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Abstract

To deal with time-varying processor availability and lossy communication channels in embedded

and networked control systems, one can employ an event-triggered sequence-based anytime control

(E-SAC) algorithm. The main idea of E-SAC is, when computing resources and measurements are

available, to compute a sequence of tentative control inputs and store them in a buffer for potential

future use. State-dependent Random-time Drift (SRD) approach is often used to analyse and establish

stability properties of such E-SAC algorithms. However, using SRD, the analysis quickly becomes

combinatoric and hence difficult to extend to more sophisticated E-SAC. In this technical note, we

develop a general model and a new stability analysis for E-SAC based on Markov jump systems.

Using the new stability analysis, stochastic stability conditions of existing E-SAC are also recovered.

In addition, the proposed technique systematically extends to a more sophisticated E-SAC scheme for

which, until now, no analytical expression had been obtained.
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Index Terms

Anytime control, control with time-varying processor availability, networked control systems, event-

triggered control algorithms, stochastic stability, Markov jump systems.

I. INTRODUCTION

It is common in the embedded or networked control system that processor availability varies

due to varying computational loads and multi-tasking operations. Anytime control algorithm was

first proposed in [1] to deal with time-varying processor availability. It uses an idea from the AI

community called anytime algorithm [2], which is a computational procedure that could provide

a valid answer even when it is terminated prematurely.

There are various forms of anytime control algorithms. In [1], different controllers with

different floating point operations were designed. Notable later works include [3]–[6]. In [3], a

stochastic switching law within a set of pre-designed controllers is proposed. In [4], the main

idea is to sequentially calculate the components of the plant input vector. In [5], named as

sequence-based anytime control (SAC), a buffer is used to store the tentative future inputs. In

[6], a method for co-design of estimator and controller is proposed where the controller requests

a time-varying criterion for the estimator. When sensor measurements are transmitted through

a communication network, the measurements may be unavailable due to packet dropouts, or

network congestion. Among anytime control algorithms, SAC can handle this situation since it

has a buffer which serves to provide a control input even when no measurement is received.

Motivated by the idea of using event-triggered control (see e.g. [7]–[11]) as a method to

reduce demands on the network and computing processor while guaranteeing satisfactory levels

of performance [12], SAC with an event-triggering mechanism (E-SAC) was proposed in [13]

and the State-dependent Random-time Drift (SRD) technique of [14] was employed to analyse

the stability of E-SAC.

In our conference contribution [15], the E-SAC was extended to a more sophisticated scheme

featuring two control laws, a coarse and a fine law. The fine control law could be viewed

as an improved version of the coarse control law that requires more processing resources

than the coarse control law. Such ideas are wide-spread, e.g., in Model Predictive Control

(MPC) [16]–[19], to compute sub-optimal and optimal solutions are two strategies that one can
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choose depending on available computation time. Alternatively, fixed-point and floating-point

implementations can be used for trading off computation time and quality (accuracy) [20].

It was demonstrated in [15] that with the multi-control law E-SAC schemes, the communication

and processing resources could be used more efficiently. Performance in terms of empirical

closed-loop cost, channel utilisation and regions for stochastic stability guarantees could be

improved, compared with the basic E-SAC.

In [15], the SRD technique was used to analyse the stability of the proposed multi-control law

E-SAC schemes. Unfortunately, this requires one to list all possibilities and the corresponding

probabilities. For example, in the two-control law schemes, there are two random variables:

(1) the number of times each control law is active during (2) the time interval that the buffer

becomes empty again. Therefore, it is a combinatoric problem and quickly becomes intractable.

As a result, a closed-form expression for stability condition cannot be readily obtained by the

SRD approach. It was concluded that extending SRD technique to more sophisticated E-SAC

schemes will be difficult.

In the present work, we propose a new approach to investigate the stochastic stability of E-

SAC schemes. By modelling E-SAC as a Markov jump system (MJS) [21] with event-triggering,

assuming that processor availability and packet dropouts are identical independent distributed

(i.i.d) random processes, we systematically establish stochastic stability guarantee of both one-

and multi-control law E-SAC schemes. Our proposed approach recovers stability conditions of

[13] which is a one-control law E-SAC scheme.

The remainder of this paper is organised as follows: In Section II we provide a review of the

basic E-SAC scheme, including the one control law as proposed in [13], and the multi-control

law E-SAC schemes as proposed in [15]. In Section III, we propose the Markov jump system

with event-triggering (E-MJS) model for stability analysis of the multi-control law schemes.

Section IV investigates stochastic stability issues of this E-MJS model. Section V presents the

stochastic stability results of E-SAC, derived by the new approach. Section VI documents a

simulation study. Section VII draws conclusions.

Notation: N = {1, 2, ...} represents natural numbers, N0 , N∪{0}; R represents real numbers,

R≥0 , [0,+∞), R>0 , (0,+∞); {x}K stands for {xk : k ∈ K}, K ⊆ N0. σ(M) denotes the

spectral radius of matrix M . |x|=
√
xTx denotes the Euclidean norm of vector x. A function

φ : R≥0 → R≥0 is of class − K∞ (φ ∈ K∞) if it is continuous, zero at the origin, strictly
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increasing and unbounded. Pr{Ω}, Pr{Ω|Γ} denote the probability of an event Ω, and the

conditional probability of Ω given Γ respectively. The expected value of a random variable ν

given Γ is denoted by E{ν|Γ}, and E{ν} represents the unconditional expectation. For a vector

y, y ≻ 0 means that all of its elements are positive. For a matrix A ∈ R
n×n, A[i:j;l:m] denotes a

block matrix contained in A whose elements are taken from row i to j, and column l to m of

A. For z ∈ R, ⌊z⌋ denotes the largest integer that is not bigger than z. For n, k ∈ N, n (mod) k

means the remainder of n divided by k; 0n is a zero vector with dimension n. For a vector x,

x(i) (i ∈ N) denotes the i-th element of x. For a matrix A, ||A||∞ denotes the infinity norm of

A.

II. REVIEW: EVENT-TRIGGERED SEQUENCE-BASED ANYTIME CONTROL (E-SAC) SCHEMES

We consider an input-constrained discrete-time non-linear plant model with dynamics given

by:

xk+1 = f(xk, uk) (1)

where xk ∈ R
n, uk ∈ U ⊆ R, k ∈ N0, see Fig. 1.

