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Abstract

In this paper, we aim to study a stochastic process from a macro point of view, and thus
periodic solution of a stochastic process in distributional sense is introduced. We first give the
definition and then establish the existence of periodic solution on bounded domain. Lastly, for
the case that probability density function exists, we obtain the existence periodic solutions of
the probability density function corresponding to the stochastic process by using the technique
of deterministic partial differential equations.
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1 Introduction

Some properties of a stochastic process are worth being studied, such as the long time behavior,

periodicity, ergodicity and so on. There are many classical theories, see the books [3, 4, 5]. In this

paper, we will give a new viewpoint about the periodicity of stochastic processes. We consider the

stochastic process from another fact–a macro point of view. We do not consider the motion of a

single particle, while we are concerned with the motion the entire system. It is well-known that the

probability density function (PDF) of a stochastic process can describe the entire distribution of a

system. Hence, in this paper, we consider some property of entire system–time-periodicity of PDF.

The density of a stochastic process is called as Fokker-Planker equation or Kolmogorov equation,

which has been studied in [6].

Now, we consider the multidimensional Fokker-Planck equation for the following SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, X0 = x ∈ Rd, (1.1)

where b is an d-dimensional vector function, σ is an d × m matrix function and Bt is an m-

dimensional Brownian motion, see Page 99 in [8]. Let the probability density function of (1.1) be
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p(t, x) if it exists, then we deduce that p(t, x) satisfies

∂tp(t, x) =
1

2
div(div(σσT p))− div(b(t, x)p) (1.2)

with initial data

p(0, x) = p0(x), x ∈ Rd. (1.3)

In this paper we mainly consider the property of p(t, x). There is a fact that for most of stochastic

process, the PDF may not exist. Therefore, in this paper, we first give the notion of periodic

solution in distributional sense for discrete time and continuous time stochastic process and then

consider a special case, in which the PDF exists.

Let us recall some development of periodic solutions. Periodic solutions have been a central

concept in the theory of the deterministic dynamical system starting from Poincaré’s work [23].

For a random periodic dynamic system, to study the pathwise random periodic solutions is of

great importance. Zhao-Zheng [30] started to study the problem and gave a definition of pathwise

random periodic solutions for C1-cocycles. Recently, Feng et al. did some beautiful work about the

periodic solutions, see [10, 11, 12]. Noting that the definition of periodic solution in [10, 11, 12, 30]

is different from here, we consider the time-periodicity of entire system in distributional sense.

During we prepare our paper, we find the paper of Chen et al. [7], where the existence of periodic

solutions of Fokker-Planck equations is considered. They obtained the desired results by discussing

the existence of periodic solutions in distributional sense for some stochastic differential equations

(SDEs). More precisely, they used the properties of solutions of SDEs to study the properties of

solutions of Fokker-Planck equation. They obtained the time-periodicity of PDF in the whole space.

We will give another proof in viewpoint of PDEs. Moreover, the definition of periodic solution to

discrete time and discrete state stochastic process will be given. The topic of periodic solutions

to stochastic process in distributional sense on bounded domain is also considered in this paper.

About the almost periodic solution, see [21, 27].

The rest of this paper is arranged as follows. In Sections 2, we present some known results on

PDEs’ theory. In Sections 3, we first give some definitions of periodic solutions to stochastic process

in distributional sense, then establish the existence of periodic solution on bounded domain by using

the method of [7]. For the case that the PDF exists, we obtain the existence of periodic solution

of Fokker-Planck equations on bounded domain and in the whole space by using the method of

deterministic partial differential equations in Section 4.

2 Some known results

In this section, we recall some known results about existence of PDF of the diffusion Itô process

and the existence of periodic solution of parabolic equations.

