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RESIDUALLY FAITHFUL MODULES AND THE COHEN-MACAULAY
TYPE OF IDEALIZATIONS

SHIRO GOTO, SHINYA KUMASHIRO, AND NGUYEN THI HONG LOAN

ABSTRACT. The Cohen-Macaulay type of idealizations of maximal Cohen-Macaulay
modules over Cohen-Macaulay local rings is explored. There are two extremal cases,
one of which is closely related to the theory of Ulrich modules [2, [0l [10, 14], and the
other one is closely related to the theory of residually faithful modules and the theory of
closed ideals [3].

1. INTRODUCTION

The purpose of this paper is to explore the behavior of the Cohen-Macaulay type
of idealizations of maximal Cohen-Macaulay modules over Cohen-Macaulay local rings,
mainly in connection with their residual faithfulness.

Let R be a commutative ring and M an R-module. We set A = R ® M as an additive
group and define the multiplication in A by

(a,x)-(b,y) = (ab, ay + bx)

for (a,z), (b,y) € A. Then, A forms a commutative ring, which we denote by A = R x M
and call the idealization of M over R (or, the trivial extension of R by M). Notice that
R x M is a Noetherian ring if and only if so is the ring R and the R-module M is finitely
generated. If R is a local ring with maximal ideal m, then so is the idealization A = Rx M,
and the maximal ideal n of A is given by n =m x M.

The notion of the idealization was introduced in the book [20] of Nagata, and we now
have diverse applications in several directions (see, e.g., [1, 8, [13]). Let (R, m) be a
Cohen-Macaulay local ring of dimension d. We set

t(R) = L (Ext}(R/m, R))

and call it the Cohen-Macaulay type of R (here g(x) denotes the length). Then, as is
well-known, R is a Gorenstein ring if and only if r(R) = 1, so that the invariant r(R)

measures how different the ring R is from being a Gorenstein ring. In the current paper,
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we are interested in the Cohen-Macaulay type r(R x M) of Rx M, for a maximal Cohen-
Macaulay (MCM for short) R-module M, that is a finitely generated R-module M with
depthp M = dim R. In the researches of this direction, one of the most striking results
is, of course, the characterization of canonical modules obtained by I. Reiten [21I]. She
showed that R x M is a Gorenstein ring if and only if R is a Cohen-Macaulay local ring
and M is the canonical module of R, assuming (R, m) is a Noetherian local ring and M
is a non-zero finitely generated R-module. Motivated by this result, our study aims at
explicit formulae of the Cohen-Macaulay type r(R x M) of idealizations for diverse MCM
R-modules M.

Let us state some of our main results, explaining how this paper is organized. Through-
out, let (R, m) be a Cohen-Macaulay local ring, and M a MCM R-module. Then, we have
in general

rr(M) <r(Rx M) <r(R)+rgr(M)
(here rr(M) = (g (Ext}(R/m, M)) denotes the Cohen-Macaulay type of M), which we
shall confirm in Section 2 (Theorem 2.2). As is shown in Example and Proposition
2.4 the difference r(R x M) —rg(M) can be arbitrary among the interval [0,r(R)]. We
explore two extremal cases; one is the case of r(R X M) = rr(M), and the other one is
the case of r(R x M) =r(R) + rgp(M).

The former case is exactly the case where M is a residually faithful R-module and

closely related to the preceding research [3]. To explain the relationship more precisely,
for R-modules M and N, let

t =tN :Homp(M,N) ®r M — N

denote the R-linear map defined by ¢(f ® ) = f(z) for all f € Homg(M, N) and z € M.
With this notation, we have the following, which we will prove in Section 3. Here, pg(*)
denotes the number of elements in a minimal system of generators.

Theorem 1.1. Let M be a MCM R-module and suppose that R possesses the canonical
module Kg. Then

r(Rx M) =rr(M) + pr(Coker ).

As a consequence, we get the following, where the equivalence between Conditions (2)
and (3) is due to [3, Proposition 5.2]. Remember that a MCM R-module M is said to
be residually faithful, if M/qM is a faithful R/g-module for some (eventually, for every)
parameter ideal q of R (cf. [3, Definition 5.1]).

Corollary 1.2 (cf. [3| Proposition 5.2]). Let M be a MCM R-module and suppose that
R possesses the canonical module Kg. Then the following conditions are equivalent.

(1) r(Rx M) =rr(M).
(2) The homomorphism t : Homg(M,Kg) @ M — Kpg is surjective.
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(3) M is a residually faithful R-module.

In Section 3, we will also show the following, where QCM(R) denotes the class of the
(not necessarily minimal) first syzygy modules of MCM R-modules.

Theorem 1.3. Let M € QCM(R). Then

rp(M) if R is a direct summand of M,

r(Rx M) = {r(R) +1r(M) otherwise.

In Section 4, we are concentrated in the latter case where r(R x M) = r(R) + rg(M),
which is closely related to the theory of Ulrich modules ([2, O 10, 14]). In fact, the
equality r(R x M) = r(R) + rg(M) is equivalent to saying that (q :p m)M = qM for
some (and hence every) parameter ideal q of R, so that all the Ulrich modules and all the
syzygy modules Q4% (R/m) (i > d) satisfy the above equality r(R x M) = r(R) + rr(M)
(Theorems FT], 3), provided R is not a regular local ring (here Q% (R/m) is considered
in a minimal free resolution of R/m).

In Section 5, we give the bound of supr(R x M), where M runs through certain MCM
R-modules. In particular, when d = 1, we get the following (Corollary [£.2).

Theorem 1.4. Suppose that (R, m) is a Cohen-Macaulay local ring of dimension one and
multiplicity e. Let F be the set of m-primary ideals of R. Then

{1 if R is a DVR,

RxI)=
sup 1"( ) r(R) + e otherwise.

IeF

In Section 6, we focus our attention on the case where dim R = 1. The main objectives
are the trace ideals and closed ideals. The notion of closed ideals was introduced by [3],
where one finds a beautiful theory of closed ideals. As for the theory of trace ideals, we
refer to [0, 18] for the recent progress. In Section 6, we compute the Cohen-Macaulay type
r(R x I) for fractional trace or closed ideals I over a one-dimensional Cohen-Macaulay
local ring R, in terms of the numbers of generators of I together with the Cohen-Macaulay
type rr(I) of I as an R-module.

