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Line configurations and r-Stirling partitions

Brendon Rhoades and Andrew Timothy Wilson

A set partition of [n] := {1, 2, . . . , n} is called r-Stirling if the num-
bers 1, 2, . . . , r belong to distinct blocks. Haglund, Rhoades, and
Shimozono constructed a graded ring Rn,k depending on two posi-
tive integers k ≤ n whose algebraic properties are governed by the
combinatorics of ordered set partitions of [n] with k blocks. We

introduce a variant R
(r)
n,k of this quotient for ordered r-Stirling par-

titions which depends on three integers r ≤ k ≤ n. We describe the

standard monomial basis of R
(r)
n,k and use the combinatorial notion

of the coinversion code of an ordered set partition to reprove and
generalize some results of Haglund et. al. in a more direct way. Fur-

thermore, we introduce a variety X
(r)
n,k of line configurations whose

cohomology is presented as the integral form of R
(r)
n,k, generalizing

results of Pawlowski and Rhoades.

1. Introduction

Given two integers r ≤ n, a set partition of [n] := {1, 2, . . . , n} is called
r-Stirling if the first r letters 1, 2, . . . , r lie in distinct blocks. The r-Stirling

number (of the second kind) Stir
(r)
n,k counts r-Stirling partitions of [n] with

k blocks. An ordered r-Stirling partition is an r-Stirling partition σ = (B1 |

· · · | Bk) equipped with a total order on its blocks. We let OP
(r)
n,k denote the

family of ordered r-Stirling partitions of [n] with k blocks; these are counted

by |OP
(r)
n,k| = k! · Stir

(r)
n,k.

An example element of OP
(3)
7,4 is (2 6 | 5 | 1 7 | 3 4). On the other hand,

the ordered set partition (4 5 | 2 | 1 3 6 | 7) fails to be 3-Stirling since 1
and 3 belong to the same block. The symmetric group Sn acts on ordered

set partitions of [n] by letter permutation. Although OP
(r)
n,k is not closed

under the full action of Sn, it does carry an action of the parabolic subgroup
Sr × Sn−r.

When r = k = n, an element of OP
(n)
n,n is just a permutation in Sn. The

combinatorics of the symmetric group Sn is well-known to govern both the
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algebraic structure of the coinvariant ring Rn and the geometric structure

of the flag variety Fℓ(n).

In the case r = 0 where OPn,k := OP
(0)
n,k is the collection of k-block

ordered set partitions of [n], the Delta Conjecture [2] in the theory of Mac-

donald polynomials motivated the definition and study of a generalized coin-

variant ring Rn,k [3] and a generalization Xn,k of the flag variety [5] which

specialize to their classical counterparts when k = n. The algebraic proper-

ties of Rn,k and the geometric properties of Xn,k are governed by combina-

torial properties of ordered set partitions in OPn,k.

At a workshop in Montréal in the Summer of 2017, Jeff Remmel asked

the authors if it was possible to extend this theory to encapsulate ordered

r-Stirling partitions; in this paper we do exactly that. We consider a quo-

tient ring R
(r)
n,k and a variety X

(r)
n,k whose properties are controlled by the

combinatorics of OP
(r)
n,k. The quotient R

(r)
n,k of Q[xn] := Q[x1, . . . , xn] (to-

gether with its companion quotient S
(r)
n,k of Z[xn] := Z[x1, . . . , xn]) is defined

as follows. If xm = (x1, . . . , xm) is a list of variables and d ≥ 0, we recall

the elementary and homogeneous symmetric polynomials of degree d in the

variable set xm:

ed(xm) :=
∑

1≤i1<···<id≤m

xi1 · · · xid ,(1)

hd(xm) :=
∑

1≤i1≤···≤id≤m

xi1 · · · xid .(2)

Definition 1.1. For r ≤ k ≤ n, let I
(r)
n,k ⊆ Q[xn] be the ideal

(3) I
(r)
n,k :=

〈 xk1, x
k
2 , . . . , x

k
n,

en(xn), en−1(xn), . . . , en−k+1(xn),
hk−r+1(xr), hk−r+2(xr), . . . , hk(xr)

〉

and let R
(r)
n,k be the corresponding quotient ring:

(4) R
(r)
n,k := Q[xn]/I

(r)
n,k.

Furthermore, let J
(r)
n,k ⊆ Z[xn] be the ideal in Z[xn] with the same generating

set as I
(r)
n,k and let S

(r)
n,k = Z[xn]/J

(r)
n,k be the corresponding quotient.
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ℓ2 = ℓ5

ℓ1

ℓ4

ℓ3

Figure 1: A point in X
(2)
5,3 .

When r = k = n, the ideal In := I
(n)
n,n is just the classical invariant ideal

〈e1(xn), e2(xn), . . . , en(xn)〉 generated by the n elementary symmetric poly-

nomials. When r = 0, the ideal In,k := I
(0)
n,k is precisely the ideal considered

in [3], and its companion ideal Jn,k := J
(0)
n,k over the ring of integers was

considered in [5].

The quotient ring S
(r)
n,k will be shown to calculate the cohomology (sin-

gular, with coefficients in Z) of a natural space X
(r)
n,k whose geometry is

governed by the combinatorics of OP
(r)
n,k. Let Pk−1 be the complex projec-

tive space of lines through the origin in Ck, so that (Pk−1)n is the complex
algebraic variety of all n-tuples (ℓ1, . . . , ℓn) of lines through the origin in Ck.
We consider the following family of line configurations.

Definition 1.2. Let r ≤ k ≤ n and define a subset X
(r)
n,k ⊆ (Pk−1)n by

(5) X
(r)
n,k :=

{
(ℓ1, ℓ2, . . . , ℓn) ∈ (Pk−1)n :

ℓ1 + ℓ2 + · · ·+ ℓn = Ck and
dim(ℓ1 + ℓ2 + · · · + ℓr) = r

}
.

A typical point in X
(r)
n,k is an n-tuple of lines (ℓ1, . . . , ℓn) through the ori-

gin in Ck such that these lines span Ck and such that the first r of these lines

are linearly independent. An example of such a line configuration in X
(2)
5,3 is

shown in Figure 1; the first two lines ℓ1 and ℓ2 are linearly independent, and
the five lines ℓ1, . . . , ℓ5 together span C3.