Sensor measurements are transmitted to the controller via a delay-free communication link

which introduces packet dropouts. The transmission is a threshold-based event-triggering, i.e.,

the sensor transmits the measurement only when |xk|> d where the threshold d is a design

parameter. The threshold d is fixed once the system runs, and the triggering event is checked

periodically at every sampling instant.

The outcome of the transmission is indicated by the random process {γ}
N0

:

γk =







0 if the sensor transmits but a dropout occurs1

1 if xk is received succesfully

2 if the sensor did not transmit (i.e. |xk|≤ d)

which is assumed to be (conditionally) independent and identical (i.i.d) with a successful trans-

mission probability

q , Pr {γk = 1||xk|> d} = Pr {γk = 1|γk 6= 2} (2)

1We assume that packet dropout (γk = 0) is distinguishable from no transmission (γk = 2), e.g., through error-detection

coding and monitoring of received energy/waveforms in the sensor transmission band (see [22]).
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Processor availability

E-SAC
Plant

xk

wk

|xk|≤ d?

Erasure Channel

Pr{γk = 1 | |xk|> d} = q

Nk

uk

(xk, γk)

Fig. 1. System Model

Assumption 1 (Processor availability): The processor is triggered by arrival of valid data.

The processor availability for control at different time-instants is (conditionally) i.i.d. Thus, we

denote by Nk ∈ {0, 1, 2, · · · , Nmax}, how many processing units are available at time instants k.

The process {N}
N0

has conditional probability distribution:

Pr {Nk = j|γk = 1} = pj, j ∈ {0, 1, 2, · · · , Nmax} , (3)

where pj ∈ [0, 1) are given.

For other values of γk, no plant input is calculated. Thus the processing resources are considered

not available regardless, i.e.:

Pr {Nk = 0|γk ∈ {0, 2}} = 1

The next assumption is a combination of some Assumptions from [5] and [15].

Assumption 2 (Coarse and fine control policy):

The coarse control law κ1 : R
n → U requires 1 processing unit to compute, whereas the fine

control law κ2 : R
n → U requires η ∈ N, η ≥ 1, processing units to compute. We also assume

that there exist a common Lyapunov function V : Rn → R≥0; ϕ1, ϕ2 ∈ K∞, and ρ1 ∈ R≥0,

α > 0, such that ∀x ∈ R
n

ϕ1 (|x|) ≤ V (x) ≤ ϕ2 (|x|) (4)

V (f (x, 0)) ≤ αV (x) (open-loop bound) (5)

V (f (x, κ1(x))) ≤ ρ1V (x) (closed-loop contraction 1) (6)

V (f (x, κ2(x))) ≤ ρ2V (x) (closed-loop contraction 2) (7)

and the fine control policy κ2 is better than the coarse policy κ1 in the sense that ρ2 < ρ1. �
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A. Event-triggered sequence-based anytime algorithms with one control policy

The baseline algorithm, here denoted by B1, amounts to a direct implementation of κ1 as per

uk =







κ1(xk) if γk = 1 and processor is available

0 otherwise

Fig. 2 shows the operation of the (one-control law) E-SAC in [13]. We denote this algorithm

as A1. In A1, tentative future inputs using κ1 are calculated and stored in a local buffer bk ∈ R
Λ

(Λ: buffer size, the maximum number of control inputs it can store), whenever the computing

resources are available (γk = 1 & Nk > 0). When |xk|> d and processing resources are

unavailable (due to dropouts or unavailable processor, i.e. γk = 0 or Nk = 0), the buffer is

shifted, i.e., the first element is thrown away and the rest is kept. If |xk|≤ d (⇔ γk = 2), the

buffer is cleared. The matrix representing the shift operation is defined as

Ξ =

















0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0

















∈ R
Λ×Λ

The first element in the buffer is used for the current input. We also refer A1 to as one-control

law E-SAC scheme. For more details, see [13].

B. E-SAC with multiple control laws

In control system design, at times one may encounter situations where one would like to

switch between different control laws in respond to changing operating conditions. For example,

depending on available computational resources, one may switch between a suboptimal or optimal

controller, a short or long prediction horizon MPC, or a fixed- or floating-point controller

implementation. In our conference contribution [15], E-SAC was extended to schemes featuring

two control laws, κ1 and κ2, to capture such situations. We refer to κ1 as the coarse (baseline)

control law and to κ2 as the fine control law. The fine control law κ2 requires more computational

resource to execute than κ1 as shown in Assumption 2.
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γk = 2

bk ← 0Λ

OUTPUT uk = 0

γk = 1

(|xk > d|& success transmission)

If Nk = 0 then bk ← Ξbk−1

If Nk > 0

χ← xk, j ← 1

REPEAT

Compute bk(j) = κ1(χ)

Update χ← f(χ, bk(j)), j ← j + 1

UNTIL j > Nk

OUTPUT uk = bk(1)

γk = 0

bk ← Ξbk−1

OUTPUT uk = bk(1)

Fig. 2. Operation of A1, bk: buffer content at time instant k.

1) Algorithm B2: two-control law E-SAC without buffer: Algorithm B2 amounts to a direct

implementation of κ1 and κ2 without any buffering. The plant input is calculated as

uk =







κ2 (xk) , if Nk ≥ η

κ1 (xk) , if 0 < Nk < η

0, if Nk = 0.

2) Algorithm A2 two-control law E-SAC with buffer: Fig. 3 shows the operation of A2. Similar

to A1, a local buffer with contents b
†
k of size Λ ∈ N is used to store the sequence of tentative

future plant inputs calculated by either κ1 or κ2 at time k using excess processing resources.

To be more specific, the control policies κ1 or κ2 and their tentative future sequence will be

executed depending on the values of Nk, as illustrated next.