In what follows, unless otherwise specified, (R, m) denotes a Cohen-Macaulay local ring
with d = dim R > 0. When R possesses the canonical module Kg, for each R-module
M we denote Hompg(M,Kg) by M. Let Q(R) be the total ring of fractions of R. For
R-submodules X and Y of Q(R), let

X:Y={acQR)|aY C X}
If we consider ideals I, J of R, we set [ :p J ={a € R | aJ C I}; hence
I'pJ=(I:J)NR.

For each finitely generated R-module M, let ugr(M) (resp. ¢r(M)) denote the number of
elements in a minimal system of generators (resp. the length) of M. For an m-primary
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ideal a of R, we denote by
(M) = lim d!.w

a
n—o0 n

the multiplicity of M with respect to a.

2. THE COHEN-MACAULAY TYPE OF GENERAL IDEALIZATIONS

In this section, we estimate the Cohen-Macaulay type of idealizations for general max-
imal Cohen-Macaulay modules over Cohen-Macaulay local rings. We begin with the
following observation, which is the starting point of this research.

Proposition 2.1. Let (R, m) be a (not necessarily Noetherian) local ring and let M be an
R-module. We set A= R x M and denote by n = m x M the mazimal ideal of A. Then
(0) :an = ([(0) :g m] N AnngM) x [(0) :py m].

Therefore, when R is an Artinian local ring, (0) 14 n = (0) x [(0) :ay m] if and only if

AnngpM = (0).
Proof. Let (a,x) € A. Then (a,z)-(b,y) = 0 for all (b,y) € n = m x M if and only if
ab=0,ay =0, and bx = 0 for all b € m,y € M. Hence, the first equality follows. Suppose

that R is an Artinian local ring. Then, since I = AnngM is an ideal of R, I # (0) if and
only if [(0) :r m] N I # (0), whence the second assertion follows. O

We now assume, throughout this section, that (R, m) is a Cohen-Macaulay local ring
with d = dim R > 0. We say that a finitely generated R-module M is a mazimal Cohen-
Macaulay (MCM for short) R-module, if depthp M = d.

Theorem 2.2. Let M be a MCM R-module and A = R x M. Then
rr(M) <r1(A) <r(R)+rr(M).
Let q be a parameter ideal of R and set R = R/q, M = M/qM. We then have the
following.
(1) r(A) = rp(M) if and only if M is a faithful R-module.
(2) r(A) =r(R) +rr(M) if and only if (q :g m)M = qM.
Proof. We set A = A/qA. Therefore, A = R x M. Since A is a Cohen-Macaulay local

ring and qA is a parameter ideal of A, we have r(A) = r(4), and by Proposition 2.1 it
follows that

r(A) = £z((0) = ((([(0) -z m] N AnngM) x [(0) :37 m])
= (x([(0) & ] N AnngM) + (7 ((0) 37 m)
= (%([(0) : g m] N Anng M) + rr(M)
< (((0) ;g m) +1R(M)

r(R) 4+ rgr(M).
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Hence, rp(M) < 1r(A) < 1r(R) +1rg(M), so that by Proposition 21 r(A) = rg(M) if and
only if M is a faithful R-module. We have r(A) = r(R) + rp(M) if and only if (0) :z m C
Anngz M, and the latter condition is equivalent to saying that q :zx m C qM :p M, that is
(q:g m)M = qM. O

The following shows the difference r(A) —rg(M) in Theorem 2.2 can be arbitrary among
the interval [0, r(R)]. Notice that r(R x R) =r(R).

Example 2.3. Let ¢ > 2 be an integer and S = k[[ X3, Xs,. .., X/]] the formal power

series ring over a field k. Let a = [3(M) denote the ideal of S generated by the maximal

minors of the matrix M = (2 ;f) X)‘; j((f,) with ¢ > 2. We set R = S/a. Then R is

a Cohen-Macaulay local ring of dimension one. For each integer 2 < p < ¢, we consider
the ideal I, = (z1) + (xp, Tpy1, - - ., 2¢) of R, where x; denotes the image of X; in R. Then
r(Rx I,) = —p+1)+rg(l,), and

14 ifp=2
rR(]l”)_{zz—1 if p > 3

for each 2 < p < /.

Proof. Let m denote the maximal ideal of R. We set I = I, and x = z;. It is direct
to check that I? = zI, where we use the fact that ¢ > 2. In particular, m®> = zm. We
consider the exact sequence

(E) 0— R/I 5 1)zl —1/(z)—0,

where ¢(1) = 2z mod «1, and get Anngl/xl = I, since I* = xI. Therefore, Anngj I /xl =
I/(x). Because I/(z) C m/(x) = (0) :p/) m, we get

fR([(O) ‘R/(z) m] N AIIIIR/(J;)]/:L'I) = ER(]/(:L')) ={—p+1,
whence
r(RxI)=({—-p+1)+rr()

by Theorem Because (22,3, ...,Tp-1)(Tp, Tp+1,-..,2¢) C I, the above sequence
(E) remains exact on the socles, so that

rp(l) =r(R/I)+rr(I/(x)).
Therefore, rr(I) =l if p=2,andrg(/) = (p—2)+ (L —p+1)=(—1if p > 3. O

Assume that R is not a regular local ring and let 0 < n < r(R) be an integer. Then, we
suspect if there exists a MCM R-module M such that r(R x M) =n +rg(M). When R

is the semigroup ring of a numerical semigroup, we however have an affirmative answer.
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Proposition 2.4. Letay,as, ..., ap be positive integers such that GCD(ay, ag, -+ ,ap) = 1.
Let H = (a1, as, ..., ar) be the numerical semigroup generated by {a;}1<i<e. Let k[[t]] de-
note the formal power series ring over a field k and consider, inside of k|[[t]], the semigroup
ring

R = Ek[[t*,t*, ... t"]]

of H over k. We set e = min{a; | 1 < i < £} and assume that e > 1, that is R is not
a DVR. Let r = r(R). Then, for each integer 0 < n < r, R contains a non-zero ideal I
such that r(Rx I) =n+rg(I).

