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Abstract

We show that strong solutions of 2D diffusive Oldroyd-B systems in R
2 decay at an

algebraic rate, for a large class of initial data. The main ingredient for the proof is the
following fact; an Oldroyd-B system is a macroscopic closure of a Fokker-Planck-Navier-
Stokes system, and the free energy of this Fokker-Planck-Navier-Stokes system decays over
time. In particular, ‖u‖L∞

t L2
x
and ‖∇xu‖L2

tL
2
x
are uniformly bounded for all time.

1 Introduction

We are interested in the long-time dynamics of the following system, which is called a diffusive
Oldroyd-B system. It reads the following:





∂tu(x, t) + u(x, t) · ∇xu(x, t) = ν1∆xu(x, t)−∇xp(x, t) + µ∇x · τ(x, t),
∇ · u = 0,

∂tτ + u · ∇xτ = (∇xu)τ + τ(∇xu)
T − 2kτ + ρ

(
∇xu+ (∇xu)

T
)
+ ν2∆xτ,

∂tρ+ u · ∇ρ = ν2∆ρ,

u(x, 0) = u0(x), ρ(x, 0) = ρ0, τ(x, 0) = τ0,

(1)

where ν1, k, µ > 0, and ν2 > 0 are constants representing viscosity, inter-particle diffusivity,
strengh of the stress due to polymer, and center-of-mass diffusion effects, respectively. This
system is widely used to model viscoelastic flows. We will consider the case of the spatial
domain R

2, although we will also briefly discuss the case of the spatial domain T
2. In the

case of T2, it is customary to put ρ(x, t) ≡ 1.
The system (1) is extensively studied in the literature. Barrett and Boyaval proved global
existence of weak solution in [1]. In [5], Constantin and Kliegl proved global well-posedness
of strong solution. Plan, Gupta, Vincenzi, and Gibbon calculated Lyapunov dimension of the
system (1) under the assumption of the existence of global attractor in [22]. This system is a
formal macroscopic closure of Fokker-Planck-Navier-Stokes system, and a rigorous justifica-
tion is provided recently by Barrett and Süli in [2]. The author, in [16], extended the result
in [2] to a larger class of data and provided a rigorous proof of the fact that the free energy
of the system decreases over time.
The models with ν2 = 0 are called non-diffusive models, and they are also widely studied.
Guillopé and Saut proved local existence, uniqueness of strong solution, and global existence
of strong solution for small initial data, in the case of bounded domain, in [11] and in [12].
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Fernández-Cara, Guillén, and Ortega extended the results of Guillopé and Saut to Lp setting
in [8], [9], and [10]. In addition, Hieber, Naito, and Shibata studied the system in the case of
exterior domain in [13]. Chemin and Masmoudi studied the system in critical Besov spaces,
and proved local well-posedness of the system and provided a Beale-Kato-Majda type ([3])
criterion in [4]. Other Beale-Kato-Majda type sufficient conditions were given by Kupfer-
man, Mangoubi, and Titi in [15], and by Lei, Masmoudi, and Zhou in [18]. In addition, Lions
and Masmoudi showed global existence of weak solution for corotational models in [21]. Hu
and Lin proved in [14] global existence of weak solution for non-corotational models, given
that the initial deformation gradient is close to the identity and the initial velocity is small.
In [20], Lin, Liu, and Zhang developed an approach based on deformation tensor and La-
grangian particle dynamics. Lei and Zhou studied the system via incompressible limit in [19]
and proved global existence for small data. Also, Lei, Liu, and Zhou studied global existence
for small data and incompressible limit in [17]. Moreover, in [7], Fang and Zi proved global
well-posedness for initial data whose vertical velocity field can be large. Constantin and Sun
proved global existence for small data with large gradients for Oldroyd-B, and considered
regularization of Oldroyd-B model in [6].
The study of long-time behavior of the system will rely on the Fourier splitting technique.
This technique is widely used to study long-time behavior of parabolic systems ([24], [25],
[27], [26], [23], [28]).