Consider a Markov process in Rd with transition probabilities P (s, x, t, B) (B is a Borel set in

Rd) is called a diffusion process or a diffusion if there is a mapping b : Rd × [0,∞) → Rd, called

the drift coefficient, and a mapping (x, t) 7→ A(x, t) with values in the space of symmetric operator

on Rd, called the diffusion coefficient or diffusion matrix, such that

(i) for all ε > 0, t ≥ 0 and x ∈ Rd we have

lim
h→0

h−1P (t, x, t+ h, V (x, ε)) = 0,

(ii) for some ε > 0 and all t ≥ 0, x ∈ Rd we have

lim
h→0

h−1

∫

U(x,ε)
(y − x)P (t, x, t+ h, dy) = b(x, t),
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(iii) for some ε > 0 and all t ≥ 0, x, z ∈ Rd we have

lim
h→0

h−1

∫

U(x,ε)
〈y − x, z〉P (t, x, t + h, dy) = 2〈A(x, t)z, z〉,

where U(x, ε) = {y : |x− y| < ε} and V (x, ε) = {y : |x − y| > ε}. If A and b do not depend on t,

then the diffusion is homogeneous. Bogachev et al. [6] obtained the following proposition.

Proposition 2.1 Suppose that relations (i)-(iii) hold locally uniformly in x and the functions

aij , bi (A = (aij), b = (bj)) are locally bounded. Then the transition probabilities satisfy the parabolic

Fokker-Planck-Kolmogorov equation

∂tµ = ∂xi
∂xj

(aijµ)− ∂xi
(biµ)

in the sense of generalized functions. If ν is a finite Borel measure on Rd and

µt(dx) =

∫

Rd

P (0, y, t, dx)ν(dy),

then the measure µ = µt(dx)dt gives a solution to the Cauchy problem with the initial condition

ν|t=0 = ν.

The above proposition is concerned with the case of measure-valued solution about the Fokker-

Planck equation. The next result shows that there exists PDF for a stochastic process under some

assumptions. Let DT = Ω × (0, T ), where D ⊂ Rd is an open set and T > 0 is a fixed number.

Bogechev et al. [6] obtained the following result.

Proposition 2.2 [6, Theorem 6.3.1] Let µ be a locally finite Borel measure on DT such that

aij ∈ L1
loc(DT , µ) and

∫

DT

[

∂tφ+ aij∂xi
∂xj

φ
]

dµ ≤ C(sup
DT

|φ|+ sup
DT

|∇xφ|)

for all nonnegative φ ∈ C∞
0 (ΩT ). Then the following assertions are true.

(i) If µ ≥ 0, then (detA)1/(d+1)µ = ρdxdt, where ρ ∈ L
(d+1)′

loc (DT ).

(ii) If, on every compact set in DT , the mapping A is uniformly bounded, uniformly nondegen-

erate, and Hölder continuous in x uniformly with respect to t, then µ = ρdxdt, where ρ ∈ Lr
loc(DT )

for every r ∈ [1, (d + 2)′).

The above Proposition is the existence of probability density function in the whole space. Now,

we consider the bounded domain. As stated in [8], in the simulations, we have to take x in a large

but bounded domain D ⊂ Rd and we could impose absorbing boundary condition on ∂D, i.e., as

long as a ”particle” or a solution path reaches the boundary, it is removed from the system. The

above assumptions implies the following system







∂tp(t, x) = A∗p(t, x), t > 0, x ∈ D,

p|∂D = 0,
p(0, x) = p0(x), x ∈ D,

(2.1)

where

A∗p = −
∑

i

∂

∂xi
(bip) +

1

2

∑

i,j

∂2

∂xi∂xj
((σσT )ijp).
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Due to the absorbing boundary condition, the particle will not come back when it reach the bound-

ary. Thus under the absorbing boundary, it is impossible to get the existence of periodic solution

to (2.1). Therefore, we must consider another case: the reflecting boundary condition [14, Section

5.1.1]. The Fokker-Planck equation of (1.1) can be written as

∂tp(t, x) = ∇ ·

[

1

2
(∇ · (σσT p))− bp(t, x)

]

. (2.2)

The reflecting boundary condition means particles or solution paths can not leave a bounded domain

D, and hence there is zero net flow of p crossing the boundary ∂D. Thus we impose the following

reflecting boundary condition

1

2
(∇ · (σσT p))− bp(t, x) = 0 on ∂D. (2.3)

Integrating (2.2) over D and using the boundary condition (2.3) together with the divergence

theorem, we have conservation of probability

∂

∂t

∫

D
p(t, x) = 0,

that is to say,

∫

D
p(t, x) =

∫

D
p0(x) = 1.

In this case, it is possible to obtain the existence of periodic solution to (2.2)-(2.3) with initial data.

In order to obtain the desired results, we recall some results about the periodic parabolic equations,

see [15].