Given the available processing unit Nk > 0 (assumed known in advance), we can write

Nk = τkη +Mk

where τk , ⌊Nk

η
⌋, and Mk = Nk mod η (η: see Assumption 2). Firstly, a tentative control

April 24, 2018 DRAFT
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γk = 1

(|xk > d|& success transmission)

If Nk = 0 then b
†
k ← Ξb†k−1

If Nk > 0

τk , ⌊Nk

η
⌋, Mk = Nk mod η

χ← xk, j ← 1

REPEAT (fill buffer with κ2 first)

Compute b
†
k(j) = κ2(χ)

Update χ← f(χ, b†k(j)), j ← j + 1

UNTIL j > τk

j ← 1

REPEAT (fill buffer with κ1)

Compute b
†
k(j) = κ1(χ)

Update χ← f(χ, b†k(j)), j ← j + 1

UNTIL j > Mk

OUTPUT uk = b
†
k(1)

γk = 2

b
†
k ← 0Λ

OUTPUT uk = 0

γk = 0

b
†
k ← Ξb†k−1

OUTPUT uk = b
†
k(1)

Fig. 3. Operation of A2, b
†
k: buffer content at time instant k.

sequence is computed by iterating τk times the model (1) using κ2, and then by iterating Mk

times the model (1) using κ1. When |xk|> d and computing resources are unavailable (due to

dropouts or unavailable processor), the buffer is shifted. If |xk|≤ d (⇔ γk = 2), the buffer is

cleared. The first element in the buffer will be used as the current input. We refer to A2 as

two-control law E-SAC scheme. For ease of exposition, in this work, we only present in details

the case of two control laws. The case of multiple control laws can be adapted directly.

Remark 1: Processing units (in Assumption 1) represent the computational resources (e.g.

memory units and given CPU time) available for computing the sequence of predicted control

inputs. We assume that the processing time of the control task is significantly smaller than the
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sampling time of the plant model. Here it is important to note that the control values written into

the buffer at time k only use information about xk (if available), but not xk+1, or other future

states. Merely predictions are used. Therefore, and assuming that processing and transmissions

are “infinitely” fast, it is appropriate to use a time-invariant system model as (1). The overall

system (including communications, and computations) turns out to be stochastically switching,

leading to non-trivial dynamics.

Example 1. Suppose that Nmax = 3, η = 2,Λ = 3 and that the processor availability is such

that N0 = 3, N1 = 0, N2 = 2; the system state is such that |xk|> d, ∀k = 0, 1, 2 and there are

no dropouts.

If algorithm A1 is used with κ1, then the buffer contents become:

{b0, b1, b2} =















κ1(x0)

κ1(f(x0, κ1(x0)))

κ1(x̂
[κ1,2]
0 )









2,









κ1(f(x0, κ1(x0)))

κ1(x̂
[κ1,2]
0 )

0









,









κ1(x2)

κ1(f(x1, κ1(x2)))

0









,







which gives the plant inputs u0 = κ1(x0), u1 = κ1(f(x0, κ1(x0))), u2 = κ1(x2).

If algorithm A2 is used, then the buffer contents at times k ∈ {0, 1, 2} become:

{b†0, b†1, b†2} =















κ2(x0)

κ1(f(x0, κ2(x0)))

0









,









κ1(f(x0, κ2(x0)))

0

0









,









κ2(x2)

0

0









,







which gives the plant inputs u0 = κ2(x0), u1 = κ1(f(x0, κ2(x0))), u2 = κ2(x2).

For the no-buffering schemes, the plant inputs are u0 = κ1(x0), u1 = 0, u2 = κ1(x2) for

algorithm B1, and u0 = κ2(x0), u1 = 0, u2 = κ2(x2) for algorithm B2.

This example suggests that A2 outperforms A1 since κ2 gives better control inputs than κ1.

The no-buffering schemes B1 and B2 cannot provide a control input when the processor is

unavailable at time step k = 1.

C. State-dependent random-time drift condition approach for stability analysis of E-SAC

In [13], the state-dependent random-time drift (SRD) condition is developed to derive the

stochastic stability of the one-control law scheme with buffering, i.e. the scheme A1. For

deriving the stability condition, it requires one to calculate probability mass function (pmf)

2x̂
[κ1,2]
0 = f(f(x0, κ1(x0)), κ1(f(x0, κ1(x0))))
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of random variable ∆i, which denotes the time interval that the buffer becomes empty again.

An analytical formulation of this pmf as well as the closed-form for stability boundary of A1

has been established in [13].

In [15], the derivation of stability condition for the two-control law with buffering, i.e. scheme

A2, follows the same SRD method of [13]. Since there are two control laws in the buffer, the

fine control law κ2 and the coarse control law κ1, there are not only ∆i is a random variable,

but also the number of times each control law is active, denoted by ri, is also a random variable.

Therefore, it is a combinatoric problem and quickly becomes intractable.

III. MARKOV JUMP SYSTEM WITH EVENT-TRIGGERING MODEL

In this section, we propose a different approach for the stability analysis of E-SAC based on

Markov jump system ideas. We shall begin our analysis by developing a stochastic model of the

buffer contents at any time k.

Remark 2: If η = 1 and κ2 ≡ κ1, algorithm A2 reduces to A1. In addition, A2 reduces to

B2 when the buffer size Λ = 1. Therefore, in the sequel, we only present the stability analysis

for algorithm A2, since results for A1 and B2 can be recovered as a special case of A2. �

A. Markov state of the buffer content of A2

For two-control law scheme A2, we model the content of the buffer via θk = (Fk;Ck) where

Fk and Ck indicate the number of κ2 (fine control law) and κ1 (baseline or coarse control law)

in the buffer at time step k respectively. During periods when |xk|> d, then the transition of

θk only depends on Nk which is i.i.d. Hence, during periods when |xk|> d, {θk} is a Markov

chain. The corresponding state space is

S(A2) = {Si = (⌊i− 1

η
⌋; (i− 1) mod η)}, (8)

i = 1, 2, ..., Nmax + 1

and is associated with the conditional (|xk|> d) transition probability matrix

Π(A2) = {π(A2)
ij }, i, j = 1, 2, ..., Nmax + 1.

where π
(A2)
ij = Pr{θk = Sj|θk−1 = Si, γk 6= 2, γk−1 6= 2} (see Appendix A for the derivation of

the entries of the probability transition matrix). As an example, if Nmax = 4, η = 2, we have

April 24, 2018 DRAFT
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(0, 0) (0, 1)

(1, 0)

(1, 1)

(2, 0)

l0

l1

l2

l3

l4

l1

l0

l2

l3

l4

l2

l0
l1

l3

l4

l3

l1 + l0
l2

l4

l4

l1

l2 + l0

l3

Fig. 4. State transition diagram for buffer contents of A2 (Nmax = 4, η = 2), |xk|> d. During periods when |xk|≤ d, the

buffer is always emptied, i.e. there is no change in the buffer content.

the state space of A2:

S(A2) ={S1 = (0; 0), S2 = (0; 1), S3 = (1; 0), S4 = (1; 1), S5 = (2; 0)}

and the state transition diagram shown in Fig. 4.