2 Oldroyd-B system, Fokker-Planck-Navier-Stokes

system, and Free energy estimate

The system (1) can be obtained from the Fokker-Planck-Navier-Stokes system as a macro-
scopic closure of it: from the system





∂tu(x, t) + u(x, t) · ∇xu(x, t) = −∇xp(x, t) + ν1∆xu(x, t) + µ∇x · σ(x, t),
∇ · u = 0,

∂tf(x,m, t) + u · ∇xf + (∇xu)m · ∇mf = k∆mf + k∇m · (mf) + ν2∆xf,

ρ(x, t) =

∫

R2

f(x,m, t)dm,

σ(x, t) =

∫

R2

m⊗mf(x,m, t)dm,

u(x, 0) = u0(x), f(x,m, 0) = f0(x,m),

(2)

by letting τ = σ − ρI, we obtain (1). In [16], we proved the following:

Theorem 1 ([16]). Suppose that

u0 ∈ PW 2,2,

f0 ≥ 0,

∫

R2
m×R2

x

f0(x,m)dmdx = 1,

Ma,b[f0] ∈ W 1,2 a+ b = 2p ≤ 6,Ma,b[f0] ∈ L2 a+ b = 2q ≤ 16, M̄4[f0] ∈ L1,∫

R2
m×R2

x

f0 log f0dmdx < ∞,

∫

R2
x

|Λ(x)|2M0,0[f0]dx < ∞,Λ(x) = log(max(|x|, 1)),
∫

M0,0[f0] log (M0,0[f0]) dx < ∞

(3)
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where

Ma,b[f0](x) =

∫
ma

1m
b
2f0(m,x)dm, M̄p[f0](x) =

∫
|m|p|f0(m,x)|dm. (4)

Then there is a unique global solution for the system (2), smooth enough for u and σ, and it
satisfies the following free energy estimate:

µ

∫
f(t) log

f(t)

M0,0[f(t)]fE
dmdx+ ‖u(t)‖2L2 + ν1

∫ t

0
‖∇xu(s)‖2L2 ds

≤ ‖u0‖2L2 + µ

∫
f0 log

f0

M0,0[f0]fE
dmdx,

(5)

where fE = e
−

|m|2

2

Z
is the equilibrium distribution.

Note that given ρ0, σ0 satisfying

ρ0 ∈ L1 ∩W 1,2,

∫
ρ0dx = 1, σ0 ∈ L1 ∩W 1,2 positive definite,

∫
ρ0

(
|Λ(x)|2 + log ρ0 + log |σ0|+

|σ0|2
ρ20

)
dx < ∞

(
1

ρ0

)p−1 ∑

s∈Sp

p∏

i=1

σi,s(i) ∈ W 1,2, 0 ≤ p ≤ 3, ∈ L2, 0 ≤ p ≤ 8,

(6)

the distribution f0 given by

f0(x,m) =
ρ0(x)

2

2π
√

det σ0(x)
exp

(
−1

2
mTρ0(x)σ0

−1(x)m

)
(7)

satisfies ∫

R2

f0(x,m)dm = ρ0(x),

∫

R2

m⊗mf0(x,m)dm = σ0(x)

(8)

and (u0, f0) satisfies the condition (3). By the uniqueness of the solution of diffusive Oldroyd-
B system, we conclude that the for the solution (u, f) of (2) with initial data (u0, f0), (u, σ[f ]−
ρ[f ]I, ρ[f ]) is the solution of (1) with initial data (u0, σ[f0]− ρ[f0]I, ρ[f0]) = (u0, τ0, ρ0).

3 Decay of stress and Boundedness of velocity

In this section, we prove the following theorem.

Theorem 2. Suppose that u0 ∈ PW 2,2 and ρ0, σ0 satisfies (6) and ρ0 ∈ L∞. Then the system
(1) has global unique solution whose initial data is u(0) = u0, ρ(0) = ρ0, τ(0) = σ0 − ρ0I.
Moreover,

‖u‖L∞(0,∞;W 2,2)∩L2(0,∞;W 3,2) + ‖τ‖L2(0,∞;W 2,2) + ‖ρ‖L∞(0,∞;W 1,2)∩L2(0,∞;W 2,2) ≤ C∗,

‖τ(t)‖W 1,2 + ‖τ(t)‖L1 ≤ C∗

(t+ 1)
, ‖ρ(t)‖2L2 + ‖ρ(t)‖L∞ ≤ C∗

(t+ 1)
,

(9)

where C∗ depends only on the initial data and coefficients.
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Remark 1. In the periodic case (x, t) ∈ T
2 × [0,∞), the same argument in this section we

obtain the corresponding result

‖u‖L∞(0,∞;W 2,2)∩L2(0,∞;W 3,2) + ‖τ‖L∞(0,∞;W 1,2)∩L2(0,∞;W 2,2) ≤ C∗. (10)

