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Abstract—In this work we explore a family of metrics over
finite fields which respect the support of vectors. We show how
these metrics can be obtained from the edge-weighted Hamming
cube and, based on this representation we give a description
of a group of linear isometries (with respect to the metric).
Next we introduce the concept of conditional sum of metrics
and determine what conditions determine a metric respecting
support, out of two such given metrics. Finally we introduce
the labeled-poset block metrics, a new family of metrics which
respects support of vector, filling a gap existing in the known
such metrics. For this family we give a full description of the
group of linear isometries and determine necessary and sufficient
conditions for the existence of a MacWilliams identity.

I. INTRODUCTION

In coding theory, there are two main sources of decoding
criteria: a probabilistic (Maximum Likelihood Decoding -
MLD) and a metric (Minimum Distance Decoding - MDD).
While the first one focuses on the properties of the channel and
is the optimal criterion (in term of minimizing the error proba-
bility of the encoding-transmission-decoding process), the last
generally has properties that may help in the implementation
of decoding algorithms.

The most important instance of channel is the binary
symmetric channel which MLD criterion matches the MDD
criterion determined by the Hamming metric.The Hamming
metric dH has two important properties that are very valuable:

P1 Weight condition: The metric dH is determined by the
Hamming weight wtH , i.e., dH(u, v) = wtH(u− v).

P2 Support condition: If the vectors u = (u1, . . . , un) and
u′ = (u′1, . . . , u

′
n) are such that ui 6= 0 whenever u′i 6= 0,

then wtH(u) ≥ wtH(u′). In this case we say that the metrics
respects support.

The first of this properties gives an important tool for
implementing algorithms: the well known syndrome decoding
may be performed for every metric determined by a weight.
The second property makes it meaningful in the context of
coding theory, in the sense that making extra errors can not
improve the result. Altogether, we name these as our basic
decoding conditions (BDC, for short).

In the literature, matching between channels and metrics
(that is, the maximum likelihood decoding coincides with
nearest neighbor decoding) is not much explored. Despite the
large number of channels that are studied and the large number
of metrics described in the literature in the context of Coding
Theory (see, for example, [Chapter 16] in [1], and a recent
survey of Gabidulin [2]), there are a few examples of classical
metrics and channels which are proved to be matched.

Although matching channels and metrics is not widely
studied, we can find in the literature large families of metrics
satisfying the basic decoding conditions. We cite, for example,
the poset metrics of Brualdi [3], Gabidulin’s combinatorial
metrics [4], poset-block metrics [5] and digraph metrics [6]. 1

All those generalize the Hamming metric and they represent
very large families of metrics over a vector space Fnq (large
in the sense that each of those families grows exponentially
with n). Nevertheless, those are not sufficient to determine all
the MDD criteria satisfying the support condition. Example 1
illustrates such an affirmation for the smallest possible case,
n = 2.

Before introducing the example, we should remark that
different metrics may determine the same MMD, and in
this case, we should consider such metrics to be equiva-
lent. To be more precise: two metrics d1 and d2 over a
space V are decoding-equivalent if given any code C ⊂ V
and any received message x ∈ V , the MDDs determined
by both metrics generate the same set of codewords, i.e.,
arg minc∈C d1(x, c) = arg minc∈C d2(x, c), for all x ∈ Fnq .
It is not difficult to prove that for metrics defined by weights,
being equivalent means that, when ordering the vectors in
Fnq according to the two different weights we get the same
ordering (see [7] for details).

Example 1: Let us consider the space F2
2 = {00, 10, 01, 11}.

In this case we have 4 non decoding-equivalent criteria. In the
table bellow we present these criteria and check each that can
be determined by a metric in one of the large families we have
mentioned: poset wtP , poset-blocks wtPB , combinatorial wtC
and digraph wtD. It is worth to note that only the first one
can be determined by any of this families of metrics.