Proof. Let m be the maximal ideal of R and set B =m : m. Then B = R : m since R is
not a DVR, and

(t°) :gm=(t°) :m=t(R:m)=1t°B.
We denote by PF(H) = {a; < ay < -+ < a,} the pseudo-Frobenius numbers of H.
Hence, B=R+) ..., Rt sothat (t°) :;gm= (t°)+ (t¥ |1 <i<r). Let 1 <p<r
be an integer and set [ = () 4+ (tFe | p < j <r)C (t°) :g m. Let ap = 0. We then
have the following.

Claim 1. Let 0 < i <7 and p < j < r be integers. Then ttet®te ¢ t¢I. Consequently,
I2 =¢°].

Proof. Assume that t*tet®*e & t¢]. Then t**%*¢ & J. On the other hand, since
% € B =m :m, we get o; + o = o + h for some 0 < kK < rand h € H. If
h > 0, then o; + o; € H, so that t*7**¢ € I which is impossible. Therefore, h = 0,
and ap —a; = a; > 0, so that k£ > j > p. Hence, t*t%*¢ = t%+¢ ¢ [ This is a
contradiction. 0

We now consider the exact sequence 0 — R/I — [/t°] — [/(t°) — 0, and get that
Anng I/t°l = I. Hence

Anngey I/t°T = 1/(t°) C (0) :grye) m.

Therefore, r(R x I) = (g(I/(t°)) + rr(I) = n+rgr(I), where n = r —p+ 1. For n = 0,
just take I = R. O

Remark 2.5. With the same notation as in the proof of Proposition 2.4] let Kz denote
the canonical module of R and consider the ideal I = (t¢) + (t**¢ | p < j < r). Then,
because I? = t°I and mI = mt°, by [8, Proposition 6.1] R x IV is an almost Gorenstein
local ring, where IV = Hompg(I,Kg). Since Anng IV /t°IV = Anng I /t°1, we get
r(RxIV)=(r—p+1)+1r(I")=(r—p+1)+ pr(I),

so that r(Rx IV) =2r —2p + 3.
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Corollary 2.6. With the same notation as in Proposition 2.4], assume that ay < ay <
- < ap, and that H is minimally generated by ¢ elements with ¢ = a; > 2, that is

R has mazimal embedding dimension ¢ > 2. Let 2 < p < [ be an integer and set
I, = (™) + (to, to+r . t%). Thenr(Rx I,) = ({ —p+1)+rg(l,), and

l ifp=2

tally) = /v

(-1 ifp>3

for each 2 < p < (.

Proof. Let e = a; and r = r(R). Hencer(R) = e—1. Let 1 < 4,5 < ¢ be integers. Then i =
J if a; = a; mod e, because H is minimally generated by {a;}i1<i<¢. Therefore, PF(H) =
{ag—e < az—e < -+ < a.—e}, so that r(Rx [,) = (e—p+1)+rg(I,) by Proposition2.4. To
get rr(1,), by the proof of Example [2.3]it suffices to show that m- (%, t%+1, ... t%) Ct“],
which follows from Claim [l in the proof of Proposition 2.4l O

In the following two sections, Sections 3 and 4, we explore the extremal cases where
r(Rx M) =r1rg(M) and r(R x M) =1(R) +r (M), respectively.
3. RESIDUALLY FAITHFUL MODULES AND THE CASE WHERE r(R x M) = rg(M)

Let (R, m) be a Cohen-Macaulay local ring with d = dim R > 0. In this section, we
consider the case of Theorem (1), that is r(R x M) = rgr(M). Let us begin with the
following.

Definition 3.1. Let M be a MCM R-module. We say that M is residually faithful, if
M/qM is a faithful R/g-module for some parameter ideal q of R.

With this definition, Theorem 2.2 (1) assures the following.

Proposition 3.2. Let M be a MCM R-module. Then the following conditions are equiv-
alent.

(1) r((Rx M) =rr(M).
(2) M is a residually faithful R-module.
(3) M/qM is a faithful R/q-module for every parameter ideal q of R.
For R-modules M and N, let
t =tN : Homp(M,N) ®r M — N
denote the R-linear map defined by t(f®@m) = f(m) for all f € Homg(M, N) and m € M.
With this notation, we have the following.

Theorem 3.3. Let M be a MCM R-module and suppose that R possesses the canonical
module Kg. Let C' = Coker ty' . Then

r(Rx M) =1gr(M)+ pugr(C).
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Proof. We set K = Kz and A = R x M. Let us make the R-module MV x K into an
A-module on which the A-action is defined by

(a,m)o (f,x) = (af, f(m) + az)

for each (a,m) € A and (f,z) € MY x K. Then M"Y x K = Hompg(A, K) as an A-module.
Therefore, K4 = MY x K, the canonical module of A ([5], Section 6, Augmented rings| or
[7. Section 2]). Let n = m x M denote the maximal ideal of A and L = Imty . Then,
since n(MY x Kg) = mM" x (L + mKg), we get

=Lla([MY x K]/[mM" x (L +mK)]
=lr([M" & K]/[mM" & (L + mK)]
= lp(MY/mM") + (g(K/(L +mK))

= pur(M") + pur(C)
=r1r(M) + pr(C).
]

Theorem covers [3 Proposition 5.2]. In fact, we have the following, where the
equivalence of Conditions (1) and (3) follows from Proposition B2, and the equivalence
of Conditions (1) and (2) follows from Theorem [3.3]

Corollary 3.4 (cf. [3, Proposition 5.2]). Let M be a MCM R-module and suppose that
R possesses the canonical module Kg. Then the following conditions are equivalent.

(1) r(Rx M) =rg(M).

(2) The homomorphism ty, : Homg(M,Kg) ®r M — Kg is surjective.

(3) M is a residually faithful R-module.

We note one example of residually faithful modules M such that M 2 R, Kg.

Example 3.5 ([12, Example 7.3]). Let k[[¢]] be the formal power series ring over a field
k and consider R = E[[t°, t10, ¢! 2 ¢'5]] in k[[t]]. Then Kr = R+ Rt + Rt* + Rt* and
ur(Kg) = 4. Let I = R+ Rt. Then the homomorphism tf<R : Homg (I, Kg)®@g I — Kg is
an isomorphism of R-modules, so that [ is a residually faithful R-module, but I 2 R, Kg,
since pgr(l) = 2.