One difference between the system in [5] and system (1) is the presence of diffusion in the
evolution of ρ, and this allows us to use uniform decay result given in [27]. In this section,
C denotes constants that do not depend on the size of initial data or parameters ν1, ν2, µ,
and k. The constants depending on them are denoted by C1, C2 and so on. First we briefly
review the technique in [24] and [27] to show the decay of ρ. From the fourth equation of (1)
we get

d

dt
‖ρ(t)‖2L2 + 2ν2 ‖∇xρ(t)‖2L2 = 0. (11)

Then by Plancherel’s theorem we have

d

dt

(∫
|ρ̂|2 dx

)
+

2

t+ 1

∫
|ρ̂|2 dx ≤ 2

t+ 1

∫

A(t)
|ρ̂|2 dξ (12)

where

A(t) =

{
ξ : |ξ| ≤

(
2

ν2(t+ 1)

) 1

2

}
. (13)

Noting that
|ρ̂(ξ, t)|2 ≤ ‖ρ‖2L1 = ‖ρ0‖2L1 (14)

and multiplying (t+ 1)2 to each side and integrating in time gives

‖ρ(t)‖2L2 ≤ C

(t+ 1)

(
‖ρ0‖2L2 +

1

ν2
‖ρ0‖2L1

)
. (15)

For higher Lp norm, let p = 2s, q = 2s−1, with s ≥ 2. Multiplying pρp−1 to the same equation
and integrating, and applying integration by parts we get

d

dt

∫
|ρ|pdx = −ν2p(p− 1)

∫
|∇xρ|2ρp−2dx (16)

and since

|∇xρ|2ρp−2 = |ρq−1∇xρ|2 =
1

q2
|∇x(ρ

q)|2 (17)

and p(p−1)
q2

≥ 1 for s ≥ 2 we have

d

dt

∫
|ρq|2dx+ ν2

∫
|∇x (ρ

q) |2dx ≤ 0. (18)

Applying the decay estimate for L2 repeatedly, and noting that by maximum principle
‖ρ‖L∞ ≤ ‖ρ0‖L∞ we have

‖ρ(t)‖L∞ ≤ C

t+ 1
max

1≤r≤∞
(1 + ‖ρ0‖Lr) . (19)

We establish estimates on u and τ . First we start with a simple lmma.

Lemma 1. Suppose that h : [0,∞) → [0,∞) is a non-increasing function such that h(0) < ∞
and limt→∞

h′(t)
h(t) = 0. Then

∫ t

0
e−2k(t−s)h(s)ds ≤ Ch(t). (20)
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Proof. We only need to establish the bound for t → ∞, which is obvious by L’Hôpital.

Proof of Theorem 2 . First, from the free energy estimate (5) we get

‖u(t)‖2L2 + 2ν1

∫ t

0
‖∇xu(s)‖2L2 ds ≤ C1 (21)

where C1 depends only on initial data. Next, by multiplying τ and integrating the third
equation, we have

d

dt
‖τ‖2L2 + ν2 ‖∇xτ‖2L2 + 4k ‖τ‖2L2 ≤ ‖∇xu‖L2 ‖τ‖2L4 + ‖∇xu‖L2 ‖τ‖L2 ‖ρ‖L∞ . (22)

Then using (19) and Ladyzhenskaya’s inequality

‖τ‖2L4 ≤ C ‖τ‖L2 ‖∇xτ‖L2 (23)

valid in two dimension, we obtain

d

dt
‖τ‖2L2 + ν2 ‖∇xτ‖2L2 + (4k − C

ν2
‖∇xu‖2L2) ‖τ‖2L2 ≤ C2

(1 + t)2
(24)

where C2 = Cν2max1≤r≤∞(1 + ‖ρ0‖Lr)2. Putting

A(t) = 4k − C

ν2
‖∇xu(t)‖2L2 (25)

then we get

‖τ(t)‖2L2 ≤ exp

(
−
∫ t

0
A(r)dr

)
‖τ0‖2L2 +

∫ t

0
exp

(
−
∫ t

s

A(r)dr

)
C2

(1 + s)2
ds (26)

but from (21) and Lemma 1 we have

‖τ(t)‖2L2 ≤ CC2 exp

(
CC1

ν2

)
1

(1 + t)2
+ exp

(
CC1

ν2
− 4kt

)
‖τ0‖2L2 ≤ C3

(1 + t)2
. (27)

Also, estimates (24) and (27) give us

ν2

∫ t

0
‖∇xτ(s)‖2L2 ds + 4k

∫ t

0
‖τ(s)‖2L2 ds ≤ C4 = ‖τ0‖2L2 +

∫ t

0

CC3 ‖∇xu‖2L2

ν2(1 + s)2
ds+

∫ t

0

C2ds

(1 + s)2
.

