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SOLVABILITY OF GENERALIZED DIV-CURL SYSTEM AND

FRIEDRICHS INEQUALITIES

YUN WANG

Abstract. In this article, we consider the solvability of two generalized div-curl sys-

tems. They are referred to as the equations of magnetostatics and electro- , resp..

Necessary compatibility conditions on the data for the existence of solutions are fully

described, and existence of Wm,p-solutions is proved. Moreover, we give some de-

scription for the null spaces. As a corollary, we give the estimates of gradient via

generalized div and curl in Lp-framework, which can be considered as Friedrichs in-

equalities. Furthermore, two decompositions of Sobolev spaces are given.

Keywords: generalized div − curl system, equations of eletro-, equations of mag-

netostatics, Friedrichs inequality.
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1. Introduction

In this paper, we consider the solvability of the following systems of first order

differential equations,

(1.1)



























curl (σu) = J , in Ω,

div u = ρ, in Ω,

u · n = λ, on ∂Ω,

and

(1.2)



























curl u = J , in Ω,

div (ǫu) = ρ, in Ω,

u × n = Λ, on ∂Ω.

HereΩ ⊂ R3 is a bounded domain with smooth boundary ∂Ω. n is the outer unit normal

on ∂Ω. The coefficients σ, ǫ are 3 × 3 symmetric matrices, with smooth elements,

satisfying the uniform ellipticity condition, i.e., there exist positive constants m, M

such that

m|ξ|2 ≤ σ(x)ξ · ξ̄, ǫ(x)ξ · ξ̄ ≤ M|ξ|2, for all ξ ∈ C3, x ∈ Ω.

curl, div are the vorticity operator and divergence operator respectively.

The above problem is one of the most fundamental linear systems in linear physics.

It can be found in eletromagnetism. As noted in [18,19], the two systems are closely re-

lated to the time-harmonic Maxwell equations for inhomogeneous anisotropic medium.

System (1.1) with ρ = 0 describes a magnetic field, while System (1.2) with J = 0 de-

scribes a static electric field. Hence the two systems are referred to as the equations

of magnetostatics and electro- repectively. When σ, ǫ are identity matrices, the system

can also be found in fluid mechanics. For example, the solvability of (1.1) can help us

recover the velocity from the knowledge of vorticity.
1
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Let us give a brief review of prior results. The classical results date back to [8–11].

The problem was studied in generalized setting of alternating differential forms on

Riemannian manifolds. Picard [18] and Saranen [19, 20] initiated the research in

Hilbert framework. They both proved the existence of solutions when (J , ρ, λ) ∈

L2(Ω) × L2(Ω) × H−
1
2 (∂Ω) for (1.1) and (J , ρ,Λ) ∈ L2(Ω) × L2(Ω) × H−

1
2 (∂Ω) for

(1.2). Inspired by the related results in the setting of differential forms [8–11], they

analyzed the null spaces, which may be not zero, due to the topological structure of

Ω. They gave the dimension of null spaces, which are proved to be related with Betti

numbers and independent of σ and ǫ.

When σ and ǫ are identity matrices, the solvability of (1.1) and (1.2)(ρ = 0, Λ = 0)

in Wm,p-spaces has been well studied, see [1, 3, 13]. For some other solvability results

on Sobolev(Besov)-type domains, please refer to [7, 17]. However, the solvability in

Wm,p-spaces for the general case, i. e., σ and ǫ are symmetric positive definite matrices,

is not clear. That is one goal of our paper.

In addition to the solvability results, some estimates of solutions were derived. An

inequality of Friedrichs [10] states that

(1.3) ‖u‖H1(Ω) ≤ C
(

‖curl u‖L2(Ω) + ‖div (ǫu)‖L2(Ω) + ‖u‖L2(Ω)

)

,

for all vector fields u ∈ L2(Ω) satisfying u × n = 0 on ∂Ω. For the case that σ and

ǫ are identity matrices, similar inequalities were then derived in Lp-spaces [22] and

Cα-spaces [6]. Recently, [3, 13] gave a unified version,

(1.4) ‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl u‖Wm−1,p(Ω) + ‖div u‖Wm−1,p(Ω) + ‖u · n‖
W

m− 1
p ,p(∂Ω)

)

.

(1.5)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl u‖Wm−1,p(Ω) + ‖div u)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

.

These inequalities give the estimates of ∇u via div u, curl u and boundary values.

And they played an important role in the studies of Navier-Stokes equations, Euler

equations.

When we study the regularity of solutions to Maxwell equations, we find that Friedrichs

inequalities as (1.4)-(1.5) for the general case(i. e., σ and ǫ are symmetric positive defi-

nite matrices) are required. Shen-Song [21] derived the following inequality on simply

connected domain Ω,

(1.6) ‖∇u‖Lp(Ω) ≤ C

(

‖curl u‖Lp(Ω) + ‖div (ǫu)‖Lp(Ω) + ‖u × n‖
W

1− 1
p ,p(∂Ω)

)

.

We try to get a more general version. That is another goal of our paper.

There are also some generalizations to the mixed boundary value problem, see [4,5].

In this paper, we will show the solvability of (1.1) and (1.2) in Wm,p-spaces . Neces-

sary and suffcient compatibility conditions will be fully described. As remarked above,

the null spaces may be not zero. The fact will bring some difficulties. So we will give

some further discussion for the null spaces. In particular, explicit bases of the two null

spaces in Lp-framework are constructed.

Some regularity estimates of solutions will be given in this paper. As a corollary,

some inequalities of Friedrichs type are derived:

(1.7)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl (σu)‖Wm−1,p(Ω) + ‖div u‖Wm−1,p(Ω) + ‖u · n‖
W

m− 1
p ,p(∂Ω)

)

,
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and

(1.8)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl u‖Wm−1,p(Ω) + ‖div (ǫu)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

.

The above inequalities give the estimates of gradient via generalized div, curl and

boundary values. They generalize the inequalities (1.4)-(1.5). As showed in [21],

the inequalities (1.7)- (1.8) may help to get the regularity estimates for solutions to

Maxwell equations.

This paper is organized as follows: In Section 2, we will state our main theorems

and give some notations. In Section 3 and Section 4, solvability of problems (1.1) and

(1.2) are proved respectively. Some related inequalities of Friedrichs type are derived.

In Section 5, we give two decompositions of Sobolev spaces, which are designed for

solvability of Maxwell equations.

2. Preliminaries andMain Reuslts

For simplicity of writing, we assume that Ω is a bounded domain in R3 with C∞-

boundary ∂Ω, and

(1) ∂Ω consists of (N1 + 1) components Γi, 0 ≤ i ≤ N1. Γ0 is the boundary of the

only unbounded connected component of R3 \Ω.

(2) We do not assume that Ω is simply connected. There are N2 C∞-surfaces

Σ1, · · · ,ΣN2
, transversal to ∂Ω such that

Σi ∩ Σ j = ∅, i , j,

and

Ω
0
= Ω \ ∪

N2

j=1
Σ j is a simply connected domain.

Before stating our main results, let us introduce some notations. Let Lp(Ω) denote

the usual scalar-valued and vector-valued Lp-space over Ω, 1 ≤ p ≤ ∞. Let

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ m}, m ∈ N.

Define the spaces:

Lp(div;Ω) = {u ∈ Lp(Ω) : div u ∈ Lp(Ω)},

Lp(curl;Ω) = {u ∈ Lp(Ω) : curl u ∈ Lp(Ω)}.

For every function v ∈ Lp(div;Ω), we denote v · n the normal boundary value of v

defined in W− 1
p
,p(∂Ω),

∀ ϕ ∈ W1,p′(Ω), < v · n, ϕ >∂Ω=

∫

Ω

v · ∇ϕ dx +

∫

Ω

div v · ϕ dx.

And it holds that

(2.1) ‖v · n‖
W
− 1

p ,p(∂Ω)
≤ C

(

‖v‖Lp(Ω) + ‖div v‖Lp(Ω)

)

.

For every function v ∈ Lp(curl;Ω), we denote v× n the tangential boundary value of

v defined in W− 1
p
,p(∂Ω),

∀ ϕ ∈ W1,p′(Ω), < v × n, ϕ >∂Ω=

∫

Ω

v · curl ϕ dx −

∫

Ω

curl v · ϕ dx.
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And it holds that

(2.2) ‖v × n‖
W
− 1

p ,p(∂Ω)
≤ C

(

‖v‖Lp(Ω) + ‖curl v‖Lp(Ω)

)

.

Denote the tangential part of v on the boundary,

vT = n× (v × n) = v − (v · n)n.

And denote the tangential gradient of ψ on the boundary,

∇Tψ = ∇ψ − (∇ψ · n)n.