The product group Sr ×Sn−r acts on X
(r)
n,k by line permutation. The set

X
(r)
n,k is a Zariski open subset of (Pk−1)n and is therefore both a variety and

a smooth complex manifold.
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When r = k = n, the space X
(r)
n,k may be identified with the quotient

G/T , where G = GLn(C) is the group of invertible n× n complex matrices
and T ⊆ G is the diagonal torus. If B ⊆ G is the Borel subgroup of upper
triangular matrices, the quotient G/B is the classical flag variety Fℓ(n) of
type An−1 and the canonical projection G/T ։ G/B is a homotopy equiva-

lence. When r = 0, the space Xn,k := X
(0)
n,k of n-tuples of lines spanning Ck

was defined and studied by Pawlowski and Rhoades as an extension of the
flag variety [5].

The remainder of the paper is organized as follows. In Section 2 we will
introduce a new statistic on an ordered set partition σ: the coinversion code
code(σ). This will allow us to read off the standard monomial basis of the

quotient ring R
(r)
n,k directly from the combinatorics of OP

(r)
n,k, both extending

and making more combinatorial the results regarding Rn,k in [3]. In Sec-

tion 3 we will study the space of line configurations X
(r)
n,k and prove that

H•(X
(r)
n,k) = S

(r)
n,k. We will also describe an affine paving of X

(r)
n,k with cells in-

dexed by partitions in OP
(r)
n,k, together with formulas for the representatives

of the closures of these cells in cohomology.

2. Coinversion codes and standard bases

Recall that an inversion of a permutation w ∈ Sn is a pair 1 ≤ i < j ≤ n
such that i appears to the right of j in the one-line notation w = w1 . . . wn,
so that the inversions of 231 ∈ S3 are the pairs (1, 2) and (1, 3). Extending
this notion to ordered set partitions, if σ = (B1 | · · · | Bk) is an ordered set
partition of [n] with k blocks, a pair 1 ≤ i < j ≤ n is said to be an inversion
of σ if

• the block of i is strictly to the right of the block of j in σ, and
• the letter i is minimal in its block.

We let inv(σ) be the number of inversions of σ, so that if σ = (25 | 1 | 34) ∈
OP5,3 the inversion pairs are (1, 2), (1, 5), and (3, 5) so that inv(σ) = 3.

We will not be interested in the statistic inv itself, but rather its com-
plementary statistic. For any three integers r ≤ k ≤ n, it is not hard to see

that the statistic inv on OP
(r)
n,k achieves its maximum value at the unique

point σ0 := (k, k + 1 . . . , n− 1, n | k − 1 | · · · | 1) ∈ OP
(r)
n,k, and that

(6) inv(σ0) = (n− k)(k − 1) +

(
k

2

)
.
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We define the statistic coinv on OP
(r)
n,k by the rule

(7) coinv(σ) := (n− k)(k − 1) +

(
k

2

)
− inv(σ).

For example, we have

coinv(25 | 1 | 34) = (5− 3)(3− 1) +

(
3

2

)
− inv(25 | 1 | 34) = 4 + 3− 3 = 4.

It will be convenient to break up the coinversion statistic coinv into a
sequence of smaller statistics. Given an ordered set partition σ = (B1 |

· · · | Bk) ∈ OP
(r)
n,k, define the coinversion code code(σ) = (c1, c2, . . . , cn) as

follows. Suppose 1 ≤ i ≤ n and i ∈ Bj. Then

(8) ci =

{
|{ℓ > j : min(Bℓ) > i}| if i = min(Bj)

|{ℓ > j : min(Bℓ) > i}| + (j − 1) if i 6= min(Bj).

The coinversion code of (25 | 1 | 34) is therefore code(σ) = (c1, c2, c3, c4, c5) =
(1, 1, 0, 2, 0). The coinversion code breaks the statistic coinv into pieces.

Proposition 2.1. Let σ ∈ OP
(r)
n,k with code(σ) = (c1, c2, . . . , cn). Then

(9) coinv(σ) = c1 + c2 + · · ·+ cn.

Which sequences (c1, c2, . . . , cn) of nonnegative integers can arise as the

coinversion code of some element σ ∈ OP
(r)
n,k? When r = k = n, these

are precisely the sequences (c1, c2, . . . , cn) which are componentwise ≤ the
staircase (n − 1, n − 2, . . . , 0) of length n. To state the answer for general
r ≤ k ≤ n, we will need some definitions.

If S = {s1 < s2 < · · · < sm} is any subset of [n], the skip composition
γ(S) = (γ(S)1, . . . , γ(S)n) is the sequence given by

(10) γ(S)i =

{
i− j + 1 if i = sj ∈ S

0 if i /∈ S.

We also let γ(S)∗ = (γ(S)n, . . . , γ(S)1) be the reversal of the skip composi-
tion. As an example, if n = 7 and S = {2, 3, 6} then γ(S) = (0, 2, 2, 0, 0, 4, 0)
and γ(S)∗ = (0, 4, 0, 0, 2, 2, 0).

Theorem 2.2. Let r ≤ k ≤ n. The map σ 7→ code(σ) gives a bijection from

OP
(r)
n,k to the family (c1, . . . , cn) of nonnegative integer sequences such that
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• for all r + 1 ≤ i ≤ n we have ci < k,
• for all 1 ≤ i ≤ r we have ci < k − i+ 1, and
• for any subset S ⊂ [n] with |S| = n − k + 1, the componentwise in-

equality γ(S)∗ ≤ (c1, . . . , cn) fails to hold.

Proof. Let C
(r)
n,k be the family of length n sequences of nonnegative integers

which satisfy the three conditions in the statement of the theorem. Let

σ ∈ OP
(r)
n,k with code(σ) = (c1, . . . , cn). We show that (c1, . . . , cn) ∈ C

(r)
n,k,

so that the function code : OP
(r)
n,k → C

(r)
n,k is well-defined. This is verified as

follows.