Here we notice that Corollary 3.4] recovers the theorem of Reiten [21I] on Gorenstein
modules. In fact, with the same notation as in Corollary [3.4], suppose that R x M is a
Gorenstein ring and let q be a parameter ideal of R. Then, since r(R x M) = 1, Corollary
B4 implies that M = M/qM is a faithful module over the Artinian local ring R = R/q
with r5(M) = 1. Therefore, M is the injective envelope Ex(R/m) of the residue class
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field R/m of R, so that M = Kp, is the canonical module (that is a Gorenstein module of
rank one) of R.
Residually faithful modules enjoy good properties. Let us summarize some of them.

Proposition 3.6. Let M be a MCM R-module. Then the following assertions hold true.

(1) Let a € m be a non-zerodivisor of R. Then M is a residually faithful R-module if and
only if so is the R/(a)-module M /aM .

(2) Let (S,n) be a Cohen-Macaulay local ring and let ¢ : R — S denote a flat local
homomorphism of local rings. Then M 1is a residually faithful R-module if and only
if so is the S-module S @r M. Therefore, M is a residually faithful R-module if and
only if so is the R-module M where x denotes the m-adic completion.

(3) Suppose that M is a residually faithful R-module. Then M is a faithful R-module and
M, is a residually faithful R,-module for every p € Spec R.

Proof. (1) This directly follows from Proposition [3.2]

(2) We set n = dim S/mS and L = S ®p M. Firstly, suppose that n = 0. Let q be a
parameter ideal of R and set a = AnngM/qM. Then aS = Anng(L/qL). If a = q, then
qS = AnngL/qL, so that L is a residually faithful S-module, since qS is a parameter
ideal of S. Conversely, suppose that L is a residually faithful S-module. We then have
aS = qS by Proposition B.2] so that a = q, and M is a residually faithful R-module.

We now assume that n > 0 and that Assertion (2) holds true for n — 1. Let g € n and
suppose that g is S/mS-regular. Then g is S-regular and the composite homomorphism

R— S —S/gS

remains flat and local, so that M is a residually faithful R-module if and only if so is the
S/gS-module L/gL. Since dim S/(gS +mS) = n—1, the latter condition is, by Assertion
(1), equivalent to saying that L is a residually faithful S-module.

(3) Let ay,as, . ..,aq be a system of parameters of R. We then have by Proposition 3.2

AnngM C AnngM/(ay,ay, ... a5)M = (af,ay, ... a})

for all n > 0. Therefore, M is a faithful R-module. Let p € Spec R and choose P €
Ming E/pﬁ Then, p = PN R, and we get a flat local homomorphism R, — Rp of local
rings such that dim Rp /p}Azp = 0. Therefore, to see that M, is a residually faithful R,-
module, by Assertion (1) it suffices to show that Mp is a residually faithful Rp-module.
Consequently, because Mis a residually faithful R-module by Assertion (1), passing to
the m-adic completion R of R, without loss of generality we may assume that R possesses
the canonical module K. Then, the current assertion readily follows from Corollary [3.4]
because
Kp, = (Kg)y = (Im#,) = Imtyc?
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By Proposition 3.6, we have the following.

Corollary 3.7. Let M be a MCM R-module. If r(R x M) =1g(M), then (R, x M,) =
rr,(M,) for every p € Spec R.

Corollary 3.8. Let M be a MCM R-module, and suppose that R possesses the canonical
module Kg. If M is a residually faithful R-module, then so is M.

Proof. We may assume that d > 0 and that our assertion holds true for d — 1. Let
a € m be a non-zerodivisor of R and let % denote the reduction mod (a). We then
have MV = Homg(M,Kg) = MV, where we identify Kz = K. Because by Proposition
(3), M is a residually faithful R-module, by the hypothesis of induction we have
M’ = Homp(M, Kg) is a residually faithful R-module, whence Proposition B.6] (1) shows
that MV is a residually faithful R-module. O

Suppose that R possesses the canonical module K. Then, certain residually faithful
R-modules M satisfy the condition Homg(M, Kg) ®g M = Kg, as we show in the follow-
ing. Recall that a finitely generated R-module C is called semidualizing, if the natural
homomorphism R — Hompg(C,C) is an isomorphism and Ext’(C,C) = (0) for all i > 0.
Hence, the canonical module is semidualizing, and all the semidualizing R-modules satisfy
the hypothesis in Theorem [3.9] because semidualizing modules are Cohen-Macaulay.

Theorem 3.9. Suppose that R possesses the canonical module Kg and let M be a MCM
R-module. If R = Hompg(M, M) and Ext'y(M, M) = (0) for all 1 < i < d, then the
homomorphism

MY ®@r M 5 Kg

s an isomorphism of R-modules, where t = tf\gR.

Proof. Notice that M is a residually faithful R-module. In fact, the assertion is clear, if
d = 0. Suppose that d > 0 and let f € m be a non-zerodivisor of R. We set R = R/(f)
and denote ¥ = R ®p *. Then, since f is regular also for M, we have Ext’ (M, M) =
Ext’(M, M) for all i € Z, and it is standard to show that R = Homgp(M, M) and that
Ext%(M, M) = (0) for all 1 <i < d — 1. Therefore, by induction on d, we may assume
that M is a residually faithful R-module, whence Proposition (1) implies that so is
the R-module M.
We now consider the exact sequence

(B) 05X —>M' @pM-5Kzg—0
of R-modules, where ¢t = t§! . If d = 0, then because
Homg(M"Y @z M,Kg) = Homg(M, M") = Homg (M, M),
taking the Kg-dual of (F), we get the exact sequence
0 — R — Homgr(M, M) — X" — 0.
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Hence XV = (0) because R = Homp(M, M), so that MY @ M -5 K, is an isomorphism.
Suppose that d > 0 and let f € m be R-regular. We denote * = R/(f) ®g *. Then since
f is Kg-regular, we get from Exact sequence (FE)

(B) 05X - M @r M 5Kz — 0.

