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RESIDUALLY FAITHFUL MODULES AND THE COHEN-MACAULAY

TYPE OF IDEALIZATIONS

SHIRO GOTO, SHINYA KUMASHIRO, AND NGUYEN THI HONG LOAN

Abstract. The Cohen-Macaulay type of idealizations of maximal Cohen-Macaulay
modules over Cohen-Macaulay local rings is explored. There are two extremal cases,
one of which is closely related to the theory of Ulrich modules [2, 9, 10, 14], and the
other one is closely related to the theory of residually faithful modules and the theory of
closed ideals [3].

1. Introduction

The purpose of this paper is to explore the behavior of the Cohen-Macaulay type

of idealizations of maximal Cohen-Macaulay modules over Cohen-Macaulay local rings,

mainly in connection with their residual faithfulness.

Let R be a commutative ring and M an R-module. We set A = R⊕M as an additive

group and define the multiplication in A by

(a, x)·(b, y) = (ab, ay + bx)

for (a, x), (b, y) ∈ A. Then, A forms a commutative ring, which we denote by A = R⋉M

and call the idealization of M over R (or, the trivial extension of R by M). Notice that

R⋉M is a Noetherian ring if and only if so is the ring R and the R-module M is finitely

generated. If R is a local ring with maximal ideal m, then so is the idealization A = R⋉M ,

and the maximal ideal n of A is given by n = m×M .

The notion of the idealization was introduced in the book [20] of Nagata, and we now

have diverse applications in several directions (see, e.g., [1, 8, 13]). Let (R,m) be a

Cohen-Macaulay local ring of dimension d. We set

r(R) = ℓR
(
ExtdR(R/m, R)

)

and call it the Cohen-Macaulay type of R (here ℓR(∗) denotes the length). Then, as is

well-known, R is a Gorenstein ring if and only if r(R) = 1, so that the invariant r(R)

measures how different the ring R is from being a Gorenstein ring. In the current paper,
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we are interested in the Cohen-Macaulay type r(R⋉M) of R⋉M , for a maximal Cohen-

Macaulay (MCM for short) R-module M , that is a finitely generated R-module M with

depthR M = dimR. In the researches of this direction, one of the most striking results

is, of course, the characterization of canonical modules obtained by I. Reiten [21]. She

showed that R ⋉M is a Gorenstein ring if and only if R is a Cohen-Macaulay local ring

and M is the canonical module of R, assuming (R,m) is a Noetherian local ring and M

is a non-zero finitely generated R-module. Motivated by this result, our study aims at

explicit formulae of the Cohen-Macaulay type r(R⋉M) of idealizations for diverse MCM

R-modules M .

Let us state some of our main results, explaining how this paper is organized. Through-

out, let (R,m) be a Cohen-Macaulay local ring, and M a MCM R-module. Then, we have

in general

rR(M) ≤ r(R⋉M) ≤ r(R) + rR(M)

(here rR(M) = ℓR
(
ExtdR(R/m,M)

)
denotes the Cohen-Macaulay type of M), which we

shall confirm in Section 2 (Theorem 2.2). As is shown in Example 2.3 and Proposition

2.4, the difference r(R ⋉M) − rR(M) can be arbitrary among the interval [0, r(R)]. We

explore two extremal cases; one is the case of r(R ⋉M) = rR(M), and the other one is

the case of r(R⋉M) = r(R) + rR(M).

The former case is exactly the case where M is a residually faithful R-module and

closely related to the preceding research [3]. To explain the relationship more precisely,

for R-modules M and N , let

t = tMN : HomR(M,N)⊗R M → N

denote the R-linear map defined by t(f ⊗ x) = f(x) for all f ∈ HomR(M,N) and x ∈ M .

With this notation, we have the following, which we will prove in Section 3. Here, µR(∗)

denotes the number of elements in a minimal system of generators.

Theorem 1.1. Let M be a MCM R-module and suppose that R possesses the canonical

module KR. Then

r(R⋉M) = rR(M) + µR(Coker t
M
KR

).

As a consequence, we get the following, where the equivalence between Conditions (2)

and (3) is due to [3, Proposition 5.2]. Remember that a MCM R-module M is said to

be residually faithful, if M/qM is a faithful R/q-module for some (eventually, for every)

parameter ideal q of R (cf. [3, Definition 5.1]).

Corollary 1.2 (cf. [3, Proposition 5.2]). Let M be a MCM R-module and suppose that

R possesses the canonical module KR. Then the following conditions are equivalent.

(1) r(R⋉M) = rR(M).

(2) The homomorphism tMKR
: HomR(M,KR)⊗R M → KR is surjective.
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(3) M is a residually faithful R-module.

In Section 3, we will also show the following, where ΩCM(R) denotes the class of the

(not necessarily minimal) first syzygy modules of MCM R-modules.

Theorem 1.3. Let M ∈ ΩCM(R). Then

r(R⋉M) =

{
rR(M) if R is a direct summand of M,

r(R) + rR(M) otherwise.

In Section 4, we are concentrated in the latter case where r(R ⋉M) = r(R) + rR(M),

which is closely related to the theory of Ulrich modules ([2, 9, 10, 14]). In fact, the

equality r(R ⋉ M) = r(R) + rR(M) is equivalent to saying that (q :R m)M = qM for

some (and hence every) parameter ideal q of R, so that all the Ulrich modules and all the

syzygy modules Ωi
R(R/m) (i ≥ d) satisfy the above equality r(R ⋉ M) = r(R) + rR(M)

(Theorems 4.1, 4.3), provided R is not a regular local ring (here Ωi
R(R/m) is considered

in a minimal free resolution of R/m).

In Section 5, we give the bound of sup r(R⋉M), where M runs through certain MCM

R-modules. In particular, when d = 1, we get the following (Corollary 5.2).

Theorem 1.4. Suppose that (R,m) is a Cohen-Macaulay local ring of dimension one and

multiplicity e. Let F be the set of m-primary ideals of R. Then

sup
I∈F

r(R⋉ I) =

{
1 if R is a DVR,

r(R) + e otherwise.

In Section 6, we focus our attention on the case where dimR = 1. The main objectives

are the trace ideals and closed ideals. The notion of closed ideals was introduced by [3],

where one finds a beautiful theory of closed ideals. As for the theory of trace ideals, we

refer to [6, 18] for the recent progress. In Section 6, we compute the Cohen-Macaulay type

r(R ⋉ I) for fractional trace or closed ideals I over a one-dimensional Cohen-Macaulay

local ring R, in terms of the numbers of generators of I together with the Cohen-Macaulay

type rR(I) of I as an R-module.