If f ∈ Lp(∂Ω) satisfies f · n = 0 on ∂Ω, we will use divT ( f ) to denote the surface

divergence of f on ∂Ω, defined by

∀ ψ ∈ W1,p′(∂Ω), < divT f , ψ >W−1,p(∂Ω)×W1,p′ (∂Ω)= −

∫

∂Ω

f · ∇Tψ dS .

Define the null space K
p

T,σ
(Ω):

K
p

T,σ(Ω) = {u ∈ Lp(Ω) : div u = 0, curl (σu) = 0, in Ω, and u · n = 0 on ∂Ω}.

In particular, denote

KT,σ(Ω) = {u ∈ C∞(Ω) : div u = 0, curl (σu) = 0, in Ω, and u · n = 0 on ∂Ω}.

The functions in KT,σ are called σ-harmonic fields of the magnetic type.

Define the null space K
p

N,ǫ
(Ω):

K
p

N,ǫ
(Ω) = {u ∈ Lp(Ω) : div (ǫu) = 0, curl u = 0, in Ω, and u × n = 0 on ∂Ω}.

In particular, denote

KN,ǫ(Ω) = {u ∈ C∞(Ω) : div (ǫu) = 0, curl u = 0, in Ω, and u × n = 0 on ∂Ω}.

The functions in KN,ǫ are called ǫ-harmonic fields of the electric type.

In particular, when σ = ǫ = Id, denote

K
p

T
(Ω) = K

p

T,Id
(Ω), KT (Ω) = KT,Id(Ω),

K
p

N
(Ω) = K

p

N,Id
(Ω), KN(Ω) = KN,Id(Ω).

Next, let us state our main results. Regarding the problem (1.1), we have

Theorem 2.1. Let m ∈ N∗, 1 < p < +∞. Assume that J, ρ ∈ Wm−1,p(Ω), λ ∈

Wm− 1
p
,p(∂Ω). and (J, ρ, λ) satisfy the following compatibility conditions,

(2.3) div J = 0, in Ω, < J · n, 1 >Γi
= 0, 0 ≤ i ≤ N1,

∫

Ω

ρ dx =

∫

∂Ω

λ dS .

Then there exists one solution u0 ∈ Wm,p(Ω) to the problem (1.1), with the estimate

(2.4) ‖u0‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

)

.

Moreover, for every solution u ∈ Lp(Ω) to the problem (1.1), u can be represented as

follows:

u = u0 + h, h ∈ K
p

T,σ
(Ω).
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Remark 2.1. Let us note that the compatibility conditions (2.3) are sufficient and nec-

essary. The necessarity of

div J = 0, in Ω, and

∫

Ω

ρ dx =

∫

∂Ω

λ dS

is obvious. For 1 ≤ i ≤ N1, let µi be a function in C∞(Ω), which is equal to 1 in a

neighbourhood of Γi and vanishes in a neighbourhood of Γk, k , i, then

< J · n, 1 >Γi
=< curl (µiu0) · n, 1 >∂Ω= 0.

As a corollary of Theorem 2.1, we derive the following inequality of Friedrichs type.

Theorem 2.2. Let m ∈ N∗, 1 < p < +∞. Suppose that u ∈ Lp(Ω) satisfies curl (σu) ∈

Wm−1,p(Ω), div u ∈ Wm−1,p(Ω), and u · n ∈ Wm− 1
p
,p(∂Ω). Then we have u ∈ Wm,p(Ω)

with

(2.5)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl (σu)‖Wm−1,p(Ω) + ‖div u‖Wm−1,p(Ω) + ‖u · n‖
W

m− 1
p ,p(∂Ω)

)

.

Remark 2.2. If the domain Ω is simply connected, i.e., the Betti number N2 = 0, (1.1)

admits at most one solution in this case. Then the Wm,p-estimate for u follows from

(2.4) directly, and hence the term ‖u‖Lp(Ω) on the right hand of (2.5) can be omitted.

Regarding the system (1.2), we have

Theorem 2.3. Let m ∈ N∗, 1 < p < +∞. Assume that J, ρ ∈ Wm−1,p(Ω), Λ ∈

Wm− 1
p
,p(∂Ω), and (J,Λ) satisfy the following compatibility conditions,

(2.6) div J = 0, in Ω, Λ · n = 0, J · n = divTΛ, on ∂Ω,

(2.7)

∫

Ω

J · ϕ dx = −

∫

∂Ω

Λ · ϕ dS , ∀ ϕ ∈ KT (Ω).

Then there exists one solution u0 ∈ Wm,p(Ω) to the problem (1.2), with the estimate

(2.8) ‖u0‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖Λ‖
W

m− 1
p ,p(∂Ω)

)

.

Moreover, for every solution u ∈ Lp(Ω) to the problem (1.2), u can be represented

as

u = u0 + h, with h ∈ K
p

N,ǫ(Ω).

Remark 2.3. The compatibility conditions (2.6)-(2.7) were proposed by Alonso-Valli

[1]. Let us note that they are sufficient and necessary. The necessarity of

div J = 0, in Ω, and Λ · n = 0, on ∂Ω

is obvious. And J · n = divTΛ on ∂Ω is implied by the following formula [16],

curl u0 · n = divT (u0 × n), on ∂Ω.

Moreover, ∀ ϕ ∈ KT (Ω),
∫

Ω

curl u0 · ϕ dx = −

∫

∂Ω

(u0 × n) · ϕ dS ,
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which implies that

(2.9)

∫

Ω

J · ϕ dx = −

∫

∂Ω

Λ · ϕ dS .

By the way, as explained in Remark 4.2, the compatibility condition (2.7) can be

replaced by

< J · nj, 1 >Σ j
=

∫

∂Σ j

(n× Λ) · τ j dl, 1 ≤ j ≤ N2,

where nj is the unit normal on Σ j, and τ j is the unit tangential vector of ∂Σ j.

Similarly, we get a new inequality of Friedrichs type as a corollary.

Theorem 2.4. Let m ∈ N∗, 1 < p < +∞. Suppose that u ∈ Lp(Ω) with curl u ∈

Wm−1,p(Ω), div (ǫu) ∈ Wm−1,p(Ω), and u× n ∈ Wm− 1
p ,p(∂Ω). Then we have u ∈ Wm,p(Ω)

with

(2.10)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl u‖Wm−1,p(Ω) + ‖div (ǫu)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

.

Remark 2.4. If ∂Ω has only one part Γ0, i.e.,the Betti number N1 = 0, (1.2) admits at

most one solution in this case. The Wm,p-estimate for u follows from (2.8) directly, and

hence the term ‖u‖Lp(Ω) on the right hand of (2.10) can be omitted.

Remark 2.5. In fact, Shen-Song [21] has derived the W1,p-estimate of u. However,

they did not talk about the solvability and the domain they considered is simply con-

nected. Here we consider a general case, i.e., Ω is a multiply connected domain. It

requires more analysis of the compatibility conditions and the null space.

3. Proof of Theorems 2.1- 2.2

3.1. Proof of Theorem 2.1. In this subsection, we will give the proof of Theorem 2.1.

Let v = σu. In fact, we consider the following problem for v,

(3.1)



























curl v = J , in Ω,

div (σ−1v) = ρ, in Ω,

σ−1v · n = λ, on ∂Ω.

The basic idea of the proof is to change (3.1) into one standard elliptic equation of

divergence form. The first step is to remove J. Then the second step is to find one

special solution of gradient form for the new problem. To accomplish the first step, let

us introduce one preliminary lemma.

Lemma 3.1. A vector field z ∈ Lp(div;Ω) satisfies

div z = 0, in Ω, and < z · n, 1 >Γi
= 0, 0 ≤ i ≤ N1,

if and only if there exists a vector potential ψ in W1,p(Ω) such that

z = curl ψ, and div ψ = 0 in Ω,

ψ · n = 0, on ∂Ω, < ψ · n, 1 >Σ j
= 0, 1 ≤ j ≤ N2.
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This function ψ is unique and we have the estimate:

(3.2) ‖ψ‖W1,p(Ω) ≤ C‖z‖Lp(Ω),

where C > 0 depends only on p and Ω. Moreover, if z ∈ Wm−1,p(Ω), m ≥ 2, we have

the estimate

(3.3) ‖ψ‖Wm,p(Ω) ≤ C‖z‖Wm−1,p(Ω).

The existence of the vector potential ψ and regularity estimate (3.2) is proved in

[3]. It is exactly Theorem 4.1 in [3]. The high-order estimate (3.3) is a result of the

inequality (1.4).

Proof of Theorem 2.1. Due to the compatibility condition (2.3),

div J = 0, in Ω, and < J · n, 1 >Γi
= 0, 0 ≤ i ≤ N1.

It follows from Lemma 3.1 that there exists a vector potential ψ ∈ Wm,p(Ω), such that

J = curl ψ, div ψ = 0, in Ω, and ψ · n = 0, on ∂Ω.