• For any 1 ≤ i ≤ n, the block B of σ containing i cannot contribute
to ci, whereas each block 6= B can contribute at most 1 to ci. Conse-
quently, we have ci < k.

• Since σ is r-Stirling, the letters 1, 2, . . . , r are all minimal in their
blocks. In particular, if 1 ≤ i ≤ r, the blocks containing 1, 2, . . . , i − 1
cannot contribute to ci, so that ci < k − i+ 1.

• Finally, let S ⊆ [n] satisfy |S| = n − k + 1. We verify γ(S)∗ 6≤
(c1, . . . , cn). Working towards a contradiction, suppose γ(S)∗ ≤ (c1, . . . , cn).
Write the reversal T := {n − i + 1 : i ∈ S} of S as T = {t1 < · · · <
tn−k+1}. Since σ has n letters and k blocks, at least one element of T
must be minimal in its block of σ. If tn−k+1 is minimal in its block of
σ, then

ctn−k+1
=

∣∣∣∣
{
ℓ > tn−k+1 :

ℓ is minimal in its block and
occurs to the right of tn−k+1 in σ

}∣∣∣∣

(11)

≤ |{tn−k+1 + 1, . . . , n− 1, n}|(12)

= n− tn−k+1.(13)

But the term of γ(S)∗ in position tn−k+1 is n−tn−k+1+1. We conclude
that tn−k+1 is not minimal in its block of σ. If tn−k were minimal in
its block of σ, then

ctn−k
=

∣∣∣∣
{
ℓ > tn−k :

ℓ is minimal in its block and
occurs to the right of tn−k in σ

}∣∣∣∣(14)

≤ |{tn−k + 1, . . . , n− 1, n} − {tn−k+1}|(15)

= n− tn−k − 1,(16)

But the term of γ(S)∗ in position tn−k is n− tn−k. We conclude that
tn−k is not minimal in its block of σ. If tn−k−1 were minimal in its
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block of σ, the same reasoning leads to the contradiction ctn−k−1
<

n− tn−k−1−1, etc. We see that none of the elements in T are minimal
in their block of σ, a contradiction.

In order to show that code : OP
(r)
n,k → C

(r)
n,k is a bijection, we construct

its inverse. As this inverse will be defined using an insertion procedure, we

denote it ι : C
(r)
n,k → OP

(r)
n,k.

Let (B1 | · · · | Bk) be a sequence of of k possibly empty sets of positive
integers. We define the coinversion label of the sets B1, . . . , Bk by labeling
the empty sets with 0, 1, . . . , j from right to left (where there are j+1 empty
sets), and then labeling the nonempty sets with j + 1, j + 2, . . . , k − 1 from
left to right. An example of coinversion labels is as follows, displayed as
superscripts:

(∅2 | 133 | ∅1 | 254 | 45 | ∅0).

By construction, each of the letters 0, 1, . . . , k− 1 appears exactly once as a
coinversion label.

Let (c1, . . . , cn) ∈ C
(r)
n,k. Then 0 ≤ ci ≤ k − 1 for 1 ≤ i ≤ n. We define

ι(c1, . . . , cn) = (B1 | · · · | Bk) recursively by starting with the sequence
(∅ | · · · | ∅) of k copies of the empty set, and for i = 1, 2, . . . , n inserting i
into the unique block with coinversion label ci. Here is an example of this
procedure for (n, k, r) = (9, 4, 3) and (c1, . . . , c9) = (2, 0, 1, 1, 1, 0, 2, 1, 3):

i ci σ

1 2 (∅3 | ∅2 | ∅1 | ∅0)
2 0 (∅2 | 13 | ∅1 | ∅0)
3 1 (∅1 | 12 | ∅0 | 23)
4 1 (31 | 12 | ∅0 | 23)
5 1 (341 | 12 | ∅0 | 23)
6 0 (3451 | 12 | ∅0 | 23)
7 2 (3450 | 11 | 62 | 23)
8 1 (3450 | 181 | 672 | 23)
9 3 (3450 | 181 | 672 | 293)

We conclude ι(2, 0, 1, 1, 1, 0, 2, 1, 3) = (345 | 18 | 67 | 29).

We verify that ι is a well-defined function C
(r)
n,k → OP

(r)
n,k. Let (c1, . . . , cn) ∈

C
(r)
n,k and let ι(c1, . . . , cn) = (B1 | · · · | Bk) = σ. We must show that 1, 2, . . . , r

lie in distinct blocks of σ and that σ does not have any empty blocks.
Suppose there exist 1 ≤ i < j ≤ r such that i and j belong to the same

block of σ. Choose the pair (i, j) to be lexicographically minimal with this
property and suppose i, j ∈ Bℓ. Since the sequence (B1 | · · · | Bk) consists of
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j − 1 singletons and k − j + 1 copies of the empty set when j is inserted by
ι, the definition of ι and the fact that j was added to a non-singleton block

imply cj ≥ k − j + 1, which contradicts the assumption (c1, . . . , cn) ∈ C
(r)
n,k.

We conclude that 1, 2, . . . , r lie in different blocks of σ.
Now suppose that some of the blocks of σ = (B1 | · · · | Bk) are empty.

This means that at least n − k + 1 of the letters in [n] are not minimal in
their block of σ. Let S be the lexicographically first set of n−k+1 letters in
[n] which are not minimal in their blocks. We will derive the contradiction
γ(S)∗ ≤ (c1, . . . , cn).

Indeed, write the reversal T = {n − i + 1 : i ∈ S} of S as T = {t1 <
· · · < tn−k+1}. Let 1 ≤ i ≤ n− k + 1. By our choice of S, we know that the
letters in the set difference

(17) {ti + 1, ti + 2, . . . , n} − {ti+1, ti+2, . . . , tn−k+1}

are all minimal in their blocks of σ; this set has (n− ti)− (n− k+ 1− i) =
k − ti + i − 1 elements. Consequently, since σ contains at least one empty
block, when the ι inserts ti, there are ≥ k− ti + i empty blocks. This forces
cti ≥ k − ti + i + 1. Since k − ti + i + 1 is the term of γ(S)∗ in position
ti, we conclude γ(S)∗ ≤ (c1, . . . , cn), which contradicts the assumption that

(c1, . . . , cn) ∈ C
(r)
n,k. Therefore, none of the blocks of σ are empty and the

function ι : C
(r)
n,k → OP

(r)
n,k is well-defined. We leave it for the reader to check

that code and ι are mutually inverse.