Because Kp = Kiz, MV ®@x M = M’ ®z M, and t = tKME, by induction on d we see in
the above exact sequence (E) that X = (0), whence X = (0) by Nakayama’s lemma.
Therefore, MY @ M LK R 18 an isomorphism. O]

Therefore, we have the following, which guarantees that the converse of Theorem
also holds true, if R, is a Gorenstein ring for every p € Spec R\ {m}. See [11], Proposition
2.4] for details.

Corollary 3.10 (11 Proposition 2.2]). With the same hypothesis of Theorem B3], one
has r(R) = rr(M)-ur(M). Consequently, the following assertions hold true.

(1) Ifr(R) is a prime number, then M = R or M = Kg.

(2) If R is a Gorenstein ring, then M = R.

Let us note the following.

Proposition 3.11. Suppose that R is an integral domain, possessing the canonical module
Kg. Let M be a MCM R-module and assume that v(R x M) = 2. If Exth»,(M, M) = (0)
forall 1 <i <d, then

M=K$? or MY @r M =2 Kg.

Therefore, if r(R) is a prime number and M is indecomposable, thenr(R) = 2 and M = R.

Proof. Let C = Cokerty.. Then, rg(M) = ur(C) =1, or rg(M) = 2 and C' = (0), since
r(Rx M) = rg(M) + ug(C) by Theorem B3l If rg(M) = 1, then MY = R, since the
cyclic module MV is of dimension d and R is an integral domain. Therefore, M = Kg,
so that r(R x M) = 1, which is impossible. Hence, rg(M) = 2, and M is, by Proposition
8.2, a residually faithful R-module. Let us take a presentation

0= X >R 5 MY >0

of MV. If X = (0), then M = K%2. Suppose that X # (0). Then, X is a MCM R-module,
and taking the Kz-dual of the presentation, we get the exact sequence

0—>M—=K3— XY —0.

Let F' = Q(R). Then F ®p XV # (0), since X" is a MCM R-module. Consequently,
F®rM = F, that is rankgM = 1, because F ®r Kgr = F'. Hence, in the canonical exact
sequence

(E) 0—L—M ®pM-5Kz—0,
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F @ L = (0), because rankgM = 1. Consequently, because the R-module L is torsion,
taking the Kg-dual of the sequence (E) we get the isomorphism
R=K} — [MY ® M]" = Homg(M, M).

Thus, MV @ M = Kgi by Theorem B9
If M is indecomposable and r(R) is a prime number, we then have M = R or M = Kg,
while r(R x M) = 2, so that M = R and r(R) = 2. O

The following result is essentially due to [24, Lemma 3.1] (see also [16], Proof of Lemma
2.2]). We include a brief proof for the sake of completeness.

Lemma 3.12. Let M be a MCM R-module and assume that there is an embedding
() 0->M—-F—N-=0

of M 1into a finitely generated free R-module F' such that N is a MCM R-module. Then
the following conditions are equivalent.

(1) M is a residually faithful R-module.
(2) M Z mF.
(3) R is a direct summand of M.

Proof. (3) = (1) and (2) = (3) These are clear.
(1) = (2) Let q be a parameter ideal of R. Then, since N is a MCM R-module,
Embedding (E) gives rise to the exact sequence

0— M/qM — F/qF — N/qN — 0.
Notice that Anngm-(F/qF) # (0) because dimR/q = 0, and we have M/qM ¢
m-(F/qF). Thus M  mF. O

Let QCM(R) denote the class of MCM R-modules M such that there is an embedding
0 > M — F — N — 0 of M into a finitely generated free R-module with N a MCM
R-module. With this notation, we have the following.

Theorem 3.13. Let M € QCM(R). Then

r(R x M) = rr(M) if R is 'a direct summand of M,
r(R) +rgr(M) otherwise.
Proof. We may assume that R is not a direct summand of M. Let us choose an embedding
0O—-M-—-F—N-—=0

of M into a finitely generated free R-module F' such that N is a MCM R-module. Let g
be a parameter ideal of R and set [ = q :g m. Then, since M C mF by Lemma B.12] we
have from the exact sequence

0— M/qM — F/qF — N/qN — 0
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that [-(M/qM) C (Im)-(F/qF) = (0). Therefore, IM C qM, so that r(R x M) =
r(R) + rg(M) by Theorem 2.2 (2). O

If R is a Gorenstein ring, every MCM R-module M belongs to QCM(R), so that
Theorem yields the following.

Corollary 3.14. Let R be a Gorenstein ring and M a MCM R-module. Then the follow-

ing conditions are equivalent.
(1) r(Rx M) =rr(M).
(2) R is a direct summand of M.

4. ULRICH MODULES AND THE CASE WHERE (R X M) =1(R) + (M)

Let (R,m) be a Cohen-Macaulay local ring of dimension d > 0. In this section, we
study the other extremal case of Theorem 2.2 (2), that is r(R x M) =1r(R)+rr(M). We
already have a partial answer by Theorem [B.13] and the following also shows that over a
non-regular Cohen-Macaulay local ring (R, m, k), there are plenty of MCM R-modules M
such that r(R x M) =r(R) +rr(M).

Let Q% (k) denote, for each ¢ > 0, the i-th syzygy module of the simple R-module
k = R/m in its minimal free resolution. Notice that, thanks to Theorem [3.13] the crucial
case in Theorem [£.]is actually the case where i = d.

Theorem 4.1. Suppose that R is not a regular local ring. Then (q :r m)-Q% (k) = q-Q% (k)
for every i > d and for every parameter ideal q of R. Therefore

(R % Qg (k)) = 1(R) + rr(Qp(k))
for all v > d.

Proof. We may assume that d > 0 and that the assertion holds true for d — 1. Choose
a € m\ m? so that a is a non-zerodivisor of R. We set R = R/(a) and m = m/(a). We
then have, for each i > 0, the isomorphism

O (k)/a-Qp(k) = QO (k) @ QL(k).