Furthermore,

(3.4) ‖ψ‖Wm,p(Ω) ≤ C‖J‖Wm−1,p(Ω).

Next, we plan to search for one solution of the following system:

(3.5)



























curl w = 0, in Ω,

div (σ−1w) = ρ − div (σ−1ψ), in Ω,

σ−1w · n = λ − σ−1ψ · n, on ∂Ω.

Ω is a multiply connected domain, curl w = 0 does not imply w is a gradient. However,

here we are searching for one particular solution which assumed to be a gradient.

Consider the following problem,

(3.6)















div (σ−1∇q) = ρ − div (σ−1ψ), in Ω,

σ−1∇q · n = λ − σ−1ψ · n, on ∂Ω.

Note that
∫

Ω

[

ρ − div (σ−1ψ)
]

dx =

∫

∂Ω

(λ − σ−1ψ · n) dS ,

due to the compatibility condition (2.3). Applying the classical theory for elliptic equa-

tion with conormal boundary condition [15], there exists one unique solution (modulus

one constant) q ∈ Wm,p(Ω), such that

(3.7)

‖∇q‖Wm,p(Ω) ≤ C

(

∥

∥

∥ρ − div(σ−1ψ)
∥

∥

∥

Wm−1,p(Ω)
+

∥

∥

∥λ − σ−1ψ · n
∥

∥

∥

W
m− 1

p ,p(∂Ω)

)

≤ C

(

‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

+ ‖ψ‖Wm,p(Ω)

)

≤ C

(

‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

+ ‖J‖Wm−1,p(Ω)

)

,

where the second inequality is due to trace theorem for Sobolev functions and the last

inequality is due to (3.4).

Let

v0 = ∇q + ψ, and u0 = σ
−1v0,
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it is easy to check that u0 is a solution to (1.1). And

(3.8)

‖u0‖Wm,p(Ω) ≤ C‖∇q + ψ‖Wm,p(Ω)

≤ C

(

‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

+ ‖J‖Wm−1,p(Ω)

)

.

That ends the proof of Theorem 2.1.

�

Remark 3.1. When Ω is of class Cm+1, and σ ∈ Cm(Ω), the result in Theorem 2.1 also

holds.

3.2. The null space K
p

T,σ(Ω). To get some more knowledge about the solutions to

(1.1), we will study the null space K
p

T,σ
(Ω) in this subsection. One particular basis

will be given. The characterization of K
p

T,σ(Ω) is inspired by that of K
p

T
(Ω) in [2,3,13].

Beforehand, let us give some notations which will be used in this particular subsection.

{Σ j : 1 ≤ j ≤ N2} is an admissible set of cuts, which cuts Ω adequately to reduce it

to a simply connected domain. Let Ω0
= Ω \ ∪

N2

j=1
Σ j and let us fix a unit normal n j on

each Σ j, 1 ≤ j ≤ N2.

(1) For any function q ∈ W1,2(Ω0), let us denote by [q] j the jump of q through Σ j (i.e.

the differences of the traces of q) along nj.

(2) For any distribution q in D′(Ω0), let us denote by ∇0q the gradient of q in D′(Ω0),

in order to distinguish from the gradient ∇q inD′(Ω).

(3) Let us introduce one function space, where the null space basis comes from,

(3.9) Θ =

{

r ∈ W1,2(Ω0) : [r] j = constant, 1 ≤ j ≤ N2

}

.

The following preliminary lemma gives a characterization of the functions in Θ,

whose proof can be found in [2].

Lemma 3.2. Let r belong to W1,2(Ω0). Then r belongs to Θ if and only if

curl (∇0r) = ∇ × (∇0r) = 0, in Ω.

Now we are ready to give one explicit basis for K2
T,σ(Ω).

Theorem 3.3. The dimension of the null space K2
T,σ(Ω) is equal to the Betti number

N2. It is spanned by the functions {σ−1∇0qT
j
, 1 ≤ j ≤ N2} , where qT

j
is the solution in

W1,2(Ω0), unique up to an additive constant, of the problem

(3.10)











































−∇0 · (σ−1∇0qT
j ) = 0, in Ω0,

σ−1∇0qT
j
· n = 0, on ∂Ω,

[qT
j ]k = constant, and [σ−1∇0qT

j · nk]k = 0, 1 ≤ k ≤ N2,

< σ−1∇0qT
j
· nk, 1 >Σk

= δ jk, 1 ≤ k ≤ N2.

Proof. The proof is decomposed into two parts. The first part is devoted to the exis-

tence of qT
j , while in the second part we verify that {σ−1∇0qT

j ; 1 ≤ j ≤ N2} is a basis

of K2
T,σ(Ω).
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Part I For 1 ≤ j ≤ N2, let us consider the following variational problem: find qT
j in

Θ, such that for every ϕ ∈ Θ,

(3.11)

∫

Ω0

σ−1∇0qT
j · ∇

0ϕ dx = [ϕ] j.

It follows from Lax-Milgram theorem that the problem (3.11) has a solution which is

unique up to an additive constant. Using (3.11) with ϕ ∈ C∞
0

(Ω0),

(3.12)

∫

Ω0

σ−1∇0qT
j · ∇

0ϕ dx = [ϕ] j = 0,

hence we obtain that

(3.13) − ∇0 ·
(

σ−1∇0qT
j

)

= 0, in Ω0.

Using (3.11) with ϕ ∈ C∞
0

(Ω),

(3.14)

∫

Ω0

σ−1∇0qT
j · ∇

0ϕ dx = [ϕ] j = 0,

On the other hand,

(3.15)

∫

Ω0

σ−1∇0qT
j ·∇

0ϕ dx = −

∫

Ω0

∇0·(σ−1∇qT
j )·ϕ dx+

N2
∑

k=1

∫

Σk

[σ−1∇0qT
j ·nk]k ·ϕ dS .

Combining the three equalities (3.13)-(3.15), we have

(3.16) [σ−1∇0qT
j · nk]k = 0, k = 1, 2, · · · ,N2,

due to the arbitrariness of ϕ. (3.16) means the jump of σ−1∇0qT
j · nk across any Σk is

zero.

Furthermore, using (3.11) with ϕ ∈ C∞(Ω),

0 =

∫

Ω0

σ−1∇0qT
j · ∇

0ϕ dx =

∫

∂Ω

(σ−1∇0qT
j · n) · ϕ dS ,

where we used the facts (3.13) and (3.16). It implies that

(3.17) σ−1∇0qT
j · n = 0, on ∂Ω.

Fixing an integer k, 1 ≤ k ≤ N2, choosing r in Θ, such that [r] j = δ jk for any j, and

applying (3.11) with ϕ = r,

(3.18) < σ−1∇0qT
j · nk, 1 >Σk

=

∫

Ω0

σ−1∇0qT
j · ∇

0r dx = δ jk.

Hence, the solution to the variational problem (3.11) is also the solution to (3.10). On

the other hand, it is easy to check that every solution of (3.10) also solves (3.11). Thus

(3.10) admits one unique solution(modulus one constant) qT
j
∈ Θ ( up to an additive

constant).

Part II It follows from the proof in Part I and Lemma 3.2 that

curl (∇0qT
j ) = 0, in Ω, σ−1∇0qT

j · n = 0, on ∂Ω,

and

− ∇0 ·
(

σ−1∇0qT
j

)

= 0, in Ω0.

We will prove that in fact

(3.19) − div
(

σ−1∇0qT
j

)

= 0, in Ω.
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Note that for every function ϕ ∈ C∞0 (Ω),

∇ϕ = ∇0ϕ, in Ω0.

Hence, it holds that
∫

Ω

σ−1∇0qT
j · ∇ϕ dx =

∫

Ω0

σ−1∇0qT
j · ∇

0ϕ dx = 0,

which implies (3.19). Hence, σ−1∇0qT
j ∈ K2

T,σ(Ω).

Due to the last equality in (3.10), the functions
{

σ−1∇0qT
j
, 1 ≤ j ≤ N2

}

, are linearly

independent. Next, we show that they span the space K2
T,σ(Ω). Let u be any function

in K2
T,σ(Ω) and consider the function

w = u −

N2
∑

j=1

< u · n j, 1 >Σ j
σ−1∇0qT

j .

It is easy to check that

∇0 × (σw) = 0, in Ω0.

Since Ω0 is simply connected, there exists a function q ∈ W1,2(Ω0), such that

σw = ∇0q, in Ω0.

On the other hand, qT
j
∈ Θ, it follows that

curl (∇0qT
j ) = 0, in Ω.

Consequently,

curl (∇0q) = curl (σu) −

N2
∑

j=1

< u · n j, 1 >Σ j
curl

(

∇0qT
j

)

= 0, in Ω.

According to Lemma 3.2, q ∈ Θ.

