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A TOPOLOGICAL CLASSIFICATION OF LOCALLY

CONSTANT POTENTIALS VIA ZERO-TEMPERATURE

MEASURES

CHRISTIAN WOLF AND YUN YANG

Abstract. We provide a topological classification of locally constant
functions over subshifts of finite type via their zero-temperature mea-
sures. Our approach is to analyze the relationship between the distri-
bution of the zero-temperature measures and the boundary of higher
dimensional generalized rotation sets. We also discuss the regularity
of the localized entropy function on the boundary of the generalized
rotation sets.

1. Introduction

1.1. Motivation. Recently, the following optimization problems have been
posed for various systems. Consider a continuous map f : X → X on a
compact metric space X and a continuous real-valued function φ on X.

Question 1 (Equilibrium states). Which f -invariant measure(s) µ maxi-
mizes the topological pressure (called equilibrium state), i.e.

hµ(f) +

∫

φdµ ≥ hν(f) +

∫

φdν

for all f -invariant probability measures ν? Here hν(f) is the measure-
theoretic entropy of ν. We refer to [7] and the references therein for an
overview and recent results on equilibrium states.

Question 2 (Ergodic optimization). Which f -invariant measure(s) µ opti-
mizes φ (called maximizing measure), i.e.

∫

φdµ ≥
∫

φdν

for all f -invariant ergodic probability measures ν? We refer to [15] for an
introduction of the subject.

We thank the anonymous referee for many helpful suggestions, which greatly improved
the paper and generalized the results. We also thank Xufeng Guo for providing helpful
computer simulations.
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Question 3 (Optimal orbits). The orbit of which point(s) x0 yields the
largest time average of f (called optimal orbit), i.e.

lim
n→∞

1

n

n−1
∑

i=0

φ(f i(x0)) ≥ lim
n→∞

1

n

n−1
∑

i=0

φ(f i(x))

for all x ∈ X, see e.g. [15, 28] for details.

The research towards answering these three questions is motivated by
various problems in several areas. For example, the study of equilibrium
states has its roots in statistical mechanics. As for ergodic optimization and
the classification of optimal orbits, one motivation goes back to the theory
of Mather [17] and Mañé [15, 16] on the dynamics of the Euler-Lagrange
flow. At first glance, there is no connection between the three questions.
However, Birkhoff’s ergodic theorem states that

space average =

∫

φdµ = time average = lim
n→∞

1

n

n−1
∑

i=0

φ(f i(x))

for any ergodic f -invariant measure µ and µ-almost every point x. Hence,
selecting optimal orbits is naturally related to finding maximizing ergodic
measures. The following inequality builds a connection between equilibrium
states and maximizing measures:

hµT (f) +

∫

1

T
φdµT ≥ hν(f) +

∫

1

T
φdν,

i.e.

ThµT (f) +

∫

φdµT ≥ Thν(f) +

∫

φdν,

where µT is the equilibrium state for the potential 1
T
φ. It follows that

the limit limT→0 µT (if it exists) is a particular maximizing measure of the
function φ. The limit

lim
T→0

µT = µ

is called the zero-temperature measure of φ. Here the limit is taken in the
weak* topology. If the limit does not exist, one considers the accumulation
points of the sequence (µT )T which are also maximizing measures. These
measures are ground states and are of special interest in statistical physics.
We note that here T is interpreted as the temperature of the system.1

In this paper, we study the zero-temperature measures for the locally
constant functions over subshifts of finite type from the topological point of
view. Let f : X → X be a subshift of finite type and φ : X → R be a locally

1We point out that in the mathematical theory of the thermodynamic formalism it is
customary to consider the inverse temperature t = 1/T and then to take the limit t → ∞,
see Section 2.5 for details. We mention that the notation that is being used for the inverse
temperature in Physics is β = 1

kBT
, where kB is Boltzmann’s constant which can be taken

equal to one in an approximate system of units.
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constant function. Such a function admits a unique equilibrium state µφ.
We are interested in the zero temperature limit µ∞,φ given by

µtφ → µ∞,φ, as t→ ∞.

The first natural question is whether the limit exists and if so, whether it
can be described precisely or not. Nekhoroshev [22] proved that generically,
the zero-temperature limits of equilibrium states of locally constant poten-
tials exist and are supported on a periodic configuration. Using analytic
geometry, Brémont [2] proved the convergence of µtφ, as t→ ∞. Later, Lep-
laideur [21] obtained a dynamical proof of the convergence and the limit was
partially identified: If ψ is Hölder continuous and φ is locally constant, then
the limit of µψ+tφ exists, as t → ∞. Based on different tools, namely the
approximation by periodic orbits, the contraction-mapping approach to the
Perron-Frobenius theorem for matrices, and the idea of a renormalization
procedure, Chazottes, Gambaudo and Ugalde [5] proved that as t → ∞,
the family (µtφ)t>0 converges to a measure that is concentrated on a certain
subshift of finite type, which is the union of transitive subshifts of finite
type. Recently, Contreras [6] proved that for expanding transformations,
the maximizing measures of a generic Lipschitz function are supported on a
single periodic orbit.

Other than results for convergence, there are also nonconvegence examples
in the literature. Namely, Chazottes and Hochman [4] considered examples
of the lattice Z

d with finite alphabet for which the zero temperature limit
does not exist. In particular, for d = 1 they derived non-existence for a
Lipschitz potential as well as for d ≥ 3 for a locally constant potential. More
recently, Coronel and Rivera-Letelier [8] provided non-convergence examples
in any dimension for Lipschitz potentials for both, finite alphabets and the
unit circle as alphabet. A non-converging example with a discontinuous
function on the unit-circle alphabet over Z

d, d ≥ 1 was provided earlier by
Van Enter and Ruszel [26].

The goal in this paper is to classify the topological structure of the space of
locally constant functions over subshifts of finite type in terms of their zero-
temperature measures. Our approach is to apply the connection between the
distribution of the zero-temperature measures and the geometric properties
of the generalized rotational sets (see [19]). In particular, we consider a
higher dimensional function Φ that encodes all one-dimensional functions.
We then obtain a topological classification of the zero-temperature limits of
locally constant functions in terms of geometric properties of the generalized
rotation set of Φ.

1.2. Statement of the Results. Let f : X → X be a subshift of finite
type and let LCk(X,R) denote the space of functions that are constant on
cylinders of length k. Let mc(k) denote the cardinality of the set of cylin-

ders of length k. Thus, we can identify LCk(X,R) with R
mc(k) which makes

LCk(X,R) a Banach space when endowed with the standard norm. Let
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x ∈ X be a periodic point with period n. We denote by µx the unique
invariant measure supported on the orbit of x (see (3) for details). More-
over, we say x is k-elementary if the cylinders of length k generated by
x, f(x), . . . , fn−1(x) are pairwise disjoint (see Definition 1). The notion of
elementary periodic orbits was first considered by Ziemian [29]. Our main
result is a specific description of the zero-temperature measures for the func-
tions in LCk(X,R). In particular, we construct a partition of LCk(X,R)
into finitely many convex cone components such that the zero-temperature
measures of all functions in a component are convex sums of finitely many
ergodic measures. Moreover, the sets associated with unique k-elementary
periodic point zero-temperature measures form an open and dense subset of
LCk(X,R). We are now able to formulate the main result of this paper:

Theorem A. Let f : X → X be a transitive subshift of finite type and let
k ∈ N. Then there exist a partition of LCk(X,R) into finitely many con-
vex cones U1, . . . ,Uℓ1 ,Uℓ1+1, . . . ,Uℓ2 ,Uℓ2+1, . . . ,UN and finite sets of ergodic
measures M1, . . . ,Mℓ1 ,Mℓ1+1, . . . ,Mℓ2 ,Mℓ2+1, . . . ,MN such that the fol-
lowing properties hold:

(a) The sets U1, . . . ,Uℓ1 are open in LCk(X,R) and the closure of their
union is LCk(X,R). For 1 ≤ i ≤ ℓ1, Mi = {µxi}, where xi is a
k-elementary periodic point. Moreover, for any φ ∈ Ui, µ∞,φ = µxi,
and µxi is the unique maximizing measure of φ.

(b) For ℓ1 < i ≤ ℓ2, Mi = {µi}, where µi is the unique measure of
maximal entropy of a non-discrete transitive subshift of finite type
Xi ⊂ X. Moreover, for any φ ∈ Ui, µ∞,φ = µi.

(c) For ℓ2 < i ≤ N , Mi = {µ1i , . . . , µni

i }, where ni ≥ 2 and µji is the
unique measure of maximal entropy of some transitive subshift of finite

type Xj
i with the same entropy, i.e. h

µ
j1
i

(f) = h
µ
j2
i

(f) for 1 ≤ j1, j2 ≤
ni. Further, for any φ ∈ Ui,

µ∞,φ = a1,φµ
1
i + · · ·+ ani,φµ

ni

i , (1)

where 0 ≤ aj,φ ≤ 1 and
∑

aj,φ = 1. Moreover, in each Ui there are
only finitely many choices for the coefficients aj,φ.

We remark that in part (b) Ul1+1 = {φ cohomologous to zero}. We re-
fer to Section 2.4 for details about cohomologous functions. In particular,
Xl1+1 = X and µℓ1+1 = µmme is the unique measure of maximal entropy
of f . Further, we point out that part (c) covers both, the case of discrete
and non-discrete subshifts of finite type. Namely, in case of zero entropy

the Xj
i ’s are k-elementary periodic orbits and the positive entropy case cor-

responds to non-discrete subshifts of finite type Xj
i . We notice that in part

(c) the coefficients aj,φ are in general not restricted to values in (0, 1). This
is shown in Appendix A.1, Example 4 where we consider the case when Mi

contains 3 fixed point measures and depending on the function φ ∈ Ui either
none or one of the coefficients aj,φ is zero.
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Since the set of locally constant functions LC(X,R) =
⋃

k∈NLCk(X,R),
we have the following direct corollary.

Corollary 1. There exist countable sets Muniv ⊂ ME, where ME is the
collection of ergodic invariant measures for f , and Euniv = {hµ(f) : µ ∈
Muniv} ⊂ [0, htop(f)] such for all φ ∈ LC(X,R) the zero-temperature mea-
sure µ∞,φ is a finite convex sum of measures in Muniv and hµ∞,φ

(f) ∈ Euniv.