The code bijection of Theorem 2.2 will have algebraic importance to the
theory of Gröbner bases. Recall that a total order < on monomials in Q[xn]
is called a monomial order if

• 1 ≤ m for any monomial m, and
• if m1,m2, and m3 are monomials with m1 < m2, we have m1 ·m3 <

m2 ·m3.

In this paper, we will exclusively use the negative lexicographical term order
neglex defined by xa1

1 · · · xan

n < xb11 · · · xbnn if and only if there exists 1 ≤ i ≤ n
such that ai < bi and ai+1 = bi+1, . . . , an = bn.

If < is any monomial order and f ∈ Q[xn] is nonzero, let in<(f) be the
leading term of f . Furthermore, if I ⊆ Q[xn] is an ideal, the initial ideal is
in<(I) := 〈in<(f) : f ∈ I − {0}〉. A finite subset G = {g1, . . . , gs} ⊂ I is
called a Gröbner basis if in<(I) = 〈in<(g1), . . . , in<(gs)〉. If G is a Gröbner
basis for I, we necessarily have I = 〈G〉. Every ideal I ⊆ Q[xn] has a Gröbner
basis (with respect to some fixed monomial order <).
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Let I ⊆ Q[xn] be an ideal and fix a monomial order<. IfG = {g1, . . . , gs}

is a Gröbner basis for I, the set of monomials

(18)

{m : in<(f) ∤ m for all f ∈ I − {0}} = {m : in<(gi) ∤ m for 1 ≤ i ≤ s}

descends to a Q-vector space basis for Q[xn]/I. This is called the standard

basis of Q[xn]/I. After a monomial order is fixed, any quotient Q[xn]/I has a

unique standard basis. The code map precisely describes the standard basis

of R
(r)
n,k in terms of ordered r-Stirling partitions.

Theorem 2.3. Let r ≤ k ≤ n and consider the set of monomials M
(r)
n,k

given by

(19)

M
(r)
n,k =

{
xc11 xc22 · · · xcnn : (c1, c2, . . . , cn) = code(σ) for some σ ∈ OP

(r)
n,k

}
.

1. The set M
(r)
n,k is the standard basis for the Q-vector space R

(r)
n,k with

respect to the neglex monomial order.

2. The set M
(r)
n,k is a Z-basis for the Z-module S

(r)
n,k.

Proof. 1. We begin by proving the inequality dim(R
(r)
n,k) ≥ |OP

(r)
n,k|. Consider

k distinct rational numbers α1, . . . , αk and let Y
(r)
n,k ⊂ Qn be the family of

points (y1, . . . , yn) such that

• {y1, . . . , yn} = {α1, . . . , αk}, and

• the coordinates y1, . . . , yr are distinct.

It is evident that Y
(r)
n,k carries an action of the symmetric group product

Sr × Sn−r, and that this affords an identification of Y
(r)
n,k with OP

(r)
n,k.

Let I(Y
(r)
n,k ) ⊆ Q[xn] be the ideal of polynomials in Q[xn] which vanish

on Y
(r)
n,k . We have

(20) Q[xn]/I(Y
(r)
n,k )

∼= Q[Y
(r)
n,k ]

∼= Q[OP
(r)
n,k]

as Sr × Sn−r-modules. If f ∈ I(Y
(r)
n,k ) is nonzero, let τ(f) denote the homo-

geneous component of f of highest degree and set

(21) T(Y
(r)
n,k ) := 〈τ(f) : f ∈ I(Y

(r)
n,k )− {0}〉.
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We have the further Sr × Sn−r-module isomorphism

(22) Q[xn]/T(Y
(r)
n,k )

∼= Q[xn]/I(Y
(r)
n,k )

∼= Q[Y
(r)
n,k ]

∼= Q[OP
(r)
n,k].

Proving the dimension inequality dim(R
(r)
n,k) ≥ |OP

(r)
n,k| therefore reduces

to showing the containment I
(r)
n,k ⊆ T(Y

(r)
n,k ); we do this by considering the

generators of I
(r)
n,k.

• Let 1 ≤ i ≤ n; we show that the monomial xki lies in T(Y
(r)
n,k ). This

follows from the fact that (xi − α1)(xi − α2) · · · (xi − αk) ∈ I(Y
(r)
n,k ).

• We show that en(xn), en−1(xn), . . . , en−k+1(xn) ∈ T(Y
(r)
n,k ). Indeed, in-

troduce a new variable t and consider the rational function

(23)
(1− x1t) · · · (1− xnt)

(1− α1t) · · · (1− αkt)
=

∑

i,j

(−1)iei(xn)hj(α1, . . . , αk) · t
i+j .

If (x1, . . . , xn) ∈ Y
(r)
n,k the factors of the denominator cancel with k

factors in the numerator, yielding a polynomial in t of degree n − k.

If n− k + 1 ≤ i ≤ n, taking the coefficient of ti on both sides leads to

ei(xn) ∈ T(Y
(r)
n,k ).

•

(24)
(1− α1t) · · · (1− αkt)

(1− x1t) · · · (1− xrt)
=

∑

i,j

(−1)iei(α1, . . . , αk)hj(xr) · t
i+j.

If (x1, . . . , xn) ∈ Y
(r)
n,k , the factors in the denominator cancel with r

factors in the numerator, yielding a polynomial in t of degree k− r. If

k − r + 1 ≤ j ≤ k, taking the coefficient of ti on both sides leads to

hj(xr) ∈ T(Y
(r)
n,k ).

This completes the proof that dim(R
(r)
n,k) ≥ |OP

(r)
n,k|.

Given any subset S ⊆ [n] with reverse skip composition γ(S)∗ = (a1, . . . , an),

let x(S)∗ := xa1

1 · · · xan

n be the associated reverse skip monomial. By [3, Sec.

