposition 4.1 and using ||S||o— . < 1
via Lemma B.2 (ii) yield

H(Id - Cm(z)S)71H Sl (D.9)

uniformly for all z € 7 4+ iN. Thus, we can apply the implicit function theorem, Lemma D.4, to ¥, (A, w) =
D (r+in) (A, w) (@ has been defined in (D.5)) for each n € N with w € C. Since ¥,(0,0) = 0 for all n € N,
there are ¢ > 0 and unique analytic functions A, : D.(0) — B3' by Lemma D.4 such that U, (A, (w),w) = 0
for all w € D.(0) and all n € N. We now explain why & can be chosen uniformly for all n € N. By (D.1) and
(D.9), there are bounds on m(z) and (Id — Cy,(»)S) ™" which hold uniformly for z € 7 4+ iN. Hence, it is casy
to find § > 0 such that (D.4) holds true uniformly for all € N. These uniform bounds yield the uniformity
of €. Since 0 is an accumulation point of N, there is 79 € N such that ny < €. We set z := 7+ ing. An easy
computation using (2.3) at spectral parameters z and z 4+ w shows ¥, (m(w + 2) — m(z),w) = 0 for all w € C
such that w + z € H. Owing to the continuity of m, we find £’ € (0,¢) such that m(w + 2) — m(z) € B3 for all
w € D (0). Thus, by the uniqueness of A, (cf. Lemma D.4), A, (w) = m(w + z) — m(z) for all w € D./(0).
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As A, and m(- + z) are analytic, owing to the identity theorem, we obtain A, (w) +m(z) = m(w + z) for
all w € D.(0) satisfying w + z € H. Using 1o < €, we set m := Ay, (—ing) + m(z). For this choice of m, the
continuity of A, (w) for w — —ing and A, (w) + m(z) = m(w + z) yield (D.2). It remains to show that m is
self-adjoint. Since (D.7) holds true under (ii) as we have shown above, we obtain

nimm(z)| 7~ 1~ |||z > C7

for z =7 +in and n € N as in (D.8). Thus, liminf, o|Imm(7 + in)|| < 0. Hence, we obtain Imm = 0, i.e.,
m = m*. This completes the proof of (ii) = (iii).

If (iii) holds true then Id — C,,,S has a bounded linear inverse on A for m. Hence, we can apply the implicit
function theorem, Lemma D.4, to ®,,(A,w) = 0 (see (D.5) for the definition of ®) as ®,,(0,0) = 0 and
1P, (0,0) =1d — C,, S. Tt is easy to see that there is 6 > 0 such that (D.4) is satisfied. Therefore, there are
e > 0 and an analytic function A: D.(0) — B! such that ®,,(A(w),w) = 0 for all w € D(0). In particular,
f: De(r) = A, f(w) = A(w — 7) + m is analytic. From (D.2) and (2.3), we see that m is invertible and
satisfies (2.3) at z = 7. Thus, a straightforward computation using (2.3) at z = 7 and at z = 7 + i yields
D, (m(1 + in) —m,in) = 0 for all n € (0,e]. Therefore, m(7 + in) = A(in) + m = f(7 + in) for all n € (0, 7]
and some 7, € (0,¢] due to the uniqueness part of Lemma D.4 and (D.2). Since m and f are analytic on
D.(7) N H, the identity theorem implies m(z) = f(z) for all z € D.(7) N H. A simple computation shows
D, (A(0)*,w) = Pp(A(w),w0)* = 0 for all w € D,(0) as m = m*. Hence, A(w) = A(w)* for all w € D.(0)
by the uniqueness part of Lemma D.4. Thus, f(w) = f(w)* for all w € D.(7) and f(w) = f(w)* for all
w € D.(7) NR. This proves (iii) = (iv). Clearly, (iv) implies (v) by (2.4).

If the statement in (v) holds true then dist(7,supp p) > e. In particular, by (3.7), we have

lim inf 7||Tm m(7 + in)||~* > lim inf dist(7 + in, supp p)* > &2
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for all n > 0. Here, we used (3.7) in the first step. This immediately implies (vi) with ¢ = ¢®. Moreover, (i) is
immediate from (vi).

Inspecting the proofs of the implications above shows the additional statement about the effective dependence
of the constants in (i) — (vi). In particular, the application of the implicit function theorem, Lemma D.4, in the
proof of (iv) shows that e can be chosen to depend only on k; and C' from (iii). This completes the proof of
Lemma D.1. |
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