Hence,

(3.20)

∫

Ω0

σw · w dx

=

∫

Ω0

w · ∇0q dx

=

∫

Ω0

u · ∇0q dx −

N2
∑

j=1

< u · nj, 1 >Σ j
·

∫

Ω0

σ−1∇0qT
j · ∇

0q dx

=

N2
∑

j=1

< u · nj, 1 >Σ j
·[q] j −

N2
∑

j=1

< u · nj, 1 >Σ j
·[q] j

= 0,

where the third equality is due to integration by parts and (3.11). It implies that w is

zero, i. e.,

u =

N2
∑

j=1

< u · nj, 1 >Σ j
σ−1∇0qT

j ,

which says that {σ−1∇0qT
j
, 1 ≤ j ≤ N2} span the space K2

T,σ(Ω). That ends the proof of

Theorem 3.3. �



SOLVABILITY OF GENERALIZED DIV-CURL SYSTEM AND FRIEDRICHS INEQUALITIES 11

Next theorem will prove the identity between K
p

T,σ(Ω)and KT,σ(Ω). The proof is

based on the fact that K
p

T
(Ω) = K2

T
(Ω) = KT (Ω), which has been proved in [13].

Theorem 3.4. For every 1 < p < ∞, K
p

T,σ
(Ω) = KT,σ(Ω).

Proof. Obviously, KT,σ(Ω) ⊆ K
p

T,σ
(Ω). It suffices to prove that for every function u

belonging to K
p

T,σ(Ω), u ∈ C∞(Ω).

Suppose that u ∈ K
p

T,σ
(Ω), let v = σu. According to Theorem 2.1 in [13], v has the

following decomposition,

v = h + curl w + ∇q,

where h ∈ K
p

T
(Ω) = KT (Ω), q ∈ W1,p(Ω), and w ∈ W1,p(Ω), with

div w = 0, in Ω, w × n = 0, on ∂Ω.

And h is unique, q is unique up to an additive constant and w is unique up to an additive

element of K
p

N
(Ω).

In fact, q is the solution to the following system,















∆q = div v, in Ω,

∇q · n = v · n, on ∂Ω.

Hence,

div (v − ∇q) = 0, in Ω, and (v − ∇q) · n = 0, on ∂Ω.

Since curl v = 0 in Ω, it can be verified that

curl (v − ∇q) = 0, in Ω.

Therefore, v − ∇q ∈ K
p

T
(Ω). Due to the uniqueness of decomposition, curl w = 0, i.e.,

v = h + ∇q.

Next we will discuss the regularity of q. Since

div (σ−1v) = 0 in Ω, and σ−1v · n = 0 on ∂Ω,

q is the solution of the following system,















div (σ−1∇q) = −div (σ−1h), in Ω,

σ−1∇q · n = −σ−1h · n, on ∂Ω.

Since h ∈ C∞(Ω), it follows from the classcial regularity theory for elliptic equation

with conormal boundary condition [15] that q ∈ C∞(Ω). Consequently, v ∈ C∞(Ω) and

u ∈ C∞(Ω). That ends the proof of Theorem 3.4.

�

Remark 3.2. If the domainΩ is of class C2, it was proved in [3] that K
p

T
(Ω) = K2

T (Ω).

Making use of this fact and following the same line as above, we can also prove that

K
p

T,σ
(Ω) = K2

T,σ(Ω), 1 < p < ∞.
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3.3. Proof of Theorem 2.2. In this subsection, we will prove Friedrichs inequality

(2.5) involving normal boundary value. As remarked in Section 1, when σ is identity

matrix, (2.5) has been proved in different function spaces and different domains. For

the general case, we can not follow the classical method by setting up one integral

equality connecting ∇u, div u, curl (σu) and u · n easily, which is the method applied

in [3]. Our proof lies on the solvability of (1.1) and the characterization of the null

space K
p

T,σ
(Ω).

Proof of Theorem 2.2. Let J = curl (σu), ρ = div u, and λ = u · n. According to

Theorem 2.1, there exists a function u0 ∈ Wm,p(Ω), such that

(3.21)



























curl (σu0) = J, in Ω,

div u0 = ρ, in Ω,

u0 · n = λ, on ∂Ω,

with the estimate

(3.22) ‖u0‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

)

.

Let v = u − u0. Then v ∈ K
p

T,σ
(Ω). As proved in Theorem 3.3,

(3.23) v =

N2
∑

j=1

< v · nj, 1 >Σ j
σ−1∇0qT

j ,

where {σ−1∇0qT
j ; 1 ≤ j ≤ N2} is the basis of K2

T,σ(Ω), derived in Subsection 3.2. It

follows from Theorem 3.4 that,

σ−1∇0qT
j ∈ K2

T,σ(Ω) = KT,σ(Ω),

which says that σ−1∇0qT
j
∈ C∞(Ω). Let C j = ‖σ

−1∇0qT
j
‖Wm,p(Ω) < +∞,

(3.24)

‖v‖Wm,p(Ω) ≤ C

N2
∑

j=1

‖v · n j‖
W
− 1

p ,p(Σ j)
· ‖σ−1∇0qT

j ‖Wm,p(Ω)

≤ C

N2
∑

j=1

(

‖u − u0‖Lp(Ω) + ‖div (u − u0)‖Lp(Ω)

)

· C j

≤ C
(

‖u‖Lp(Ω) + ‖u0‖Lp(Ω)

)

,

where the second inequality is due to (2.1).

Consequently, u ∈ Wm,p(Ω) and

(3.25)

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖λ‖
W

m− 1
p ,p(∂Ω)

)

≤ C

(

‖u‖Lp(Ω) + ‖curl (σu)‖Wm−1,p(Ω) + ‖div u‖Wm−1,p(Ω) + ‖u · n‖
W

m− 1
p ,p(∂Ω)

)

.

That ends the proof of Theorem 2.2.

�

Remark 3.3. According to the above proof, we can have another estimate for ‖v‖Wm,p(Ω),

‖v‖Wm,p(Ω) ≤ C

N2
∑

j=1

∣

∣

∣< v · nj, 1 >Σ j

∣

∣

∣ · ‖σ−1∇0qT
j ‖Wm,p(Ω) ≤ C

N2
∑

j=1

∣

∣

∣< v · n j, 1 >Σ j

∣

∣

∣ .
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Consequently, the Wm,p-estimate for u can also be written in another form,

(3.26)
‖u‖Wm,p(Ω)

≤ C

N2
∑

j=1

∣

∣

∣< u · nj, 1 >Σ j

∣

∣

∣ +C

N2
∑

j=1

∣

∣

∣< u0 · nj, 1 >Σ j

∣

∣

∣ + ‖u0‖Wm,p(Ω)

≤ C

N2
∑

j=1

∣

∣

∣< u · nj, 1 >Σ j

∣

∣

∣ +C

(

‖curl (σu)‖Wm−1,p(Ω) + ‖div u‖Wm−1,p(Ω) + ‖u · n‖
W

m− 1
p ,p(∂Ω)

)

.

4. Proof of Theorems 2.3- 2.4

4.1. Standard div − curl system. In this section, we will give the proof of Theorem

2.3. Our basic idea is also to change the system (1.2) into one standard elliptic equation

of divergence form div (ǫ∇q) = f . The first step is to remove J and Λ on the right

hand of (1.2). Once we remove J and Λ, the solution desired is one curl free vector

with zero tangential boundary value, which is a gradient. To accomplish the first step,

we consider the following standard div-curl system in this subsection,

(4.1)



























curl v = J , in Ω,

div v = ρ, in Ω,

v × n = Λ, on ∂Ω.

The solvability of (4.1) in Hm-spaces has been derived in [1]. However, here we require

the solvability in Wm,p-spaces. When ρ = 0 and Λ = 0, the solvability in Wm,p-spaces

has been derived in [3, 13].

Define

X
p

T
(Ω) = {v ∈ Lp(Ω) : div v ∈ Lp(Ω), curl v ∈ Lp(Ω), v · n = 0, on ∂Ω} ,

with the norm

‖v‖X p

T
(Ω) = ‖curl v‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v‖Lp(Ω).

Define

V
p

T
(Ω) =

{

v ∈ X
p

T
(Ω) : div v = 0, in Ω, < v · n j, 1 >Σ j

= 0, 1 ≤ j ≤ N2

}

.

The first lemma is a generalized version of Lax-Milgram theorem, and the second

lemma gives a Inf-Sup condition. Their proof can be found in [3].

Lemma 4.1. Let X and M be two reflexive Banach spaces, and X′ and M′ be their

dual spaces. Let a be the continuous bilinear form defined on X ×M, let A ∈ L(X; M′)

and A′ ∈ L(M; X′) be the operators defined by

∀ v ∈ X, ∀ w ∈ M, a(v,w) =< Av, w >=< v, A′w >

and V = Ker A. The following statements are equivalent:

(1) There exists β > 0 such that

inf
w ∈ M

w , 0

sup

v ∈ X

v , 0

a(v,w)

‖v‖X · ‖w‖M
≥ β.
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(2) The operator A : X
V
7→ M′ is an isomorphism and 1

β
is the continuity constant

of A−1.