Remark 3: In A2, for Si that has the first entry greater than 0, κ2 will be active, i.e., if

θk is in the set {Sη+1, Sη+2, ..., SNmax+1} we have Fk > 0, therefore, κ2 is active. If θk is in

the set {S2, S3, ..., Sη}, then we have Fk = 0 and Ck > 0, therefore, κ1 is active. Finally if

θk = S1 = (0; 0), then a zero control input is used. �

We note that, when |xk|> d, the buffer and the control input change depending on external

factors such as processor and measurement availability which are random. We call this as

“stochastic mode”. On the other hand, when |xk|≤ d, the buffer is cleared and becomes empty.

The control, for simplicity and without lost of generality, is set as uk = 0. We call this the

“deterministic mode”, since the control is fixed.

B. Markov jump system model

For our subsequent analysis, it is convenient to introduce

yk , [xk; xk−1; ...; xk−Λ+1] ∈ R
nΛ (9)

Lemma 1: {y}N0 is Markovian.

Proof: See Appendix B.
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From (1) and (9), for the process {yk}, there exists ψ : RnΛ × U → R
nΛ such that yk+1 =

ψ(yk, uk).

The control uk is determined by yk and the random process θk describing the buffer contents

(see Remark 3). Then, in general, we have uk = κ̂(θk)(yk) where θk ∈ {Si}i=1,2,... (see (8) for

Si ) and set of control laws, associated with the contents of the buffer, κ̂(Si) : R
nΛ → U. This

leads to

yk+1 = ψ(yk, κ̂(θk)(yk)) (10)

which is a Markov jump system during intervals when |xk|> d. Here, we use κ̂ to present the

mappings from the domain of yk (which is different from the domain of xk) to the domain of

uk
3.

The mapping from a Markov state to a control law for {yk} process is

κ̂(θk=S0)(yk) = 0,

κ̂(θk=S1)(yk) = κ1(xk), · · · , κ̂(θk=Sη)
(yk) = κ1(xk),

κ̂(θk=Sη+1) = κ2(xk), · · · , κ̂(θk=SΛ+1)(yk) = κ2(xk)

(11)

Figure. 5 shows an equivalent model of the E-SAC schemes A2 via the process {yk}. We

call this model the event-triggered Markov jump system model (E-MJS). We use βk ∈ {1, 0} to

represent the threshold-based triggering event |xk|> d (γk ∈ {0, 1}) and |xk|≤ d (γk = 2). In

this model, the particular schemes such as A1 and A2 are encoded in the state space {S1, S2, ...}
(for e.g. (8)). The dropouts and processor availability are encoded in the transition probabilities

of the state space.

C. General model

We now propose a general mathematical description for the E-MJS model of the E-SAC.

Consider a non-linear system yk+1 = ψ(yk, uk) controlled by two controllers: (1) stochastic

controller and (2) deterministic controller. The loop is closed with either the stochastic or the

deterministic controller (Fig. 5). When the triggering condition is met, the stochastic controller

3κ1, κ2 are the mapping from the domain of xk to the domain of uk.
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κ̂(θk)(y)

κ̂(−1)(y) = 0y
Deteministic controller (open-loop)

Plant yk

|yk(1)| > d

(βk = 1)

|yk(1)| ≤ d

(βk = 0)

Markov switching

θk

Stochastic controller

S2

S1 S3

· · ·
S...

Event-triggering

uk yk

Fig. 5. E-MJS model of E-SAC schemes.

will be deployed. We use βk ∈ {0, 1} to indicate the triggering event at time k:

βk =







0 use deterministic controller

1 use stochastic controller

1) Stochastic controller: Due to the external environment, such as time-varying processing

powers or dropouts in the communication channels, the controller switches stochastically within

a set of M control laws {κ̂(i), i = 1, 2, ...,M}. In this case, the closed loop system model is

yk+1 = ψ(yk, uk) = ψ(yk, κ̂(θk)(yk))

where {θk}N is a discrete Markov chain with state space

S = {1, 2, ...,M} (12)

and the (conditional) transition probability matrix

Π = {πij}, i, j = 1, ...,M

where πij = Pr{θk+1 = j|θk = i, βk = 1, βk+1 = 1}
Here, for ease of notation, we use numeric representation for the state space of the Markov

chain in (12) instead of using Si as (8).

2) Deterministic controller: This controller gives a fixed control policy uk = κ̂(−1)(yk) and

in this case, the closed loop is yk+1 = ψ(yk, κ̂(−1)(yk)).

For simplicity but without loss of generality, we set κ(−1)(yk) = 0.
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IV. STOCHASTIC STABILITY OF E-MJS MODEL

In this section, we derive the stochastic stability condition for the proposed E-MJS model.

First, we shall make the following assumptions:

Assumption 3: There exists a non-negative function Ṽ : R
ny → R≥0 (ny is dimension of

y) and coefficients σ(i) ∈ R≥0, i = −1, 1, 2, ...,M such that

Ṽ (ψ(y, κ̂(i)(y))) ≤ σ(i)Ṽ (y), ∀i = −1, 1, 2, ..,M (13)

Assumption 4: There exists a constant D ∈ R+ such that Ṽ (yk) ≤ D, if the deterministic

controller setup is in operation. �

Remark 4: Assumption 3 characterises each control law κ̂(i) by a scalar σ(i), and bounds

the rate of increase of Ṽ (y) when a control law κ̂(i) is active. In Section V.A we show that

Assumptions 3 and 4 are satisfied in the E-SAC schemes A1 and A2, whenever Assumptions 2

is satisfied. However, Assumptions 2 is potentially conservative as a common Lyapunov function

is required. �

Let Ṽk = Ṽ (yk), then we obtain the following stochastic model for {Ṽk}N0 :






Ṽk+1 ≤ σ(θk)Ṽk, (θk ∈ {1, 2, ...,M}
︸ ︷︷ ︸

Markov jump

) if βk = 1

Ṽk+1 ≤ σ(−1)Ṽk if βk = 0

or in a compact form as:

Ṽk+1 ≤ σ(θk)Ṽk, (θk ∈ {−1}
︸ ︷︷ ︸

deterministic ctrl.