(28)
By taking curl to the first equation of the system (1), we obtain

∂tω + u · ∇xω = ν1∆xω + µ∇⊥
x · ∇x · τ (29)

where ω = ∂1u2 − ∂2u1 is the vorticity. Then we have

d

dt
‖ω‖2L2 + ν1 ‖∇xω‖2L2 ≤ µ2

ν1
‖∇xτ‖2L2 , (30)

and by (28) we have

‖ω(t)‖2L2 + ν1

∫ t

0
‖∇xω(s)‖2L2 ds ≤

µ2C4

ν1ν2
= C5. (31)
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To estimate ‖∇xτ‖2L2 , we multiply −∆xτ to the third equation of (1) and integrate: we have

1

2

d

dt
‖∇xτ‖2L2 + 2k ‖∇xτ‖2L2 + ν2 ‖∆xτ‖2L2 = −

∫
(∇xu) · (∇xτ) · (∇xτ)dx

+

∫ (
(∇xu)τ + τ(∇xu)

T
)
(−∆xτ)dx+

∫
ρ
(
(∇xu) + (∇xu)

T
)
(−∆xτ)dx.

(32)

The first term in the right hand side is bounded by, using Ladyzhenskaya’s inequality and
Young’s inequality,

∣∣∣∣
∫

(∇xu) · (∇xτ) · (∇xτ)dx

∣∣∣∣ ≤
C

ν2
‖∇xu‖2L2 ‖∇xτ‖2L2 +

ν2

8
‖∆xτ‖2L2 . (33)

We apply the integration by parts, and then Ladyzhenskaya’s inequality to the second term
to obtain

|
∫ (

(∇xu)τ + τ(∇xu)
T
)
(−∆xτ)dx|

≤ C

ν2
‖∇xu‖2L2 ‖∇xτ‖2L2 +

ν2

8
‖∆xτ‖2L2 + C ‖∇xω‖L2 ‖τ‖

1

2

L2 ‖∇xτ‖L2 ‖∆xτ‖
1

2

L2

(34)

and by applying Young’s inequality we can bound the second term by

C

ν2
‖∇xu‖2L2 ‖∇xτ‖2L2 +

ν2

4
‖∆xτ‖2L2 + C ‖∇xω‖2L2 ‖∇xτ‖2L2 +

1

ν2
‖τ‖2L2 . (35)

The last term is bounded by

C

ν2
‖ρ‖2L∞ ‖∇xu‖2L2 +

ν2

8
‖∆xτ‖2L2 ≤ C2C5

ν22(1 + t)2
+

ν2

8
‖∆xτ‖2L2 . (36)

To sum up, we have

d

dt
‖∇xτ‖2L2 +

(
4k − C

ν2
‖∇xu‖2L2 − C ‖∇xω‖2L2

)
‖∇xτ‖2L2 + ν2 ‖∆xτ‖2L2

≤ C

ν2
‖τ‖2L2 +

C

ν2
‖ρ‖2L∞ ‖∇xu‖2L2 ≤ C2C5

ν22(1 + t)2
+

1

ν2
‖τ‖2L2 .

(37)

Applying Grönwall with Lemma 1 we have

‖∇xτ(t)‖2L2 ≤ e
CC1

ν1ν2
+

CC3

ν1

(
C

(
C2C5

ν22
+

C3

ν2

)
1

(1 + t)2
+ e−4kt ‖∇xτ0‖2L2

)
≤ C6

(1 + t)2
(38)

and

4k

∫ t

0
‖∇xτ(s)‖2L2 ds+ ν2

∫ t

0
‖∆xτ(s)‖2L2 ds

≤ ‖∇xτ0‖2L2 +

(
C(C1 + C5)C6

ν1
+

CC3

ν2
+

CC2C5

ν22

)
= C7.