3], we have x(S)∗ ∈ in<(I
(r)
n,k) whenever S ⊆ [n] satisfies |S| = n − k + 1.

Furthermore, the identities

(25) hd(x1, . . . , xi−1, xi)− xihd−1(x1, . . . , xi−1, xi) = hd(x1, . . . , xi−1)
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imply that xk1 , x
k−1
2 , . . . , xk−r−1

r ∈ in<(I
(r)
n,k). Finally, we have x

k
r+1, . . . , x

k
n−1, x

k
n ∈

in<(I
(r)
n,k). Theorem 2.2 implies that the monomials in M

(r)
n,k are precisely

those monomials in Q[xn] which are not divisible by any of the three classes

of elements of in<(I
(r)
n,k) listed above. Again by Theorem 2.2 we have dim(R

(r)
n,k) ≥

|OP
(r)
n,k| = |M

(r)
n,k|, so that M

(r)
n,k is the standard basis of R

(r)
n,k.

2. From Item 1 of this theorem, we know that the set M
(r)
n,k descends to a

linearly independent subset of S
(r)
n,k; we need only show that M

(r)
n,k descends

to a Z-spanning set of S
(r)
n,k. To this end, let m be any monomial in Z[xn].

We show inductively that m+ J
(r)
n,k lies in the Z-span of M

(r)
n,k. If m ∈ M

(r)
n,k

this is obvious. Otherwise, one of the following three things must be true:

1. There exists 1 ≤ i ≤ r such that xk−i+1
i | m.

2. There exists r + 1 ≤ i ≤ n such that xki | m.
3. There exists S ⊆ [n] with |S| = n− k + 1 such that x(S)∗ | m.

If (1) holds, Equation (25) implies hk−i+1(x1, x2, . . . , xi) ∈ J
(r)
n,k. As a

consequence, we have
(26)

xk−i+1
i ≡ a Z-linear combination of monomials < xk−i+1

i in neglex (mod J
(r)
n,k).

If we multiply through by the monomial m/xk−i+1
i , we see that

(27)

m ≡ a Z-linear combination of monomials < m in neglex (mod J
(r)
n,k),

so that inductively we see that m+ J
(r)
n,k lies in the span of M

(r)
n,k.

If (2) holds, then m ∈ J
(r)
n,k, so certainly m+ J

(r)
n,k = 0 lies in the Z-span

of M
(r)
n,k.

If (3) holds, let κγ(S)∗(xn) ∈ Z[xn] be the Demazure character attached
to the reverse skip composition γ(S)∗. This is a certain polynomial in the
variables x1, . . . , xn with nonnegative integer coefficients. The precise form
of this polynomial is not important for us, but we have (see e.g. [3, Lem.
3.5])
(28)
κγ(S)∗(xn) = x(S)∗ + a Z-linear combination of terms < x(S)∗ in neglex.

By [3, Lem 3.4] we have κγ(S)∗(xn) ∈ J
(r)
n,k, so that Equation (28) implies

(29)

x(S)∗ ≡ a Z-linear combination of terms < x(S)∗ in neglex (mod J
(r)
n,k).
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If we multiply Equation (29) through by the monomial m/x(S)∗, we get

(30) m ≡ a Z-linear combination of terms < m in neglex (mod J
(r)
n,k).

so that inductively we see that m+ J
(r)
n,k lies in the Z-span of M

(r)
n,k.

When r = 0, Theorem 2.3 is equivalent to a result of Haglund, Rhoades,

and Shimozono [3, Thm. 4.13]. However, the proof of Theorem 2.3 is much

more direct that of [3, Thm. 4.13] (and those in [3, Sec. 4] in general);

whereas we associate an explicit standard basis element xc11 · · · xcnn to any

ordered set partition σ, the description of the standard bases in [3] is re-

cursive in nature. We exhibit this link between ordered set partitions and

standard basis elements with an example.

Example 2.4. To illustrate Theorem 2.3, we give the standard basis of R
(2)
4,3

with respect to neglex.

σ code(σ) monomial
(1 | 2 | 34) (2, 1, 0, 2) x2

1x2x
2
4

(1 | 24 | 3) (2, 1, 0, 1) x2
1x2x4

(14 | 2 | 3) (2, 1, 0, 0) x2
1x2

(1 | 23 | 4) (2, 1, 2, 0) x2
1x2x

2
3

(13 | 2 | 4) (2, 1, 1, 0) x2
1x2x3

(2 | 1 | 34) (1, 1, 0, 2) x1x2x
2
4

(2 | 14 | 3) (1, 1, 0, 1) x1x2x4

(24 | 1 | 3) (1, 1, 0, 0) x1x2

(2 | 13 | 4) (1, 1, 2, 0) x1x2x
2
3

(23 | 1 | 4) (1, 1, 1, 0) x1x2x3

σ code(σ) monomial
(1 | 34 | 2) (2, 0, 0, 1) x2

1x4

(1 | 3 | 24) (2, 0, 0, 2) x2
1x

2
4

(14 | 3 | 2) (2, 0, 0, 0) x2
1

(1 | 4 | 23) (2, 0, 2, 0) x2
1x

2
3

(13 | 4 | 2) (2, 0, 1, 0) x2
1x3

(2 | 34 | 1) (0, 1, 0, 1) x2x4

(2 | 3 | 14) (0, 1, 0, 2) x2x
2
4

(24 | 3 | 1) (0, 1, 0, 0) x2

(2 | 4 | 13) (0, 1, 2, 0) x2x
2
3

(23 | 4 | 1) (0, 1, 1, 0) x2x3

σ code(σ) monomial
(34 | 1 | 2) (1, 0, 0, 0) x1

(3 | 14 | 2) (1, 0, 0, 1) x1x4

(3 | 1 | 24) (1, 0, 0, 2) x1x
2
4

(4 | 13 | 2) (1, 0, 1, 0) x1x3

(4 | 1 | 23) (1, 0, 2, 0) x1x
2
3

(34 | 2 | 1) (0, 0, 0, 0) 1
(3 | 24 | 1) (0, 0, 0, 1) x4

(3 | 2 | 14) (0, 0, 0, 2) x2
4

(4 | 23 | 1) (0, 0, 1, 0) x3

(4 | 2 | 13) (0, 0, 2, 0) x2
3

As an application of Theorem 2.3, we can describe the Hilbert series of

R
(r)
n,k in terms of the coinv statistic.
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Corollary 2.5. The Hilbert series of R
(r)
n,k is given by

(31) Hilb(R
(r)
n,k; q) =

∑

σ∈OP
(r)
n,k

qcoinv(σ).