We point out that Nekhoroshev [22] considered the case of two-sided full-
shifts and proved a non-explicit version of Theorem A (a) and part of (c).
In contrast, our result is direct in the sense that we construct the convex
cone components Ui explicitly through the direction vectors of the faces of
a polyhedron rotation set associated with a computable universal higher
dimensional function (see Theorem 5). Combining this identification with
the recent computability results for rotation sets [3], we are able to explicitly
compute the sets Ui and Mi. Another advantage of Theorem A is that its
proof provides additional information about the relative position among the
components Ui. For example, for any pair Ui1 and Ui2 , it is possible to
decide if Ui1 and Ui2 are connected by a path of functions that stays entirely
in Ui1 ∪Ui2 . We also mention that our methods are geometric in nature and
in particular do not make use of Ruelle-Perron-Frobenius’s transfer operator
theory. This suggests that our methods could be extended to handle more
general classes of systems and functions.

As mentioned earlier, to obtain Theorem A we apply the theory of higher
dimensional generalized rotation sets. For Φ ∈ C(X,Rm) we denote by
Rot(Φ) the generalized rotation set of Φ which is the set of all µ-integrals
of Φ, where µ runs over the f -invariant probability measures M on X.
We refer to Section 2.3 for references and details. We develop versions
of Theorem A for higher dimensional functions (Theorems 4 and 5). We
then identify the zero-temperature measures µ∞,φ in Theorem A as certain
entropy maximizing measures at the boundary of a universal rotation set.
Naturally, this leads to the question how the entropy varies on the boundary
of rotation sets.

For w ∈ Rot(Φ) we denote by MΦ(w) = {µ ∈ M : rv(µ) = w} the
rotation class of w, where rv(µ) = is the rotation vector of µ (see (5)).
Following [14, 18], we define the localized entropy at w ∈ Rot(Φ) by

H(w) = HΦ(w)
def
= sup{hµ(f) : µ ∈ MΦ(w)}. (2)

The upper semi-continuity of µ 7→ hµ(f) implies that w 7→ H(w) is upper
semi-continuous on Rot(Φ). Further, since µ 7→ hµ(f) is affine, w 7→ H(w)
is concave and consequently continuous on the (relative) interior of Rot(Φ).
Here the relative interior of a set is defined as the interior of the set con-
sidered as a subset of its affine hull. We note that, in general, w 7→ H(w)
is not continuous on Rot(Φ), see [27]. However, if Φ ∈ LC(X,Rm) then
by Ziemian’s Theorem (see Theorem 1 in the text), Rot(Φ) is a polyhe-
dron and thus the celebrated Gale-Klee-Rockafellar Theorem [10] implies
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that w 7→ H(w) is continuous on Rot(Φ). It is shown in [19] that for Hölder
continuous functions Φ (and therefore in particular for locally constant func-
tions Φ ∈ LC(X,Rm)) the localized entropy w 7→ H(w) is analytic on the
interior of Rot(Φ).

Since the rotation set of Φ ∈ LC(X,Rm) is a polyhedron it follows that
the faces of Rot(Φ) are (lower-dimensional) polyhedra as well. One might
expect that H restricted to the relative interior (which we abbreviate by
ri ) of a face of Rot(Φ) is also analytic. However, we are able to prove the
following somewhat unexpected result (see Proposition 3, Theorem 7 in the
text, and Examples 5 and 6 in Appendix B).

Theorem B. Let Φ ∈ LC(X,Rm) and let F be a non-singleton face of
Rot(Φ). Then H|F is the concave envelop of finitely many concave functions
hi : Fi → R defined on sub-polyhedra Fi ⊂ F . Moreover, the functions hi
are analytic on riFi, but H is in general not analytic on riF . If m = 2 then
H is a piecewise C1-function on ∂Rot(Φ).

This paper is organized as follows. In Section 2 we review some basic
concepts and results about symbolic dynamics, zero-temperature measures,
the thermodynamic formalism and generalized rotation sets. Section 3 is
devoted to the study of zero-temperature measures of higher dimensional
functions in terms of their rotation sets. In Section 4, we present the proof
of Theorem A. Next, we study in Section 5 the regularity of the localized
entropy function at the boundary of rotation sets. Finally, we provide in
Appendices A and B some examples that illustrate applications of Theorems
A and B, respectively.

2. Preliminaries

In this section we discuss relevant background material which will be used
later on. We will continue to use the notations from Section 1. We start by
recalling some basic facts from symbolic dynamics.

2.1. Shift maps. Let d ∈ N and let A = {0, . . . , d− 1} be a finite alphabet
in d symbols. The (one-sided) shift space Σd on the alphabet A is the set
of all sequences x = (xn)

∞
n=1 where xn ∈ A for all n ∈ N. The shift map

f : Σd → Σd (defined by f(x)n = xn+1) is a continuous d to 1 map on Σd.
In the following, we use the symbol X for any shift space including the full
shift X = Σd. A particular class of shift maps are subshifts of finite type.
Namely, suppose A is a d × d matrix with values in {0, 1}, then consider
the set of sequences given by X = XA = {x ∈ Σd : Axn,xn+1

= 1}. The set
XA is a closed (and, therefore, compact) f -invariant set, and we say that
f |XA

a subshift of finite type. By reducing the alphabet, if necessary, we
always assume that A does not contain letters that do not occur in any of
the sequences in XA.

Let f : X → X be a subshift. We say t = t1 · · · tk ∈ Ak is a block of length
k and write |t| = k. Given another block s = s1 · · · sl ∈ Al we define the
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concatenation of t and s by ts = t1 · · · tks1 · · · sl ∈ Ak+l. Further, ε denotes
the empty block. Given x ∈ X, we write πk(x) = x1 · · · xk ∈ Ak. We denote
the cylinder of length k generated by t by Ck(t) = {x ∈ X : x1 = t1, . . . , xk =
tk}. Given x ∈ X and k ∈ N, we call Ck(x) = Ck(πk(x)) the cylinder of length
k generated by x. Further, we call O(t) = t1 · · · tkt1 · · · tkt1 · · · tk · · · ∈ X the
periodic point with period k generated by t. We denote by Pern(f) the set
of periodic points of f with prime period n and by Per(f) the set of periodic
points of f . If n = 1 we say x is a fixed point of f . In the following we
always assume that n is the prime period of x. Let x ∈ Pern(f). We call
τx = πk(x) = x1 · · · xn the generating segment of x, that is x = O(τx). For
x ∈ Pern(f), the unique invariant measure supported on the orbit of x is
given by

µx =
1

n
(δx + · · ·+ δfn−1(x)), (3)

where δy denotes the Dirac measure on y. We also call µx the periodic point
measure of x. Obviously, µx = µf l(x) for all l ∈ N. We write MPer = {µx :

x ∈ Per(f)} and observe that MPer ⊂ ME .

Definition 1. Let x ∈ Pern(f). Fix k ∈ N. We say x is a k-elementary
periodic point with period n if Ck(f i(x)) 6= Ck(f j(x)) for all i, j = 0, . . . , n−1
with i 6= j. In case k = 1 we simply say x is an elementary periodic point.
We denote by EPerkn(f) the set of all k-elementary periodic points with period
n and by EPerk(f) the set of all k-elementary periodic points.

We refer to Table 1 in Appendix A.2 for a list of examples of elementary
periodic points.

Remark 1. We note that the period of a k-elementary periodic point is at
most mc(k). In particular, EPerk(f) is finite.

Definition 2. Let x, y be k-elementary periodic points of f with period n.
We say x and y are k-permutable if

{Ck(f i(x)) : i = 0, . . . , n− 1} = {Ck(f i(y)) : i = 0, . . . , n− 1}.
Clearly, being k-permutable is an equivalence relation on the set of k-

elementary periodic points.
We note that in this paper we consider the case of one-sided shift maps.

However, all our result carry over to the case of two-sided shift maps. For
details how to make the connection between one-sided shift maps and two-
sided shift maps we refer to [14].

2.2. Notations from convex geometry. Next we recall some notions
from convex geometry (see e.g. [24]). For m-dimensional vectors u =
(u1, ..., um) and v = (v1, ..., vm) we write u · v = u1v1 + ... + umvm for the
inner product of u and v. Let B(v, r) denote the open ball about v ∈ R

m of
radius r with respect to the Euclidean metric. A subset K ∈ R

m is convex
if for all u, v ∈ K we have that tu+ (1 − t)v ∈ K for all t ∈ (0, 1). A point
w ∈ K is called an extreme point of K if w is not contained in any open line
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segment with endpoints in K, i.e. if for all u, v ∈ K with u 6= v we have
w 6= tu+ (1− t)v for all t ∈ (0, 1). We say a convex set K ⊂ R

m is a convex
cone if tx ∈ K for all x ∈ K and t > 0.

For K ⊂ R
m, the convex hull of K, denoted by conv(K), is the smallest

convex set containing K. We will work with the standard topology on R
m.

ForK ⊂ R
m we denote by int K the interior ofK, by ∂K the boundary ofK

and by K the closure of K. The relative interior and the relative boundary
of K, denoted by riK and ∂relK, are the interior and the boundary of K
with respect to the topology on the affine hull of K, respectively.

For a non-zero vector α ∈ R
m and a ∈ R the hyperplane H = Hα,a

def
=

{u ∈ R
m : u · α = a} is said to cut K if both open half spaces determined

by H contain points of K. Here α is a normal vector to H. We say that H
is a supporting hyperplane for K if its distance to K is zero but it does not
cut K.

A set F ⊂ K is a face of K if there exists a supporting hyperplane H
such that F = K ∩H. We say a normal vector α to H is pointing away from
K if for w ∈ H the point α + w belongs to the open half space of Rm \H
that does not intersect K. We note that if K has a non-empty interior then
there exists a unique unit normal vector to H that is pointing away from
K. A point w ∈ K is called exposed if {w} is a face of K. We say K is
a polyhedron if it is the convex hull of finitely many points in R

m. In this
case the vertices of K coincide with the exposed points of K.