∪ {1, 2, ...,M}
︸ ︷︷ ︸

Markov jump, stochastic ctrl.

) (14)

Note that we have extended the range of θk to include θk = −1 (if βk = 0, deterministic mode)

to have the compact form as shown in (14).

Theorem 1: If there exist positive real numbers ν(1), ..., ν(M), and ζ(1), ..., ζ(M) such that
M∑

j=1

πijσ(i)ζ(j) − ζ(i) = −ν(i), (15)

for all i = 1, ...,M , then E{Ṽk} < C1ξ
kE{Ṽ0}+ C2 <∞ where

ξ = 1− min1≤j≤M{ν(j)}
max1≤k≤M{ζ(k)}

∈ (0, 1)

C1 = ζmax

ζmin
, C2 = 1

(ζmin)(1−ξ)
(max{ζminD, |ζmaxσ(−1) − ξζmin|D}) (ζmax = max{ζ(i)}i=1,...,M ,

ζmin = min{ζ(i)}i=1,...,M).

Proof: The proof is essentially an adaptation of the general stability result of Markov jump

linear systems from [21], [23] specialised for (14), which is a scalar and positive system with
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event-triggering. See details in Appendix C.

Theorem 1 provides a general condition for stochastic stability of {Ṽk} in terms of the

boundedness property of the expectation. Note that (15) represents a system of linear equations

and can be represented as

(I − ΦΠ)ζ = ν (16)

where

Φ , diag{σ(1), σ(2), ..., σ(M)} (17)

and ζ , (ζ(1) ζ(2) ... ζ(M)T , ν , (ν(1) ν(2) ... ν(M))
T .

Then, Theorem 1 can be restated as follows:

Corollary 1: Define the certification matrix T = ΦΠ. If T is Schur stable, then E{Ṽk} <
C1ξ

kE{Ṽ0}+ C2 <∞ where ξ ∈ (0, 1), C1, C2 ∈ R>0.

Proof: See Appendix D.

V. STOCHASTIC STABILITY OF E-SAC SCHEMES

In this section, we derive stochastic stability conditions for the E-SAC schemes by applying

the results of Section IV.

A. Existence and bounds of Ṽ (yk) of E-SAC

For the process {yk} describing E-SAC (see (9)), we choose the following function

Ṽ : RnΛ → R≥0, Ṽ (yk) = V ([I 0 0 ... 0]yk) = V (xk)

where V (.) is defined as in Assumption 2.

The reason for choosing this Ṽ is that it allows us to obtain the bound σ(i) in (13). This bound

is related to a control law κ̂(i) which is associated with a Markov state.

Assumptions 2 and equations (11), lead to the following bounds for Ṽ (yk)

A2 :







Ṽ (ψ(yk, κ̂(S1)(yk)) ≤ αṼ (yk)

Ṽ (ψ(yk, κ̂(Si)(yk)) ≤ ρ1Ṽ (yk), i = 2, 3, ..., η

Ṽ (ψ(yk, κ̂(Si)(yk)) ≤ ρ2Ṽ (yk),

i = η + 1, ..., Nmax + 1

(18)

where α, ρ1 and ρ2 are defined as in Assumptions 2.

April 24, 2018 DRAFT



16

To show that Assumption 4 is also satisfied, we recall that in the deterministic controller setup,

|xk|≤ d. Therefore Ṽ (yk) = V (xk) ≤ ϕ2(|xk|) ≤ ϕ2(d) , D (see Assumption 2). �

B. Stochastic stability for E-SAC schemes A1 and A2

We need the following Lemma to establish closed-loop stability, when A1 or A2 are used.

Lemma 2: Consider a 2× 2 block matrix H =




X Y

Z M



, where X ∈ R
1×1, Y ∈ R

1×m, Z ∈

R
m×1,M ∈ R

m×m, and M is Schur stable with non-negative entries and ||M ||∞< 1 and

trace(M2) < 1. Then H is Schur stable if and only if g(1) > 0 where g(λ) = (λIn − X) −
Y (λIm −M)−1Z.

Proof: See Appendix E. �

Closed-loop stability when using algorithm A2 is then established as follows:

Corollary 2 (Stochastic stability of A2):

The E-SAC scheme A2 yields a stochastically stable loop, in the sense that V (xk) satisfies

the bound condition in Theorem 1, if the certification matrix

T (A2) , diag{α, ρ1, ..., ρ1
︸ ︷︷ ︸
η−1 times

, ρ2, ..., ρ2
︸ ︷︷ ︸

Nmax−η+1 times

}Π(A2)

is Schur stable.

Further, if ρ1, ρ2 < 1 the Schur stability of the certification matrix T (A2) reduces to

Ψ , l0α + l0αΘ
T
2 (I −Gρ1,ρ2)

−1E2 < 1 (19)

where ET
2 = [ρ1 0 · · · 0

︸ ︷︷ ︸
η−2 elements

ρ2 0 · · · 0
︸ ︷︷ ︸

Nmax−η+1 elements

], ΘT
2 = [l1 l2 · · · lNmax

], and

Gρ1,ρ2 = T
(A2)
2:(Nmax+1),2:(Nmax+1) is the lower right block of T (A2).

Proof: Appendix F. �

Remark 5: Corollary 2 provides an analytical expression for the stability boundary of A2

which has not been obtained in the earlier works [15] or [13]. It is reassuring that (19) agrees

with numerical results of [15].

Remark 6: We see that using our approach, the condition that both ρ1 and ρ2 are strictly less

than 1 is not necessary (which was needed in [15]).
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C. Recover stability of A1

As aforementioned in Remark 2, A2 reduces to A1 when η = 1 and κ2 ≡ κ1. The probability

transition of buffer content of A2 when η = 1 (i.e. A1 this case) is shown in Appendix as the

matrix Π(A1) in (25). From Corollary 2, we obtain the stability for A1:

Corollary 3 (Stochastic stability of A1):

The E-SAC scheme A1 yields a stochastically stable loop, in the sense that V (xk) satisfies

the bound condition in Theorem 1, if T (A1) , diag{α, ρ1, ..., ρ1
︸ ︷︷ ︸

Nmax−1 times

}Π(A1) is Schur stable.