(39)

We can also get an estimate for ‖∇xω‖2L2 ; by multiplying −∆xω to the vorticity equation
(29) and integrating, we have

1

2

d

dt
‖∇xω(t)‖2L2 +

3

4
ν1 ‖∆xω(t)‖2L2 ≤ C

ν1
‖∆xτ‖2L2 + ‖∇xω‖2Lp ‖∇xu‖Lq (40)
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where 2
p
+ 1

q
= 1. Our choice of p and q are p = q = 3. By the Gagliardo-Nirenberg

interpolation inequality

‖∇xω‖L3 ≤ C ‖∆xω‖
2

3

L2 ‖ω‖
1

3

L2 , ‖∇xu‖L3 ≤ C ‖∆xu‖
2

3

L2 ‖u‖
1

3

L2 , (41)

and Young’s inequality, we have

‖∇xω‖2L3 ‖∇xu‖L3 ≤ C ‖∆xω‖
4

3

L2 ‖∇xω‖
2

3

L2 ‖ω‖
2

3

L2 ‖u‖
1

3

L2

≤ ν1

4
‖∆xω‖2L2 +

C

ν21
‖ω‖2L2 ‖u‖L2 ‖∇xω‖2L2

(42)

to obtain

d

dt
‖∇xω‖2L2 + ν1 ‖∆xω‖2L2 ≤ C

ν1
‖∆xτ‖2L2 +

C

ν21
‖ω‖2L2 ‖u‖L2 ‖∇xω‖2L2 . (43)

Since ‖u(t)‖L2 ≤
√
C1,

∫ T

0 ‖ω(t)‖2L2 dt ≤ CC1

ν1
, we have

sup
t∈[0,T ]

‖∇xω(t)‖2L2 + ν1

∫ T

0
‖∆xω(t)‖2L2 dt ≤ exp


CC

3

2

1

ν31




(
‖∇xω(0)‖2L2 +

CC7

ν1ν2

)
= C8.

(44)
Moreover, we have L1 decay of τ . From

d

dt

∫
Trτ = 2

∫
Tr ((∇xu)τ)− 2k

∫
Trτ (45)

we obtain

d

dt

(
e2kt

∫
Trτ

)
≤ e2kt ‖∇xu(t)‖L2 ‖τ(t)‖L2 ≤ e2kt

C
√
C5C3

(1 + t)
=

C9e
2kt

1 + t
. (46)

Therefore, ∫
Trτ(t)dt ≤ e−2kt

∫
Trτ0 +

CC9

(1 + t)
≤ CC9

1 + t
. (47)

Finally, by multiplying −∆xρ to the fourth equation of (1) and integrating, and using La-
dyzhenskaya’s inequality we have

d

dt
‖∇xρ(t)‖2L2 + ν2 ‖∆xρ(t)‖2L2 ≤ C

ν2
‖∇xu‖2L2 ‖∇xρ‖2L2 , (48)

and by Grönwall

sup
t∈[0,T ]

‖∇xρ(t)‖2L2 + ν2

∫ T

0
‖∆xρ(t)‖2L2 dt ≤ exp

(
CC1

ν1ν2

)
‖∇xρ(0)‖2L2 = C10. (49)

Remark 2. We will make an improvement for (24), (37) and (46). For (24) we used the
bound ∫

ρ((∇xu) + (∇xu)
T )τdx ≤ Cν2 ‖ρ‖2L∞ +

C

ν2
‖∇xu‖2L2 ‖τ‖2L2 . (50)

We may instead use
∫

ρ((∇xu) + (∇xu)
T )τdx ≤ C

k
‖ρ‖2L∞ ‖∇xu‖2L2 + k ‖τ‖2L2 . (51)
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Then we have

d

dt
‖τ‖2L2 + ν2 ‖∇xτ‖2L2 +

(
3k − C

ν2
‖∇xu‖2L2

)
‖τ‖2L2 ≤ C2

k
‖∇xu‖2L2

1

(1 + t)2
. (52)

In the later section, we show that ‖∇xu(t)‖2L2 ≤ C
(t+1) in time, so (52) gives faster decay of

‖τ‖2L2 , ‖∇xτ‖2L2 by (37), and ‖τ‖L1 by (46).

4 Decay of the strong solution

In this section, we prove the following theorem.