In what follows, unless otherwise specified, (R,m) denotes a Cohen-Macaulay local ring

with d = dimR ≥ 0. When R possesses the canonical module KR, for each R-module

M we denote HomR(M,KR) by M∨. Let Q(R) be the total ring of fractions of R. For

R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

If we consider ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}; hence

I :R J = (I : J) ∩ R.

For each finitely generated R-module M , let µR(M) (resp. ℓR(M)) denote the number of

elements in a minimal system of generators (resp. the length) of M . For an m-primary
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ideal a of R, we denote by

e0a(M) = lim
n→∞

d!·
ℓR(M/anM)

nd

the multiplicity of M with respect to a.

2. The Cohen-Macaulay type of general idealizations

In this section, we estimate the Cohen-Macaulay type of idealizations for general max-

imal Cohen-Macaulay modules over Cohen-Macaulay local rings. We begin with the

following observation, which is the starting point of this research.

Proposition 2.1. Let (R,m) be a (not necessarily Noetherian) local ring and let M be an

R-module. We set A = R ⋉M and denote by n = m×M the maximal ideal of A. Then

(0) :A n = ([(0) :R m] ∩ AnnRM)× [(0) :M m] .

Therefore, when R is an Artinian local ring, (0) :A n = (0) × [(0) :M m] if and only if

AnnRM = (0).

Proof. Let (a, x) ∈ A. Then (a, x)·(b, y) = 0 for all (b, y) ∈ n = m × M if and only if

ab = 0, ay = 0, and bx = 0 for all b ∈ m, y ∈ M . Hence, the first equality follows. Suppose

that R is an Artinian local ring. Then, since I = AnnRM is an ideal of R, I 6= (0) if and

only if [(0) :R m] ∩ I 6= (0), whence the second assertion follows. �

We now assume, throughout this section, that (R,m) is a Cohen-Macaulay local ring

with d = dimR ≥ 0. We say that a finitely generated R-module M is a maximal Cohen-

Macaulay (MCM for short) R-module, if depthR M = d.

Theorem 2.2. Let M be a MCM R-module and A = R⋉M . Then

rR(M) ≤ r(A) ≤ r(R) + rR(M).

Let q be a parameter ideal of R and set R = R/q, M = M/qM . We then have the

following.

(1) r(A) = rR(M) if and only if M is a faithful R-module.

(2) r(A) = r(R) + rR(M) if and only if (q :R m)M = qM .

Proof. We set A = A/qA. Therefore, A = R ⋉ M . Since A is a Cohen-Macaulay local

ring and qA is a parameter ideal of A, we have r(A) = r(A), and by Proposition 2.1 it

follows that

r(A) = ℓA((0) :A n) = ℓA(
(
[(0) :R m] ∩AnnRM

)
× [(0) :M m])

= ℓR([(0) :R m] ∩AnnRM) + ℓR ((0) :M m)

= ℓR([(0) :R m] ∩AnnRM) + rR(M)

6 ℓR((0) :R m) + rR(M)

= r(R) + rR(M).
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Hence, rR(M) ≤ r(A) ≤ r(R) + rR(M), so that by Proposition 2.1, r(A) = rR(M) if and

only if M is a faithful R-module. We have r(A) = r(R) + rR(M) if and only if (0) :R m ⊆

AnnRM , and the latter condition is equivalent to saying that q :R m ⊆ qM :R M , that is

(q :R m)M = qM . �

The following shows the difference r(A)−rR(M) in Theorem 2.2 can be arbitrary among

the interval [0, r(R)]. Notice that r(R⋉R) = r(R).

Example 2.3. Let ℓ ≥ 2 be an integer and S = k[[X1, X2, . . . , Xℓ]] the formal power

series ring over a field k. Let a = I2(M) denote the ideal of S generated by the maximal

minors of the matrix M =
(

X1 X2 ... Xℓ−1 Xℓ

X2 X3 ... Xℓ Xq
1

)
with q ≥ 2. We set R = S/a. Then R is

a Cohen-Macaulay local ring of dimension one. For each integer 2 ≤ p ≤ ℓ, we consider

the ideal Ip = (x1) + (xp, xp+1, . . . , xℓ) of R, where xi denotes the image of Xi in R. Then

r(R⋉ Ip) = (ℓ− p+ 1) + rR(Ip), and

rR(Ip) =

{
ℓ if p = 2

ℓ− 1 if p ≥ 3

for each 2 ≤ p ≤ ℓ.

Proof. Let m denote the maximal ideal of R. We set I = Ip and x = x1. It is direct

to check that I2 = xI, where we use the fact that q ≥ 2. In particular, m2 = xm. We

consider the exact sequence

(E) 0 → R/I
ι
→ I/xI → I/(x) → 0,

where ι(1) = xmod xI, and get AnnRI/xI = I, since I2 = xI. Therefore, AnnR/(x)I/xI =

I/(x). Because I/(x) ⊆ m/(x) = (0) :R/(x) m, we get

ℓR([(0) :R/(x) m] ∩ AnnR/(x)I/xI) = ℓR(I/(x)) = ℓ− p+ 1,

whence

r(R⋉ I) = (ℓ− p+ 1) + rR(I)

by Theorem 2.2. Because (x2, x3, . . . , xp−1)·(xp, xp+1, . . . , xℓ) ⊆ xI, the above sequence

(E) remains exact on the socles, so that

rR(I) = r(R/I) + rR(I/(x)).

Therefore, rR(I) = ℓ if p = 2, and rR(I) = (p− 2) + (ℓ− p+ 1) = ℓ− 1 if p ≥ 3. �

Assume that R is not a regular local ring and let 0 ≤ n ≤ r(R) be an integer. Then, we

suspect if there exists a MCM R-module M such that r(R ⋉M) = n + rR(M). When R

is the semigroup ring of a numerical semigroup, we however have an affirmative answer.
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Proposition 2.4. Let a1, a2, . . . , aℓ be positive integers such that GCD(a1, a2, · · · , aℓ) = 1.

Let H = 〈a1, a2, . . . , aℓ〉 be the numerical semigroup generated by {ai}1≤i≤ℓ. Let k[[t]] de-

note the formal power series ring over a field k and consider, inside of k[[t]], the semigroup

ring

R = k[[ta1 , ta2 , . . . , taℓ ]]

of H over k. We set e = min{ai | 1 ≤ i ≤ ℓ} and assume that e > 1, that is R is not

a DVR. Let r = r(R). Then, for each integer 0 ≤ n ≤ r, R contains a non-zero ideal I

such that r(R⋉ I) = n+ rR(I).

Proof. Let m be the maximal ideal of R and set B = m : m. Then B = R : m since R is

not a DVR, and

(te) :R m = (te) : m = te(R : m) = teB.