We now choose elements ay, as, . .., aq of m so that qo = (a, as, as, ..., as) is a parameter
ideal of R and set gy = q¢/(a). Then, by the hypothesis of induction, we have

(0 17 ™) Qp(k) = To-Qp(k)
for all ¢ > d — 1, so that
(@0 :5 ™) [Qr(k)/a- (k)] = o [Vn(k)/a-Q (k)]
for all ¢ > d. Hence, because qo 1z M = (qo :g m)/(a),

(90 :r m)'QZé(k‘) = CIO'QE(k‘)
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for all ¢ > d. Therefore, by Theorem (2), (q :p m)-Qi(k) = q-Qi(k) for every
parameter ideal q of R, because Q% (k) is a MCM R-module. O

Let us pose one question.

Question 4.2. Suppose that R is not a regular local ring. Does the equality

(9 :r m)-Qp(k) = q-Qp(k)
hold true for every i > 0 and for every parameter ideal q of R? As is shown in Theorem
[T, this is the case, if i > d = dim R. Hence, the answer is affirmative, if d = 2 ([4]).

Let M be a MCM R-module. Then we say that M is an Ulrich R-module with respect
to m, if up(M) = €2 (M) (see [2], where the different terminology MGMCM (maximally
generated MCM module) is used). Ulrich modules play an important role in the repre-
sentation theory of local and graded algebras. See [0, [10] for a generalization of Ulrich
modules, which later we shall be back to. Here, let us note that a MCM R-module M is
an Ulrich R-module with respect to m if and only if mM = qM for some (hence, every)
minimal reduction q of m, provided the residue class field R/m of R is infinite (see, e.g.,
[13, Proposition 2.2]). We refer to [I7, Theorem A] for the ample existence of Ulrich
modules with respect to m over certain two-dimensional normal local rings (R, m).

Theorem 4.3. Suppose that R is not a regular local ring and let M be a MCM R-module.
We set A= Rx M. If M is an Ulrich R-module with respect to m, then rp(M) = pur(M)
and r(A) = r(R) + rr(M), so that (q :r m)M = qM for every parameter ideal q of R.
When R has mazimal embedding dimension in the sense of [22], the converse is also true.

Proof. Enlarging the residue class field of R if necessary, we may assume that R/m is
infinite. Let us choose elements f1, fa, ..., fo of mso that q = (f1, f2, ..., fa) is a reduction
of m. Then, q is a parameter ideal of R, and mM = qM, since M is an Ulrich R-module
with respect to m (JI3, Proposition 2.2]). We then have rg(M) = ur(M), and q :p m C m,
because R is not a regular local ring. Hence, (q :g m)M = qM, because

qM C (q :g m)M C mM = qM.
Thus, r(A) = r(R) +rg(M) by Theorem
Assume that R has maximal embedding dimension and we will show that the converse

also holds true. We have m? = gm for some parameter ideal q of R, so that m = q :z m,
because R is not a regular local ring. If r(A) = r(R) + rg(M), we then have

mM = (q:g m)M = qM
by Theorem (2), whence M is an Ulrich R-module with respect to m. O

Remark 4.4. Unless R has maximal embedding dimension, the second assertion in The-
orem [£.3]is not necessarily true. For example, let (R, m) be a one-dimensional Gorenstein
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local ring. Assume that R is not a DVR. Then r(Rxm) = 3 = r(R) +1rg(m) (see Proposi-
tion [6.7 and Corollary [6.8 below), while m is an Ulrich R-module with respect to m itself

if and only if m? = am for some a € m. The last condition is equivalent to saying that
e(R) = 2.

We note one more example, for which the both cases r(R x M) = r(R) 4+ rg(M) and
r(R x M) =rg(M) are possible, choosing different MCM modules M.

Example 4.5. Let R = k[[X,Y, Z]]/(Z* — XY), where k[[X,Y, Z]] denotes the formal
power series ring over a field k. Then, the indecomposable MCM R-modules are p =
(x,z) and R, up-to isomorphisms (here, by z,y, z we denote the images of XY, Z in R,
respectively). Since p is an Ulrich R-module with respect to m, by Theorem we have
r(Rxp) =1+1g(p) = 3. Let M be an arbitrary MCM R-module. Then, M = p®¢q R"
for some integers ¢,n > 0, and M/qM is a faithful R/g-module for the parameter ideal
q = (x,y) if and only if n > 0. Therefore, r(R x M) = rg(M) = 2{ +n if n > 0, while
r(Rx M)=1+rgr(M)=1+20if n =0 (see Theorem [2.2)).

The generalized notion of Ulrich ideals and modules was introduced by [9]. We briefly
review the definition. Let I be an m-primary ideal of R and M a MCM R-module.
Suppose that I contains a parameter ideal q as a reduction. We say that M is an Ulrich
R-module with respect to I, if €2(M) = (r(M/IM) and M/IM is a free R/I-module.
Notice that the first condition is equivalent to saying that /M = qM and that the second
condition is automatically satisfied, when I = m. We say that [ is an Ulrich ideal of R, if
I24q,I?=ql,and I/I?is a free R/I-module. Notice that when dim R = 1, every Ulrich
ideal of R is an Ulrich R-module with respect itself. Ulrich modules and ideals are closely
explored by [6l O 10, 14], and it is known that they enjoy very specific properties. For
instance, the syzygy modules Q% (R/I) (i > d) for an Ulrich ideal I are Ulrich R-modules
with respect to I.

Theorem 4.6. Let I be an Ulrich ideal of R and M an Ulrich R-module with respect to
I. We set { = ur(M) and m = pgr(I). Then

r(Rx M) =r(R)+rr(M) =1(R/I)-({ +m —d).
Proof. Let q be a parameter ideal of R such that I? = qI. Then IM = qM because
(M) = (r(M/IM), while M/IM = (R/I)®* as an R/I-module. Therefore, since

Annp/M/qM = I/q and I/q = (R/I)®™=9 as an R/I-module ([9, Lemma 2.3]), we
have by Proposition 2.1]

f(Rx M) =1g(1/q) + Lx(R/I) = t(R/T)-(m — d) + (x(R/I) = t(R) + t(M),

where the last equality follows from the fact that r(R) = (m—d)-r(R/I) (see [14, Theorem
2.5]). O
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Corollary 4.7. Suppose that d = 1 and let I be an Ulrich ideal of R with m = ug(I).
Thenr(Rx I) = (2m —1)-r(R/I).

