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Semi-free subgroups of a profinite surface group

Matan Ginzburg and Mark Shusterman

Abstract

We show that every closed normal subgroup of infinite index in a
profinite surface group I' is contained in a semi-free profinite normal
subgroup of I'. This answers a question of Bary-Soroker, Stevenson,
and Zalesskii.

1 Introduction

The classical theorem of Nielsen and Schreier states that every sub-
group of a free group is free. Trying to extend this result to profinite
groups fails, for example Zo < 7. This naturally gives rise to the ques-
tion of finding conditions upon which a subgroup of a free profinite
group is free.

Some results in this direction are known, for instance, Melnikov’s
characterization of normal subgroups of free profinite groups, and Ha-
ran’s diamond theorem. Results of slightly different flavor have been
obtained by Shusterman, in [B] where, for example, the following is
proven.

Theorem 1.1. Let F be a nonabelian finitely generated free profinite
group, and let H <. F be a closed subgroup of infinite index in F. Then
there exists a free profinite subgroup H < L <. F of rank Ng.

In particular, weakly maximal subgroups are free.

In this work we consider an analog of the above for profinite surface
groups. These groups show up as étale fundamental groups of curves
over an algebraically closed field of characteristic 0.

We will be interested in semi-free profinite subgroups (of profinite
surface groups), a notion introduced in El], where it is shown that a
group is free profinite if and only if it is projective and semi-free. As
shown in |8], projectivity of a subgroup of a profinite surface group
is equivalent to a simple condition on its index (as a supernatural
number). Henceforth, we will focus on semi-freeness.

Our main result is the following.

Theorem 1.2. Let N <.1'y be a normal subgroup of infinite index in
a profinite surface group of genus g > 2. Then there exists a semi-free
profinite subgroup M <.I'y that contains N.

This answers a question raised by Bary-Soroker, Stevenson, and
Zalesskii (in |2, Remark 4.1]) who used their diamond theorem to es-
tablish the special case where I'y /N is not hereditarily just infinite.
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Our method also gives the following analog of the aforementioned
results of Shusterman.

Theorem 1.3. Weakly mazimal subgroups of profinite surface groups
are semi-free profinite.

Weakly maximal subgroups were also studied in the context of
branch groups, for instance in |4].

2 Preliminaries

Here we give the basic definitions and claims that will be used in the
rest of this paper. We will work in the category of profinite groups,
namely we assume that every subgroup is closed, every homomorphism
is continuous, and so on.

Definition 2.1. For a finitely generated profinite group G we denote
by d(G) the minimal size of a generating set of G.

Definition 2.2. An infinite profinite group G is called just infinite
if for every {1} # N <. G the quotient G/N is finite. Equivalently,
every non trivial normal subgroup of G is open.

Definition 2.3. An infinite profinite group is called hereditarily just
infinite if every open normal subgroup of it is just infinite.

Definition 2.4. Let H be a closed subgroup of infinite index in a
profinite group G. We say that H is weakly maximal in G if every
H < K <. G is open.

Definition 2.5. Given groups G, A, B and surjective homomorphisms
a:A—B,:G— B

we define the embedding problem &£(G, A, B, «, 8) as the problem
of finding a homomorphism ¢ : G — A such that § = a o p. Such a
homomorphism ¢ is called a solution to the problem. If moreover ¢
is surjective then it is called a proper solution.

Definition 2.6. An embedding problem £(G, A, B, a, ) is called fi-
nite if A is finite. Note that since « is surjective, B is also finite.

Definition 2.7. An embedding problem £(G, A, B, a, §) is called split
if there is a homomorphism « : B — A such that a oy = idg. In such
a case we have A = Ker(a) x B.

Definition 2.8. A profinite group G of rank ¥y is called semi-free
if every finite split embedding problem (G, A, B, «, 8) has a proper
solution.

Definition 2.9. The profinite surface group of genus g is the
group given by the profinite presentation

g
Fg:<$1;-"7xgayla"'7yg | H[xuyl]:1>
i=1



Definition 2.10. Let I'; be a profinite surface group of genus g. A

surface basis of I'; is a set of generators z1,...,24,91,...,y4 such
that
g
Fg = <zla"'7$gay17"'7yg | H['rzvyz] = 1>
i=1

Fact 2.11. An open subgroup H of a genus g profinite surface group
T is a profinite surface group of genus [I': H|(g — 1) + 1.