As another application of Theorem 2.3, we can describe the ungraded

isomorphism type of R
(r)
n,k as a module over Sr × Sn−r. When r = k = n,

this is Chevalley’s classical result [1] that the coinvariant ring is isomorphic

to the regular representation of Sn.

Corollary 2.6. We have an isomorphism of ungraded Sr × Sn−r-modules

(32) R
(r)
n,k

∼= Q[OP
(r)
n,k].

It seems that the isomorphism type of R
(r)
n,k as a graded Sr×Sn−r-module

can be described in terms of known graded modules by the (graded) tensor

product decomposition

(33) R
(r)
n,k

∼= Rr ⊗C εrRn,k.

In the conjectural isomorphism (33) of graded Sr × Sn−r-modules,

• Rr = Q[xr]/〈e1(xr), . . . , er(xr)〉 is the classical coinvariant ring in the

first r variables xr, with its graded action of Sr,

• Rn,k = R
(0)
n,k is the graded Sn-moduleQ[xn]/〈x

k
1 , . . . , x

k
n, en(xn), . . . , en−k+1(xn)〉,

and

• εr ∈ Q[Sn] is the group algebra element

(34) εr :=
∑

w∈Sr

sign(w) · w

which antisymmetrizes over the subgroup Sr ⊆ Sn (acting on the first

r letters), so that Sn−r (acting on the last n − r letters) commutes

with εr and therefore

• εrRn,k is naturally a Sn−r-module, and

• the action of the product group Sr × Sn−r on the tensor product is

given by

(35) (w1 ×w2).(v1 ⊗ v2) := (w1.v1)⊗ (w2.v2).
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3. Line configurations and r-Stirling partitions

We shift focus from algebra to geometry and initiate the study of X
(r)
n,k. In

order to study the variety X
(r)
n,k, we will need to break it into pieces in a

reasonable way. For this we will use the notion of an affine paving (called a
cellular decomposition in [5]).

Let X be a smooth irreducible complex algebraic variety. An affine
paving of X is an ordered partition

(36) X = C1 ⊔ · · · ⊔ Cm

such that

• for all i, the union C1 ⊔ · · · ⊔Ci is a closed subvariety of X, and
• Ci is isomorphic as a variety to the affine space Cni , for some integer

ni.

The Ci are referred to as the cells of the affine paving and we will say that the
partition {C1, . . . , Cm} induces an affine paving of X. In this situation, the
classes of the cell closures {[C1], . . . , [Cm]} give a Z-basis for the (singular)
cohomology ring H•(X).

The projective space Pk−1 has an affine paving induced by the cells
{C1, C2, . . . , Ck}, where

(37) Ci = {[x1 : x2 : · · · : xk] ∈ Pk−1 : x1 = · · · = xi−1 = 0 and xi 6= 0}.

Taking products of these cells gives the standard affine paving of (Pk−1)n

whose cells are indexed by words w = w1 . . . wn ∈ [k]n. Following [5], we will
consider a different affine paving of (Pk−1)n whose cells are again indexed by
words in [k]n. In order to describe this paving, we will need some terminology.

Let Matk×n stand for the affine space of all complex k × n matrices m.

Let U
(r)
n,k be the Zariski open subset

(38) U
(r)
n,k :=



m ∈ Matk×n :

the matrix m has full rank, no zero
columns, and the first r columns
of m are linearly independent



 .

If we let T ⊂ GLn be the rank n diagonal torus, then T acts freely on the

columns of U
(r)
n,k and we may identify the orbit space as U

(r)
n,k/T = X

(r)
n,k.

Furthermore, we consider the larger Zariski open set Vn,k given by

(39) Vn,k := {m ∈ Matk×n : m has no zero columns}.
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This time we have the identification Vn,k/T = (Pk−1)n.
Let w = w1 . . . wn ∈ [k]n be a word in the letters 1, 2, . . . , k of length n.

An index 1 ≤ j ≤ n is called initial if wj is the first occurrence of its letter
in w; let in(w) = {j1 < j2 < · · · < js} be the set of initial indices in w.
For example, if w = 242141 ∈ [4]6 then in(w) = {1, 2, 4}. The k × n pattern
matrix PM(w) has entries in the set {0, 1, ⋆} as follows:
(40)

PM(w)i,j =





1 if wj = i

0 if the letter i does not appear in w

⋆ if j ∈ in(w), i < wj, and there exists j′ < j such that wj′ = i

0 if j ∈ in(w) and (i > wj or there does not exist j′ < j such that wj′ = i)

⋆ if j /∈ in(w), i 6= wj, and the first i appears before the first wj in w

0 if j /∈ in(w), i 6= wj, and the first i appears after the first wj in w.

In our example,

PM(242141) =




0 0 0 1 0 1
1 ⋆ 1 0 ⋆ ⋆
0 0 0 0 0 0
0 1 0 0 1 ⋆


 .

For any word w = w1 . . . wn ∈ [k]n, let Ĉw be the affine space of all
matrices obtained by replacing the ⋆’s in PM(w) by complex numbers. Let
U ⊂ GLk(C) be the unipotent subgroup of lower triangular matrices with
1’s on the diagonal. We define a subset Cw ⊆ (Pk−1)n by

(41) Cw := image of U · Ĉw in (Pk−1)n.

It follows from [5] that Cw is isomorphic as a variety to an affine space.

Proposition 3.1. ([5]) For any k ≤ n, the set {Cw : w ∈ [k]n} induces an
affine paving of (Pk−1)n.

The affine paving of Proposition 3.1 induces an affine paving of X
(r)
n,k.