Futher, if ρ1 < 1 the Schur stability condition for T (A1) is

Ω , l0α(1 + ρ1Θ
T (I − ρ1G)−1E1) < 1 (20)

where Π(A1) is as (25), ΘT = [l1 l2 · · · lNmax
], E1 = [1 0 0 · · · 0]T ⊂ R

Nmax×1, G =

Π
(A1)
[2:(Nmax+1);2:(Nmax+1)] ⊂ R

Nmax×Nmax is the lower right block of Π(A1) obtained by eliminating

the first row and the first column.

Remark 7: Interestingly, (20) is the same stability condition as already derived with different

method in [13].

Remark 8: The stability of A1 is independent of the triggering threshold d as showed in

[13]. Similarly, the stability of A2 showed in Corollary 2 is also independent of d. The threshold

d does however determine the size of the region that the system state converges to. In detail, in

Theorem 1, the size of this region is C2 = 1
(ζmin)(1−ξ)

(max{ζminD, |ζmaxσ(−1) − ξζmin|D}). For

E-SAC schemes A1 and A2, D = ϕ2(d) (as defined in Section V.A.) influences C2.

VI. NUMERICAL SIMULATION

We assume a plant with dynamics

xk+1 = −1.34xk + 0.01sin(xk) + uk + wk, x0 = 20 (21)

where the disturbance wk is i.i.d., normally distributed with zero mean and unit variance. For

the proposed schemes with two control laws, we adopt

κ1(xk) = 1.34xk − 0.01sin(xk) + 0.9|xk|, (22)

κ2(xk) = 1.34xk − 0.01sin(xk) + c2|xk|. (23)

where c2 is decided later.
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Fig. 6. Stability guarantee region for A2 with respect to η (processing units needed to compute κ2) and ǫ = ρ2
ρ1

. Two-control

scheme A2 with configuration Q1 guarantees to yield a stable system if the open-loop bound satisfying α < 1.3527. Two-control

scheme A2 with configuration Q2 guarantees to yield a stable system if α < 1.266. One-control scheme A1 with configurationn

Q3 guarantees to yield a stable system if α < 1.175. System (21) has open-loop bound α = 1.35.

5 10 15 20 25 30 35 40 45 50

k

0

100

200

300

400

500

600

V
(x
)
=

|x
k
|

A2 with η = 2, ρ1 = 0.9, ρ2 = 0.45 (configuration Q1)

A2 with η = 3, ρ1 = 0.9, ρ2 = 0.45 (configuration Q2)

A1 with ρ1 = 0.9 (configuration Q3)

Fig. 7. Averaged value of V (x) = |xk| over 104 random realizations.

By choosing V (x) = |x|, we obtain the open-loop bound α = 1.35, closed-loop contractions

ρ1 = 0.9 in (6) and ρ2 = c2 in (7).

We also assume that the buffer size Λ = 4 and that the maximum available processing units

are Nmax = 4.
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The probability of successful transmission is given by:

q = Pr{γk = 1| |xk|> d} = 0.5

For Nk ∈ {0, 1, 2, · · · , 4}, we assume that the probabilities pj = Pr{Nk = j|γk = 1} are equal

for each j ∈ {0, 1, 2, · · · , 4}, i.e., p0 = p1 = ... = p4 = 0.2.

For ease of presenting the stability region, we introduce a parameter ǫ that represents the ratio

between the closed-loop contractions of control laws κ1 and κ2 :

ǫ =
ρ2

ρ1
We see that ǫ ∈ [0, 1]. It can be said that the smaller the ǫ is, the “better” the second control

law κ2 is.

Fig. 6 shows the region for the open-loop bound (α) and closed-loop contractions (ρ1 & ρ2 =

ǫρ1) that A2 and A1 guarantee to yield a stochastically stable system, i.e. the region is represented

by eq. (19) and (20) given that ρ1 ∈ [0, 1]. For a specific value of ρ1 and ǫ, one can figure out the

maximum open-loop bound α that is allowed so that the system is guaranteed to be stochastically

stable. The region when using A2 depends on parameters η and ǫ. Point Q1 = (1.3525, 0.9) is

on the curve with label “A2 : η = 2, ǫ = 0.5” (dashed line with triangle). This implies that

given two control laws: (1) the coarse control law as eq. (22) (ρ1 = 0.9) and (2) the fine control

law as eq. (23) with parameters η = 2 and c2 = ρ2 = 0.5 ∗ 0.9 = 0.45, the algorithm A2 yields

a stochastically stable system if the open-loop bound α satisfies α < 1.3527. Since system (21)

has α = 1.35 < 1.3527, A2 yields a stochastically stable system with this configuration of two

control laws. The blue line in Fig. 7 confirms this, as the averaged value of V (xk) is bounded.

Similarly, by looking at point Q2, it shows that A2 with ρ1 = 0.9, ρ2 = 0.5∗0.9 = 0.45, η = 3

only guarantees to yield a stochastically stable system if the open-loop bound α satisfies α <

1.266. And by looking at point Q3 on the curve labelled as A1, it shows that the one control

law A1 with ρ1 = 0.9 (i.e. using control law as (22)) only guarantees to be able to stochastically

stabilise a system if the open-loop bound α satisfies α < 1.175. Indeed, the averaged value of

V (xk) can be very large in these two cases, see Fig. 7 the triangle points and dotted line, since

the open-loop bound of (21) is α = 1.35 bigger than the allowed open-loop bounds of these two

configurations.

Remark 9: Eq. (19) and (20) are sufficient conditions for stochastic stability of A2 and A1,

respectively. Currently, necessary conditions are not available for these schemes.
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VII. CONCLUSION

We propose a general model and a novel stability analysis method for event-triggered sequence-

based anytime schemes based on Markov jump systems ideas. The proposed method is, unlike the

State-dependent Random-time Drift condition approach, scalable for more sophisticated schemes.

It also allows us to obtain an analytical expression for the stability boundary of two-control law

schemes, as well as recover the existing stability results of one-control law. Future work and

extensions are Markovian processor/sensor availability scenarios, processor scheduling, and the

appearance of process noise and model uncertainty.