2.3. Generalized rotation sets. Given anm-dimensional continuous real-
valued function (also called an m-dimensional potential) Φ = (φ1, . . . , φm),
we define the generalized rotation set of Φ under the dynamics f by

Rot(Φ) = Rot(Φ, f) = {rv(µ) : µ ∈ M} , (4)

where

rv(µ) =

(
∫

φ1 dµ, . . . ,

∫

φm dµ

)

(5)

is the rotation vector of µ and M = Mf denotes the set of f -invariant Borel
probability measures on X endowed with weak* topology. We recall that
this topology makes M a compact convex metrizable topological space. If
m = 1 we use the notation µ(φ) =

∫

φdµ instead of rv(µ). It follows from
the definition that the rotation set is a compact and convex subset of Rm. We
note that in general the geometry of rotation sets can be quite complicated.
Indeed, it is proved in [18] that every compact and convex set K ⊂ R

m is
attained as the rotation set of some m-dimensional function Φ. We point
out that generalized rotation sets can be considered as generalizations of
Poincaré’s rotation number of an orientation preserving homeomorphism,
see [12, 14, 18, 23, 29] for further references and details.

2.4. Locally constant functions. Let f : X → X be a subshift of finite
type on the alphabet A = {0, . . . , d − 1} with transition matrix A. Let
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m ∈ N and Φ ∈ C(X,Rm). Given k ∈ N we define

vark(Φ) = sup{‖Φ(x) − Φ(y)‖ : x1 = y1, . . . , xk = yk}.
We say Φ is constant on cylinders of length k if vark(Φ) = 0. It is easy to
see that Φ is locally constant if and only if Φ is constant on cylinders of
length k for some k ∈ N. We denote by LCk(X,R

m) the set of all Φ that
are constant on cylinders of length k.

Recall the definition of the rotation set Rot(Φ) of Φ in Equation (4).
Based on work of Ziemian [29] and Jenkinson [14], we provide the necessary
tools for the study of zero-temperature measures and rotation sets. We start
with the following elementary result.

Proposition 1. Let k,m ∈ N, Φ ∈ LCk(X,R
m), and d′ = mc(k). Then

there exist a subshift g : Y → Y of finite type with alphabet A′ = {0, . . . , d′−
1} and transition matrix A′, and a homeomorphism h : X → Y that con-
jugates f and g (i.e. h ◦ f = g ◦ h) such that the transition matrix A′

has at most d non-zero entries in each row, and the function Φ′ = Φ ◦ h−1

is constant on cylinders of length one. Moreover, Rot(Φ′) = Rot(Φ) and
HΦ′ = HΦ.

Proof. The proof is elementary and can be for example found in [3]. For
our exposition we only require the definitions of the subshift g and the con-
jugating map h. Let {Ck(0), . . . , Ck(mc(k)− 1)} denote the set of cylinders
of length k in X, which we identify with A′ = {0, . . . , d′ − 1}. The transi-
tion matrix A′ is defined by a′i,j = 1 if and only if there exists x ∈ X with

Ck(x) = i and Ck(f(x)) = j. Let Y = YA′ be the shift space in A′N given by
the transition matrix A′. Furthermore, let g : Y → Y be the corresponding
map for the subshift of finite type. For x ∈ X we define h(x) = y = (yn)

∞
n=1

by yn = Ck(fn−1(x)). �

Ziemian [29] proved that the rotation set of a function Φ that is constant
on cylinders of length two is a polyhedron. This result extends to functions
that are constant on cylinders of length k ≥ 1, see e.g. [3, 14].

Theorem 1. Let f : X → X be a transitive subshift of finite type and let
Φ ∈ LCk(X,Rm). Then Rot(Φ) is a polyhedron, in particular Rot(Φ) is the
convex hull of rv({µx : x ∈ EPerk(f)}).

Next, we discuss the set of measures whose rotation vectors belong to
a face of Rot(Φ). We follow Jenkinson [14] for our exposition. Let f :
X → X be a transitive subshift of finite type with transition matrix A.
Moreover, let Φ ∈ LCk(X,R

m). By Theorem 1, the rotation set Rot(Φ) is
a polyhedron. Let F be a face of Rot(Φ), and let x1, . . . , xℓ denote the k-
elementary periodic points whose rotation vectors lie in F . Note that, in this
list of k-elementary periodic points, points in the same orbit are considered
distinct. It follows from Theorem 1 that F = conv(rv(µx1), . . . , rv(µxℓ)). For
each r ∈ {1, . . . , ℓ}, let p(r) be the period of xr. Further, let sr = xr1 · · · xrp(r)
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be the generating segment of the periodic point xr. We define

XF = {x ∈ Per(f) : rv(µx) ∈ F}. (6)

The set XF coincides with of the set of all infinite g-admissible concate-
nations of the generating segments s1, . . . , sℓ (see [14]). Here we say that
the concatenation of sr1 with sr2 is g-admissible if the generating sequences
of the periodic points h(xr1) and h(xr2) can be concatenated in the shift
g : Y → Y , where h : X → Y and g : Y → Y are as in Proposition 1.
The set of generating segments s1, . . . , sℓ is an alphabet B and so f |XF

is a
subshift of finite type with transition matrix B = B(s1, . . . , sℓ) defined by
the concatenation rules of g. Recall, that f is called non-wandering, if the
f orbit of every point x is non-wandering. It follows from (6), that f |XF

is
non-wandering.

Let GB be Markov graph associated with the transition matrix B and let
G1, . . . ,Gt denote the transitive components of GB . Moreover, for each Gi, let
Bi denote the associated transition matrix. Define Xi = XBi

. Since f |XF
is

non-wandering, it follows from the construction that

XF = X1 ∪ · · · ∪Xt. (7)

Observe that f |Xi
is a transitive subshift of finite type without transitions

between sets other than Xi (see, e.g., Corollary. 5.1.3 in [17]). We note that
this includes the possibility of Xi being a single periodic orbit.

Theorem 2. Let f : X → X be a transitive subshift of finite type, and
let Φ ∈ LCk(X,R

m). Let F be a face of Rot(Φ), and let µ ∈ M. Then
rv(µ) ∈ F if and only if suppµ ⊂ XF .

Proof. For k = 2 the assertion is proven in [14]. The general case can be
easily deduced from the case k = 2, Proposition 1, and using the fact that
LC1(X,R

m) ⊂ LC2(X,R
m). �

2.5. Equilibrium states, ground states and zero-temperature mea-

sures. Let f : X → X be a transitive subshift of finite type. Given a
continuous function φ : X → R, we denote the topological pressure of φ
(with respect to f) by Ptop(φ) and the topological entropy of f by htop(f)
(see [25] for the definition and further details). 2

The topological pressure satisfies the well-known variational principle,
namely,

Ptop(φ) = sup
µ∈M

(

hµ(f) +

∫

X

φdµ

)

. (8)

A measure µ ∈ M that attains the supremum in (8) is called an equilibrium
state (also called equilibrium measure) of the function φ. We denote by
ES(φ) the set of all equilibrium states of φ. Since µ 7→ hµ(f) is upper

2We note that in the respective literature of the mathematical thermodynamic formal-
ism the function φ is often referred to as a potential.
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semi-continuous we have ES(φ) 6= ∅, in particular ES(φ) contains at least
one ergodic equilibrium state. Moreover, if φ is Hölder continuous (and in
particular if φ is locally constant) then φ has a unique equilibrium state
that we denote by µφ. We recall that two Hölder continuous functions
φ,ψ : X → R are said to be cohomologous if there exists a continuous
function η : X → R and K ∈ R such that φ − ψ = η ◦ f − η + K. By
Livschitz Theorem (e.g. [1, Proposition 4.5]), φ and ψ are cohomologous if
and only if µφ = µψ if and only if there exists K ∈ R such that

1

n

n−1
∑

k=0

(

φ(fk(x))− ψ(fk(x))
)

= K (9)

for all x ∈ Pern(f) and all n ∈ N. In particular, for φ,ψ ∈ LCk(X,R) to be
cohomologous, it is sufficient that (9) holds for all x ∈ EPerk(f). This follows
from the fact that every periodic orbit can be written as a concatenation of
generating segments of k-elementary periodic points.

Next we give the definition for ground states. We say µ ∈ M is a ground
state of the function φ if there exists a sequence (tn)n ⊂ R with tn → ∞,
and corresponding equilibrium states µtnφ ∈ ES(tnφ) such that µtnφ → µ
as n→ ∞. Here we think of t as the inverse temperature 1/T of the system.
Thus, a ground state is an accumulation point of equilibrium states when
the temperature approaches zero. We denote by GS(φ) the set of all ground
states of φ.

In order to define zero-temperature measures we require convergence of
the measures µtφ rather than only convergence of a subsequence. Namely,
suppose there exists t0 ≥ 0 such that for all t ≥ t0 the function tφ has
a unique equilibrium state. We say µ∞,φ ∈ M is the zero-temperature
measure of the function φ if µ∞,φ is the weak∗ limit of the measures µtφ
as t → ∞. For Φ ∈ C(X,Rm) and α = (α1, . . . , αm) ∈ R

m we write
α · Φ = α1Φ1 + · · · + αmΦm. If the limit

µ∞,α·Φ = lim
t→∞

µtα·Φ (10)

exists, we call µ∞,α·Φ the zero temperature measure in direction α.

3. Classification of higher dimensional functions

The strategy to prove Theorem A is to construct a suitable higher di-
mensional function Φ that encodes all one-dimensional functions. With this
goal in mind we provide in this section a classification of higher dimensional
functions in terms of the “shape” of their generalized rotation sets. This
classification will make use of a result in [19] that connects the geometry of
the rotation set with the rotation vectors of the corresponding ground states.
While this result is originally stated for continuous maps on compact metric
spaces, here we only consider the case of subshifts of finite type.

We need the following notation. Let f : X → X be a subshift of finite
type, and let Φ ∈ C(X,Rm) be a fixed m-dimensional function. Given a
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direction vector α ∈ Sm−1 we denote by Hα(Φ) the supporting hyperplane
of Rot(Φ) for which α is the normal vector that points away from Rot(Φ).
Since Rot(Φ) is a compact convex set, it follows from standard arguments

in convex geometry that Hα(Φ) is well-defined. We denote by Fα(Φ)
def
=

Rot(Φ) ∩Hα(Φ) the face of Rot(Φ) associated with the direction vector α.
For any face F of Rot(Φ) we denote by α(F ) = {α ∈ Sm−1 : Fα(Φ) =
F} the set of direction vectors that generate F . Clearly, α(F ) 6= ∅ and
α(Fi) ∩ α(Fj) = ∅ if Fi 6= Fj .