We denote by PF(H) = {α1 < α2 < · · · < αr} the pseudo-Frobenius numbers of H .

Hence, B = R+
∑

1≤i≤r Rtαi , so that (te) :R m = (te) + (tαi+e | 1 ≤ i ≤ r). Let 1 ≤ p ≤ r

be an integer and set I = (te) + (tαj+e | p ≤ j ≤ r) ⊆ (te) :R m. Let α0 = 0. We then

have the following.

Claim 1. Let 0 ≤ i ≤ r and p ≤ j ≤ r be integers. Then tαi+etαj+e ∈ teI. Consequently,

I2 = teI.

Proof. Assume that tαi+etαj+e 6∈ teI. Then tαi+αj+e 6∈ I. On the other hand, since

tαitαj ∈ B = m : m, we get αi + αj = αk + h for some 0 ≤ k ≤ r and h ∈ H . If

h > 0, then αi + αj ∈ H , so that tαi+αj+e ∈ I, which is impossible. Therefore, h = 0,

and αk − αj = αi ≥ 0, so that k ≥ j ≥ p. Hence, tαi+αj+e = tαk+e ∈ I. This is a

contradiction. �

We now consider the exact sequence 0 → R/I → I/teI → I/(te) → 0, and get that

AnnR I/teI = I. Hence

AnnR/(te) I/t
eI = I/(te) ⊆ (0) :R/(te) m.

Therefore, r(R ⋉ I) = ℓR(I/(t
e)) + rR(I) = n + rR(I), where n = r − p + 1. For n = 0,

just take I = R. �

Remark 2.5. With the same notation as in the proof of Proposition 2.4, let KR denote

the canonical module of R and consider the ideal I = (te) + (tαj+e | p ≤ j ≤ r). Then,

because I2 = teI and mI = mte, by [8, Proposition 6.1] R ⋉ I∨ is an almost Gorenstein

local ring, where I∨ = HomR(I,KR). Since AnnR I∨/teI∨ = AnnR I/teI, we get

r(R⋉ I∨) = (r − p+ 1) + rR(I
∨) = (r − p+ 1) + µR(I),

so that r(R⋉ I∨) = 2r − 2p+ 3.
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Corollary 2.6. With the same notation as in Proposition 2.4, assume that a1 < a2 <

· · · < aℓ, and that H is minimally generated by ℓ elements with ℓ = a1 ≥ 2, that is

R has maximal embedding dimension ℓ ≥ 2. Let 2 ≤ p ≤ ℓ be an integer and set

Ip = (ta1) + (tap , tap+1 , . . . , taℓ). Then r(R⋉ Ip) = (ℓ− p+ 1) + rR(Ip), and

rR(Ip) =

{
ℓ if p = 2

ℓ− 1 if p ≥ 3

for each 2 ≤ p ≤ ℓ.

Proof. Let e = a1 and r = r(R). Hence r(R) = e−1. Let 1 ≤ i, j ≤ ℓ be integers. Then i =

j if ai ≡ aj mod e, because H is minimally generated by {ai}1≤i≤ℓ. Therefore, PF(H) =

{a2−e < a3−e < · · · < ae−e}, so that r(R⋉Ip) = (e−p+1)+rR(Ip) by Proposition 2.4. To

get rR(Ip), by the proof of Example 2.3 it suffices to show that m·(tap , tap+1 , . . . , taℓ) ⊆ ta1I,

which follows from Claim 1 in the proof of Proposition 2.4. �

In the following two sections, Sections 3 and 4, we explore the extremal cases where

r(R⋉M) = rR(M) and r(R⋉M) = r(R) +R (M), respectively.

3. Residually faithful modules and the case where r(R⋉M) = rR(M)

Let (R,m) be a Cohen-Macaulay local ring with d = dimR ≥ 0. In this section, we

consider the case of Theorem 2.2 (1), that is r(R ⋉M) = rR(M). Let us begin with the

following.

Definition 3.1. Let M be a MCM R-module. We say that M is residually faithful, if

M/qM is a faithful R/q-module for some parameter ideal q of R.

With this definition, Theorem 2.2 (1) assures the following.

Proposition 3.2. Let M be a MCM R-module. Then the following conditions are equiv-

alent.

(1) r(R⋉M) = rR(M).

(2) M is a residually faithful R-module.

(3) M/qM is a faithful R/q-module for every parameter ideal q of R.

For R-modules M and N , let

t = tMN : HomR(M,N)⊗R M → N

denote the R-linear map defined by t(f⊗m) = f(m) for all f ∈ HomR(M,N) andm ∈ M .

With this notation, we have the following.

Theorem 3.3. Let M be a MCM R-module and suppose that R possesses the canonical

module KR. Let C = Coker tMKR
. Then

r(R⋉M) = rR(M) + µR(C).
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Proof. We set K = KR and A = R ⋉ M . Let us make the R-module M∨ × K into an

A-module on which the A-action is defined by

(a,m) ◦ (f, x) = (af, f(m) + ax)

for each (a,m) ∈ A and (f, x) ∈ M∨×K. Then M∨×K ∼= HomR(A,K) as an A-module.

Therefore, KA = M∨ ×K, the canonical module of A ([5, Section 6, Augmented rings] or

[7, Section 2]). Let n = m ×M denote the maximal ideal of A and L = Im tMKR
. Then,

since n(M∨ ×KR) = mM∨ × (L+mKR), we get

r(A) = µA(KA)

= ℓA([M
∨ ×K]/[mM∨ × (L+mK)]

= ℓR([M
∨ ⊕K]/[mM∨ ⊕ (L+mK)]

= ℓR(M
∨/mM∨) + ℓR(K/(L+mK))

= µR(M
∨) + µR(C)

= rR(M) + µR(C).

�

Theorem 3.3 covers [3, Proposition 5.2]. In fact, we have the following, where the

equivalence of Conditions (1) and (3) follows from Proposition 3.2, and the equivalence

of Conditions (1) and (2) follows from Theorem 3.3.

Corollary 3.4 (cf. [3, Proposition 5.2]). Let M be a MCM R-module and suppose that

R possesses the canonical module KR. Then the following conditions are equivalent.

(1) r(R⋉M) = rR(M).

(2) The homomorphism tMKR
: HomR(M,KR)⊗R M → KR is surjective.

(3) M is a residually faithful R-module.

We note one example of residually faithful modules M such that M 6∼= R,KR.