Claim 2.12. Let £(G, A, B,«,3) be an embedding problem and let
v : G — A be a solution of . If Ker(a) C Im(p) then ¢ is a proper
solution.

Proof. Let a € A. Denote b = «afa) and let ¢ € G be such that
B(g) =b. Then

therefore
ap(g)™! € Ker(a) C Im(p).

As Im(¢) is a subgroup, we conclude that a € Im(p) soIm(¢) = A. O

3 Semi-free subgroup

We need the following variant of |5, Lemma 6.1].

Lemma 3.1. Let
g
I'= (@i, | H[:szyz] =1)
i=1

be a profinite surface group, and let N <.T'. Consider the diagram

T
N |B
P
A—>5pB
where A, B are finite groups, « is a surjection, and B|N = [0 is a

surjection as well. Denote by
E=E(N,A B,a,8), £€=E&I,A, B, a,pB)

the two finite embedding problems in the above diagram.
Let ¢: T' — A be a solution to £, and set

K :=Ker(a), n:=|Kp[)|, s:=d(K).



Suppose that g > sn + s and that
V1<i,j<sn+s @) =), ¢l) = ely;), zizy € N.
Then £ admits a proper solution.

Proof. Choose a set of generators B := {ki,...,ks} of K. Define
n(z1) = ¢(z1) and

N(@intj+1) = (@sntiv1)kiv1 = @(@1)kip1, 0<i<s—1,1<j<n.
Let n coincide with ¢ for all other generators of I', that is
n(wi) = (i), n(y;) = ¢y;), sn+1<i<g, 1<j<yg.
Since
VO0<i<s—1[p(@sntit1)kit1, P(Ysntit1)] € Ko(I)
we get that

V0<i<s—1[M@int2), N(Yint2)]” =1 = [0(@int2), @(Yint+2)]"-

Therefore
f[l[n(wi),n(yi)] =
e E[n(xmz), Mint2)]” ._ﬁ+2[n(fci), n(y:)] =
lo(x1), o(y1)] - i:[:[cp(xin+2), O(Yini2)]™ - __ﬁ+2[¢(:ci), ()] =
f[l[w(wi),w(yi)] = 1.

Thus 7 extends to a homomorphism. As xflxi € Nforl<i<sn+s,
we conclude that k11 = n(xl_lxjn+2) e€n(N) for 0 < j < s—1, hence
7(N) contains K, so the result follows by invoking [Claim 2.12] O

We also need the following generalization of |2, Lemma 2.2].
Lemma 3.2. Let I'y be a profinite surface group of genus g, let
E=ETy, A B,a,pB)

be a finite split embedding problem, and suppose that g > 2|A|?|B.
Then & has a proper solution, and I'y has a surface basis

T1y--3 g Y1y---5Yg

such that
_2JAP
Bl

Vi<i<m xizl_l,yiyl_l € Ker(5),



Furthermore, if N <. T, is such that B(N) = B and
V1<i<m zz]' €N,
then the embedding problem € = £(N, A, B, a, B\n) is properly solvable.

Proof. Let zy,...,24,w1,...,wy be a surface basis of I'y. Let v be a
section of « and set ¢ = v o 8. As before, put K = Ker(a), s = d(K),
and n = |K¢(T'y)| = |A|. Note that

Al

and thus

AP+ 4] _ 24P _

B[~ |B|

Each of the pairs (p(2;), p(w;)) can attain at most |B|? values,
whence by the pigeonhole principle (since g > m|B|?) there are

sn+s<

1<i<je<--<jm<yg
such that
SD(ZJI) == So(szL)’ So(wjl) == So(w.%n)
Suppose j; # 1, then

g Ji—1 [2j1 wjy ] g
1= [2i, wi] = [Zjl’wjl] [ H [2i, wz]‘| H (i, wi]
i=1 =1 i=j1+1
Jji—1 g
e [zjl)wjl] . H [Zz[zjlij1]’w£2j11wj1]] . H [Zi;wi]
=1 i=j1+1

and so we can replace {z;, w;}7_; with a new surface basis

[2j1wj ] Z[Zh Wiy ]

Zjl, 1 PR | ;Zj1+17---7297
wjl,w[lzh ’wjl], e ,wﬁj’iiwjl],wjl+1, C Wy
By repeating this process with js,...,j, we obtain a surface basis
T1y...3 &g, Y1,---,Yq of I'g such that z; = z;,,y; = w;, for 1 <7 <m,
and so
p(x1) = =@(@m), @) == o(Ym).