Theorem 3 ([19]). Let f : X → X be a transitive subshift of finite type, let
Φ ∈ C(X,Rm) and let α ∈ Sm−1. Then

(a) If µ is a ground state of α · Φ then rv(µ) ∈ Fα(Φ), and

hµ(f) = sup{hν(f) : rv(ν) ∈ Fα(Φ)}. (11)

(b) The set {rv(µ) : µ ∈ GS(α · Φ)} is compact. Further, if Φ is Hölder
continuous then {rv(µ) : µ ∈ GS(α · Φ)} is connected.

We recall that for a locally constant function Φ, for each α ∈ Sm−1 there
exists a unique ground state µ∞,α·Φ of α · Φ , i.e., the zero-temperature
limit exists. In particular, in the locally constant case the set {rv(µ) : µ ∈
GS(α·Φ)} in Theorem 3 (b) is a singleton. We note that Theorem 3 includes
the case int Rot(Φ) = ∅ in which case Fα(Φ) = Rot(Φ) for all α ∈ Sm−1

such that α · Φ is cohomologous to zero. In this situation µ∞,α·Φ = µmme

the unique measure of maximal entropy of f .
We continue to use the notations from Sections 1 and 2. Let f : X → X

be a transitive one-sided subshift of finite type (see Section 2 for details).
Let k,m ∈ N and let Φ ∈ LCk(X,R

m). By Ziemian’s Theorem (Theorem 1
in this paper), Rot(Φ) is a polyhedron. Let VΦ = {w1, . . . , ws} denote the
vertex set of Rot(Φ). Clearly, s depends on Φ. Again by Ziemian’s Theorem,
Rot(Φ) is the convex hull of the rotation vectors of k-elementary periodic
point measures (see Section 2 for the definition and details). It follows that
each wj ∈ VΦ has at least one k-elementary periodic point measure in its
rotation class MΦ(wj). We will make use of the following definition.

Definition 3. We denote by U(k) = U(k,m) the set of functions Φ in
LCk(X,R

m) with the following properties.

(a) If w is a vertex of Rot(Φ) and if x, y ∈ EPerk(f) with rv(µx) =
rv(µy) = w, then x and y are k-permutable.

(b) If x ∈ EPerk(f) with rv(µx) ∈ ∂relRot(Φ) then rv(µx) is a vertex of
Rot(Φ).

It follows readily from Definition 3 that all k-elementary periodic points
in a vertex rotation class have the same period.

Proposition 2. Let Φ ∈ U(k) and let w be a vertex of Rot(Φ). Let XF

denote the subshift of finite type associated with the face F = {w} (see
Equation (6)). Then there exist n ∈ N and x ∈ EPerkn(f) such that XF =
{x, f(x), . . . , fn−1(x)}. In particular, MΦ(w) = {µx}.
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Proof. Let C1, . . . , Cn denote the cylinders of length k associated with w (see
Definition 3). Rather than working with f , we consider the conjugate system
g : Y → Y defined in Proposition 1. For x ∈ Per(f), by slightly abusing the
notation, we continue to refer to the corresponding periodic point of g as x.
Recall that for the system g each symbol corresponds to a cylinder of length
k in X. We will make use of the following elementary Observation: If x is a
periodic point in XF then x has period np for some p ∈ N. Moreover, every
symbol (i.e. k-cylinder) occurs in the generating sequence τx of x precisely p
times. We note that the Observation is a consequence of the following facts:

(a) By definition of U(k), every k-elementary periodic point in XF has
period n.

(b) Every periodic orbit can be written as a finite concatenation of k-
elementary periodic orbits.

(c) The shift XF is given by the infinite g-admissible concatenations of
generating sequences of k-elementary periodic orbits in XF (see Sec-
tion 2.4.).

It follows from (c) that in order to prove the proposition, it suffices to
show that XF contains one and only one k-elementary periodic orbit. Let
x, y ∈ EPerk(f) with rv(µx) = rv(µy) = w. By (a), both x and y have
period n. We have to show that x and y belong to the same periodic orbit.
Assume on the contrary that x and y have distinct k-permutable orbits.
Let τx = x1 · · · xn and τy = y1 · · · yn be the generating sequences of x and y
respectively. By replacing x with an iterate of x if necessary, we may assume
x1 = y1. Thus, the cylinders xn and yn can both be followed by the cylinder
x1. Define l = max{ι ∈ {2, . . . , n} : xι 6= yι}. It follows that there exist
unique 2 ≤ i, j ≤ l − 1 such that xi = yl and yj = xl. That is,

τx = x1x2 · · · xi−1ylxi+1 · · · xl−1xlxl+1 · · · xn, and

τy = x1y2 · · · yj−1xlyj+1 · · · yl−1ylxl+1 · · · xn.
(12)

We define

a = x1x2 · · · xi−1, b = ylxi+1 · · · xl−1, c = xlxl+1 · · · xn, and
a′ = x1y2 · · · yj−1, b

′ = xlyj+1 · · · yl−1, c
′ = ylxl+1 · · · xn.

(13)

Hence τx = abc and τy = a′b′c′. By Equations (12), (13), bb′, ac′ and a′c
are generating sequences of periodic points of g. We write ξ1 = O(bb′), ξ2 =
O(ac′) and ξ3 = O(a′c) (see Figure 1.) and denote by n1, n2, n3 the periods
of the periodic points ξ1, ξ2, ξ3 respectively. It follows from the observation
that ξ1 6∈ XF since x1 6∈ bb′. Similarly, ξ2, ξ3 6∈ XF since xl 6∈ ac′ and
yl 6∈ a′c. Let α ∈ Sm−1 be a direction vector associated with F . We define
the one-dimensional function φ = α ·Φ. It follows that α ·w = maxRot(φ),
where Rot(φ) denotes the rotation set of φ which is a compact interval in
R. Moreover, F1 = {α · w} is a face of Rot(φ) with XF1

= XF . Since
ξ1, ξ2, ξ3 6∈ XF we obtain

µξ1(φ), µξ2(φ), µξ3(φ) < α · w. (14)
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Note that the integrals in Equation (14) are averages of the values of φ on
the corresponding cylinders. Together with x = abc and y = a′b′c′ we may
conclude that

WA
def
=

1

2n
(n1µξ1(φ) + n2µξ2(φ) + n3µξ3(φ))

=
1

2n

n
∑

ι=1

(φ(xι) + φ(yι)) = α · w.
(15)

Note that WA is the weighted average of the integrals µξι(φ), ι = 1, 2, 3.
Thus, by Equation (14) we must have WA < α ·w which gives a contradic-
tion. Thus, x and y must belong to the same periodic orbit and the proof
is complete. �

. . . . . . . . .

(

(

(

(

)

)

(

(

)

)

)

)

. . .

τx :

τy : . . . . . .

a

a′

b

b′

c

c′

Figure 1. Periodic points ξ1 = O(bb′), ξ2 = O(ac′), ξ3 = O(a′c) with other

periods stemming from two permutable periodic points x and y.

For r = 1, . . . ,m we define

LCk,r(X,R
m) = {Φ ∈ LCk(X,R

m) : dimRot(Φ) = r}
and U(k, r) = U(k) ∩ LCk,r(X,Rm). The next result shows that U(k, r) is
open and dense in LCk,r(X,R

m).

Theorem 4. The following properties hold:

(a) U(k, r) is a nonempty open set in LCk,r(X,R
m).

(b) LCk,r(X,R
m) = U(k, r).

(c) For every Φ ∈ U(k) there exists an open and dense set DΦ ⊂ Sm−1

of direction vectors such that for each α ∈ DΦ the zero-temperature
measure µ∞,α·Φ is supported on a k-elementary periodic orbit.

Proof. In the proof we will make use of the following elementary
Observation 1: If µ ∈ M and Φ, Φ̃ ∈ C(X,Rm) with ‖Φ − Φ̃‖ < ε , then
‖rvΦ(µ)− rvΦ̃(µ)‖ < ε.
First we prove that U(k, r) is open in LCk,r(X,R

m). Let Φ ∈ U(k, r).
Without loss of generality we may assume that Rot(Φ) has nonempty interior
(i.e. r = m) because otherwise we can consider the relative interior and
relative boundary of Rot(Φ). We leave the elementary adjustments for the
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case r < m to the reader. Thus, we will omit the parameter r in the
following.

Let w be a vertex of Rot(Φ) and let

Eper(w) = {x ∈ EPerk(f) : rv(µx) = w}.
By Proposition 2,

Eper(w) = {x, f(x), . . . , fn−1(x)},
for some k-elementary periodic point x with period n.

Claim 1: There exists εw > 0, such that if Φ̃ ∈ LCk(X,R
m) with ‖Φ −

Φ̃‖ < εw then w̃ = rvΦ̃({µx : x ∈ Eper(w)}) is a vertex of Rot(Φ̃). Let
H = H(w) be a supporting hyperplane of the face {w} of Rot(Φ). It follows
from the definition that for all y ∈ EPerk(f) \ Eper(w) the rotation vectors
rv(µy) lie in the same open half space determined by H. Moreover, since

EPerk(f) is finite, we have

εw =
min{dist(rv(µy),H) : y ∈ EPerk(f) \Eper(w)}

2
> 0.

Let now ‖Φ − Φ̃‖ < εw. By applying Observation 1 we conclude that H̃ =
(w̃−w)+H is a supporting hyperplane of the face {w̃} of conv({rvΦ̃(µy) : y ∈
EPer(f)}). Therefore, Claim 1 follows from Theorem 1. Define Eper(Φ) =
⋃

Eper(w), where the union is taken over all vertices w of Rot(Φ).