Example 3.5 ([12, Example 7.3]). Let k[[t]] be the formal power series ring over a field

k and consider R = k[[t9, t10, t11, t12, t15]] in k[[t]]. Then KR = R + Rt + Rt3 + Rt4 and

µR(KR) = 4. Let I = R+Rt. Then the homomorphism tIKR
: HomR(I,KR)⊗R I → KR is

an isomorphism of R-modules, so that I is a residually faithful R-module, but I 6∼= R,KR,

since µR(I) = 2.

Here we notice that Corollary 3.4 recovers the theorem of Reiten [21] on Gorenstein

modules. In fact, with the same notation as in Corollary 3.4, suppose that R ⋉M is a

Gorenstein ring and let q be a parameter ideal of R. Then, since r(R⋉M) = 1, Corollary

3.4 implies that M = M/qM is a faithful module over the Artinian local ring R = R/q

with rR(M) = 1. Therefore, M is the injective envelope ER(R/m) of the residue class
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field R/m of R, so that M ∼= KR is the canonical module (that is a Gorenstein module of

rank one) of R.

Residually faithful modules enjoy good properties. Let us summarize some of them.

Proposition 3.6. Let M be a MCM R-module. Then the following assertions hold true.

(1) Let a ∈ m be a non-zerodivisor of R. Then M is a residually faithful R-module if and

only if so is the R/(a)-module M/aM .

(2) Let (S, n) be a Cohen-Macaulay local ring and let ϕ : R → S denote a flat local

homomorphism of local rings. Then M is a residually faithful R-module if and only

if so is the S-module S ⊗R M . Therefore, M is a residually faithful R-module if and

only if so is the R̂-module M̂ , where ∗̂ denotes the m-adic completion.

(3) Suppose that M is a residually faithful R-module. Then M is a faithful R-module and

Mp is a residually faithful Rp-module for every p ∈ SpecR.

Proof. (1) This directly follows from Proposition 3.2.

(2) We set n = dimS/mS and L = S ⊗R M . Firstly, suppose that n = 0. Let q be a

parameter ideal of R and set a = AnnRM/qM . Then aS = AnnS(L/qL). If a = q, then

qS = AnnSL/qL, so that L is a residually faithful S-module, since qS is a parameter

ideal of S. Conversely, suppose that L is a residually faithful S-module. We then have

aS = qS by Proposition 3.2, so that a = q, and M is a residually faithful R-module.

We now assume that n > 0 and that Assertion (2) holds true for n− 1. Let g ∈ n and

suppose that g is S/mS-regular. Then g is S-regular and the composite homomorphism

R → S → S/gS

remains flat and local, so that M is a residually faithful R-module if and only if so is the

S/gS-module L/gL. Since dimS/(gS+mS) = n−1, the latter condition is, by Assertion

(1), equivalent to saying that L is a residually faithful S-module.

(3) Let a1, a2, . . . , ad be a system of parameters of R. We then have by Proposition 3.2

AnnRM ⊆ AnnRM/(an1 , a
n
2 , . . . , a

n
d)M = (an1 , a

n
2 , . . . , a

n
d)

for all n > 0. Therefore, M is a faithful R-module. Let p ∈ SpecR and choose P ∈

MinR̂ R̂/pR̂. Then, p = P ∩ R, and we get a flat local homomorphism Rp → R̂P of local

rings such that dim R̂P/pR̂P = 0. Therefore, to see that Mp is a residually faithful Rp-

module, by Assertion (1) it suffices to show that M̂P is a residually faithful R̂P -module.

Consequently, because M̂ is a residually faithful R̂-module by Assertion (1), passing to

the m-adic completion R̂ of R, without loss of generality we may assume that R possesses

the canonical module KR. Then, the current assertion readily follows from Corollary 3.4,

because

KRp
= (KR)p =

(
Im tMKR

)
p
= Im t

Mp

KRp

.

�
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By Proposition 3.6, we have the following.

Corollary 3.7. Let M be a MCM R-module. If r(R⋉M) = rR(M), then r(Rp ⋉Mp) =

rRp
(Mp) for every p ∈ SpecR.

Corollary 3.8. Let M be a MCM R-module, and suppose that R possesses the canonical

module KR. If M is a residually faithful R-module, then so is M∨.

Proof. We may assume that d > 0 and that our assertion holds true for d − 1. Let

a ∈ m be a non-zerodivisor of R and let ∗ denote the reduction mod (a). We then

have M∨ ∼= HomR(M,KR) = M
∨
, where we identify KR = KR. Because by Proposition

3.6 (3), M is a residually faithful R-module, by the hypothesis of induction we have

M
∨
= HomR(M,KR) is a residually faithful R-module, whence Proposition 3.6 (1) shows

that M∨ is a residually faithful R-module. �

Suppose that R possesses the canonical module KR. Then, certain residually faithful

R-modules M satisfy the condition HomR(M,KR)⊗R M ∼= KR, as we show in the follow-

ing. Recall that a finitely generated R-module C is called semidualizing, if the natural

homomorphism R → HomR(C,C) is an isomorphism and ExtiR(C,C) = (0) for all i > 0.

Hence, the canonical module is semidualizing, and all the semidualizing R-modules satisfy

the hypothesis in Theorem 3.9, because semidualizing modules are Cohen-Macaulay.

Theorem 3.9. Suppose that R possesses the canonical module KR and let M be a MCM

R-module. If R ∼= HomR(M,M) and ExtiR(M,M) = (0) for all 1 ≤ i ≤ d, then the

homomorphism

M∨ ⊗R M
t
→ KR

is an isomorphism of R-modules, where t = tMKR
.

Proof. Notice that M is a residually faithful R-module. In fact, the assertion is clear, if

d = 0. Suppose that d > 0 and let f ∈ m be a non-zerodivisor of R. We set R = R/(f)

and denote ∗ = R ⊗R ∗. Then, since f is regular also for M , we have ExtiR(M,M) =

Exti
R
(M,M) for all i ∈ Z, and it is standard to show that R ∼= HomR(M,M) and that

Exti
R
(M,M) = (0) for all 1 ≤ i ≤ d − 1. Therefore, by induction on d, we may assume

that M is a residually faithful R-module, whence Proposition 3.6 (1) implies that so is

the R-module M .

We now consider the exact sequence

(E) 0 → X → M∨ ⊗R M
t
→ KR → 0

of R-modules, where t = tMKR
. If d = 0, then because

HomR(M
∨ ⊗R M,KR) = HomR(M,M∨∨) = HomR(M,M),

taking the KR-dual of (E), we get the exact sequence

0 → R → HomR(M,M) → X∨ → 0.
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Hence X∨ = (0) because R ∼= HomR(M,M), so that M∨ ⊗RM
t
→ KR is an isomorphism.