To describe this paving, we define W
(r)
n,k to be the family of words w =

w1w2 . . . wn ∈ [k]n such that the letters 1, 2, . . . , k all appear in w and that
the first r letters w1, w2, . . . , wr of w are distinct.

Proposition 3.2. The family of cells {Cw : w ∈ W
(r)
n,k} induces an affine

paving of the variety X
(r)
n,k.
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Proof. Let w ∈ [k]n be any word and consider the cell Cw ⊂ (Pk−1)n. The

definition of the pattern matrix PM(w) implies that Cw ⊂ X
(r)
n,k if w ∈ W

(r)
n,k

and Cw ∩X
(r)
n,k = ∅ otherwise. Now observe that the total order on the cells

{Cw : w ∈ [k]n} inducing the affine paving of Proposition 3.1 may be taken

to start with those w /∈ W
(r)
n,k (in some order) and end with those w ∈ W

(r)
n,k

(in some order). The claim follows.

Our next task is to present the cohomology of X
(r)
n,k as the quotient

S
(r)
n,k and describe the images of the Z-basis {[Cw] : w ∈ W

(r)
n,k} afforded

by Proposition 3.2. We being by recalling the standard presentation of the

cohomology of (Pk−1)n.

The cohomology of (Pk−1)n is presented as

(42) H•((Pk−1)n) = Z[xn]/〈x
k
1 , . . . , x

k
n〉,

where xi represents the Chern class c1(ℓ
∗
i ) ∈ H2((Pk−1)n) of the dual to the

ith tautological line bundle ℓi ։ (Pk−1)n.

Given a word w ∈ [k]n, a polynomial representative for [Cw] ∈ H•((Pk−1)n)

was calculated in [5]. In order to state it, we recall the classical Schubert
polynomials attached to permutations in Sn.

The Schubert polynomials {Sw : w ∈ Sn} are defined recursively by

(43)

{
Sw0

= xn−1
1 xn−2

2 · · · x0n for w0 = n(n− 1) . . . 1

Swsi = ∂iSw if wi > wi+1.

Here wsi is the permutation whose one-line notation wsi = w1 . . . wi+1wi . . . wn

is obtained from that of w by interchanging the letters in positions i and

i+ 1 and ∂i is the divided difference operator
(44)

∂i(f(x1, . . . , xn)) =
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

In order to extend Schubert polynomials from permutations in Sn to
words in [k]n, we will need some notation. A word w is called convex if it does

not have a subword of the form . . . i . . . j . . . i . . . . Any word w has a unique
convexification conv(w) which is characterized by being convex, having the

same letter multiplicities as w, and having its initial letters appear in the
same order from left to right. For example, we have conv(242141) = 224411.

Furthermore, let σ(w) ∈ Sn be the unique permutation with a minimal
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number of inversions which sorts w to conv(w); in our example σ(242141) =
132546 ∈ S6.

Suppose w = w1 . . . wn ∈ [k]n is a convex word with m distinct letters.
Let {i1 < i2 < · · · < ik−m} be the letters in [k] which do not appear in w. We
define the standardization st(w) = st(w)1 . . . st(w)n+k−m ∈ Sn+k−m to be
the permutation obtained from w by fixing the initial letters of w, replacing
the non-initial letters of w from left to right with k+1, k+2, . . . , n+k−m,
and appending the sequence i1i2 . . . ik−m to the end. For example, if (n, k) =
(7, 5) and w = 3344411 then st(w) = 364781925 ∈ S9.

Let w ∈ [k]n be an arbitrary word of length n in the letters 1, 2, . . . , k.
The word Schubert polynomial Sw is defined by

(45) Sw := σ(w)−1.Sst(conv(w)).

Although the permutation st(conv(w)) will lie in a symmetric group of rank
> n when w does not contain all of the letters 1, 2, . . . , k, the polynomial Sw

depends only on the variables x1, x2, . . . , xn so that Sw ∈ Z[xn]. Pawlowski
and Rhoades proved [5] that the closure of the cell Cw is represented by Sw

under the presentation (42):

(46) [Cw] is represented by Sw in H•((Pk−1)n).

Theorem 3.3. Let r ≤ k ≤ n. The singular cohomology of X
(r)
n,k may be

presented as

(47) H•(X
(r)
n,k) = S

(r)
n,k.

Furthermore, under the presentation (47), if w ∈ W
(r)
n,k the cell closure Cw

is represented in H•(X
(r)
n,k) by Sw.

Proof. Consider the affine paving {Cw : w ∈ [k]n} of (Pk−1)n afforded by

Proposition 3.1. If w /∈ W
(r)
n,k, we have Cw ∩X

(r)
n,k = ∅. By Proposition 3.2, it

follows that X
(r)
n,k is obtained from (Pk−1)n by excising the union of cell clo-

sures
⋃

w∈[k]n−W
(r)
n,k

Cw. It follows (see [5]) that the cohomology ringH•(X
(r)
n,k)

may be presented as

(48) H•(X
(r)
n,k) = H•((Pk−1)n)/J,

where J ⊆ H•((Pk−1)n) is the ideal generated by those [Cw] for which

w ∈ [k]n − W
(r)
n,k. If we use the presentation of H•((Pk−1)n) given in (42)
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together with the polynomial representatives (46), we can write

(49) H•(X
(r)
n,k) = Z[xn]/I,

where I ⊆ Z[xn] is the ideal generated by xk1, x
k
2 , . . . , x

k
n together with {Sw :

w ∈ [k]n −W
(r)
n,k}.

Claim: We have J
(r)
n,k ⊆ I.

To prove the Claim, we show that every generator of J
(r)
n,k lies in I. We

handle each type of generator separately.

• The generators xk1, x
k
2 , . . . , x

k
n of J

(r)
n,k are also generators of I.

• For the generators en−i+1(xn) (where 1 ≤ i ≤ k) of J
(r)
n,k we do the

following. For 1 ≤ i ≤ k let wi be the unique weakly increasing word
in [k]n containing exactly the letters [k] − {i} and whose first k − 1
letters are distinct. For example, the word w3 ∈ [5]7 is w3 = 1245555.