(3) The operator A′ : M 7→ X′ ⊥ V is an isomorphism and 1
β

is the continuity

constant of (A′)−1.

Lemma 4.2. Let 1 < p < +∞. The following Inf-Sup condition holds: there exists a

constant β > 0, such that

(4.2) inf

ϕ ∈ V
p′

T
(Ω)

ϕ , 0

sup

ξ ∈ V
p

T
(Ω)

ξ , 0

∫

Ω
curl ξ · curl ϕ dx

‖ξ‖X p

T
(Ω) · ‖ϕ‖X p′

T
(Ω)

≥ β.

Lemma 4.3. Let 1 < p < +∞. For every function v ∈ X
p

T
(Ω), it holds that

(4.3) ‖v‖W1,p(Ω) ≤ C‖v‖X p

T
(Ω) + C

N2
∑

j=1

∣

∣

∣< v · nj, 1 >Σ j

∣

∣

∣ .

The proof of Lemma 4.3 is implied in [3, 13]. It also can be found in Remark 3.3.

Lemma 4.4. Let 1 < p < +∞. Assume that J ∈ Lp(Ω), Λ ∈ W
1− 1

p
,p(∂Ω), and (J ,Λ)

satisfy the following compatibility conditions

(4.4) div J = 0, in Ω, Λ · n = 0, J · n = divT Λ, on ∂Ω,

and

(4.5)

∫

Ω

J · ϕ dx = −

∫

∂Ω

Λ · ϕ dS , ∀ ϕ ∈ KT (Ω).

Then the following problem

(4.6)























































−∆ξ = J , in Ω,

div ξ = 0, in Ω,

ξ · n = 0, on ∂Ω,

curl ξ × n = Λ, on ∂Ω,

< ξ · n j, 1 >Σ j
= 0, 1 ≤ j ≤ N2

has a unique solution ξ ∈ W2,p(Ω), and we have the estimate

(4.7) ‖ξ‖W2,p(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

Proof. First, let us consider the following problem: find ξ ∈ V
p

T
(Ω) such that

(4.8) ∀ φ ∈ V
p′

T
(Ω),

∫

Ω

curl ξ · curl φ dx =

∫

Ω

J · φ dx +

∫

∂Ω

Λ · φ dS .

According to Lemma 4.2, the left hand of (4.8) satisfies the Inf-Sup condition. On

the other hand,
∣

∣

∣

∫

Ω
J · φ dx +

∫

∂Ω
Λ · φ dS

∣

∣

∣

≤ C‖J‖Lp(Ω) · ‖φ‖W1,p′ (Ω) + C‖Λ‖
W

1− 1
p ,p(∂Ω)

· ‖φ‖W1,p′ (Ω)

≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

· ‖φ‖
X

p′

T
(Ω)
,
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due to Lemma 4.3. By virtue of Lemma 4.1, the problem (4.8) has a unique solution

ξ ∈ V
p

T
(Ω), with the estimate

(4.9) ‖ξ‖X p

T
(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

Since ξ ∈ V
p

T
(Ω), < ξ · n j, 1 >Σ j

= 0, 1 ≤ j ≤ N2. According to Lemma 4.3,

(4.10) ‖ξ‖W1,p(Ω) ≤ C‖ξ‖X p

T
(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

Next, we extend (4.8) to any test function φ in X
p′

T
(Ω). Consider the unique solu-

tion(up to an additive constant) χ ∈ W1,p′(Ω) of the Neumann problem














∆χ = div φ, in Ω,

∂χ

∂n
= 0, on ∂Ω.

Then we set

φ̃ = φ − ∇χ −

N2
∑

j=1

〈

(φ − ∇χ) · n j, 1
〉

Σ j

∇0qT
j,∗,

where
{

∇0qT
j,∗; 1 ≤ j ≤ N2

}

is the basis of K2
T (Ω), constructed as in Subsection 3.2 for

the case σ = Id. Observe that φ̃ ∈ V
p′

T
(Ω), hence

(4.11)

∫

Ω

curl χ · curl φ dx

=

∫

Ω

curl χ · curl φ̃ dx

=

∫

Ω

J · φ̃ dx +

∫

∂Ω

Λ · φ̃ dS

=

∫

Ω

J · φ dx +

∫

∂Ω

Λ · φ dS −

∫

Ω

J · ∇χ dx −

∫

∂Ω

Λ · ∇χ dS

−

N2
∑

j=1

〈

(φ − ∇χ) · n j, 1
〉

Σ j

(∫

Ω

J · ∇0qT
j,⋆ dx +

∫

∂Ω

Λ · ∇0qT
j,∗ dS

)

.

Herein, due to the compatibility conditions (4.4)-(4.5) and the fact ∇0qT
j,∗ ∈ KT (Ω),

∫

Ω

J · ∇χ dx +

∫

∂Ω

Λ · ∇χ dS =

∫

∂Ω

(J · n) · χ dS −

∫

∂Ω

divTΛ · χ dS = 0,

and
∫

Ω

J · ∇0qT
j,∗ dx +

∫

∂Ω

Λ · ∇0qT
j,∗ dS = 0.

Hence (4.8) holds for every test function φ ∈ X
p′

T
(Ω).

Since C∞0 (Ω) ⊂ X
p′

T
(Ω), (4.8) implies that

(4.12) − ∆ξ = curlcurl ξ − ∇div ξ = curlcurl ξ = J , in Ω.

For every function ϕ ∈ C∞(Ω). Choose one ϕ̃ ∈ C∞(Ω), such that ϕ̃ = (ϕ · n)n on ∂Ω.

Then

φ = ϕ − ϕ̃ ∈ X
p′

T
(Ω).
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On one hand,

(4.13)

∫

Ω

curl ξ · curl ϕ dx =

∫

Ω

curlcurl ξ · ϕ dx +

∫

∂Ω

(curl ξ × n) · ϕ dS

=

∫

Ω

J · ϕ dx +

∫

∂Ω

(curl ξ × n) · ϕ dS .

On the other hand,

(4.14)

∫

Ω

curl ξ · curl ϕ dx

=

∫

Ω

curl ξ · curl (ϕ̃ + φ) dx

=

∫

Ω

J · ϕ̃ dx +

∫

∂Ω

(curl ξ × n) · ϕ̃ dS +

∫

Ω

J · φ dx +

∫

∂Ω

Λ · φ dS

=

∫

Ω

J · ϕ̃ dx +

∫

Ω

J · φ dx +

∫

∂Ω

Λ · φ dS

=

∫

Ω

J · ϕ dx +

∫

∂Ω

Λ · ϕ dS .

Compare the two equalities (4.13) and (4.14), we get that

(4.15) curl ξ × n = Λ, on ∂Ω.

We conclude that ξ is also a solution to the system (4.6). Moreover, let v = curl ξ.

div v = 0, curl v = J , in Ω, v × n = Λ, on ∂Ω.

It follows from the inequality (1.5) and the estimate (4.9) that

(4.16)

‖v‖W1,p(Ω) ≤ C

(

‖v‖Lp(Ω) + ‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

Hence, applying the inequality (1.4), we have

(4.17) ‖ξ‖W2,p(Ω) ≤ C
(

‖ξ‖Lp(Ω) + ‖v‖W1,p(Ω)

)

≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

At last, let us discuss the uniqueness. If ξ ∈ W2,p(Ω) is a solution to (4.6), it is easy

to check that ξ is also a solution to the variational problem (4.8). Hence the uniqueness

of ξ is indicated by the uniqueness of solutions to (4.8).

�

Theorem 4.5. Let 1 < p < +∞. Assume that J ∈ Lp(Ω), Λ ∈ W1− 1
p
,p(∂Ω), and (J ,Λ)

satisfy the following compatibility conditions (4.4)-(4.5). Then there exists a vector

potential v ∈ W1,p(Ω) such that

(4.18)



























curl v = J, in Ω,

div v = 0, in Ω,

v × n = Λ, on ∂Ω.

And it holds that

(4.19) ‖v‖W1,p(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.
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Proof. Let v = curl ξ, where ξ is the solution derived in Lemma 4.4. v is the desired

solution to (4.18).

�

In fact, we have a solvability result for the standard div − curl system.