APPENDIX

A. Probability transition in A2

Firstly, we define

lj , Pr{Nk = j|γk 6= 2, γk−1 6= 2} = Pr{Nk = j|γk 6= 2}

= Pr{Nk = j| γk = 1}Pr{γk = 1|γk 6= 2}+ Pr{Nk = j| γk = 0}Pr{γk = 0|γk 6= 2} (24)

satisfy l0 = p0q + (1 − q), lj = pjq (j = 1, 2, ..., Nmax), where pj and q are defined as in (2)

and (3).

We obtain

πij = Pr{θk = Sj |θk−1 = Si, γk 6= 2, γk−1 6= 2}

πi1 = l0, i ∈ {1, 2, η + 1}, πi1 = 0 ∀i 6= {1, 2, η + 1}

πij = lj−1 + l0, ∀ j = i− η, i = η + 2, ..., Nmax

πij = lj otherwise

Then, the probability transition matrix is as follows:

Π(A2) =




















l0 l1 l2 · · · · · · lNmax

l0 l1 l2 · · · · · · lNmax

l0 l1 l2 · · · · · · lNmax

0 l1 + l0 l2 · · · · · · lNmax

. . . . . .
. . . . . . . . . lNmax

0 l1 . . . lNmax−2 + l0 · · · lNmax




















,

April 24, 2018 DRAFT



21

when η = 2 as an example.

When η = 1 and κ2 ≡ κ1, A2 reduces to A1, and the corresponding probability transition

matrix is

Π(A1) =




















l0 l1 l2 l3 · · · lNmax

l0 l1 l2 l3 · · · lNmax

0 l1 + l0 l2 l3 · · · lNmax

0 l1 l2 + l0 l3 · · · lNmax

...
...

...
. . .

. . .
...

0 l1 · · · · · · lNmax−1 + l0 lNmax




















(25)

B. Proof of Lemma 1

If Nk > 0, then uk is determined by the current state xk. If the processor is not available,

then uk has been determined by the states which are at most Λ time stages old, or is given by

uk = 0. Since the processor availability is independent of the state, the stochastic process {y}N0

is Markovian.

C. Proof of Theorem 1

We define ζmax = max{ζ(i)}i=1,...,M , ζmin = min{ζ(i)}i=1,...,M , i.e., we have

0 < ζmin ≤ ζ(θk) ≤ ζmax, ∀ θk = 1, ...,M. (26)

Consider Jk , J(yk, θk) = ζ(θk)Ṽ (yk) = ζ(θk)Ṽk where θk is as in Eq. (14).

We will next establish the drift condition

E{Jk+1|yk, θk} ≤ D̄ + ξJ(yk, θk)

where D̄ is a constant and is derived later (after eq. (32)) in the following.

Since J(yk, θk) becomes undefined when θk = −1 (deterministic mode, ζ(θk=−1) does not

exist), without loss of generality, we take (extended value) ζ(−1) = ζmin.

If θk = −1, then βk = 0, i.e., the deterministic mode is active. We have Ṽ (yk) ≤ D

(Assumption 4), and we also have ζ(θk+1)Ṽk+1 ≤ ζmaxσ(−1)Ṽk. From Ṽ (yk) ≤ D, we obtain

ζmaxσ(−1)Ṽk ≤ ξζminṼk + |ζmaxσ(−1) − ξζmin|D ≤ ξJ(yk, θk) + |ζmaxσ(−1) − ξζmin|D. Then it
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follows that

E{J(yk+1, θk+1)|yk, θk = 0} = E{ζ(θk+1)Ṽk+1|yk, θk = 0}

≤ ξJ(yk, θk) + |ζmaxσ(−1) − ξζmin|D (27)

If θk = i > 0, then βk = 1. By denoting Υk , (yk, θk = i > 0), using the law of total

expectation we have:

E{J(yk+1, θk+1)|yk, θk = i > 0} =

E{J(yk+1, θk+1)|Υk, βk+1 = 0}Pr{βk+1 = 0|Υk}+

E{J(yk+1, θk+1)|Υk, βk+1 = 1}Pr{βk+1 = 1|Υk}

≤ E{J(yk+1, θk+1)|Υk, βk+1 = 0}+ E{J(yk+1, θk+1)|Υk, βk+1 = 1} (28)

For βk+1 = 0, this implies that θk+1 = −1. And by Assumption 4, we have Ṽk+1 ≤ D, then

E{J(yk+1, θk+1)|Υk, βk+1 = 0} = E{ζ(−1)Ṽk+1|Υk, βk+1 = 0} ≤ ζminD, (ζ(−1) = ζmin) (29)

For the case βk+1 = 1, the stochastic controller is deployed, i.e., θk+1 > 0, we also have

βk = 1, since θk > 0.

We have, using the law of total expectation and using (15),

E{J(yk+1, θk+1)|Υk, βk+1 = 1}

=
M∑

j=1

Pr{θk+1 = j|θk = i, yk, βk = 1, βk+1 = 1}.

E{Ṽk+1ζ(θk+1)|θk+1 = j, yk, θk = i, βk = 1, βk+1 = 1}

≤
M∑

j=1

(πij)(σ(i)Ṽkζ(j)) = Ṽk
(
ζ(i) − ν(i)

)
(using (15))

= Ṽkζ(i)

(

1− ν(i)

ζ(i)

)

= J(yk, θk)

(

1− ν(i)

ζ(i)

)

≤ ξJ(yk, θk) (30)

since (

1− ν(i)

ζ(i)

)

≤ 1− min1≤j≤M{ν(j)}
max1≤k≤M{ζ(k)}

, ξ, ∀i = 1, ..,M

and 0 < ξ < 1 due to ζ(k) > ν(k) > 0, ∀k = 1, 2, ...,M (from (15)).