Theorem 3. Suppose that u0 ∈ PW 2,2 and ρ0, σ0 satisfies (6) and ρ0 ∈ L∞. Furthermore,
suppose that u0 ∈ L1. Then there is a constant C∗∗ depending on initial data and parameter
such that

‖u(t)‖W 2,2 ≤
C∗∗

(t+ 1)
1

2

, ‖τ(t)‖W 1,2∩L1 ≤ C∗∗

(t+ 1)
3

2

. (53)

Proof. We first follow the methods presented in [23]. Let

S(t) =

{
ξ : |ξ| ≤

(
2

ν1(t+ 1)

) 1

2

}
. (54)

We apply the estimate for the decay of ‖ω(t)‖2L2 . From the vorticity equation we have

d

dt
‖ω(t)‖2L2 ≤ −ν1 ‖∇xω(t)‖2L2 +

Cµ2

ν1
‖∇xτ(t)‖2L2 , (55)

and by Plancherel’s theorem

d

dt
‖ω(t)‖2L2 ≤ −ν1

∫

R2

|ξ|2|ω̂(t)|2dξ + CC∗

ν1(t+ 1)2
≤ −ν1

∫

S(t)c
|ξ|2|ω̂(t)|2dξ + CC∗

ν1(t+ 1)2

≤ − 2

t+ 1

∫

S(t)c
|û(t)|2dξ + CC∗

ν1(t+ 1)2
≤ − 2

t+ 1
‖ω(t)‖2L2 +

2

t+ 1

∫

S(t)
|ω̂(t)|2dξ + CC∗

ν1(t+ 1)2
.

(56)
To summarize, we have

d

dt
‖ω(t)‖2L2 ≤ − 2

t+ 1
‖ω(t)‖2L2 +

2

t+ 1

∫

S(t)
|ω̂(t)|2 dξ + CC∗∗

(t+ 1)2
. (57)

We need a pointwise estimate of ω̂(ξ, t). For that purpose we investigate û(ξ, t). The phase
space version of the velocity equation of (1) reads

∂tû+ ν1|ξ|2û = −ξ ·
(
I− ξ ⊗ ξ

|ξ|2
)
F(u⊗ u− µτ), (58)

and from ‖F(u⊗ u)(t)‖L∞ ≤ ‖u(t)‖2L2 ≤ C∗ and ‖F(τ)(t)‖L∞ ≤ ‖τ(t)‖L1 ≤ C∗
(t+1) , we have

û(ξ, t) = e−ν1|ξ|2tû(ξ, 0) −
∫ t

0
e−ν1|ξ|2(t−s)ξ ·

(
I− ξ ⊗ ξ

|ξ|2
)
F(u⊗ u− µτ)(s)ds,

|û(ξ, t)| ≤ C∗(
1

|ξ| + 1)

(59)
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given that u0 ∈ L1. Therefore, since |ω̂(ξ, t)| ≤ |ξ||û(ξ, t)| ≤ C∗ (|ξ|+ 1). Therefore,∫
S(t) |ω̂(t)|2dξ ≤ C∗

(t+1)2ν1
, and by multiplying (t+ 1)2 to (57) we obtain

d

dt

(
(t+ 1)2 ‖ω(t)‖2L2

)
≤ CC∗∗, (60)

and therefore

‖ω(t)‖2L2 ≤ C∗∗

(t+ 1)
. (61)

In addition, as we mentioned in Remark 2, this gives a better decay rate for τ :

‖τ(t)‖L2 ≤ C∗∗

(t+ 1)
3

2

, ‖∇xτ(t)‖L2 ≤ C∗∗

(t+ 1)
3

2

, ‖τ(t)‖L1 ≤ C∗∗

(t+ 1)
3

2

. (62)

Finally, from (43), using ‖∇xω‖2L2 ≤ C∗ and previous estimates we have

C

ν21
‖ω(t)‖2L2 ‖u(t)‖L2 ‖∇xω(t)‖2L2 ≤ CC∗∗

(t+ 1)
3

2

(63)

and adding multiples of (37) to (43) to cancel C
ν1

‖∆xτ‖2L2 in the right side of (43), we obtain

d

dt

(
‖∇xω(t)‖2L2 +

C

ν1ν2
‖∇xτ(t)‖2L2

)
+

C

ν1ν2

(
4k − C

ν2
‖∇xu(t)‖2L2 − C ‖∇xω(t)‖2L2

)
‖∇xτ(t)‖2L2

+
C

ν1
‖∆xτ(t)‖2L2 + ν1 ‖∆xω(t)‖2L2 ≤ C∗∗

(1 + t)3
+

C∗∗C∗

(1 + t)
3

2

.