Suppose that d > 0 and let f ∈ m be R-regular. We denote ∗ = R/(f)⊗R ∗. Then since

f is KR-regular, we get from Exact sequence (E)

(E) 0 → X → M∨ ⊗R M
t
→ KR → 0.

Because KR = KR, M
∨ ⊗R M = M

∨
⊗R M , and t = t

K
R

M
, by induction on d we see in

the above exact sequence (E) that X = (0), whence X = (0) by Nakayama’s lemma.

Therefore, M∨ ⊗R M
t
→ KR is an isomorphism. �

Therefore, we have the following, which guarantees that the converse of Theorem 3.9

also holds true, if Rp is a Gorenstein ring for every p ∈ SpecR\{m}. See [11, Proposition

2.4] for details.

Corollary 3.10 ([11, Proposition 2.2]). With the same hypothesis of Theorem 3.9, one

has r(R) = rR(M)·µR(M). Consequently, the following assertions hold true.

(1) If r(R) is a prime number, then M ∼= R or M ∼= KR.

(2) If R is a Gorenstein ring, then M ∼= R.

Let us note the following.

Proposition 3.11. Suppose that R is an integral domain, possessing the canonical module

KR. Let M be a MCM R-module and assume that r(R ⋉M) = 2. If ExtiR(M,M) = (0)

for all 1 ≤ i ≤ d, then

M ∼= K⊕2
R or M∨ ⊗R M ∼= KR.

Therefore, if r(R) is a prime number and M is indecomposable, then r(R) = 2 and M ∼= R.

Proof. Let C = Coker tMKR
. Then, rR(M) = µR(C) = 1, or rR(M) = 2 and C = (0), since

r(R ⋉ M) = rR(M) + µR(C) by Theorem 3.3. If rR(M) = 1, then M∨ ∼= R, since the

cyclic module M∨ is of dimension d and R is an integral domain. Therefore, M ∼= KR,

so that r(R⋉M) = 1, which is impossible. Hence, rR(M) = 2, and M is, by Proposition

3.2, a residually faithful R-module. Let us take a presentation

0 → X → R⊕2 → M∨ → 0

of M∨. If X = (0), then M ∼= K⊕2
R . Suppose that X 6= (0). Then, X is a MCM R-module,

and taking the KR-dual of the presentation, we get the exact sequence

0 → M → K⊕2
R → X∨ → 0.

Let F = Q(R). Then F ⊗R X∨ 6= (0), since X∨ is a MCM R-module. Consequently,

F ⊗R M ∼= F , that is rankRM = 1, because F ⊗R KR
∼= F . Hence, in the canonical exact

sequence

(E) 0 → L → M∨ ⊗R M
t
→ KR → 0,
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F ⊗R L = (0), because rankRM = 1. Consequently, because the R-module L is torsion,

taking the KR-dual of the sequence (E) we get the isomorphism

R = K∨
R → [M∨ ⊗M ]∨ = HomR(M,M).

Thus, M∨ ⊗R M ∼= KR by Theorem 3.9.

If M is indecomposable and r(R) is a prime number, we then have M ∼= R or M ∼= KR,

while r(R⋉M) = 2, so that M ∼= R and r(R) = 2. �

The following result is essentially due to [24, Lemma 3.1] (see also [16, Proof of Lemma

2.2]). We include a brief proof for the sake of completeness.

Lemma 3.12. Let M be a MCM R-module and assume that there is an embedding

(E) 0 → M → F → N → 0

of M into a finitely generated free R-module F such that N is a MCM R-module. Then

the following conditions are equivalent.

(1) M is a residually faithful R-module.

(2) M 6⊆ mF .

(3) R is a direct summand of M .

Proof. (3) ⇒ (1) and (2) ⇒ (3) These are clear.

(1) ⇒ (2) Let q be a parameter ideal of R. Then, since N is a MCM R-module,

Embedding (E) gives rise to the exact sequence

0 → M/qM → F/qF → N/qN → 0.

Notice that AnnR/qm·(F/qF ) 6= (0) because dimR/q = 0, and we have M/qM 6⊆

m·(F/qF ). Thus M 6⊆ mF . �

Let ΩCM(R) denote the class of MCM R-modules M such that there is an embedding

0 → M → F → N → 0 of M into a finitely generated free R-module with N a MCM

R-module. With this notation, we have the following.

Theorem 3.13. Let M ∈ ΩCM(R). Then

r(R⋉M) =

{
rR(M) if R is a direct summand of M,

r(R) + rR(M) otherwise.

Proof. We may assume that R is not a direct summand of M . Let us choose an embedding

0 → M → F → N → 0

of M into a finitely generated free R-module F such that N is a MCM R-module. Let q

be a parameter ideal of R and set I = q :R m. Then, since M ⊆ mF by Lemma 3.12, we

have from the exact sequence

0 → M/qM → F/qF → N/qN → 0
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that I·(M/qM) ⊆ (Im)·(F/qF ) = (0). Therefore, IM ⊆ qM , so that r(R ⋉ M) =

r(R) + rR(M) by Theorem 2.2 (2). �

If R is a Gorenstein ring, every MCM R-module M belongs to ΩCM(R), so that

Theorem 3.13 yields the following.

Corollary 3.14. Let R be a Gorenstein ring and M a MCM R-module. Then the follow-

ing conditions are equivalent.

(1) r(R⋉M) = rR(M).

(2) R is a direct summand of M .

4. Ulrich modules and the case where r(R⋉M) = r(R) + rR(M)

Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 0. In this section, we

study the other extremal case of Theorem 2.2 (2), that is r(R⋉M) = r(R) + rR(M). We

already have a partial answer by Theorem 3.13, and the following also shows that over a

non-regular Cohen-Macaulay local ring (R,m, k), there are plenty of MCM R-modules M

such that r(R⋉M) = r(R) + rR(M).

Let Ωi
R(k) denote, for each i ≥ 0, the i-th syzygy module of the simple R-module

k = R/m in its minimal free resolution. Notice that, thanks to Theorem 3.13, the crucial

case in Theorem 4.1 is actually the case where i = d.

Theorem 4.1. Suppose that R is not a regular local ring. Then (q :R m)·Ωi
R(k) = q·Ωi

R(k)

for every i ≥ d and for every parameter ideal q of R. Therefore

r(R ⋉ Ωi
R(k)) = r(R) + rR(Ω

i
R(k))

for all i ≥ d.

Proof. We may assume that d > 0 and that the assertion holds true for d − 1. Choose

a ∈ m \ m2 so that a is a non-zerodivisor of R. We set R = R/(a) and m = m/(a). We

then have, for each i > 0, the isomorphism

Ωi
R(k)/a·Ω

i
R(k)

∼= Ωi−1
R

(k)⊕ Ωi
R
(k).