We note a few examples.

Example 4.8. Let k[[t]] be the formal power series ring over a field k.

(1) Let R = k[[t3,t7]]. Then Xz = {(t5 — at™,t'%) | 0 # a € k} is exactly the set of
Ulrich ideals of R. For all I € Xg, R/I is a Gorenstein ring, so that r(R x [) = 3 by
Proposition E.7]

(2) Let R = K[[t% ¢'3,¢*]]. Then the following families consist of Ulrich ideals of R ([6]
Example 5.7 (3)]):

(i) {(t%+at'®) +c¢|a €k},
(ii) {(t"? + at™® +0t') + ¢ | a,b € k}, and
(iii) {(t'"® + at®®) + ¢ | a € k},
124 426 428

where ¢ = ( ). We have pug(I) = 3 and R/I is a Gorenstein ring for all ideals

I in these families, whence r(R x I) = 5.

Suppose that dim R = 1. If R possesses maximal embedding dimension v but not a
DVR, then for every Ulrich ideal I of R, R/I is a Gorenstein ring, and [ is minimally
generated by v elements ([0, Corollary 3.2]). Therefore, by Corollary L7 we get the
following.

Corollary 4.9. Suppose that dim R = 1 and that R is not a DVR. If R has mazimal
embedding dimension v, then r(R x I) = 2v — 1 for every Ulrich ideal I of R.

5. BOUNDING THE SUPREMUM supr(R x M)

Let » > 0 be an integer and set
F(R) = {M | M is an R-submodule of R®" and a maximal Cohen-Macaulay R-module}.

We are now interested in the supremum sup r(R x M) and get the following.
MeFr(R)

Theorem 5.1. Let (R, m) be a Cohen-Macaulay local ring of multiplicity e and let M €
F-(R). Then r(Rx M) < r(R) + re. When m contains a parameter ideal q of R as a
reduction and R is not a reqular local ring, the equality holds if and only if M is an Ulrich
R-module with respect to m, possessing rank r.

Proof. Enlarging the residue class filed R/m of R if necessary, without loss of generality
we may assume that m contains a parameter ideal q of R as a reduction. We then have

re > eg(M) = lr(M/qM) > Lr((0) :pr/qm m) = 1R(M).

Hence
r(Rx M) <r(R)+rr(M) <1r(R)+re.
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Consequently, if r(R x M) = 1(R) + re, then re = rg(M), that is re = eJ(M) and
Cr(M/qM) = Lr((0) :ar/qm m), which is equivalent to saying that dimp R®"/M < d and
mM = gqM, that is M has rank r and an Ulrich R-module with respect to m. Therefore,
when R is not a regular local ring, r(Rx M) = r(R) +1g(M) if and only if M is an Ulrich

R-module with rank r (see Theorem [A.3)). O

Corollary 5.2. Suppose that (R, m) is a Cohen-Macaulay local ring of dimension one
and multiplicity e. Let F be the set of m-primary ideals of R. Then

{1 if R is a DVR,

RxI)=
sup r(R x I) r(R) 4+ e otherwise.

IeF
Proof. We have only to show the existence of an m-primary ideal I such that [ is an Ulrich
R-module with respect to m and pgr(l) = e. This is known by [2] Lemma (2.1)]. For the
sake of completeness, we note a different proof. Let

A= U (m":m")
n>0

in Q(R). Then A is a birational finite extension of R (see [19]). Since A = I for some
m-primary ideal I of R, it suffices to show that A is an Ulrich R-module with respect to
m and pg(A) = e. To do this, enlarging the residue class field R/m of R if necessary, we
may assume that m contains an element a such that () = (a) is a reduction of m. Then
mA = aA because A = R[] ([19]), whence A is an Ulrich R-module with respect to m.
We have

ja(A) = Cr(Afad) = e(A) = &(R) = ¢

as wanted. O

6. THE CASE WHERE d =1

In this section, we focus our attention on the one-dimensional case. Let (R, m) be a
Cohen-Macaulay local ring of dimension one, admitting a fractional canonical ideal K.
Hence, K is an R-submodule of R such that K = Ky as an R-module and R C K C R,
where R denotes the integral closure of R in the total ring Q(R) of fractions of R. The
hypothesis about the existence of fractional canonical ideals K is equivalent to saying
that R contains an m-primary ideal I such that I = Ky as an R-module and such that
possesses a reduction @) = (a) generated by a single element a of R ([8, Corollary 2.8]).
The latter condition is satisfied, once Q(R) is a Gorenstein ring and the field R/m is
infinite. We have rg(M) = ugr (Homg(M, K)) for every MCM R-module M ([15, Satz
6.10]). See [8 [15] for more details.

First of all, let us begin with the following review of a result of Brennan and Vasconcelos
[3]. We include a brief proof.
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Proposition 6.1 (3| Propositions 2.1, 5.2]). Let I be a fractional ideal of R and set
I = K : I. Then the following conditions are equivalent.

)
) JI =K for some fractional ideal J of R.

4) I/f1 is a faithful R/ f R-module for every parameter f of R.
5) I/fI is a faithful R/ f R-module for some parameter f of R.

Proof. (1) < (2) This follows from the facts that K : 1] = (K : I;) : I =1 : I, and that
K : K = R. See [15], Definition 2.4] and [15, Bemerkung 2.5 a)], respectively.

(3) = (2) Since JI = K, we have J CI; = K : I, so that K = JI C I;1 C K, whence
LI =K.

(2) = (3) This is clear.

Since I; = Homg(I, K), the assertion that I;] = K is equivalent to saying that the
homomorphism t£ : Homp(I, K) @ [ — K is surjective. Therefore, the equivalence
between Assertions (1), (4), (5) are special cases of Corollary B.4] (see [3, Proposition 5.2]
also). O

We say that a fractional ideal I of R is closed, if it satisfies the conditions stated in

Proposition [l Thanks to Proposition [6.11 (3), we readily get the following.

Corollary 6.2 ([3, Corollary 3.2]). If R is a Gorenstein ring, then every closed ideal of
R is principal.

Assertion (2) of the following also follows from Corollary B.I4l Let us note a direct
proof.