Criterion wtH wtP wtPB wtC wtD
wt(10) = wt(01) < wt(11) X X X X X
wt(10) = wt(01) = wt(11) X X X
wt(10) < wt(01) = wt(11) X X X
wt(10) < wt(01) < wt(11)

TABLE I
DECODING CRITERIA WHICH RESPECT SUPPORT IN F2

2

We stress that different metrics can be decoding-equivalent.
In fact, even though the second criterion in the table (wt(u)

1Let [n] = {1, 2, ..., n}. Given a partial order (poset) P = ([n],�P )
on the set [n], the poset weight wtP (x) of a vector x ∈ Fn

q is defined
as |〈supp(x)〉P |, where supp(c) is the support of the vector, 〈X〉P is the
smallest order-ideal containing X and |A| is the cardinality of A. If F =
{A1, A2, · · ·Ar} is a covering of [n], the F -combinatorial weight of a vector
x ∈ Fn

q is min{|A| : A ⊂ F and A is a covering of supp(x)}. For more
details on all those metrics, see [?].
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is constant for u 6= 0) may be determined by a poset-block
wtPB and also by a digraph wtD weight, simple computations
shows that wtPB(u) = 1 and wtD(u) = 2, for u 6= 0. More
important, we note that the last decoding criterion can not be
determined by any metric belonging to one of these families.

This work aims to reduce the gap between the known
and studied metrics satisfying the BDC and the space of all
possible metrics satisfying the BDC.

In Section II we give the first systematic approach to
the space of all metrics satisfying the BDC. We introduce
a conditional operator on metrics and the main result is to
establish what are the conditions that ensure that from a pair of
metrics satisfying the BDC one gets another metric satisfying
the BDC. This is a starting point to estimate how large the
metrics obtained by a conditional sum of a poset, digraph and
combinatorial metrics is in the space of a metrics satisfying
the BDC. In other words, this section moves one step forward
in a long term goal to develop an “approximation theory” of
metrics in the context of coding theory.

The rest of the work is devoted to introduce a new family
of metrics that generalizes both the digraph metrics and the
poset-block metrics, introduced in [6] and [5], respectively. In
Section III, we introduce the basic concepts and define the
labeled-poset-block metrics. In Section III-A we characterize
the group of linear isometries of a space endowed with a
labeled-poset-block metric. In Section III-B we give necessary
and sufficient conditions to ensure that every linear code ad-
mits a canonical decomposition and derive necessary condition
to ensure the existence of a MacWilliams’ Identity.

II. OPERATING WITH METRICS WHICH RESPECT SUPPORT

Since we are concerned with metrics determined by weights,
we establish a condition on weights to ensure that the corre-
sponding metric satisfies the MDC.

Definition 1: A function wt : Fn2 → Z is a weight respecting
support (or simply S-weight) if the following holds:

1) wt(u) ≥ 0 and equality implies x = 0;
2) If supp(u) ⊂ supp(v), then wt(u) ≤ wt(v), where

supp(x) = {i ∈ {1, . . . , n} : xi 6= 0}.
An S-weight determines a semi-metric, by defining

d(u, v) = wt(u − v), and two weights determine the same
semi-metric if, and only if, they are equal. In order to
guarantee the d(u, v) = wt(u − v) is a metric it is required
the triangle inequality which we ignore this work due to the
fact that every semi-metric d can be rescaled to a decoding-
equivalent metric d′ as follows:

d′(u, v) =

{
0, if u = v,

d(u, v) + maxx,y∈Fnq d(x, y), if u 6= v.

So, to understand the space of all metrics satisfying BDC
(conditions P1 and P2), it is enough to study the space of
all S-weights up to the following equivalence:

Definition 2: We say that two S-weights wt1 and wt2 are
equivalent (denoted by wt1 ∼ wt2 ) if

wt1(u) < wt1(v) ⇐⇒ wt2(u) < wt2(v),∀u, v ∈ Fnq .

It is not difficult to see that two S-weights are equivalent if,
and only if, they are decoding-equivalent (in the sense defined
in Section I, see [7] for details).

Given these initial definitions, we split this section into
two parts. Through the first part, the S-weight functions are
naturally represented by an edge-weighted Hamming cube
that allows us to give a partial description for the group
of linear isometries. We introduce the conditional sum of
known weights in order to generate new S-weight which are
not decoding-equivalent to the former ones and are able, for
example, to fill the gap in the last row of Table I.

We give necessary and sufficient conditions to guarantee that
a conditional sum of two S-weights is also an S-weight. In
addition, we prove that every S-weight is equivalent to an S-
weight obtained by a finite conditional sum of poset, digraph
and combinatorial weights (to be introduced in ).

A. Weights respecting support

In order to explore properties of S-weights, our approach
is to construct general S-weights in a way it can inherit the
knowledge accumulated about poset, digraph and combinato-
rial metrics. For this purpose, we shall represent S-weights
by labeling the edges of the Hamming cube. This approach
allows us to obtain a partial description for the group of linear
isometries which is a fundamental tool in the context of coding
theory. Indeed, being in the same orbit of this group is the
definition of code equivalence and the structure of these groups
is used to determine whenever the MacWilliams’ extension
property is satisfied and so forth.