Theorem 4.6. Let 1 < p < +∞. Assume that J ∈ Lp(Ω), ρ ∈ Lp(Ω), Λ ∈ W
1− 1

p
,p(∂Ω),

and (J ,Λ) satisfy the following compatibility conditions (4.4)-(4.5). Then there exists

one solution v ∈ W1,p(Ω) such that

(4.20)



























curl v = J, in Ω,

div v = ρ, in Ω,

v × n = Λ, on ∂Ω,

and

(4.21) ‖v‖W1,p(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖ρ‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

Furthermore, if J ∈ Wm−1,p(Ω), ρ ∈ Wm−1,p(Ω), and Λ ∈ W
m− 1

p
,p(∂Ω), m ∈ N∗, then it

holds that

(4.22) ‖v‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖Λ‖
W

m− 1
p ,p(∂Ω)

)

.

Proof. Let q be the unique solution to the following Dirichlet problem

(4.23)















∆q = ρ, in Ω,

q = 0, on ∂Ω.

It follows from the regularity theory for Laplace equation [12] that

‖∇q‖W1,p(Ω) ≤ C‖ρ‖Lp(Ω).

Suppose v0 is the solution to (4.18), derived in Theorem 4.5. Let v = v0 + ∇q. It is

easy to check that v is a solution to (4.20), satisfying

‖v‖W1,p(Ω) ≤ C

(

‖J‖Lp(Ω) + ‖ρ‖Lp(Ω) + ‖Λ‖
W

1− 1
p ,p(∂Ω)

)

.

The Wmp-estimate for v follows from the inequality (1.5). �

Remark 4.1. Alonso-Valli [1] has considered the problem (4.20) in W1,2-space, which

is a Hilbert space. Here we generalize their result to W1,p-space. Note that W1,p(Ω) is

not a Hilbert space, the proof in [1] can not be applied to our case directly. Instead, our

proof is inspired by [3,13], which revealed that the generalized Lax-Milgram theorem(

Lemma 4.1) is a powerful tool.

Remark 4.2. The compatibility conditions (4.4)-(4.5) were proposed by Alonso-Valli

[1]. In fact, (4.5) can be replaced by another compatibility condition

(4.24) < J · nj, 1 >Σ j
=

∫

∂Σ j

(n× Λ) · τ j dl, 1 ≤ j ≤ N2.
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Proof. On one hand, assume the conditions (4.4) and (4.24) hold, then
∫

Ω

J · ∇0qT
j,∗ dx

=

∫

Ω0

J · ∇0qT
j,∗ dx

= −

∫

Ω0

(∇0 · J) · qT
j,∗ dx +

∫

∂Ω

(J · n) · qT
j,∗ dS +

N2
∑

k=1

∫

Σk

(J · nk)[q
T
j,∗]k dS

=

∫

∂Ω

(J · n) · qT
j,∗ dS +

N2
∑

k=1

< J · nk, 1 >Σk
[qT

j,∗]k

=

∫

∂Ω

divT Λ · q
T
j,∗ dS +

N2
∑

k=1

< J · nk, 1 >Σk
[qT

j,∗]k

= −

∫

∂Ω

Λ · ∇0
T qT

j,∗ dS +

N2
∑

k=1

∫

∂Σk

Λ · (n× τk) dl · [qT
j,∗]k +

N2
∑

k=1

< J · nk, 1 >Σk
[qT

j,∗]k

= −

∫

∂Ω

Λ · ∇0qT
j,∗ dS −

N2
∑

k=1

[∫

∂Σk

(n× Λ) · τk dl− < J · nk, 1 >Σk

]

· [qT
j,∗]k

= −

∫

∂Ω

Λ · ∇0qT
j,∗ dS .

Since {∇0qT
j,∗; 1 ≤ j ≤ N2} is a basis of KT (Ω), it holds that

∫

Ω

J · ϕ dx = −

∫

∂Ω

Λ · ϕ dS , ∀ ϕ ∈ KT (Ω).

On the other hand, suppose the compatibility conditions (4.4)- (4.5) hold. For every

fixed 1 ≤ j ≤ N2, choose some function rT
j,∗
∈ Θ with

∇0rT
j,∗ ∈ KT (Ω), [rT

j,∗]k = δ jk.

The functions {rT
j,∗

; 1 ≤ j ≤ N2} have been constructed in [13]( In fact, they also span

one basis of KT (Ω)).

(4.25)

∫

Ω

J · ∇0rT
j,∗ dx

=

∫

∂Ω

(J · n) · rT
j,∗ dS +

N2
∑

k=1

∫

Σk

(J · nk) · [r
T
j,∗]k dS

=

∫

∂Ω

divTΛ · r
T
j,∗ dS+ < J · n j, 1 >Σ j

= −

∫

∂Ω

Λ · ∇0rT
j,∗ dS +

∫

∂Σ j

Λ · (n× τ j) dl+ < J · n j, 1 >Σ j
,

which implies that

< J · n j, 1 >Σ j
=

∫

∂Σ j

(n× Λ) · τ j dl, 1 ≤ j ≤ N2.

�
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4.2. Proof of Theorem 2.3.

Proof of Theorem 2.3. Suppose v is a solution derived in Theorem 4.5 to the system

(4.18). Let us consider the following system

(4.26)



























curl w = 0, in Ω,

div (ǫw) = ρ − div (ǫv), in Ω,

w × n = 0, on ∂Ω.

Since curl w = 0 in Ω, and w × n = 0 on ∂Ω, w is in fact a gradient, i.e., w = ∇q with

q = constant on every Γi, 0 ≤ i ≤ N1. Let us find one special solution. Consider the

following elliptic system

(4.27)















div (ǫ∇q) = ρ − div (ǫv), in Ω,

q = 0, on ∂Ω.

(4.27) is a classical elliptic equation with Dirichlet boundary condition. There exists

one unique solution q ∈ Wm+1,p(Ω), with the estimate

(4.28)

‖∇q‖Wm,p(Ω) ≤ C‖ρ − div (ǫv)‖Wm−1,p(Ω)

≤ C‖ρ‖Wm−1,p(Ω) +C‖v‖Wm,p(Ω)

≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖Λ‖
W

m− 1
p ,p(∂Ω)

)

,

where the last inequality is due to Theorem 4.5.

Let u0 = ∇q + v, it is easy to check that u0 is a solution to (1.2), and

(4.29) ‖u0‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖Λ‖
W

m− 1
p ,p(∂Ω)

)

.

That ends the proof of Theorem 2.3. �

4.3. The null space K
p

N,ǫ(Ω). In this subsection, we will talk about the null space

K
p

N,ǫ
(Ω). One particular basis will be given. The characterization of K

p

N,ǫ
(Ω) is also

inspired by that of K
p

N
(Ω) in [2, 3, 13].

Theorem 4.7. The dimension of the null space K2
N,ǫ(Ω) is equal to the Betti number N1.

It is spanned by the functions
{

∇qN
i

; 1 ≤ i ≤ N1

}

, where each qN
i

is the unique solution

in W1,2(Ω) of the problem

(4.30)



























−div (ǫ∇qN
i

) = 0, in Ω,

qN
i
|Γ0
= 0, and qN

i
|Γk
= constant, 1 ≤ k ≤ N1,

< ǫ∇qN
i
· n, 1 >Γk

= δik, 1 ≤ k ≤ N1, < ǫ∇qN
i
· n, 1 >Γ0

= −1.

Proof. We decompose the proof into two parts. The first part is devoted to the existence

of qN
i

, while in the second part we verify that {∇qN
i

; 1 ≤ i ≤ N1} is a basis of K2
N,ǫ(Ω).

Part I First, let us define one function space,

Θ
0
=

{

r ∈ W1,2(Ω) : r|Γ0
= 0, r|Γi

= constant, 1 ≤ i ≤ N1

}

.
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For every 1 ≤ i ≤ N1, let us consider the following variational problem: find qN
i

in Θ0

such that for every r ∈ Θ0,

(4.31)

∫

Ω

ǫ∇qN
i · ∇r dx = r|Γi

.

Applying Lax-Milgram theorem, we deduce that (4.31) has a unique solution qN
i
∈ Θ0.

For every function r ∈ C∞0 (Ω),
∫

Ω

ǫ∇qN
i · ∇r dx = 0,

which implies that

(4.32) − div (ǫ∇qN
i ) = 0, in Ω.

For every fixed i, 1 ≤ i ≤ N1, choose some function ri ∈ W1,2(Ω), satisfying

ri = 1 on Γi and ri = 0 on Γ j, j , i.

Then

(4.33) 1 = ri|Γi
=

∫

Ω

ǫ∇qN
i · ∇ri dx =< ǫ∇qN

i · n, 1 >Γi
.

Moreover, for every 1 ≤ j ≤ N1, j , i,

(4.34) 0 = r j|Γi
=

∫

Ω

ǫ∇qN
i · ∇r j dx =< ǫ∇qN

i · n, 1 >Γ j
.

Similarly, choose some function r̃i ∈ W1,2(Ω) such that

r̃i = 1, on Γi and Γ0, r̃i = 0 on Γ j, j , i, 1 ≤ j ≤ N1.