Theorem 6.3. Suppose that R is a Gorenstein ring and let I be an m-primary ideal of
R. Then the following assertions hold true.

(1) x(B/1) < rr(l) < 1+1(R/I),
(2) r(Rx I)=14rg(I), if ur(I) > 1.
Proof. Take the R-dual of the canonical exact sequence
0—-1I—-R—R/IT—0
of R-modules and we get the exact sequence
0 — R — Homg(I, R) — Exth(R/I, R) — 0.
Hence, r(R/I) <rtr(I) <14 r(R/I), because
ta(1) = pr(Homp(I, R)) and r(R/T) = pr(Exth(R/I, R))

([15, Satz 6.10]). To see the second assertion, suppose that ur(I) > 1. Let q = (a) be a
parameter ideal of R and set J = q :g m. Let us write J = (a,b). We then have J = q: m,
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and mJ = mq by [4], because R is not a DVR. On the other hand, by Corollary we
have R C I : I, since R is a Gorenstein ring and [ is not principal. Consequently

RCR-mCI:1,

since (g([R : m]/R) = 1. Therefore, 2 € I : I, because

1 1
R:m:—-[q:m]:—-(a,b):R+Ré.
a a a

Thus bl C al, which shows (q:g m)I = (a,b)I C ql, so that
r(RxI)=r1(R)+rg(l)=1+rg(I)
by Theorem 2.2] (2). O

Remark 6.4. In Theorem (1), the equality rr(I) = 1+ r(R/I) does not necessarily
hold true. For instance, consider the ideal I = (3,¢%) in the Gorenstein local ring R =
k[[t*,t°,¢5]]. Then r(R/I) = 2. Because t** € R : I, we have 1 € m-[R : I], which
shows, identifying R : I = Hompg(/, R) in the proof of Assertion (2) of Theorem [6.3] that
pr(Homp(I, R)) = pur(Exty(R/I, R)). Hence rg(I) = r(R/I) = 2, while r(R x I) = 3 by
Theorem (2).

We however have rg(l) = 1 + r(R/I) for trace ideals I, as we show in the following.
Let I be an ideal of R. Then I is said to be a trace ideal of R, if

M
[=Im (HomR(M R @r M 5 R)

for some R-module M. When I contains a non-zerodivisor of R, [ is a trace ideal of R if
and only if R: [ =1:1 (see [18, Lemma 2.3]). Therefore, m-primary trace ideals are not
principal.

Proposition 6.5. Suppose that R is a Gorenstein ring. Let I be an m-primary trace ideal
of R. Thenrgr(I)=1+1r(R/I) andr(RxI)=2+1(R/I).

Proof. We have 1 ¢ m:[R : I], since R : I = I : I C R. Therefore, thanks to the proof
of Assertion (2) in Theorem 6.3} rg(/) = 1 +r(R/I), so that r(Rx I) = 2+ 1r(R/I) by
Theorem (2). O

Example 6.6 ([0, Example 3.12]). Let R = k[[t*,¢,¢°]]. Then R is a Gorenstein ring
and

R, (3,67, ¢ ¢'h), (¢%,63,4%), (¢°,4°,¢%), (¢*,¢°,1°), {I, = at5,t6)}a€k

are all the non-zero trace ideals of R. We have I, = I, only if a = b.

Proposition 6.7. Suppose that R is a not a DVR. Then m is a trace ideal of R with
rp(m) =r(R)+1 and r(R x m) = 2-r(R) + 1.
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Proof. We have m : m = R : m, because R is not a DVR, whence m is a trace ideal of R.
We take the K-dual of the sequence 0 — m — R — R/m — 0 and consider the resulting
exact sequence

0— K — K:m— Exth(R/m, K) — 0.

Then, since Extp(R/m, K) & R/m, we get
p(m) = (K m) < pp(K) +1=1(R) + 1.
We actually have the equality in the estimation
pr(K :m) < pug(K) + 1.

To see this, it is enough to show that m(K : m) = mK. We have

KmK:m=K:(K:m):m=m:m
and

K:mK=(K:K):m=R:m.

Therefore, sincem : m= R :m, we get K : m(K : m) = K : mK, sothat m(K : m) = mK.
Hence rp(m) = pup(K : m) = up(K)+ 1 = r(R) + 1 as wanted. We have r(R x m) =

r(R) + rr(m) by Theorem 2.2 (2), because (q :g m)-m = q-m for every parameter ideal g
of R ([]; see Theorem [1] also), whence the second assertion follows. O

Corollary 6.8. Let R be a Gorenstein ring which is not a DVR. Then Rxm is an almost
Gorenstein ring in the sense of [8], possessing r(R x m) = 3.

Proof. See [8, Theorem 6.5] for the assertion that R x m is an almost Gorenstein ring. [

Let us give one more result on closed ideals.

Proposition 6.9. Let I C R be a closed ideal of R and set Iy = K : I. Thenr(R/I) =
pr(lh) = rr(1).

Proof. We consider the exact sequence 0 — K — I} — Extp(R/I, K) — 0. It suffices to
show K C ml;. We have K : m/; = (K : [,) :m, while (K : [;) : m=1:mC1[:]=
R =K : K. Hence ml; O K and the assertion follows. [

Combining Corollary 3.4 Proposition [6.1, and Proposition [6.9) we have the following,
which is the goal of this paper.

Corollary 6.10. Let I be a fractional ideal of R. Then the following conditions are
equivalent.

(1) r(Rx I) =1g(I).

(2) I is a closed ideal of R.
When this is the case, t(Rx I) =1(R/I), if I C R.

We close this paper with the following example.
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Example 6.11. Let k be a field. Let R = K[[t?,t*,°]] and set I = (#3,t*). Then

I =

Kg, and [ is a closed ideal of R with r(R) = 2 and r(R x I) = rg(f) = 1. We

have (R x J) = 1 +rg(J) = 3 for J = (t3,1°). The maximal ideal m of R is an Ulrich
R-module, and r(R x m) = 2 + rg(m) = 5 by Theorem 3] since rg(m) =r(R) + 1 =3
by Proposition [6.7. See Corollary for more details.

[1]
2]

[24]
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