Since sn + s < m we can apply [Lemma 3.1] (with N = I'y if neces-

sary) and the result follows. O

Corollary 3.3. The finite split embedding problem
r,0G
£
1—— K—KxH-—>H——1

has a proper solution once g > 2|K|*|H|?, Ty is a profinite surface
group of genus g, and G is any profinite group.



Proof. Denote Hy = B(T'y). According to [Lemma 3.2 the finite split
embedding problem

Ly

Jﬁﬂﬂg

1l—— K— KxHy—> Hy——1

has a proper solution ¢1. Let 9 : G — K x H be the map defined by

p2(f) = (1, B (/)

for every f € GG. There exists a unique homomorphism
p:T'yIG—-KxH
such that

VyelyVieG o(v)=vi(7), o(f)=w2(f)

By the universal property of free products, ¢ is a solution to the original
embedding problem. Since K is contained in Im(¢1) it is also contained
in Im() so by [Claim 2.12] ¢ is a proper solution. O

Theorem 3.4. Let N <. I'y be a normal subgroup of the profinite
surface group of genus g > 2 such that Ty /N is hereditarily just infinite.
Then N is semi-free.

Proof. Let

N

E

1l— K—KxH—H—1

be a finite split embedding problem for N. We shall prove it has a
proper solution.
Using |3, Lemma 1.2.5(c)], we can extend our embedding problem
to a subgroup
N<F<,T,

such that
2/KP2|HP+m—1

g—1
where m = 2|K|?|H|. By [Fact2.11] F is a profinite surface group of
genus

[Lg: F] >

h=[y:Fl(g—1)+1.

Note that
h—m >2|K*|H|?.



Applying [Lemma 3.2l to F, the extended embedding problem and
m, we obtain a proper solution ¢, and a surface basis z1,...,Zn, Y1,---,Yn
of F such that

Vi<j<m :cjxl_l,yjyl_l € Ker(f).

If ;27" € N for all 1 < i < m then by [Lemma 3.2, our original
embedding problem has a proper solution. Assume henceforth that
zixyt ¢ N for some 1 < i < m.

The homomorphism § factors modulo

L= (zoxy ", may L yoyr Ly D
Note that
h
F/L it <.’L‘1,.’L‘m+1,.. 5 Thy Y1, Ym+1,-- -, Yn | [‘Tl’yl]m' H [:Ei’yi] = >
i=m-+1
and that

B(lz1,3]™) = B(lw1,1]) " =1

so 3 even factors through

F/<L, [xlayl]m>F =

h
@iy | 11 [l = D@ | o)™ =1) =
1=m-+1
I IIG

where G = (x1,y1 | [x1,91]™ = 1).
Let
v B = F(L, [e1, 1)) "

be the quotient map, and set M = 9 (N). Since I'y/N is hereditarily
just infinite, F'/N is just infinite, so 1)~ (M) either equals N or is open
in F. The former is impossible as

J1<i<mazz;t € Ker(y) Cy~ (M), ziz;' ¢ N.

Hence ¢~1(M) is an open subgroup of F', so M can be seen as an open
subgroup of I'y,_,,, II G.
We can now write the original embedding problem as

N

[

M

Js

1l— K— KxH—H—7—1



so it is sufficient to properly solve it for M. Applying the Kurosh
theorem (|6, Theorem D.3.1]) we find that M = T'; IT G where

t>h—m>2|K|?H?

so by the desired proper solution exists. O

Repeating the above proof verbatim, one obtains the following.

Theorem 3.5. Let I'y be a surface group and N <. T'y weakly maxi-
mal, then N is semi-free profinite.
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