We now choose elements a2, a3, . . . , ad of m so that q0 = (a, a2, a3, . . . , ad) is a parameter

ideal of R and set q0 = q0/(a). Then, by the hypothesis of induction, we have

(q0 :R m)·Ωi
R
(k) = q0·Ω

i
R
(k)

for all i ≥ d− 1, so that

(q0 :R m)·
[
Ωi

R(k)/a·Ω
i
R(k)

]
= q0·

[
Ωi

R(k)/a·Ω
i
R(k)

]

for all i ≥ d. Hence, because q0 :R m = (q0 :R m)/(a),

(q0 :R m)·Ωi
R(k) = q0·Ω

i
R(k)
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for all i ≥ d. Therefore, by Theorem 2.2 (2), (q :R m)·Ωi
R(k) = q·Ωi

R(k) for every

parameter ideal q of R, because Ωi
R(k) is a MCM R-module. �

Let us pose one question.

Question 4.2. Suppose that R is not a regular local ring. Does the equality

(q :R m)·Ωi
R(k) = q·Ωi

R(k)

hold true for every i ≥ 0 and for every parameter ideal q of R? As is shown in Theorem

4.1, this is the case, if i ≥ d = dimR. Hence, the answer is affirmative, if d = 2 ([4]).

Let M be a MCM R-module. Then we say that M is an Ulrich R-module with respect

to m, if µR(M) = e0m(M) (see [2], where the different terminology MGMCM (maximally

generated MCM module) is used). Ulrich modules play an important role in the repre-

sentation theory of local and graded algebras. See [9, 10] for a generalization of Ulrich

modules, which later we shall be back to. Here, let us note that a MCM R-module M is

an Ulrich R-module with respect to m if and only if mM = qM for some (hence, every)

minimal reduction q of m, provided the residue class field R/m of R is infinite (see, e.g.,

[13, Proposition 2.2]). We refer to [17, Theorem A] for the ample existence of Ulrich

modules with respect to m over certain two-dimensional normal local rings (R,m).

Theorem 4.3. Suppose that R is not a regular local ring and let M be a MCM R-module.

We set A = R⋉M . If M is an Ulrich R-module with respect to m, then rR(M) = µR(M)

and r(A) = r(R) + rR(M), so that (q :R m)M = qM for every parameter ideal q of R.

When R has maximal embedding dimension in the sense of [22], the converse is also true.

Proof. Enlarging the residue class field of R if necessary, we may assume that R/m is

infinite. Let us choose elements f1, f2, . . . , fd of m so that q = (f1, f2, . . . , fd) is a reduction

of m. Then, q is a parameter ideal of R, and mM = qM , since M is an Ulrich R-module

with respect to m ([13, Proposition 2.2]). We then have rR(M) = µR(M), and q :R m ⊆ m,

because R is not a regular local ring. Hence, (q :R m)M = qM , because

qM ⊆ (q :R m)M ⊆ mM = qM.

Thus, r(A) = r(R) + rR(M) by Theorem 2.2.

Assume that R has maximal embedding dimension and we will show that the converse

also holds true. We have m2 = qm for some parameter ideal q of R, so that m = q :R m,

because R is not a regular local ring. If r(A) = r(R) + rR(M), we then have

mM = (q :R m)M = qM

by Theorem 2.2 (2), whence M is an Ulrich R-module with respect to m. �

Remark 4.4. Unless R has maximal embedding dimension, the second assertion in The-

orem 4.3 is not necessarily true. For example, let (R,m) be a one-dimensional Gorenstein
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local ring. Assume that R is not a DVR. Then r(R⋉m) = 3 = r(R)+rR(m) (see Proposi-

tion 6.7 and Corollary 6.8 below), while m is an Ulrich R-module with respect to m itself

if and only if m2 = am for some a ∈ m. The last condition is equivalent to saying that

e(R) = 2.

We note one more example, for which the both cases r(R ⋉M) = r(R) + rR(M) and

r(R⋉M) = rR(M) are possible, choosing different MCM modules M .

Example 4.5. Let R = k[[X, Y, Z]]/(Z2 − XY ), where k[[X, Y, Z]] denotes the formal

power series ring over a field k. Then, the indecomposable MCM R-modules are p =

(x, z) and R, up-to isomorphisms (here, by x, y, z we denote the images of X, Y, Z in R,

respectively). Since p is an Ulrich R-module with respect to m, by Theorem 4.3 we have

r(R⋉p) = 1+rR(p) = 3. Let M be an arbitrary MCM R-module. Then, M ∼= p⊕ℓ⊕R⊕n

for some integers ℓ, n ≥ 0, and M/qM is a faithful R/q-module for the parameter ideal

q = (x, y) if and only if n > 0. Therefore, r(R ⋉M) = rR(M) = 2ℓ + n if n > 0, while

r(R⋉M) = 1 + rR(M) = 1 + 2ℓ if n = 0 (see Theorem 2.2).

The generalized notion of Ulrich ideals and modules was introduced by [9]. We briefly

review the definition. Let I be an m-primary ideal of R and M a MCM R-module.

Suppose that I contains a parameter ideal q as a reduction. We say that M is an Ulrich

R-module with respect to I, if e0I(M) = ℓR(M/IM) and M/IM is a free R/I-module.

Notice that the first condition is equivalent to saying that IM = qM and that the second

condition is automatically satisfied, when I = m. We say that I is an Ulrich ideal of R, if

I ) q, I2 = qI, and I/I2 is a free R/I-module. Notice that when dimR = 1, every Ulrich

ideal of R is an Ulrich R-module with respect itself. Ulrich modules and ideals are closely

explored by [6, 9, 10, 14], and it is known that they enjoy very specific properties. For

instance, the syzygy modules Ωi
R(R/I) (i ≥ d) for an Ulrich ideal I are Ulrich R-modules

with respect to I.

Theorem 4.6. Let I be an Ulrich ideal of R and M an Ulrich R-module with respect to

I. We set ℓ = µR(M) and m = µR(I). Then

r(R⋉M) = r(R) + rR(M) = r(R/I)·(ℓ+m− d).

Proof. Let q be a parameter ideal of R such that I2 = qI. Then IM = qM because

e0I(M) = ℓR(M/IM), while M/IM ∼= (R/I)⊕ℓ as an R/I-module. Therefore, since

AnnR/qM/qM = I/q and I/q ∼= (R/I)⊕(m−d) as an R/I-module ([9, Lemma 2.3]), we

have by Proposition 2.1

r(R⋉M) = rR(I/q) + ℓ·r(R/I) = r(R/I)·(m− d) + ℓ·r(R/I) = r(R) + rR(M),

where the last equality follows from the fact that r(R) = (m−d)·r(R/I) (see [14, Theorem

2.5]). �
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Corollary 4.7. Suppose that d = 1 and let I be an Ulrich ideal of R with m = µR(I).