Claim 2: There exists ε0 > 0 such that if Φ̃ ∈ LCk(X,R
m) with ‖Φ−Φ̃‖ <

ε0, then rvΦ̃({µy : y ∈ EPerk(f) \Eper(Φ)}) ⊂ int Rot(Φ̃). Pick ε0 > 0 such

that B(rvΦ(µy), 2ε0) ⊂ int Rot(Φ) for all y ∈ EPerk(f) \ Eper(Φ). Consider

Φ̃ ∈ LCk(X,R
m) with ‖Φ − Φ̃‖ < ε0. Since Rot(Φ) = conv({rvΦ(µy) : y ∈

Eper(Φ)}), Observation 1 implies that the Hausdorff distance of ∂Rot(Φ) and
∂conv({rvΦ̃(µy) : y ∈ Eper(Φ)}) is smaller than ε0. Moreover, Observation 1

yields that rvΦ̃(µy) ∈ B(rvΦ(µy), ε0) for all y ∈ EPerk(f)\Eper(Φ). Together

this implies that rvΦ̃({µy : y ∈ EPerk(f) \ Eper(Φ)}) ⊂ int conv({rvΦ̃(µx) :
x ∈ Eper(Φ)}) which implies Claim 2.

Finally we define ε = min ({ε0} ∪ {εw : w vertex of Rot(Φ)}) . We now

apply Claim 1 and Claim 2 and conclude that if Φ̃ ∈ LCk(X,R
m) with

‖Φ− Φ̃‖ < ε then Φ̃ ∈ U(k). Hence, U(k) is open. The statement that U(k)
is nonempty will follow from part (b).

Next we prove LCk,r(X,R
m) = U(k, r). As before we assume r = m

and omit the parameter r in the following. Let Φ ∈ LCk(X,R
m). Suppose

there exists a non-vertex point w ∈ ∂Rot(Φ) with at least one k-elementary
periodic measure in the rotation class of w. Pick x ∈ EPerkn(f) with rv(µx) =
w which is minimal in the following sense: There is no elementary periodic
orbit y with rv(µy) = w whose cylinder set associated with y (cf Definition 1)
is a proper subset of the cylinder set {Ci = C(f i(x)) : i = 0, . . . , n−1} of the
generating sequence of x. Clearly, such a minimal x exists. Let α ∈ Sm−1

be a direction vector of the largest (in the sense of inclusion) face containing
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w. Further, let χx denote the characteristic function of C0∪· · ·∪Cn−1 on X.
We define a perturbation of Φ along the direction vector α. More precisely,
we define

Φt = Φ+ (tα1χx, . . . , tαmχx). (16)

Clearly, Φt → Φ as t→ 0. It follows that the corresponding rotation vector
w + tα is a vertex point of Rot(Φ̃t) for any t > 0. Moreover, the vertex
point w + tα satisfies Property (a) of Definition 3. Therefore, by applying
the argument in the proof of Proposition 2 to the face {w + tα} we may
conclude that w+tα has only one k-elementary periodic point measure in its
Φt rotation class. (See Figure 2 below). Using induction and performing this
perturbation one by one (and arbitrarily small) we can remove all non-vertex
rotation vectors of elementary periodic point measures from the boundary
of Rot(Φ) by an arbitrary small perturbation. To complete the proof of (b)
we still have to remove all but one k-elementary periodic point measures
from the rotation classes of the other vertex points. However, this can be
accomplished by performing a similar perturbation as in (16), and again
doing it one by one, that is, vertex by vertex. We leave the details to the
reader.

Finally, we show Assertion (c). Let Φ ∈ U(k). By Proposition 2, for
any direction vector α ∈ Sm−1 of any of the vertices w of Rot(Φ), there is
one and only one k-elementary periodic point measure in its rotation class
{µ ∈ M : rv(µ) = ω}. By Theorems 2 and 3, the zero-temperature measure
µ∞,α·Φ is supported on this k-elementary periodic orbit. Since Rot(Φ) is
a polyhedron, the direction vectors associated with the vertices of Rot(Φ)
form an open and dense subset of Sm−1. This completes the proof of the
theorem. �

α

w

Figure 2. Perturbation to remove non-vertex elementary periodic points.

w + tα

4. The proof of the Theorem A

This section is devoted to the proof of our main result Theorem A. Our
approach uses a suitable higher dimensional function Φ that encodes all one-
dimensional functions. We will then obtain Theorem A by applying results
about the connection between rotation sets and zero-temperature measures
(see Theorem 3) to the function Φ. We note that although Φ is far from
being unique, we will call Φ a universal function.
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We start by presenting a version of Theorem A for higher-dimensional
functions. Recall that mc(k) denotes the cardinality of the set of cylinders
of length k in X.

Theorem 5. Let k ∈ N. Then

(a) For Φ ∈ LCk(X,R
m) there exist a finite set M(Φ) ⊂ ME such that

for each α ∈ Sm−1 the zero-temperature measure µ∞,α·Φ is a convex
sum of measures in M(Φ).

(b) There exists Φuniv ∈ LCk(X,R
mc(k)) and an analytic surjection I :

LCk(X,R) \ {φ ≡ 0} → Smc(k)−1 such that for all φ ∈ LCk(X,R) \
{φ ≡ 0} we have that µ∞,φ = µ∞,I(φ)·Φuniv

is a convex sum of measures
in M(Φuniv).

Proof. We first prove (a). Let k ∈ N and Φ ∈ LCk(X,R
m). It follows from

Theorem 1 that the rotation set Rot(Φ) has finitely many faces F1, . . . , Fℓ.
Therefore,

Sm−1 =

ℓ
⋃

i=1

α(Fi) (17)

is a partition of Sm−1 into disjoint nonempty sets of direction vectors. Let
us consider a fixed face F ∈ {F1, . . . , Fℓ} and let α ∈ α(F ). By Theorem 3,
the rotation vector of the zero-temperature measure µ∞,α·Φ lies in the face
F = Fα(Φ), and

hµ∞,α·Φ
(f) = sup{hν(f) : rv(ν) ∈ F}. (18)

On the other hand, by Theorem 2, rv(ν) ∈ F if and only if supp ν ∈ XF ,

where XF = {x ∈ Per(f) : rv(µx) ∈ F}. It follows that µ∞,α·Φ is a measure
of maximal entropy of f |XF

. By Equation (7), there exist t = t(F ) ∈ N and
invariant sets X1, . . . ,Xt ⊂ X such that f |Xj

is a transitive subshift of finite
type and XF = X1∪· · ·∪Xt. It is well known that for each j = 1, . . . , t there
exists a unique measure of maximal entropy µF,j of f |Xj

(which is called the
Parry measure of f |Xj

). We conclude that

htop(XF ) = max{htop(f |X1
), . . . , htop(f |Xt)}

= max{hµF,1
(f), . . . , hµF,t

(f)}.
Define

MF = {µF,j : hµF,j
(f) = htop(XF )}, (19)

which is a nonempty finite set of ergodic measures. Define nF = |MF |.
Using that the entropy is affine on M we conclude that any measure

of maximal entropy of f |XF
must be a convex combination of measures in

MF . In particular, for any α ∈ α(F ) there exist 0 ≤ a1,α, . . . , anF ,α ≤ 1
with

∑

aj,α = 1 such that

µ∞,α·Φ =

nF
∑

j=1

aj,αµF,j, (20)
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where µF,j ∈ MF . We define M(Φ) =
⋃ℓ
i=1MFi

. It now follows from
Equations (17), (19) and (20) that M(Φ) is a finite set of ergodic measures
with the desired property. This completes the proof of part (a).
Next we prove (b). Set m = mc(k). Let {Ck(1), . . . , Ck(m)} denote the set
of cylinders of length k in X. Recall that LCk(X,R) is identified with R

m.
Let B = {v1, . . . , vm} be a fixed basis of Rm. We define Φuniv : X → R

m

by Φuniv|Ck(i) = vi. Clearly, Φuniv ∈ LCk(X,R
m). Since B is a basis of Rm

there exists an isomorphism L : LCk(X,R) → R
m such that L(φ)1v1+ · · ·+

L(φ)mvm = φ. We define

I : LCk(X,R) \ {0} → Sm−1, I(φ) =
L(φ)

‖L(φ)‖ .

Clearly, I is an analytic surjection. Moreover, for all φ ∈ LCk(X,R) \ {0}
we have φ = ‖L(φ)‖I(φ) · Φ. We conclude from part (a) that µ∞,φ =
µ∞,I(φ)·Φuniv

is a convex sum of measures in M(Φuniv). �

Rot(Φ)

U6

U7

U8U9

U10

α1

α4

α3

α2

α5

Sm−1

Figure 3. The partition of the sphere for a rotation set with ten faces.

w10

w6

w7

w8w9

Remark 2. We note that the universal function Φuniv in part (b) of The-
orem 5 is not unique. On the contrary, any function Φ ∈ LCk(X,R

mc(k))

whose values on the cylinders of length k form a basis in R
mc(k) has this

property. Thus, the set of Φ with the universal function property is a dense
open subset of LCk(X,R

mc(k)).

By putting together the results of Proposition 2 and Theorems 4 and 5
we are finally ready to prove Theorem A.

The proof of Theorem A. Fix k ∈ N and let m = mc(k). It follows from
Theorem 5 (b) and Remark 2 that there exists a universal function Φuniv ∈
LCk(X,R

m) such that Φuniv ∈ U(k). Since Φuniv is universal there ex-
ists α ∈ Sm−1 such that α · Φuniv ≡ const. Thus, by [18, Proposition 6],
int Rot(Φuniv) = ∅ which implies dimRot(Φuniv) < m. We conclude that
Rot(Φuniv) is a face of itself. Let F1, . . . , FN denote the faces of Rot(Φuniv).
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We recall the definition of the subshift of finite type XF associated with
a face F , see (7). We arrange the faces F1, . . . , Fℓ1 , . . . , Fℓ2 , . . . , FN such
that F1, . . . , Fℓ1 correspond to the vertex point faces of Rot(Φuniv) and
Fℓ1+1, . . . , Fℓ2 are the faces that correspond to the non-discrete transitive
subshifts of finite type XFi

. In particular, we define Fℓ1+1 = Rot(Φuniv)
which implies XFℓ1+1

= X. We define Uℓ1+1 = {φ cohomologous to zero}
and Mℓ1+1 = {µmme}, where µmme is the unique measure of maximal en-
tropy of f . It follows from (9) that Uℓ1+1 is a subspace of Rm. In particular
Uℓ1+1 is a convex cone. We conclude that statement (b) holds for i = ℓ1+1.
For i = 1, . . . , N with i 6= ℓ1 + 1 we define

Ui =
⋃

α∈α(Fi)

{tα : t ∈ R
+}. (21)

Clearly, {U1, . . . ,UN} is a partition of Rm. (See Figure 3.) Further, since
the α(Fi)’s are convex sets3, we may conclude that the sets Ui are convex
cones. Assertion (a) is now a consequence of Proposition 2 and Theorem 4
(b) and (c) since Φuniv ∈ U(k). Further, assertion (b) follows from Theorem
5, Equation (20) and the fact that ni = 1 for i = ℓ1 + 1, . . . , ℓ2. Finally, we
consider assertion (c). Equation (1) follows from Theorem 5 and Equation
(20). The claim that for each Ui there are only finitely many choices for
the coefficients aji,φ is a consequence [2, Theorem 2.1 (2)]. Finally, that the
entropy is constant on Mi follows from Equations (19) and (20). The proof
of Theorem A is complete. �

5. Regularity of localized entropy function on the boundary

The goal in this section is to study the regularity of w 7→ H(w) on the
boundary of the rotation set for locally constant functions. Let f : X →
X be a transitive subshift of finite type with transition matrix A and let
Φ ∈ LCk(X,R

m). Applying Theorem B in [18] to our situation gives the
following.