We start by considering the Hamming cubeHn as a directed
graph where Fn2 is the set of vertices and (u, v) is a (directed)
arc if, and only if, dH(u, v) = 1 and wtH(u) < wtH(v).
In addition, to every arc is assigned a non-negative integer
δ(u, v). The pair (Hn, δ) is called a δ-weighted Hamming
cube.

It is simple to see that given an S-weight wt : Fnq → N,
by setting δ((u, v)) = wt(v) − wt(u) we have that wt(w) =∑

(u,v)∈τ δ((u, v)) where τ is any trail from the null vector
to w. By simplicity, we denote δ(τ) =

∑
(u,v)∈τ δ((u, v))

whenever no confusion may arise. This shows that every S-
weight can be represented by a δ (weighted) Hamming cube.
From here on, except if explicitly stated, we assume that every
trail has 0 as its initial vertex.

However, not every (Hn, δ) determines an S-weight. For
this to happen, the δ function should avoid the situation
depicted in the following example. Consider the δ-Hamming
cube below.

10

00

01

11

1 0

1 1

This δ function does not induce an S-weight because the sum
of weights on the left and right trails from 00 to 11 are differ-



ent, i.e., δ((00, 10)) + δ((10, 11)) 6= δ((00, 01)) + δ((01, 11)).
We avoid this situation imposing it as a necessary condition:

Lemma 1: The map wt(w) = δ(τ), where τ is a trail from
0 to w, is an S-weight if, and only if, δ(0, ei) > 0, for every
i ∈ {1, . . . , n} and δ(τ) = δ(τ ′), for any trails τ, τ ′ in Hn
with same initial and final vertices.

Proof: The proof follows directly from the definitions and
it is omitted due to lack of space.
The next proposition characterizes the weight functions which
determines a combinatorial metric, as introduced by Gabidulin,
[4].

Proposition 1: Let δ be determined by an S-weight wt as
before. Then, d(u, v) = wt(u − v) is a combinatorial metric
if, and only if, δ((u, v)) ∈ {0, 1}.

Proof: If δ((u, v)) ≥ 2, then wt(v) = wt(u)+δ((u, v)) ≤
wt(u)+wt(v−u). This implies that wt(v−u) ≥ δ((u, v)) ≥ 2.
Since v − u = ei, for some i ∈ [n], and wt(ei) = 1 for
any combinatorial weight, we have that wt does not induce a
combinatorial metric. The proof of the if part is constructive
and will be omitted due to lack of space.

We reserve the rest of this work to present a standard form
for a weight wt, which will be used to prove some key coding
results such as characterizing the group of linear isometries
and the existence of a MacWilliams’ Identity.

Definition 3: Let δ be obtained from an S-weight wt. We
say that δ is in a standard form if, given a trail τ with δ(τ) =
k > 1 there is a trail τ ′ such that δ(τ ′) = k − 1. We say that
an S-weight wt admits a standard form if it is equivalent to
an S-weight which determines a weight in a standard form.

Proposition 2: Every S-weight has a unique standard form.
Proof: The proof is obtained by following an algorithm

which assign new values for δ which is a simple extension of
the steps we detail in Example 2.

Example 2: Consider the figure bellow. The δ-Hamming
cube on the left is not in a standard form since δ(00, 01) = 3
and there is no trail τ with δ(τ) = 2. In the middle, we
assign the value δ((00, 01)) = 2, and, since δ((00, 10)) +
δ((10, 11)) = 4, Lemma 1 imposes δ((01, 11)) = 2 to get
a weight wich defines an S-weight. Now, on the right side,
we repeat the procedure for the trail τ = {(00, 01), (01, 11)}
which has δ(τ) = 4 while there is no trail τ ′ with δ(τ) = 3.
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We remark that since the values of δ decrease at every step,
the algorithm will have a stopping point.

From here on, we assume that every δ is in a standard form.
Now, we turn our attention to describe the group of linear

isometries in a space Fnq endowed with a metric determined

by an S-weight wt, i.e.,

GL(n, q,wt) = {T : Fnq → Fnq : T is linear,

d(u, v) = d(T (u), T (v))}.