(64)
Then applying the same Fourier splitting technique, together with the pointwise bound

|F(∇xτ)(ξ, t)| ≤ |ξ| ‖τ(t)‖L1 ≤ C∗|ξ|
(1 + t)

, |F(∇xω)(ξ, t)| ≤ C∗|ξ|(1 + |ξ|) (65)

we obtain

d

dt

(
(t+ 1)2

(
‖∇xω(t)‖2L2 +

C

ν1ν2
‖∇xτ(t)‖2L2

))
≤ C∗∗

(
1

(t+ 1)
+ (t+ 1)

1

2

)
, (66)

and from this we conclude that

‖∇xω(t)‖2L2 ≤ C∗∗

(t+ 1)
1

2

. (67)

We put (67) into (63), and then we repeat the last estimate to obtain

‖∇xω(t)‖2L2 ≤ C∗∗

(t+ 1)
. (68)

Now we are ready to prove decay of ‖u(t)‖L2 . We follow the argument in [28].

Definition 1. For given u0 ∈ L2(R2) and f ∈ L1(0,+∞;L2(R2)), we say that (u0, f) belong

to the set D
(n)
α with α ≥ 0 if there is a constant C such that

‖v(t)‖2L2 + (1 + t)2 ‖f(t)‖2L2 ≤ C(1 + t)−α (69)

where v(t) is the solution of the heat equation

∂tv − ν1∆xv = f, v(0) = u0. (70)
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Theorem 4 ([28]). Let u be a strong solution of Navier-Stokes system

∂tu+ u · ∇xu = −∇xp+ ν1∆xu+ f,

∇xu = 0, u(0) = u0,

u ∈ Cw([0,+∞), L2(R2)) ∩ L2
loc(0,+∞;W 1,2(R2)).

(71)

Let u0 ∈ L2(R2), f ∈ L1(0,+∞;L2(R2)). Then we have the following.

1. ‖u(t)‖L2 → 0 for t → ∞.

2. If (u0, f) ∈ D
(2)
1 , then ‖u(t)‖2L2 ≤ C(1 + t)−1.

3. Furthermore, the solution u is asymptotically equivalent to the heat system (70) in the
sense that

‖u(t)− v(t)‖2L2 ≤ C (log(t+ e))2 (t+ 1)−2. (72)

The proof of Theorem 4 is based on the Fourier splitting technique. The proof of Theorem
3 is completed by the following Lemma.

Lemma 2. Suppose that u0, τ0, ρ0 satisfy the initial conditions in Theorem 3. Then (u0,∇x·τ)
belong to the set D

(2)
1 , where (u, τ, ρ) is the solution of (1) with initial data (u0, τ0, ρ0).

proof of the Lemma. Since ‖∇xτ(t)‖L2 ≤ C∗∗

(t+1)
3
2

, ∇xτ ∈ L1(0,+∞;L2(R2)2). Furthermore,

by the same Fourier splitting technique,

d

dt
‖v(t)‖2L2 ≤ − 2

(t+ 1)
‖v(t)‖2L2 +

2

(t+ 1)

∫

S(t)
|v̂(t)|2dξ + C∗∗

(t+ 1)3
. (73)

However, in the Fourier space

∂tv̂(t) = −ν1|ξ|2v̂(t)− iξ · τ̂ ,

v̂(t) = e−ν1|ξ|2tû0 − i

∫ t

0
ξ · e−ν1|ξ|2(t−s)τ̂(s)ds,

(74)

and since |τ̂(s, ξ)| ≤ ‖τ(s)‖L1 ≤ C∗∗

(s+1)
3
2

,

|v̂(t, ξ)| ≤ ‖u0‖L1 + C∗∗|ξ|, (75)

then we have ‖v(t)‖2L2 ≤ C∗∗
(t+1) , as desired.

5 Conclusion

We proved that strong solutions of 2D diffusive Oldroyd-B systems in R
2 decay over time

at an algebraic rate, given that the initial data satisfy mild restrictions originating from the
kinetic considerations.
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