Since i does not appear in wi, we have wi /∈ W
(r)
n,k, so that Swi is a

generator of I. Furthermore, we have

st(conv(wi)) = 12 . . . (i− 1)(i + 1) . . . n(n+ 1)i ∈ Sn+1

which implies Swi = en−i+1(xn).
• Finally, we consider the generators hk−i+1(xr) (where 1 ≤ i ≤ r) of

J
(r)
n,k. These generators are not in general generators of I, but we show

that they nevertheless are contained in I. If k = n then X
(r)
n,k = Xn,n

so that the theorem follows from [5]; we assume that k < n.
For 1 ≤ i ≤ r − 1, let vi ∈ [k]n be the following weakly increasing
word:

vi = 12 . . . (i− 1)ii(i + 1)(i + 2) . . . (k − 1)k . . . k.

For example, the word v3 ∈ [5]7 is v3 = 12334555. Since k < n, every
letter in [k] appears in vi. However, since the first r letters of vi are

not distinct, we have vi /∈ W
(r)
n,k, so that Svi is a generator of I. We

have

st(conv(vi)) = 12 . . . (i− 1)i(k + 1)(i + 1)(i+ 2) . . . n ∈ Sn

which implies Svi = hk−i(xi+1).
The above paragraph shows that

hk−r+1(xr), hk−r+2(xr−1), . . . , hk−1(x2) ∈ I.
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The variable power hk(x1) = xk1 also lies in I. The identity
(50)
hd(x1, . . . , xi−1, xi) = xi · hd−1(x1, . . . , xi−1, xi) + hd(x1, . . . , xi−1)

together with the fact that I is an ideal in Z[xn] can be used to show
that

hk−r+1(xr), hk−r+2(xr), . . . , hk(xr) ∈ I,

which is what we wanted to show. This completes the proof of the
Claim.

By our Claim, we have a canonical surjection of Z-modules

(51) S
(r)
n,k = Z[xn]/J

(r)
n,k ։ Z[xn]/I = H•(X

(r)
n,k).

By Theorem 2.3, the module S
(r)
n,k is a free Z-module of rank |OP

(r)
n,k|. By

Proposition 3.2, the cohomology ring H•(X
(r)
n,k) is a free Z-module of rank

|W
(r)
n,k|. Since we have |OP

(r)
n,k| = |W

(r)
n,k| and any surjection between free

Z-modules of the same rank must be an isomorphism, we obtain the pre-

sentation (47) of the cohomology of X
(r)
n,k. The last sentence of the theorem

follows from (46).

The cohomology representatives of the cell closures in any affine paving
of a smooth irreducible variety X give rise to a Z-basis for the cohomology
ring H•(X). Theorem 3.3 therefore yields the following immediate corollary.

Corollary 3.4. Let r ≤ k ≤ n. The set of polynomials {Sw : w ∈ W
(r)
n,k}

descends to a Z-basis for S
(r)
n,k.

We have the following isomorphisms of ungraded Sr × Sn−r-modules:

(52) H•(X
(r)
n,k;Q) ∼= Q⊗Z H•(X

(r)
n,k)

∼= Q⊗Z S
(r)
n,k

∼= R
(r)
n,k

∼= Q[OP
(r)
n,k].

The first of these isomorphisms follows from the Universal Coefficient The-

orem (see e.g. [4]) and the fact that H•(X
(r)
n,k) vanishes in odd degree. The

second is Theorem 3.3. The third follows from the definitions of S
(r)
n,k and

R
(r)
n,k. The fourth follows from Corollary 2.6. The space X

(r)
n,k of line config-

urations therefore gives a geometric model for ordered r-Stirling partitions.
It may be possible to exploit this geometric model to describe the graded

structure of R
(r)
n,k as follows; the authors thank an anonymous referee for

pointing this out.
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Let G(r, k) be the Grassmannian of r-dimensional subspaces V ⊆ Ck

and consider the subspace Y
(r)
n,k ⊆ G(r, k) × (Pk−1)n−r defined as follows

(53) Y
(r)
n,k := {(V, ℓr+1, . . . , ℓn) : V + ℓr+1 + · · ·+ ℓn = Ck}.

The space Y
(r)
n,k is an open subvariety of G(r, k) × (Pk−1)n−r. We have a

natural map

π : X
(r)
n,k Y

(r)
n,k

(ℓ1, . . . , ℓr, ℓr+1, . . . , ℓn) (ℓ1 + · · ·+ ℓr, ℓr+1, . . . , ℓn)

obtained by taking the (necessarily r-dimensional) span of the first r lines

in a typical configuration in X
(r)
n,k.

The map π : X
(r)
n,k → Y

(r)
n,k is a fiber bundle. The fiber F over a point

(V, ℓr+1, . . . , ℓn) ∈ Y
(r)
n,k is given by the space of r-tuples (ℓ1, . . . , ℓr) of linearly

independent lines in the r-dimensional vector space V , which is homotopy

equivalent to the flag variety Fℓ(r). The inclusion ι : F →֒ X
(r)
n,k induces a

map on rational cohomology ι∗ : H•(X
(r)
n,k;Q) → H•(F ;Q). Since H•(F ;Q)

is generated by the Chern classes c1(ℓ
∗
1), . . . , c1(ℓ

∗
r) of the tautological line

bundles ℓ∗1, . . . , ℓ
∗
r over F , and these line bundles are pullbacks under ι of

the corresponding bundles on X
(r)
n,k, the map ι∗ is a surjection.

By the last paragraph, the Leray-Hirsch Theorem (see e.g. [4]) provides

the following isomorphism of H•(Y
(r)
n,k ;Q)-modules:

(54) H•(X
(r)
n,k;Q) ∼= H•(F ;Q) ⊗Q H•(Y

(r)
n,k ;Q).

The isomorphism (54) seems quite close to the conjectural isomorphism (33).

The left-hand-side of (54) is the graded Sr × Sn−r-module R
(r)
n,k. The ten-

sor factor H•(F ;Q) is the classical coinvariant module Rr for the symmetric

group Sr. Determining the graded Sr×Sn−r-isomorphism type of R
(r)
n,k there-

fore reduces to determining the graded Sn−r-structure of H•(Y
(r)
n,k ;Q).
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