Then r(R⋉ I) = (2m− 1)·r(R/I).

We note a few examples.

Example 4.8. Let k[[t]] be the formal power series ring over a field k.

(1) Let R = k[[t3, t7]]. Then XR = {(t6 − at7, t10) | 0 6= a ∈ k} is exactly the set of

Ulrich ideals of R. For all I ∈ XR, R/I is a Gorenstein ring, so that r(R⋉ I) = 3 by

Proposition 4.7.

(2) Let R = k[[t6, t13, t28]]. Then the following families consist of Ulrich ideals of R ([6,

Example 5.7 (3)]):

(i) {(t6 + at13) + c | a ∈ k},

(ii) {(t12 + at13 + bt19) + c | a, b ∈ k}, and

(iii) {(t18 + at25) + c | a ∈ k},

where c = (t24, t26, t28). We have µR(I) = 3 and R/I is a Gorenstein ring for all ideals

I in these families, whence r(R⋉ I) = 5.

Suppose that dimR = 1. If R possesses maximal embedding dimension v but not a

DVR, then for every Ulrich ideal I of R, R/I is a Gorenstein ring, and I is minimally

generated by v elements ([6, Corollary 3.2]). Therefore, by Corollary 4.7, we get the

following.

Corollary 4.9. Suppose that dimR = 1 and that R is not a DVR. If R has maximal

embedding dimension v, then r(R⋉ I) = 2v − 1 for every Ulrich ideal I of R.

5. Bounding the supremum sup r(R⋉M)

Let r > 0 be an integer and set

Fr(R) = {M | M is an R-submodule of R⊕r and a maximal Cohen-Macaulay R-module}.

We are now interested in the supremum sup
M∈Fr(R)

r(R⋉M) and get the following.

Theorem 5.1. Let (R,m) be a Cohen-Macaulay local ring of multiplicity e and let M ∈

Fr(R). Then r(R ⋉ M) ≤ r(R) + re. When m contains a parameter ideal q of R as a

reduction and R is not a regular local ring, the equality holds if and only if M is an Ulrich

R-module with respect to m, possessing rank r.

Proof. Enlarging the residue class filed R/m of R if necessary, without loss of generality

we may assume that m contains a parameter ideal q of R as a reduction. We then have

re ≥ e0q(M) = ℓR(M/qM) ≥ ℓR((0) :M/qM m) = rR(M).

Hence

r(R⋉M) ≤ r(R) + rR(M) ≤ r(R) + re.
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Consequently, if r(R ⋉ M) = r(R) + re, then re = rR(M), that is re = e0q(M) and

ℓR(M/qM) = ℓR((0) :M/qM m), which is equivalent to saying that dimR R⊕r/M < d and

mM = qM , that is M has rank r and an Ulrich R-module with respect to m. Therefore,

when R is not a regular local ring, r(R⋉M) = r(R)+rR(M) if and only if M is an Ulrich

R-module with rank r (see Theorem 4.3). �

Corollary 5.2. Suppose that (R,m) is a Cohen-Macaulay local ring of dimension one

and multiplicity e. Let F be the set of m-primary ideals of R. Then

sup
I∈F

r(R⋉ I) =

{
1 if R is a DVR,

r(R) + e otherwise.

Proof. We have only to show the existence of an m-primary ideal I such that I is an Ulrich

R-module with respect to m and µR(I) = e. This is known by [2, Lemma (2.1)]. For the

sake of completeness, we note a different proof. Let

A =
⋃

n>0

(mn : mn)

in Q(R). Then A is a birational finite extension of R (see [19]). Since A ∼= I for some

m-primary ideal I of R, it suffices to show that A is an Ulrich R-module with respect to

m and µR(A) = e. To do this, enlarging the residue class field R/m of R if necessary, we

may assume that m contains an element a such that Q = (a) is a reduction of m. Then

mA = aA because A = R[m
a
] ([19]), whence A is an Ulrich R-module with respect to m.

We have

µR(A) = ℓR(A/aA) = e0Q(A) = e0Q(R) = e

as wanted. �

6. The case where d = 1

In this section, we focus our attention on the one-dimensional case. Let (R,m) be a

Cohen-Macaulay local ring of dimension one, admitting a fractional canonical ideal K.

Hence, K is an R-submodule of R such that K ∼= KR as an R-module and R ⊆ K ⊆ R,

where R denotes the integral closure of R in the total ring Q(R) of fractions of R. The

hypothesis about the existence of fractional canonical ideals K is equivalent to saying

that R contains an m-primary ideal I such that I ∼= KR as an R-module and such that I

possesses a reduction Q = (a) generated by a single element a of R ([8, Corollary 2.8]).

The latter condition is satisfied, once Q(R̂) is a Gorenstein ring and the field R/m is

infinite. We have rR(M) = µR (HomR(M,K)) for every MCM R-module M ([15, Satz

6.10]). See [8, 15] for more details.

First of all, let us begin with the following review of a result of Brennan and Vasconcelos

[3]. We include a brief proof.
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Proposition 6.1 ([3, Propositions 2.1, 5.2]). Let I be a fractional ideal of R and set

I1 = K : I. Then the following conditions are equivalent.

(1) I : I = R.

(2) I1·I = K.

(3) J ·I = K for some fractional ideal J of R.

(4) I/fI is a faithful R/fR-module for every parameter f of R.

(5) I/fI is a faithful R/fR-module for some parameter f of R.

Proof. (1) ⇔ (2) This follows from the facts that K : I1I = (K : I1) : I = I : I, and that

K : K = R. See [15, Definition 2.4] and [15, Bemerkung 2.5 a)], respectively.

(3) ⇒ (2) Since JI = K, we have J ⊆ I1 = K : I, so that K = JI ⊆ I1I ⊆ K, whence

I1I = K.

(2) ⇒ (3) This is clear.

Since I1 ∼= HomR(I,K), the assertion that I1I = K is equivalent to saying that the

homomorphism tIK : HomR(I,K) ⊗R I → K is surjective. Therefore, the equivalence

between Assertions (1), (4), (5) are special cases of Corollary 3.4 (see [3, Proposition 5.2]

also). �

We say that a fractional ideal I of R is closed, if it satisfies the conditions stated in

Proposition 6.1. Thanks to Proposition 6.1 (3), we readily get the following.

Corollary 6.2 ([3, Corollary 3.2]). If R is a Gorenstein ring, then every closed ideal of

R is principal.