Given a linear map T :Fnq→Fnq , we say it respects domination
if: (i) T (ei) =

∑n
j=1 λjej , with λi 6= 0; (ii) δ(τ) = 0 if τ is a

trail from u ∈ Fnq to u+T (ei)−ei, with ui 6= 0. We denote by
N(H, δ) the group of transformations preserving domination
and by Aut(H, δ) the group of automorphisms of H which
preserve δ.

The group GL(n, q,wt) is fully described by the following
propositions, which proofs are omitted due lack of space.

Proposition 3: Let φ ∈ Sn. The map Tφ : Fnq → Fnq , defined
by Tφ(x1, . . . , xn) = (xφ(1), . . . , xφ(n)) is a linear isometry
if, and only if, Tφ ∈ Aut(H, δ).

Proposition 4: Any map T ∈ N(H, δ) is a linear isometry.
Theorem 1: Let Aut (δ)nN (δ) be the semi-direct product.

Aut (δ) n N (δ) ⊆ GL(n, q,wt) and the equality holds for
every q > 2.

B. Conditional sums

In previous section we showed how S-weights are related to
δ-Hamming cubes in the most general setting. The S-weights
are not studied in its most general setting, so we wish to
approximate a general or obtain a general S-weights from
particular families that are better understood, for the same
reason that one approximate smooth functions by polynomials.
The most studied such metrics are the families of poset and
combinatorial metrics, It is worth to note that they are virtually
complementary, in the sense that the Hamming metric is the
unique metric that belongs to both the families.

So, we are left with two fundamental questions to be
addressed in this section: How can we obtain a new S-weight
out from two given S-weights? How large is the family of S-
weights that can be constructed from a combination of poset
and combinatorial weights?

We start by presenting a conditional sum which permits to
obtain new S-weights out of given ones.

Proposition 5: Let wt1 and wt2 be S-weights. Then, the
k-sum

(wt1 ⊕k wt2)(u)=

{
wt1(u), if wt1(u)<k,

wt1(u)+wt2(u), if wt1(u)≥k.

is a S-weight.
Proof: The proof follows straightforward from defini-

tions.
We remark that for k = 0, 1, wt1 ⊕k wt2 is the usual sum
wt1 +wt2. The previous proposition implies that the set of all
S-weights endowed with directed sum or k-sum is a magma,
i.e., the set of all weights is closed under “⊕k”.

Remark 1: We stress that the conditional sum ⊕k may be
replaced by a similar sum in which we consider different
conditions respecting the support2 of vectors u ∈ Fnq . For

2A condition C on vectors of Fn
q respects support if C(u) = true implies

C(v) = true for every v such that supp(u) ⊂ supp(v).



instance, given two weights wt1 and wt2, let us consider the
(H, k)-conditional sum wt1 ⊕(H,k) wt2 defined as follows

(wt1⊕(H,k)wt2)(u)=

{
wt1(u), if wtH(u)<k,

wt1(u) + wt2(u), if wtH(u)≥k.
Example 3: Let wtP be the poset weight that covers the

criterion wt(00) < wt(10) < wt(01) = wt(11) and wtH
be the Hamming weight. Then, the (H, 1)-conditional sum
wtP ⊕(H,1) wtH covers the remaining criterion in F2

2 given
by wt(00) < wt(10) < wt(01) < wt(11), the last row of
Table I.
Not every conditional sum leads to non-equivalent metric. We
wish to know under what conditions we have that wt1, wt2
and wt1 ⊕C wt2 are all equivalent. It happens, for example,
for wt⊕0 wt. We start with the following lemma:

Lemma 2: Let wt1 and wt2 be equivalent weights. Suppose
that wt1⊕C wt2 is also equivalent to wt1 and wt2 for a given
condition C. Then,

1) If wt1(u) = wt2(v) and C(u) = true then C(v) =
true.

2) If wt1(u) < wt2(v) and C(u) = true, then either
C(v) = true or 2 · wt1(u) < wt2(v).

Proof: The proof can be obtained by simple computations
and it is omitted.

The second part of the previous Lemma ensures that, if
wt1 ∼ wt2 ∼ wt1 ⊕C wt2 we can choose all of them to be
equal and we get the following:

Proposition 6: Let wt be a S-weight. Then, wt ∼ wt⊕Cwt
if, and only if, ⊕C = ⊕k, for some k ∈ N.

Proof: It is enough to choose k = min{wt(u) : u ∈
Fnq satisfies C}.

Theorem 2: Every S-weight can be reached by a finite
conditional sum of poset and combinatorial weights.

Proof: The proof is omitted due to lack of space.