Theorem 6 ([13, 18]). Let Φ ∈ LCk(X,Rm) with intRot(Φ) 6= ∅. Then

(i) The map TΦ : Rm → int Rot(Φ) defined by v 7→ rv(µv·Φ) is a real-
analytic diffeomorphism.

(ii) For all v ∈ R
m, the measure µv·Φ is the unique measure that max-

imizes entropy among the measures MΦ(TΦ(v)). In this case we
say that µv·Φ is the unique localized measure of maximal entropy at
w = TΦ(v).

(iii) The map w 7→ H(w) is real-analytic on int Rot(Φ).

More precisely, Theorem 6 was proved in [18] for so-called STP maps
(which includes subshifts of finite type) and Hölder continuous functions.
In [13] the authors give an alternate proof for Theorem 6 and provided a

3To make this convexity argument we consider here a slightly more general definition
for α(F ). Namely, we allow direction vectors α with ‖α‖ 6= 1.
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technique which allows to derive the analyticity of map w 7→ H(w) also
in the case int Rot(Φ) = ∅ but now on the relative interior of Rot(Φ).
Roughly speaking, in order to treat the empty interior case one identifies
cohomologous functions in the family {v · Φ : v ∈ R

m}.
Since the faces of the rotation set of locally constant functions are them-

selves polyhedra, one might expect from Theorem 6 that the localized en-
tropy function restricted to the relative interior of such a face is also analytic.
However, Example 5 in Appendix B shows that H is in general not analytic
on the relative interior of a face.

Let F be a face of Rot(Φ). It follows that F is also a polyhedron. Let
d(F ) < m denote the dimension of F . Since we are interested in the regu-
larity of the localized entropy function on the relative interior of F we may
assume that F is not a singleton, i.e. d(F ) > 0. Let XF = X1 ∪ · · · ∪ Xt

be as in Equations (6) and (7). It follows that fi = f |Xi
is a transitive sub-

shift of finite type and that Fi
def
= Rot(Φ, fi) is a polyhedron of dimension

ni ≤ d(F ). Moreover, F = conv(F1 ∪ · · · ∪ Ft). Further, Theorem 6 shows

that Hi
def
= HΦ,fi is real-analytic on riFi.

Let us recall the following definition. LetD1, . . . ,Dt be non-empty bounded
subsets of Rm, let hi : Di → R be bounded continuous functions, and let
D = conv(D1 ∪ · · · ∪ Dt). We say h : D → R is the concave envelope4 of
h1, . . . , ht and write h = Ecc(h1, . . . , ht) if h is the smallest concave function
satisfying h|Di

≥ hi for all i = 1, . . . , t. We have the following.

Proposition 3. Let f : X → X be a transitive subshift of finite type and let
Φ ∈ LCk(X,Rm). Let F be a face of Rot(Φ) and let XF = X1 ∪ · · · ∪Xt be
the decomposition of XF into transitive subshifts Xi of finite type associated
with F (see (6) and (7)). Then H|F is the concave envelope of H1, . . . ,Ht

where Hi = HΦ,f |Xi
.

Proof. Let h = Ecc(H1, . . . ,Ht). For i = 1, . . . , t let Fi
def
= Rot(Φ|Xi

). Fur-
ther, let EPer(F ) = {x ∈ EPer(f) : rv(µx) ∈ F}. It is a consequence of
Theorem 1 that F = conv(rv(EPer(F ))). Since XF = X1 ∪ · · · ∪Xt we have
EPer(F ) ⊂ X1 ∪ · · · ∪Xt. We conclude that F ⊂ conv(F1 ∪ · · · ∪ Ft). On
the other hand, we clearly have Fi ⊂ F for all i = 1, . . . , t and since F is
convex we obtain that conv(F1 ∪ · · · ∪ Ft) ⊂ F . Hence, h and H|F are both
functions defined on F .

We need to show that h = H|F . SinceH and therefore in particular H|F is
a concave function, the statement h ≤ H|F follows directly from the defini-
tion of the concave envelope. Let w ∈ F . We claim that H(w) ≤ h(w). Since
the entropy map ν 7→ hν(f) is upper semi-continuous there exists µ ∈ Mf |XF

with hµ(f) = H(w) and rv(µ) = w. Using that XF = X1 ∪ · · · ∪Xt there

exist µ1, . . . , µt with µi ∈ Mf |Xi
, and λ1, . . . , λt ≥ 0 with

∑t
i=1 λi = 1 such

4We note that the concave envelope is the analog to the convex hull of a family of
functions. The latter is more commonly studied in convex analysis, see e.g. [24].
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that µ =
∑t

i=1 λiµi. By definition, rv(µi) ∈ Fi and hµi(f) ≤ Hi(rv(µi)).

Note that w =
∑t

i=1 λirv(µi). Using that h is a concave function on F we

may conclude that h(w) ≥∑t
i=1 λiHi(rv(µi)). On the other hand, the fact

that the entropy is affine shows that H(w) = hµ(f) =
∑t

i=1 λihµi(f). This
proves the claim and the proof of the proposition is complete. �

We recall that for k ∈ N0 ∪ {∞, ω} a function h : [a, b] → R is piecewise
Ck if there exists a = c0 < c1 < · · · < cℓ = b such that h|(ci,ci+1) is Ck

for all i = 0, . . . , ℓ − 1. Let Φ ∈ LCk(X,R
2). We say H is piecewise Ck

on the boundary of Rot(Φ) if there exist finitely many points a0, . . . , aℓ =
a0 ∈ ∂Rot(Φ) such that [ai, ai+1] is a line segment contained in a face Fi of
Rot(Φ) and H|(ai,ai+1) is C

k.
We will use the following elementary fact.

Lemma 1. For i = 1, . . . , t + 1 let hi : Di → R be bounded functions with
bounded domains. Then Ecc(h1, . . . , ht+1) = Ecc(Ecc(h1, . . . , ht), ht+1).

The statement follows from an elementary induction argument and is left
to the reader. Finally, we prove the following.

Theorem 7. Let f : X → X be a transitive subshift of finite type and let
Φ ∈ LCk(X,R

2). Then the localized entropy function H is piecewise C1 on
∂Rot(Φ). Moreover, the non-differentiability points of H|∂Rot(Φ) are rotation
vectors of k-elementary periodic point measures.

Proof. Since ∂Rot(Φ) is a polygon whose vertices are rotation vectors of
elementary periodic point measures, it is sufficient to proof the statement
for every face of Rot(Φ). Let F be such a face. If F is a singleton then
there is nothing to prove. Thus, we can assume that F is a non-trivial line
segment. Let XF = X1∪· · ·∪Xt be the decomposition of XF into transitive
subshifts Xi (see Equations (6) and (7)). Further, let Fi = Rot(Φ|Xi

) ⊂ F
and Hi = HΦ,f |Xi

. We will prove the statement by induction for t.

If t = 1 then XF is itself a transitive subshift of finite type. As a consequence
of Theorem 6 (see the discussion after the statement of Theorem 6) we obtain
that H|F = H1 is real-analytic on the relative interior of F and therefore in
particular of class C1.
t 7→ t + 1 : Applying Proposition 3 and Lemma 1 we conclude that it is
sufficient to consider the case t = 1. Assume that the assertions of the
theorem hold for H1. As before Theorem 6 implies that H2 is real-analytic
on the relative interior of F2. Moreover, the end points of the intervals Fi are
rotation vectors of k-elementary periodic point measures. Let w0 ∈ riF such
that w0 does not coincide with a rotation vector of a k-elementary periodic
point measure. In particular, w0 is not an end point of the intervals F1 and
F2. Since there are only finitely many k-elementary orbits, there exists a
neighborhood U ⊂ F of w0 which does not contain a rotation vector of a
k-elementary periodic point measure. Hence, Hi|U ∈ C1(U,R) for i = 1, 2.
In what follows we only consider points in U . Further, whenever we refer
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to a line segment of the graph of H we mean a non-trivial line segment
of maximal length. Our proof is based on the following two elementary
observations.

Observation 1: If (w0,H(w0)) lies on a line segment of the graph of H and
Hi(w0) = H(w0) then DHi(w0) coincides with the slope of the line segment.