We can easily deduce that

(4.35) < ǫ∇qN
i · n, 1 >Γ0

= −1.

The above argument verifies that qN
i

is in fact a solution to (4.30). On the other hand,

every solution of (4.30) solves (4.31). Thus (4.30) admits one unique solution qN
i
∈ Θ0.

Part II The functions
{

∇qN
i

: 1 ≤ i ≤ N1

}

are obviously independent. It remains to

prove that they span K2
N,ǫ(Ω). Take any function u ∈ K2

N,ǫ(Ω) and consider the function

w = u −

N1
∑

i=1

〈ǫu · n, 1〉Γi
∇qN

i .

It is easy to check that

(4.36) div (ǫw) = 0, in Ω, and 〈ǫw · n, 1〉Γi
= 0, 0 ≤ i ≤ N1.

According to Lemma 3.1, there exists a vector potential ψ ∈ W1,2(Ω), such that

ǫw = curl ψ, in Ω.

And hence,
∫

Ω

ǫw · w dx =

∫

Ω

curl ψ · w dx =

∫

Ω

ψ · curl w dx +

∫

∂Ω

(w × n) · ψ dS = 0,

which implies w ≡ 0 in Ω. That ends the proof of Theorem 4.7.

�

Next, we will prove the identity between K
p

N,ǫ
(Ω) and KN,ǫ(Ω).
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Theorem 4.8. For every 1 < p < ∞, K
p

N,ǫ(Ω) = KN,ǫ(Ω).

Proof. For every 1 < p < ∞, KN,ǫ(Ω) ⊆ K
p

N,ǫ
(Ω). Hence, it remains to prove that for

every function u ∈ K
p

N,ǫ
(Ω), u ∈ C∞(Ω). Since

curl u = 0, in Ω, and u × n = 0 on ∂Ω,

there exists one function q ∈ W1,p(Ω), such that

u = ∇q, in Ω.

Moreover, q = constant on Γi, 0 ≤ i ≤ N1.

On the other hand,

div (ǫ∇q) = div (ǫu) = 0, in Ω.

It follows from the classical regularity theory for elliptic equation with Dirichlet bound-

ary condition [12] that q ∈ C∞(Ω). That ends the proof of Theorem 4.8.

�

Remark 4.3. When the domain Ω is of class C2, following the same line as above, we

can also prove that K
p

N,ǫ(Ω) = K2
N,ǫ(Ω).

4.4. Proof of Theorem 2.4. In this subsection, we will prove Friedrichs inequality

involving tangential boundary value. As before, our proof is based on the solvability

of (1.2) and the characterization of the null space K
p

N,ǫ
(Ω). Let

J = curl u, ρ = div (ǫu), Λ = u × n.

According to Theorem 2.3, there exists a function u0 ∈ Wm,p(Ω), such that


























curl u0 = J, in Ω,

div (ǫu0) = ρ, in Ω,

u0 × n = Λ, on ∂Ω,

with the estimate

(4.37) ‖u0‖Wm,p(Ω) ≤ C

(

‖J‖Wm−1,p(Ω) + ‖ρ‖Wm−1,p(Ω) + ‖Λ‖
W

m− 1
p ,p(∂Ω)

)

.

Let v = u − u0. Then v ∈ K
p

N,ǫ
(Ω) = KN,ǫ(Ω). As revealed in the proof of Theorem

4.7,

(4.38) v =

N1
∑

i=1

< ǫv · n, 1 >Γi
∇qN

i ,

where
{

∇qN
i

; 1 ≤ i ≤ N1

}

is the basis for K2
N,ǫ(Ω), derived in Subsection 4.3. Due to

Theorem 4.8, ∇qN
i
∈ C∞(Ω). Denote C̃i = ‖∇qN

i
‖Wm,p(Ω) < +∞,

(4.39)

‖v‖Wm,p(Ω) ≤

N1
∑

i=1

‖ǫv · n‖
W
− 1

p ,p(Γi)
· C̃i

≤ C ‖ǫv‖Lp(Ω) +C ‖div (ǫv)‖Lp(Ω)

= C ‖ǫv‖Lp(Ω)

≤ C
(

‖u‖Lp(Ω) + ‖u0‖Lp(Ω)

)

.
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Consequently, u ∈ Wm,p(Ω) and combining the estimates (4.38)-(4.39), we have

‖u‖Wm,p(Ω) ≤ C

(

‖u‖Lp(Ω) + ‖curl u‖Wm−1,p(Ω) + ‖div (ǫu)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

.

That ends the proof of Theorem 2.4.

Remark 4.4. According to the proof of Theorem 2.4, we can get another type of esti-

mate for u,

(4.40)

‖u‖Wm,p(Ω) ≤ ‖u0‖Wm,p(Ω) + ‖v‖Wm,p(Ω)

≤ C

(

‖curl u‖Wm−1,p(Ω) + ‖div (ǫu)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

+C

N1
∑

i=1

∣

∣

∣< ǫv · n, 1 >Γi

∣

∣

∣

≤ C

(

‖curl u‖Wm−1,p(Ω) + ‖div (ǫu)‖Wm−1,p(Ω) + ‖u × n‖
W

m− 1
p ,p(∂Ω)

)

+C

N1
∑

i=1

∣

∣

∣< ǫu · n, 1 >Γi

∣

∣

∣

Remark 4.5. Theorem 2.4 holds for the domain which is of class Cm+1.

5. Generalized Helmholtz-Weyl Decompositions

In this section, we give two decompositions of vector fields u ∈ L2(Ω). The decom-

positions are designed for solvability of Maxwell equations. They have been discussed

in many papers [18–20]. We will give a new description. Moreover, we will talk about

the decompositions in Wm,p-spaces.

Define the function spaces W
1,2

div0(Ω) and W
1,2
N

(Ω),

W1,2

div0(Ω) =
{

v ∈ W1,2(Ω) : div v = 0 in Ω
}

.

W
1,2
N

(Ω) =
{

v ∈ W1,2(Ω) : v × n = 0 on ∂Ω, and < v · n, 1 >Γi
= 0, 0 ≤ i ≤ N1

}

.

Theorem 5.1. Let u ∈ L2(Ω). Then there exists h ∈ K2
T,σ(Ω), χ ∈ W1,2(Ω), w ∈

W
1,2

div0(Ω) ∩W
1,2

N
(Ω), such that u can be represented as

u = h + σ−1∇χ + curl w,

where h is unique, χ is unique up to an additive constant and w is unique. Moreover,

we have the estimate:

‖h‖L2(Ω) + ‖∇χ‖L2(Ω) + ‖w‖W1,2(Ω) ≤ C‖u‖L2(Ω).

Before the proof of Theorem 5.1, let us introduce one lemma, which is a particular

case of Theorem 4.5. The proof can also be found in [3].

Lemma 5.2. Let 1 < p < +∞. A function z ∈ Lp(div;Ω) satisfies

(5.1) div z = 0 in Ω, z · n = 0 on ∂Ω, and < z · n j, 1 >Σ j
= 0, 1 ≤ j ≤ N2,
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if and only if there exists a vector potential ψ ∈ W1,p(Ω) such that

z = curl ψ, and div ψ = 0, in Ω,

ψ × n = 0 on ∂Ω,

< ψ · n, 1 >Γi
= 0, for every 0 ≤ i ≤ N1.

This function ψ is unique and we have the estimate

‖ψ‖W1,p(Ω) ≤ C‖z‖Lp(Ω).

Proof of Theorem 5.1. First, the scalar potential χ ∈ W1,2(Ω) is taken as a variational

solution of the following problem:

∀ µ ∈ W1,2(Ω),

∫

Ω

σ−1∇χ · ∇µ dx =

∫

Ω

u · ∇µ dx.

Such a scalar function χ is unique up to an additive constant, due to Lax-Milgram

theorem. And it holds that

(5.2) ‖∇χ‖L2(Ω) ≤ C‖u‖L2(Ω).

Moreover, the variational equality implies that

(5.3) div (u − σ−1∇χ) = 0, in Ω, and (u − σ−1∇χ) · n = 0, on ∂Ω.

Next, the σ-harmonic field h is chosen in the following way,










































curl (σh) = 0, in Ω,

div h = 0, in Ω,

h · n = 0, on ∂Ω,

< h · nj, 1 >Σ j
=< (u − σ−1∇χ) · n j, 1 >Σ j

, 1 ≤ j ≤ N2.

In fact, according to the proof of Theorem 3.3,

(5.4) h =

N2
∑

j=1

< (u − σ−1∇χ) · nj, 1 >Σ j
σ−1∇0qT

j ,

where {σ−1∇0qT
j
; 1 ≤ j ≤ N2} is a basis for K2

T,σ(Ω), derived in Subsection 3.2. Hence,

‖h‖L2(Ω) ≤ C‖u − σ−1∇χ‖L2(Ω) +C‖div (u − σ−1∇χ)‖L2(Ω) ≤ C‖u‖L2(Ω),

due to the fact that div (u − σ−1∇χ) = 0 in Ω.