III. LABELED-POSET-BLOCK METRICS

In this section, we introduce a particular family which is a
generalization for the digraph metrics which arises naturally
from the reduced canonical form for directed graphs presented
in [6]. This canonical form makes a contraction of each
maximal cycle into a unique vertex and, then, such vertex
is labeled by the number of vertices contained in the original
cycle. If we allow this labeling to assume different values
such extension also generalizes the poset-block metrics by
labeling every maximal cycle with 1. The goal in this section,
is to present an structured family of metrics that covers the
remaining decoding criterion in Table I. Despite the generality
of the approach, we also produce a description of group of
linear isometries and determine conditions for a MacWilliams
identity to be available.

Let P = ([m],�P ) be a partially ordered set (abbreviated
as poset), where �p is a partial order over [m] := {1, . . . ,m}.
An ideal in P = ([m],�P ) is a subset I ⊆ [m] such that, if
b ∈ I and a �P b, then a ∈ I . Given A ⊆ [m], we denote by
〈A〉P the smallest ideal of P containing A and call it as the
ideal generated by A. An element a of a set A ⊆ [m] is called
a maximal element of A if a �P b for some b ∈ A implies

b = a. The set of all maximal elements of A is denoted by
MP (A). Note that if I ⊆ [m] is an ideal, then MP (I) is the
minimal set that generates I , i.e., 〈MP (I)〉P = I .

Given two posets P and Q over [m], a poset isomorphism
is a bijection φ : [m] → [m] such that i �P j ⇐⇒ φ(i) �Q
φ(j). When P = Q, φ is called a P -automorphism. The set
of all P -automorphisms is a group denoted by Aut(P ).

A chain in a poset P is a subset X ⊆ [m] such that any two
elements a, b ∈ X are comparable, in the sense that a �P b
or b �P a. We remark that any (finite) chain has a unique
maximal element. The height h(a) of an element a ∈ P is
the cardinality of a largest chain having a as the maximal
element. The height h(P ) of the poset is the maximal height
of its elements, i.e., h(P ) = max {h(a) : a ∈ [m]}. The i-th
level ΓPi of a poset P is the set of all elements with height i,
i.e., ΓPi = {a ∈ [m] : h(a) = i}. A poset P is hierarchical if
elements at different levels are always comparable, i.e., a ∈
ΓPi and b ∈ ΓPj implies a ≺P b for any 1 ≤ i < j ≤ h(P ).

Let us consider a map π : [n] → [m] with n ≥ m
(called a block map). A vector u ∈ Fnq may be written as
u = (u1, . . . , um), where ui ∈ Fkiq , with ki = |π−1(i)|. The
π-support is defined as

suppπ(u) = {i ∈ [m] : ui 6= 0}.

Given a block function π : [n] → [m], a poset P =
([m],�P ) and a label function L : [m] → N, the (P, π, L)-
weight of u is defined as

wt(P,π,L)(u) =
∑

i∈〈suppπ(u)〉P

L(i).

For u, v ∈ Fnq , we define the labeled-poset-block distance by:

d(P,π,L)(u, v) = wt(P,π,L)(u− v).

Proposition 7: If the label function L assumes only positive
values, then d(P,π,L)(u, v) determines a metric over Fnq .

Proof: The proof follows straight from the definitions.

A. (P, π, L)-linear isometries

Let GL(P, π, L)q be the group of linear isometries of the
space Fnq endowed with a (P, π, L)-metric. Our goal in this
section is to characterize GL(P, π, L)q .

To be more precise,

GL(P, π, L)q = {T : Fnq → Fnq : T is linear,

d(P,π,L) (x, y) = d(P,π,L) (T (x) , T (y)) ,∀ x, y ∈ Fnq }
= {T : Fnq → Fnq : T is linear,

wt(P,π,L) (x) = wt(P,π,L) (T (x)) ,∀ x ∈ Fnq }

Similarly to what happens in the case of posets,
GL(P, π, L)q can be described as the semi-direct product of
two subgroups. We start presenting one of them, which is
a subgroup of the permutation group [m] that preserves the
involved structures: the order structure P , the block map π
and the label function L.

Definition 4: A map φ : [m] → [m] is a (P, π, L)-
automorphism if it is a P -automorphism with L(i) = L(φ(i))



and ki = kφ(i), for every i ∈ [m]. We denote by Aut(P, π, L)
the set of all (P, π, L)-automorphisms.

We remark that Aut(P, π, L) is a group. The following
proposition follows straight from the definition of d(P,π,L).