Observation 2: If H(w0) = H1(w0) = H2(w0) then DH1(w0) = DH2(w0).
Observations 1 and 2 follow from the facts that Hi|U ∈ C1(U,R) and that
Hi and H are concave functions. We leave the elementary proofs to the
reader. To prove the theorem we need to show that H|F is C1 at w0. We
shall consider several cases.
Case 1: The point (w0,H(w0)) belongs to the interior of a line segment of
the graph of H. In this case H is affine in a neighborhood of w0 and is
therefore C1.
Case 2: There exists a neighborhood V ⊂ F of w0 such that H|V = Hi|V
for some i ∈ {1, 2}. This case is trivial since Hi is C

1 on U ∩ V .
Case 3: The point (w0,H(w0)) is an end point of two distinct line segments
of the graph of H. Let Ll denote the line segment on the left-hand side of
w0 and Lr the line segment on the right-hand side of w0. We claim that
this case can not occur. Otherwise, by maximality of the line segments (also
using that H is concave), the slope of Ll must be strictly larger than the
slope of Lr. We conclude that (w0,H(w0)) is an extreme point of the region
bounded above by the graph of H. Let µ ∈ Mf |XF

with rv(µ) = w0 and

hµ(f) = H(w0), i.e., µ is a localized measure of maximal entropy at w0.
It follows from an ergodic decomposition argument and the extreme point
property of (w0,H(w0)) that we can assume that µ is ergodic. Hence, µmust
be supported on Xi for some i = 1, 2. We conclude that Hi(w0) = H(w0).
It now follows from Observation 1 that DHi(w) coincides with both, the
slope of Ll and the slope of Lr. But this is a contradiction and the claim is
proven.
Case 4: There is a neighborhood V ⊂ F of w on which the graph of H
coincides on one side of w with a line segment and on the other side with
the graph of Hi for some i = 1, 2. In this case H restricted to V \ {w} is
clearly a C1-function. Moreover, Observation 1 shows that H is C1 on V .
Case 5: H1(w0) = H2(w0) = H(w0) and neither of the Cases 1-4 ap-
plies. First note that Cases 1-5 actually cover all possibilities. Indeed,
if H(w) > max{H1(w0),H2(w0)} then (w,H(w)) must lie in the interior of
a line segment of the graph of H which is Case 1. Moreover, if H1(w0) <
H2(w0) = H(w0) or H2(w0) < H1(w0) = H(w0) then one of the Cases 1,2
or 4 applies. Next we show that H is differentiable at w0. By Observation
2, DH1(w0) = DH2(w0). Clearly, the previous cases fail either on the left-
hand side of w0 or on the right-hand of w0 or on both sides. Without loss of
generality we only consider the left-hand side case. The right-hand side case
is analogous. Since Cases 1-4 do not apply in any neighborhood V ⊂ F of w0

there exist ε > 0 and a strictly increasing sequence (wn)n ⊂ (w0−ε, w0) with
limwn = w0 such that H(wn) = H1(wn) for n even and H(wn) = H2(wn)
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for n odd. We note that this includes the possibility of H1(wi) 6= H2(wi)
for i = n, n + 1 in which case the graph of H must contain a line segment
between the points (wn,H(wn)) and (wn+1,H(wn+1)). Let w ∈ [w1, w0) and
let N ∈ N such that w ∈ [wN , wN+1). Using that H is concave, we conclude

H(w) −H(w0)

w −w0
∈
[H(wN+1)−H(w0)

wN+1 − w0
,
H(wN )−H(w0)

wN − w0

]

. (22)

Clearly both difference quotients on the right-hand side of Equation (22)
converge to DH1(w0) = DH2(w0) as N → ∞. This implies that

lim
w→w0−

H(w)−H(w0)

w − w0
= DHi(w0).

It now follows from either applying the same argument to the right-hand
side of w0 or from Cases 1-4 that H is differentiable at w0 with DH(w0) =
DH1(w0) = DH2(w0). Let w ∈ V . From previous arguments (including
Cases 1-4) we know that H is differentiable at w. Moreover, we either
have DH(w) = DHi(w) for some i = 1, 2, or (w,H(w)) lies on a line seg-
ment of the graph of H with one endpoint of this line segment being closer
to w0 as w. Finally, since DH(w0) = DH1(w0) = DH2(w0) we obtain
limw→w0

DH(w) = DH(w0). Thus H is C1 near w0. �

Remark 3. One might ask if the proof of Theorem 7 can be extended to
show that H is piecewise analytic on ∂Rot(Φ). In fact, piecewise analyticity
holds provided the graph of H contains only finitely many line segments. We
are not aware of an obstruction to infinitely many lines segments. While we
do not have an actual example, we believe that there do exist locally constant
2-dimensional functions such that H is not piecewise analytic on ∂Rot(Φ).

Appendix A. Applications of Theorem A

In this appendix we apply Theorem A to various examples. In addition,
we use the results in Section 2.4 and the formula for the Parry measure,
see e.g. [20]. In order to keep the examples of reasonable size we consider
potentials that are constant on cylinders of length 2. We use the notation
φ|C2(x) = φx1,x2 and identify φ with a d× d-matrix Mφ = (φi,j)0≤i,j≤d−1.

A.1. The 2-symbol full-shift.

Example 1. Let X = {0, 1}N and let f : X → X be the shift map. One can
readily check that EPer2(f) coincides with the orbits of O(0),O(1),O(01),O(110),
O(001) and O(0011). This leads to the following cases:

(1) If φ0,0 > max{φ1,1, 12 (φ0,1 + φ1,0)}, then µ∞,φ = µO(0) and hµ∞,φ
(f) =

0;
(2) If φ1,1 > max{φ0,0, 12 (φ0,1 + φ1,0)}, then µ∞,φ = µO(1) and hµ∞,φ

(f) =
0;

(3) If 1
2 (φ0,1 + φ1,0) > max{φ0,0, φ1,1}, then µ∞,φ = µO(01) and hµ∞,φ

(f) =
0;
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(4) If φ0,0 = φ1,1 = 1
2 (φ0,1 + φ1,0), then φ is cohomologous to zero and

µ∞,φ = µmme is the unique measure of maximal entropy of f , i.e. the
Bernoulli measure with weight 1/2. In particular, hµ∞,φ

(f) = log 2;

(5) If φ0,0 = 1
2 (φ0,1 + φ1,0) > φ1,1, then µ∞,φ is the unique measure of

maximal entropy of the subshift of finite type with transition matrix

A =

(

1 1
1 0

)

and hµ∞,φ
(f) = log τ , where τ = 1+

√
5

2 is the Golden

Mean;
(6) If φ1,1 = 1

2 (φ0,1 + φ1,0) > φ0,0, then µ∞,φ is the unique measure of
maximal entropy on the subshift of finite type with transition matrix

A =

(

0 1
1 1

)

and hµ∞,φ
(f) = log τ ;

(7) If φ0,0 = φ1,1 >
1
2 (φ0,1 + φ1,0), then µ∞,φ = 1

2

(

µO(0) + µO(1)

)

and
hµ∞,φ

(f) = 0;

We note that Example 1 was previously treated with different methods
in [2]. The cases (5) and (6) correspond to the so-called Golden Mean shift.
By [20], the measure with the maximal entropy is the Markov measure with

probability vector

(

τ2/(1 + τ2)
1/(1 + τ2)

)

and transition matrix

(

1/τ 1/τ2

1 0

)

and

the analogous measure in (6). We refer to [2] and [9, Proposition 17.14] for
further details.

A.2. The 3-symbol full-shift. Let X = {0, 1, 2}N and let f : X → X
be the shift map. Let φ ∈ LC2(X,R). In Table 1 below we list the 2-
elementary periodic orbits of f grouped by periods. Together f has 148
periodic orbits that are 2-elementary. Based on the data in Table 1 we are
able to characterize several of the zero-temperature measures as well as the
associated components (i.e. the convex cones) of potentials (see Theorem
A).

Example 2. (Unique maximizing elementary periodic points as zero-temp-
erature measures.) Let X = {0, 1, 2}N and let f : X → X be the shift
map. Let φ ∈ LC2(X,R). Then there are only 8 elementary periodic point
measures that occur as zero-temperature measures in the classification in
Theorem A (a), i.e. ℓ1 = 8. Namely, we have the following possibilities:

(1) If φ0,0 > µx(φ) for all x ∈ EPer2(f) \ {O(0)}, then µ∞,φ = µO(0);

(2) If φ1,1 > µx(φ) for all x ∈ EPer2(f) \ {O(1)}, then µ∞,φ = µO(1);

(3) If φ2,2 > µx(φ) for all x ∈ EPer2(f) \ {O(2)}, then µ∞,φ = µO(2);

(4) 1
2 (φ0,1 + φ1,0) > µx(φ) for all x ∈ EPer2(f) \ {O(01),O(10)}, then
µ∞,φ = µO(01);

(5) If 1
2 (φ1,2 + φ2,1) > µx(φ) for all x ∈ EPer2(f) \ {O(12),O(21)}, then

µ∞,φ = µO(12);

(6) If 1
2 (φ0,2 + φ2,0) > µx(φ) for all x ∈ EPer2(f) \ {O(02),O(20)}, then

µ∞,φ = µO(02);
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(7) If 1
3(φ1,0+φ02+φ2,1) > µx(φ) for all x ∈ EPer2(f)\{O(102),O(021),O(210)},

then µ∞,φ = µO(102);

(8) If 1
3(φ1,2+φ2,0+φ0,1) > µx(φ) for all x ∈ EPer2(f)\{O(120),O(201),O(012)},

then µ∞,φ = µO(120);

Period Generating segments of 2-elementary periodic orbits
1 0;1;2
2 10;12; 20
3 100;101; 102; 112; 120; 122; 200; 202

4
1001; 1002; 1012; 1020; 1021; 1022; 1120; 1122;

1200; 1202; 1220; 2002

5
10012;10020;10021;10022;10112;10121;10122;10200;
10201;10220;10221;11200;11202;11220;12002;12022;

12200;12202

6

100112; 100121; 100201; 102001; 100220; 102200;
101122; 101221; 101202;102012; 120022; 122002;
112022; 112202; 102201; 100122; 100221; 102120;

112002; 112200

7

1001122;1001221; 1002201; 1022001; 1120022; 1122002;
1001202; 1002012; 1002120; 1012002; 1020012; 1021200;
1011202; 1020121; 1021120; 1021201; 1020112; 1012021;
1012202; 1021220; 1020122; 1012022; 1022012; 1022120

8

10011202; 10012021; 10020112; 10020121; 10021120; 10021201;
10112002; 10120021; 10200112; 10200121; 10211200; 10212001;
10012022; 10012202; 10020122; 10021220; 10022012; 10022120;
10120022; 10122002; 10200122; 10212200; 10220012; 10221200;
10201122; 10211220; 10112202; 10120221; 10122021; 10201221;
10220112; 10220121; 10221120; 10221201; 10112022; 10212201

9

100112022; 100112202; 100120221; 100122021; 100201122;
100201221; 100211220; 100212201; 100220112; 100220121;
100221120; 100221201; 101120022; 101122002; 101200221;
101220021; 102001122; 102001221; 102112200; 102122001;

102200112; 102200121; 102211200; 102212001

Table 1. The 2-elementary periodic orbits of f (one generating segment
per orbit).