Then let us define z = u− h−σ−1∇χ. It is easy to check that z ∈ L2(Ω) satisfies that


























div z = 0, in Ω,

z · n = 0, on ∂Ω,

< z · n j, 1 >Σ j
= 0, 1 ≤ j ≤ N2.

It follows from Lemma 5.2 that there exists a unique vector potential w ∈ W
1,2

div0(Ω)∩

W1,2
N

(Ω) such that

z = curl w, in Ω.

And it holds that

‖w‖W1,2(Ω) ≤ C‖z‖L2(Ω) ≤ C‖u‖L2(Ω).
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At last, let us prove the uniqueness of the above decomposition. Suppose u has

another decomposition,

u = h̃ + σ−1∇χ̃ + curl w̃,

where h̃ ∈ K2
T,σ(Ω), χ̃ ∈ W1,2(Ω), and w̃ ∈ W1,2

div0(Ω) ∩W1,2
N

(Ω). Then

(5.5) 0 = (h − h̃) + σ−1∇(χ − χ̃) + curl (w − w̃).

Taking the L2-inner product of (5.5) and σ(h − h̃), we have

0 =
〈

h − h̃, σ(h − h̃)
〉

,

which implies

h = h̃ in Ω.

Similarly, taking the L2-inner product of (5.5) and ∇(χ − χ̃), σcurl (w − w̃) resp. , we

have

∇(χ − χ̃) = 0, and curl (w − w̃) = 0, in Ω.

It completes the proof of Theorem 5.1.

�

Remark 5.1. Theorem 5.1 can be conculded in a simple formula,

L2(Ω) = K2
T,σ(Ω) ⊕ σ−1∇W1,2(Ω) ⊕ curl

(

W1,2

div0(Ω) ∩W1,2
N

(Ω)
)

.

The above decomposition can be generalized to Wm,p-spaces.

Theorem 5.3. Let u ∈ Wm,p(Ω), m ∈ N∗, 1 < p < +∞. The decomposition for u in

Theorem 5.1 satisfies the following estimate:

(5.6) ‖h‖Wm,p(Ω) + ‖∇χ‖Wm,p(Ω) + ‖w‖Wm+1,p(Ω) ≤ C‖u‖Wm,p(Ω).

Proof. When u belongs to Wm,p(Ω), χ is in fact a solution to the following elliptic

equation,














div (σ−1∇χ) = div u, in Ω,

σ−1∇χ · n = u · n, on ∂Ω.

It follows from the classical regularity theory for elliptic equations with conormal

boundary condition [15], that

‖∇χ‖Wm,p(Ω) ≤ C‖u‖Wm,p(Ω).

On the other hand,

‖h‖Wm,p(Ω) ≤ C

N2
∑

j=1

∣

∣

∣< (u − σ−1∇χ) · nj, 1 >Σ j

∣

∣

∣ ≤ C
∥

∥

∥u − σ−1∇χ
∥

∥

∥

Wm,p(Ω)
≤ C‖u‖Wm,p(Ω).

And the estimate for w follows from Lemma 5.2 and the inequality (1.5).

�

Define the function space W1,2
T

(Ω),

W1,2
T

(Ω) =
{

v ∈ W1,2(Ω) : v · n = 0, on ∂Ω, < v · n j, 1 >Σ j
= 0, 1 ≤ j ≤ N2

}

.
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Theorem 5.4. Let u ∈ L2(Ω). Then there exist h ∈ K2
N,ǫ(Ω), χ ∈ W1,2

0
(Ω), and w ∈

W
1,2

div0(Ω) ∩W
1,2
T

(Ω), such that u can be represented as

u = h + ∇χ + ǫ−1curl w,

where h, χ, and w are all unique. Moreover, we have the estimate

(5.7) ‖h‖L2(Ω) + ‖∇χ‖L2(Ω) + ‖w‖W1,2(Ω) ≤ C‖u‖L2(Ω).

Proof. The scalar potential χ ∈ W
1,2

0
(Ω) is taken as a variational solution of the follow-

ing problem

∀ ϕ ∈ W1,2

0
(Ω),

∫

Ω

ǫ∇χ · ∇ϕ dx =

∫

Ω

ǫu · ∇ϕ dx.

Such a scalar function χ is unique, due to Lax-Milgram theorem. And it holds that

(5.8) ‖∇χ‖L2(Ω) ≤ C‖u‖L2(Ω).

Moreover, the variational equality implies that

div (ǫu − ǫ∇χ) = 0, in Ω.

Next, the ǫ-harmonic field h is chosen in the following way,










































curl h = 0, in Ω,

div (ǫh) = 0, in Ω,

h × n = 0, on ∂Ω,

< ǫh · n, 1 >Γi
=< (ǫu − ǫ∇χ) · n, 1 >Γi

, 1 ≤ i ≤ N1.

In fact, according to the proof of Theorem 4.7,

(5.9) h =

N1
∑

i=1

< (ǫu − ǫ∇χ) · n, 1 >Γi
∇qN

i ,

where {∇qN
i

; 1 ≤ i ≤ N1} is a basis for K2
N,ǫ(Ω), derived in Subsection 4.3. Hence,

(5.10) ‖h‖L2(Ω) ≤ C‖ǫu − ǫ∇χ‖L2(Ω) + C‖div (ǫu − ǫ∇χ)‖L2(Ω) ≤ C‖u‖L2(Ω),

due to the fact that div (ǫu − ǫ∇χ) = 0 in Ω.

Let z = ǫ(u − h − ∇χ), z ∈ L2(Ω). It easy to easy to check that














div z = 0, in Ω,

< z · n, 1 >Γi
= 0, 0 ≤ i ≤ N1.

It follows from Lemma 3.1 that there exists a vector potential w ∈ W1,2

div0(Ω) ∩W1,2
T

(Ω),

such that

(5.11) z = curl w, in Ω.

Moreover, w is unique and we have the estimate

‖w‖W1,2(Ω) ≤ C‖z‖L2(Ω) ≤ C‖u‖L2(Ω).

At last, let us talk about the uniqueness of the decomposition. Suppose that u has

another decomposition,

u = h̃ + ∇χ̃ + ǫ−1curl w̃,
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where h̃ ∈ K2
N,ǫ(Ω), χ̃ ∈ W1,2

0
(Ω), and w̃ ∈ W1,2

div0(Ω) ∩W1,2
T

(Ω). Then

(5.12) 0 = (h − h̃) + ∇(χ − χ̃) + ǫ−1curl (w − w̃).

Taking the L2-inner product of (5.12) and ǫ(h − h̃), we have

0 =
〈

(h − h̃, ǫ(h − h̃)
〉

.

It implies that

h = h̃, in Ω.

Similarly, taking the L2-inner product of (5.12) and ǫ∇(χ − χ̃), curl (w − w̃) resp., we

have

∇(χ − χ̃) = 0, and curl (w − w̃) = 0, in Ω.

That completes the proof of Theorem 5.4 �

Remark 5.2. Theorem 5.4 can be conculded in a simple formula,

L2(Ω) = K2
N,ǫ(Ω) ⊕ ∇W

1,2

0
(Ω) ⊕ ǫ−1curl

(

W
1,2

div0(Ω) ∩W
1,2
T

(Ω)
)

.

The above decomposition can be generalized to Wm,p-spaces.

Theorem 5.5. Let u ∈ Wm,p(Ω), m ∈ N∗, 1 < p < +∞. The decomposition in Theorem

5.4 satisfies the following estimate,

(5.13) ‖h‖Wm,p(Ω) + ‖∇χ‖Wm,p(Ω) + ‖w‖Wm+1,p(Ω) ≤ C‖u‖Wm,p(Ω).

Proof. When u ∈ Wm,p(Ω), χ is in fact a solution of the system















div (ǫ∇χ) = div (ǫu), in Ω,

χ = 0, on ∂Ω.

It follows from the classical regularity theory for elliptic equation with Dirichlet bound-

ary condition [12], that

‖∇χ‖Wm,p(Ω) ≤ C‖u‖Wm,p(Ω).

On the other hand,

‖h‖Wm,p(Ω) ≤ C

N1
∑

i=1

∣

∣

∣< (ǫu − ǫ∇χ) · n, 1 >Γi

∣

∣

∣ ≤ C‖ǫu − ǫ∇χ‖Wm,p(Ω) ≤ C‖u‖Wm,p(Ω).

And the estimate for w follows from Lemma 3.1. �

Remark 5.3. It is still open to us whether the estimates (5.6) and (5.13) hold when

m = 0, p , 2.
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