Assertion (2) of the following also follows from Corollary 3.14. Let us note a direct

proof.

Theorem 6.3. Suppose that R is a Gorenstein ring and let I be an m-primary ideal of

R. Then the following assertions hold true.

(1) r(R/I) ≤ rR(I) ≤ 1 + r(R/I),

(2) r(R⋉ I) = 1 + rR(I), if µR(I) > 1.

Proof. Take the R-dual of the canonical exact sequence

0 → I → R → R/I → 0

of R-modules and we get the exact sequence

0 → R → HomR(I, R) → Ext1R(R/I,R) → 0.

Hence, r(R/I) ≤ rR(I) ≤ 1 + r(R/I), because

rR(I) = µR(HomR(I, R)) and r(R/I) = µR(Ext
1
R(R/I,R))

([15, Satz 6.10]). To see the second assertion, suppose that µR(I) > 1. Let q = (a) be a

parameter ideal of R and set J = q :R m. Let us write J = (a, b). We then have J = q : m,
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and mJ = mq by [4], because R is not a DVR. On the other hand, by Corollary 6.2 we

have R ( I : I, since R is a Gorenstein ring and I is not principal. Consequently

R ⊆ R : m ⊆ I : I,

since ℓR([R : m]/R) = 1. Therefore, b
a
∈ I : I, because

R : m =
1

a
·[q : m] =

1

a
·(a, b) = R +R

b

a
.

Thus bI ⊆ aI, which shows (q :R m)I = (a, b)I ⊆ qI, so that

r(R ⋉ I) = r(R) + rR(I) = 1 + rR(I)

by Theorem 2.2 (2). �

Remark 6.4. In Theorem 6.3 (1), the equality rR(I) = 1 + r(R/I) does not necessarily

hold true. For instance, consider the ideal I = (t8, t9) in the Gorenstein local ring R =

k[[t4, t5, t6]]. Then r(R/I) = 2. Because t−4 ∈ R : I, we have 1 ∈ m·[R : I], which

shows, identifying R : I = HomR(I, R) in the proof of Assertion (2) of Theorem 6.3, that

µR(HomR(I, R)) = µR(Ext
1
R(R/I,R)). Hence rR(I) = r(R/I) = 2, while r(R⋉ I) = 3 by

Theorem 6.3 (2).

We however have rR(I) = 1 + r(R/I) for trace ideals I, as we show in the following.

Let I be an ideal of R. Then I is said to be a trace ideal of R, if

I = Im

(
HomR(M,R)⊗R M

tMR→ R

)

for some R-module M . When I contains a non-zerodivisor of R, I is a trace ideal of R if

and only if R : I = I : I (see [18, Lemma 2.3]). Therefore, m-primary trace ideals are not

principal.

Proposition 6.5. Suppose that R is a Gorenstein ring. Let I be an m-primary trace ideal

of R. Then rR(I) = 1 + r(R/I) and r(R⋉ I) = 2 + r(R/I).

Proof. We have 1 6∈ m·[R : I], since R : I = I : I ⊆ R. Therefore, thanks to the proof

of Assertion (2) in Theorem 6.3, rR(I) = 1 + r(R/I), so that r(R ⋉ I) = 2 + r(R/I) by

Theorem 6.3 (2). �

Example 6.6 ([6, Example 3.12]). Let R = k[[t4, t5, t6]]. Then R is a Gorenstein ring

and

R, (t8, t9, t10, t11), (t6, t8, t9), (t5, t6, t8), (t4, t5, t6),
{
Ia = (t4 − at5, t6)

}
a∈k

are all the non-zero trace ideals of R. We have Ia = Ib, only if a = b.

Proposition 6.7. Suppose that R is a not a DVR. Then m is a trace ideal of R with

rR(m) = r(R) + 1 and r(R⋉m) = 2·r(R) + 1.
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Proof. We have m : m = R : m, because R is not a DVR, whence m is a trace ideal of R.

We take the K-dual of the sequence 0 → m → R → R/m → 0 and consider the resulting

exact sequence

0 → K → K : m → Ext1R(R/m, K) → 0.

Then, since Ext1R(R/m, K) ∼= R/m, we get

rR(m) = µR(K : m) ≤ µR(K) + 1 = r(R) + 1.

We actually have the equality in the estimation

µR(K : m) ≤ µR(K) + 1.

To see this, it is enough to show that m(K : m) = mK. We have

K : m(K : m) = [K : (K : m)] : m = m : m

and

K : mK = (K : K) : m = R : m.

Therefore, since m : m = R : m, we get K : m(K : m) = K : mK, so that m(K : m) = mK.

Hence rR(m) = µR(K : m) = µR(K) + 1 = r(R) + 1 as wanted. We have r(R ⋉ m) =

r(R) + rR(m) by Theorem 2.2 (2), because (q :R m)·m = q·m for every parameter ideal q

of R ([4]; see Theorem 4.1 also), whence the second assertion follows. �

Corollary 6.8. Let R be a Gorenstein ring which is not a DVR. Then R⋉m is an almost

Gorenstein ring in the sense of [8], possessing r(R⋉m) = 3.

Proof. See [8, Theorem 6.5] for the assertion that R⋉m is an almost Gorenstein ring. �

Let us give one more result on closed ideals.

Proposition 6.9. Let I ( R be a closed ideal of R and set I1 = K : I. Then r(R/I) =

µR(I1) = rR(I).

Proof. We consider the exact sequence 0 → K → I1 → Ext1R(R/I,K) → 0. It suffices to

show K ⊆ mI1. We have K : mI1 = (K : I1) : m, while (K : I1) : m = I : m ⊆ I : I =

R = K : K. Hence mI1 ⊇ K and the assertion follows. �

Combining Corollary 3.4, Proposition 6.1, and Proposition 6.9, we have the following,

which is the goal of this paper.

Corollary 6.10. Let I be a fractional ideal of R. Then the following conditions are

equivalent.

(1) r(R⋉ I) = rR(I).

(2) I is a closed ideal of R.

When this is the case, r(R⋉ I) = r(R/I), if I ( R.

We close this paper with the following example.
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Example 6.11. Let k be a field. Let R = k[[t3, t4, t5]] and set I = (t3, t4). Then

I ∼= KR, and I is a closed ideal of R with r(R) = 2 and r(R ⋉ I) = rR(I) = 1. We

have r(R ⋉ J) = 1 + rR(J) = 3 for J = (t3, t5). The maximal ideal m of R is an Ulrich

R-module, and r(R ⋉ m) = 2 + rR(m) = 5 by Theorem 4.3, since rR(m) = r(R) + 1 = 3

by Proposition 6.7. See Corollary 2.6 for more details.
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