To see that the cases (1)-(8) in Example 2 cover all possibilities in Theo-
rem A (a) we notice that for any other 2-elementary periodic point x and any
φ ∈ LC2(X,R) one can represent µx(φ) as a weighted convex combination
of the µx1(φ), . . . , µx8(φ). For example, if x = O(12202), then

µx(φ) =
1

5
(φ1,2 + φ2,2 + φ2,0 + φ0,2 + φ2,1)

=
1

5

(

µO(2)(φ) + 2µO(12)(φ) + 2µO(02)(φ)
)

.
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This shows that if µx is a φ-maximizing measure then so are µO(2), µO(12)

and µO(02). By going through the list of points in Table 1 one can exclude the
remaining 2-elementary periodic point measures. It follows from Theorem
A that the sets of functions defined in each of the cases (1)-(8) are open
convex cones whose union is dense in LC2(X,R).

Example 3. (Maximal entropy measures of non-discrete subshifts of finite
type as zero-temperature measures.) Consider the subshift σ : XA → XA

with transition matrix

A =





1 0 1
0 1 1
1 1 1





and a function φ which is constant on 2-cylinders. Since σ|XA
is transitive,

it has a unique measure µ = µA of maximal entropy. Moreover, hµ(f) =

log
(

1 +
√
2
)

. By [20], µ is a Markov measure with probability vector pA and
transition matrix PA given by

pA =





1
4
1
4
1
2



 and PA =







√
2− 1 0 1−

√
2
2

0
√
2− 1 1−

√
2
2

2−
√
2 2−

√
2

√
2− 1






.

If

φ0,0 = φ1,1 = φ2,2 =
1
2 (φ0,2 + φ2,0) =

1
2 (φ1,2 + φ2,1)

> max
{

1
2 (φ0,1 + φ1,0) ,

1
3(φ1,0 + φ02 + φ2,1),

1
3(φ1,2 + φ2,0 + φ0,1)

}

,

then the zero-temperature measure µ∞,φ = µ . Similar results can be stated
for the other 2-cylinder transitive subshifts of finite type.

Example 3 illustrates an application of Theorem A (b) to derive zero-
temperature measures that maximize entropy on certain non-discrete tran-
sitive subshifts of finite type.

Example 4. (Multiple ergodic component zero-temperature measures.)
Let X = {0, 1, 2}N and let f : X → X be the shift map. Let φ ∈ LC2(X,R).
If φ satisfies

φ0,0 = φ1,1 = φ2,2 > µx(φ) (23)

for all x ∈ EPer2(f) \ {O(0),O(1),O(2)}, then by Theorem A (c),

µ∞,φ = a1,φµO(0) + a2,φµO(1) + a3,φµO(2), (24)

where 0 ≤ a1,φ, a2,φ, a3,φ ≤ 1 and a1,φ + a2,φ + a3,φ = 1. Moreover, there
are only finitely many choices for the coefficients aj,φ. In the following we
consider 3 particular cases and apply a direct computation method, see [16]:

Case 1: We consider the potential φ1 given by

Mφ1 =





4 0 0
1 4 0
1 0 4



 .
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By [20], µtφ1 is a Markov measure defined by the probability vector

pt =

(

−1 +
√
1 + 8et

2
√
1 + 8et

,
1 +

√
1 + 8et

4
√
1 + 8et

,
1 +

√
1 + 8et

4
√
1 + 8et

)⊤

and stochastic matrix

Pt =
1

β(et)







2e4t −1 +
√
1 + 8et −1 +

√
1 + 8et

4et

−1+
√
1+8et

2e4t 2
4et

−1+
√
1+8et

2 2e4t






,

where β(et) = 1 + 2e4t +
√
1 + 8et. Taking the limit t→ ∞, we obtain

Pt →





1 0 0
0 1 0
0 0 1



 , and pt →





1
2
1
4
1
4



 .

It follows that µ∞·φ1 =
1
2µO(0) +

1
4µO(1) +

1
4µO(2).

Case 2: We consider the potential φ2 given by

Mφ2 =





4 0 0
0 4 0
0 0 4



 .

By [20] and a similar argument as in Case 1, we obtain

µ∞,φ2 =
1

3

(

µO(0) + µO(1) + µO(2)

)

.

Case 3: Finally, we consider the potential φ3 given by

Mφ3 =





4 0 0
1 4 0
0 0 4



 .

By [20], (see also [16] for a similar example), one can show that µ∞,φ3 =
1
2

(

µO(0) + µO(1)

)

. In particular, precisely two of the coefficients aj,φ3 in (24)
are non-zero.

Cases (1)-(3) in Example 4 illustrate certain possibilities for zero-temperature
measures that are convex combinations of periodic point measures. In par-
ticular, we show the possibility of non-symmetric coefficients as well as of
one coefficient being zero. We refer to [14] for further examples and to [5]
for the case of irrational coefficients for the 5-symbol full shift. Besides these
discrete applications of Theorem A (c), there are non-discrete applications
in the literature with one of the coefficients aj,φ being zero [16].
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Appendix B. Examples related to Theorem B

In this appendix we construct examples that illustrate Theorem B. We
first establish in Example 5 the possibility of a line segment face F with
a non-analytic entropy function H|riF . Finally, we describe how to refine
Example 5 to establish that H|riF is in general not even a C1 function, see
Example 6.

Example 5. Let A = {0, . . . , 5} and f = fA : XA → XA be the one-sided
subshift of finite type with alphabet A and transition matrix A, where A is
defined by

A =

















1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 1 1 1

















.

It follows from the definition of A that f is transitive. Let w1, w2, w3 ⊂ R
2

defined by w1 = (0, 0), w2 = (1, 0) and w3 = (1/2, 1) and let ∆ denote the
polyhedron (i.e. triangle) with vertices w1, w2, w3. We define the function
Φ : XA → R

2 by

Φ(ξ) =











w1 if ξ ∈ C2(00) ∪ C2(01) ∪ C2(10) ∪ C2(44)

w2 if ξ ∈ C2(33) ∪ C2(34) ∪ C2(43) ∪ C2(11)

w3 otherwise.

(25)

It follows from the construction that Φ is constant on cylinders of length
2. Let F be the line segment with endpoints w1 and w2.

Theorem 8. Let f and Φ be as in Example 5. Then Rot(Φ) = ∆ and H is
not analytic on the interior of the face F .

Proof. Since conv(Φ(XA)) = ∆ and since for each i = 1, 2, 3 the set Φ−1({wi})
contains a fixed point, the statement Rot(Φ) = ∆ follows from the convexity
of ∆. Moreover, F is a face of Rot(Φ). Suppose x = (xn) is a periodic point
with µx ∈ F . It follows from the definition of Φ that xn ∈ {0, 1, 3, 4} for all
n ≥ 1. Define

A1 =

















1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















and A2 =

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 1 1 0
0 0 0 0 0 0

















It follows that XF = XA1
∪ XA2

. Moreover, each f |XAi
is a transitive

subshift that is conjugate to the full-shift in 2 symbols. This shows that
htop(f |XAi

) = log 2. Hence, htop(f |XF
) = log 2. Let µi denote the unique
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measure of maximal entropy for f |XAi
, that is, the unique invariant measure

µi on XAi
satisfying hµi(f) = log 2. It follows that µi is the Bernoulli

measure that assigns each cylinder of length 2 the measure 1/4. We obtain

by computation that v1
def
= rv(µ1) = (1/4, 0) and v2

def
= rv(µ2) = (3/4, 0).

Since H is concave and H|F ≤ htop(f |XF
) = log 2 we may conclude that

H|[v1,v2] ≡ log 2. Here [v1, v2] denotes the closed line segment with endpoints
v1 and v2. It is a consequence of the identity theorem for analytic functions
that if H were analytic on int F then H must be constant log 2 on F . We
claim that H(w) < log 2 for all w ∈ F \ [v1, v2]. Let w ∈ F \ [v1, v2].
By symmetry it is sufficient to consider the case w ∈ [0, 1/4). Since the
entropy map ν 7→ hν(f) is upper semi-continuous there exists ν ∈ Mf |XF

with rv(ν) = w and hν(f) = H(w). Using that XF = XA1
∪ XA2

we
can write ν = λ1ν1 + λ2ν2 for some νi ∈ Mf |XAi

and λi ∈ [0, 1] with

λ1 + λ2 = 1. If both, ν1 = µ1 and ν2 = µ2 then rv(ν) ∈ [v1, v2] which is a
contradiction. Thus, there must exist i ∈ {1, 2} with λi > 0 and νi 6= µi;
in particular hνi(f) < log 2. Using that the entropy is affine, we conclude
H(w) = hν(f) < log 2 which proves the claim. We obtain that H is not
analytic on riF . �

Remark 4. (a) In Example 5 the localized entropy function H|F is not
analytic on the relative interior of the face F . However, it is fairly straight-
forward to show that H|F is a C1-map. In particular, this statement follows
from Theorem 7.
(b) Let Φ be as in Example 5 and let α = (0,−1). It is a consequence of
Theorem 3 that the zero-temperature measure µ∞,α·Φ of the function α · Φ
is a convex combination of the the measures µ1 and µ2. Using a symmetry
argument similar to that in [19], one can show that µ∞,α·Φ = 1

2(µ1+µ2). In
particular, µ∞,α·Φ is a non-ergodic zero-temperature measure with positive
entropy.

The next example establishes the possibility of a line segment face F with
a relative interior point at which H is not differentiable.

Example 6. Let f : X → X be a transitive subshift of finite type. More-
over, let Φ ∈ LCk(X,R

2) such that Rot(Φ) has a line segment face F =
[w1, w3] such that XF decomposes into XF = X1 ∪ X2 ∪ X3 (see Equa-
tions (6) and (7)) with the following properties: (a) Rot(Φ|Xi

) = {wi} for
i = 1, 3 and Rot(Φ|X2

) = {w2} where w2 ∈ (w1, w3); (b) htop(f |X2
) >

max{htop(f |X1
), htop(f |X3

)}.
It now follows from Proposition 3 that the graph of H|F is given by the line
segments joining (w1, htop(f |X1

)) with (w2, htop(f |X2
)), and (w2, htop(f |X2

))
with (w3, htop(f |X3

)) respectively. In particular, H|F is not differentiable at
w2.

We note that a function Φ satisfying the conditions in Example 6 can be
obtained by slightly modifying the construction in Example 5. We leave the
details to the reader.
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