Expressions (28)-(30) lead to:

E{J(yk+1, θk+1)|yk, θk > 0} ≤ ζminD + ξJ(yk, θk) (31)
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From (27) and (31), we obtain

E{J(yk+1, θk+1)|yk, θk} ≤ D̄ + ξJ(yk, θk)

i.e., we have

E{J(zk+1)|zk} ≤ D̄ + ξJ(zk) (32)

where

zk , (yk, θk)

D̄ = max{ζminD, |ζmaxσ(−1) − ξζmin|D}

From (32) and using the Markovian property of {zk}, 1 we have

E{J(z1)|z0} ≤ D̄ + ξJ(z0) (33)

E{J(z2)|z1} = E{J(z2)|z1, z0} ≤ D̄ + ξJ(z1) (34)

Taking expectation E{.|z0} of both sides of (34), using tower property of expectation and using

(33) we have

E{J(z2)|z0} = E{E{J(z2)|z1, z0}|z0} ≤ D̄ + ξE{J(z1)|z0} ≤ D̄ + ξD̄ + ξ2J(z0)

By iterating the above procedure, we obtain

E{J(zk)|z0} ≤ D̄(

i=k−1∑

i=0

ξi) + ξkJ(z0) ≤
D̄

1− ξ + ξkJ(z0)

i.e.,

E{J(yk, θk)|y0, θ0} ≤
D̄

1− ξ + ξkJ(y0, θ0)

Using the law of total expectation 2, if y0 is a discrete random variable we have

E{J(yk, θk)} =
∑

∀(y0,θ0)

E{J(yk, θk)|y0, θ0}Pr{y0, θ0}

≤
∑

∀(y0,θ0)

(
1

1− ξ D̄ + ξkJ(y0, θ0)

)

Pr{x0, θ0}

=
1

1− ξ D̄ +
∑

∀(y0,θ0)

(
ξkJ(y0, θ0)

)
Pr{y0, θ0}

=
1

1− ξ D̄ + ξkE{J(y0, θ0)} (35)

1Since {yk} and {θk} are Markovian, see Lemma 1 and (14).

2Here we assumed θ0 is known.
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If y0 is a continuous random variable, we have3

E{J(yk, θk)} =
∫

y0

E{J(yk, θk)|y0, θ0}pdf{y0, θ0}dy0

≤
∫

y0

(
1

1− ξ D̄ + ξkJ(y0, θ0)

)

pdf{y0, θ0}dy0

=
1

1− ξ D̄ +

∫

y0

(
ξkJ(y0, θ0)

)
pdf{y0, θ0}dy0

=
1

1− ξ D̄ + ξkE{J(y0, θ0)} (36)

Since ζmaxṼk ≥ J(yk, θk) = ζ(θk)Ṽk ≥ ζminṼk, then E{J(yk, θk)} ≥ E{Ṽk}ζmin and E{J(y0, θ0)} ≤
ζmaxE{Ṽ0}. Then, from (35) (or (36)) we have

ζminE{Ṽk} ≤ ζmaxξ
kE{Ṽ0}+

1

1− ξ D̄

D. Proof of Corollary 1

Since T is Schur stable, we have (I − T )−1 = I +
∞∑

i=1

(T )i = I + T̄ where T̄ =
∞∑

i=1

(T )i. As

all entries of T are non-negative, all entries of T̄ are non-negative. Thus, for any given ν ≻ 0,

the solution of (16) is ζ = (I −T )−1ν = ν + T̄ ν satisfying ζ ≻ 0. Then, by applying Theorem

1, we obtain the desired bound for E{Ṽk}. �

E. Prove of Lemma 2

Consider the characteristic polynomial P (λ) , det(λI−H) =

∣
∣
∣
∣
∣
∣

λ−X −Y

−Z λIm −M

∣
∣
∣
∣
∣
∣

. We denote

eig(M) as an eigenvalue of a matrix M.

For λ not inside the unit circle |λ|≥ 1, we have eig(λIm −M) = λ − eig(M) 6= 0 (due to

Schur stability of M) hence λIm −M is invertible. Using the determinant result for a 2-by-2

block matrix, we have

P (λ) = det(λIm −M)det
(
λ−X − Y (λIm −M)−1Z

)

= h(λ)g(λ), ∀|λ|≥ 1 (37)

where h(λ) = det(λIm −M) and g(λ) = det (λ−X − Y (λIm −M)−1Z).

3pdf: probability density function.
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“⇒” We have H is Schur stable, now we need to proof g(1) > 0.

Since H is Schur stable, from the Schur-Cohn criteria (see [24], p.27) we have P (1) > 0. It

follows that h(1)g(1) > 0. As M is Schur stable, we have h(1) = det(Im −M) > 0. Hence,

g(1) > 0.

“⇐” We have g(1) > 0, now we need to show that H is Schur stable. Assume that H is not

Schur stable. Then there exists λ0, |λ0|≥ 1 such that P (λ0) = 0. We then have λ0Im −M is

invertible and then P (λ0) = h(λ0)g(λ0) = 0 where h(λ0) = det(λ0Im−M) 6= 0. It follows that

g(λ0) = 0.

(1) If λ0 is a real number: we can proof that g(λ) is a strictly increasing function on R. Then

we have 0 = g(λ0) > g(1) > 0. This is a contradiction.

(2) If λ0 is a complex number, we have λ∗0, the conjugate of λ0, is also an eigenvalue of H .

Then λ20 and (λ∗0)
2 are eigenvalues of H2. Then, trace(H2) =

∑
(eig(H2)) ≥ λ20+(λ∗0)

2 ≥ 2. It

can also be shown that trace(H2) = X2 + 2Y Z + trace(M2) < (X + Y Z)2 + trace(M2) < 2,

since g(1) > 0 ⇒ X + Y Z < 1 and trace(M2) < 1 as in the assumption of Lemma 2. This is

also a contradiction.

The two above contradictions establish the result. �

F. Proof of Corollary 2

Proof: The certification matrix of A2, T (A2), is calculated as follows. From (18) and (17),

we have Φ(A2) = diag{α, ρ1, ..., ρ1
︸ ︷︷ ︸
η−1 times

, ρ2, ..., ρ2
︸ ︷︷ ︸

Nmax−η+1 times

}. We then have T (A2) , Φ(A2)Π(A2). Then, the

first statement of Corollary 2 is directly proved by Corollary 1.

To prove the second statement of Corollary 2, firstly we have T (A2) can be written as:

T (A2) =




l0α αΘT

l0ρ1E1 ρ1G



.

It is easy to prove that the (2,2) block of T (A2), which is Gρ1,ρ2 , is Schur stable by proving

that ||Gρ1,ρ2||∞< 1, hence 1 > ||Gρ1,ρ2||∞≥ σ(Gρ1,ρ2) (spectral radius is less than or equal any

matrix norm). It can also be shown that trace(G2
ρ1,ρ2

) < 1. Therefore, by applying Lemma 2 we

have the Schur condition for T (A2) is that

1− l0α− l0αΘT
2 (I −Gρ1,ρ2)

−1E2 > 0

which gives (19).
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