Proposition 8: Let φ be a (P, π, L)-automorphism. The
linear map Tφ : Fnq → Fnq defined by Tφ(eij) = eφ(i)j is an
isometry. Moreover, the map ϕ : Aut(P, π, L)→ GL(P, π, L)
that associates φ 7→ Tφ is an injective homomorphism of
groups.

We denote by A := {Tφ ∈ GL(P, π, L);φ ∈
Aut(P, π, L)} the subgroup of isometries induced by
(P, π, L)-automorphisms. The two next propositions are far
from trivial, but the proofs are omitted, for the usual reason.

Proposition 9: Let T : Fnq → Fnq be a linear isomorphism
satisfying the following condition: for every ui ∈ Fkiq \ {0},
there are u′i ∈ Fkiq and vi ∈ Fnq with suppπ(vi) ⊂ 〈i〉P \ {i}
such that T (ui) = u′i + vi. Then, T ∈ GL(P, π, L).

We denote by N the set of all the (P, π, L)-isometries
obtained as in Proposition 9. It is possible to prove that N
is a normal subgroup of GL(P, π, L)q .

Theorem 3: Every linear isometry S can be written in a
unique way as a product S = F ◦ Tφ, where F ∈ N and
φ ∈ Aut(P, π, L). Furthermore, GL(P, π, L)q is the semi-
direct product GL(P, π, L)q = N oA.

B. G-Canonical Decomposition of linear codes for hierarchi-
cal posets of directed cycles

Two linear codes C, C′ ⊆ Fnq are (P, π, L)-equivalent if
there is T ∈ GL(P, π, L)q such that T (C) = C′.

A decomposition C = C1 ⊕ · · · ⊕ Ch(P ) of a code C is
called (P, π, L)-canonical decomposition if suppπ(Ci) ⊆ ΓPi .
Working with such decompositions simplifies the computation
of all metric invariants of a code. Naturally, not every code
admits a (P, π, L)-canonical decomposition, but it may be
equivalent to a code that has such a decomposition.

Definition 5: Let P = ([m],�) be a poset with h(P ) levels.
We say that a linear code C ⊆ Fnq admits a (P, π, L)-canonical
decomposition if it is (P, π, L)-equivalent to a linear code C̃ =
C1 ⊕ · · · ⊕ Ch(P ), where suppπ(Ci) ⊆ ΓPi .

The next theorem is a generalization of the P -canonical
decomposition for poset metrics, determined in [8].

Theorem 4: The poset P is hierarchical if, and only if, any
linear code D admits a (P, π, L)-canonical decomposition.

Proof: This proof can be obtained in a similar way present
by Etzion in [6].

The existence of a (P, π, L)-canonical decomposition is a
very useful tool, allowing to simplify the computation of many
metric invariants (minimal distance, packing and covering
radius) and also to determine conditions which ensure the
validity of important results in coding theory, such as the
MacWilliams’ Extension Property. Just as an example, we
show how it allows to determine a type of MacWilliams’
Identity for linear codes.

Definition 6: A (P, π, L)-structure satisfies the unique de-
composition property if, for 1 ≤ i ≤ h(P ), given S, S′ ⊆ ΓPi
such that ∑

a∈S
L(a) =

∑
b∈S′

L(b),

there is a bijection g : S → S′ such that L(a) = L(g(a)) and
|π−1(a)| = |π−1(g(a))| for all a ∈ S.

The (P, π, L)-weight enumerator of a code C is the poly-
nomial

W
(P,π,L)
C (X) =

n∑
i=0

A
(P,π,L)
i (C)Xi

where A(P,π,L)
i (C) = |{c ∈ C : wt(P,π,L)(c) = i}|.

As we know, given a poset P ([n],�P ) its dual is the poset
P⊥([n],�P⊥) defined by the opposite relations

i �P j ∈ E ⇐⇒ j �P⊥ i.

Definition 7: (The MacWilliams Identity) A (P, π, L)-
weight admits a MacWilliams Identity if for every linear code
C ⊆ Fnq , the (P, π, L)-weight enumerator W (P,π,L)

C (X) of C
determines the (P⊥, π, L)-weight enumerator W (P⊥,π,L)

C⊥ of
the dual code C⊥.

Theorem 5: Consider a (P, π, L)-weight with P is a hier-
archical poset. The (P, π, L)-weight admits the MacWilliams
Identity if, and only if, it satisfies the unique decomposition
property.
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