Now, we consider the periodic-parabolic eigenvalue problem







∂tu+A(t)u = µu in D × R,

Bu = 0 on ∂D × R,

u T − periodic in t,

(2.4)

where A(t) is a uniformly elliptic differential operator of second order depending T -periodically on

t, i.e.,

A(t)u = A(t, x,D)u = −

d
∑

j,k=1

ajk(t, x)
∂2

∂xj∂xk
u+

d
∑

j=1

aj(t, x)
∂

∂xj
u+ a0(t, x)u,

and

Bu =

{

u Dirichlet b.c.,
∂u
∂ν + b0(x)u Neumann or regular oblique derivative b.c..

We say µ ∈ C (C denotes complex value) is an eigenvalue if there is a nontrivial solution

u (eigenfunction) of (2.4). We search in particular for an eigenvalue µ ∈ R having a positive

eigenfunction (”principal eigenvalue” µ).

In order to establish the existence of solutions of (2.4), we consider the inhomogeneous linear

evolution equation

{

u̇(t) +A(t)u = f(t), 0 < t < T,

u(0) = u0, u0 ∈ X,
(2.5)
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where f ∈ Cθ([0, T ],X), 0 < θ ≤ 1 and X is a Banach space. Assume the closed linear operator A

in X satisfies

(i) dom(A) := dom(A(t)) is dense in X and independent of t,

(ii) {λ ∈ C : Reλ ≤ 0} ⊂ ρ(A(t)), ∀t ∈ [0, T ], (ρ(A(t)) denotes the resolvent set of operator

A(t)),

(iii) ‖(A(t)− λ)−1‖ ≤ c
1+|λ| , ∀λ ∈ C, Reλ ≤ 0, ∀t ∈ [0, T ].

Set A := A(0) and take the fractional power spaces Xα with respect to A. Assume further

(iv) A(·) : [0, T ] → L(X1,X) is Hölder continuous.

It follows from the results of Sobolevskii [25] that there exists a unique solution u of (2.5) with

u ∈ C([0, T ],X) ∩ C1((0, T ],X) if u0 ∈ X.

Moreover, there exists the evolution operator

U(t, s) ∈ L(X)

such that the solution of (2.5) can be represented in the following form

u(t) = U(t, 0)u0 +

∫ t

0
U(t, s)f(s)ds, 0 ≤ t ≤ T. (2.6)

The function U is strongly continuous on the set △ := {(t, s) ∈ [0, T ]× [0, T ] : 0 ≤ s ≤ t ≤ T}, i.e.

U(·)u0 ∈ C(△,X) for each u0 ∈ X, and satisfies

U(t, t) = I, U(s, t)U(t, τ) = U(s, τ), 0 ≤ τ ≤ t ≤ s ≤ T.

Set K := U(T, 0). The Krein-Rutman theorem implies that r := spr(K) > 0, where spr(K) is the

principal eigenvalue of K.

Let

L := ∂t +A(t),

and set

L := the operator in F1 introduced by L, B

and the T − periodicity, with domain domL = F1,

where

F1 := {w ∈ C2+θ,1+ θ
2 (D̄ × R) : Bw = 0 on ∂D ×R, w T − periodic in t}.

Assume the following conditions hold:

(A) A(t) is uniformly elliptic for each t ∈ R and T -periodic in t, of given period T > 0. More

precisely, assume the coefficient functions ajk = akj, aj , a0 belong to the space

F := {w ∈ Cθ, θ
2 (D̄ ×R) : w T − periodic in t}.

We keep B = B(x,D) independent of t ∈ [0, T ], such that the operator A(t), the realization of

(A(t),B) in Lp(D) (N < p <∞) has domain independent of t. We assume that

a0(t, x) ≥ 1, ∀(t, x) ∈ [0, T ] × D̄.

Then {A(t) : 0 ≤ t ≤ T} satisfies the hypotheses (i)-(iv). Thus, by the results of Sobolevskii [25],

we get the existence of evolution operator U(t, s) for 0 ≤ s ≤ t ≤ T .

Now, we give the relation between the solutions of (2.4) and (2.5) with f = 0.
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Proposition 2.3 Assume (A) holds. Then we have :

r := spr(K) is principal eigenvalue of K, with principal eigenfunction u0 ≫ 0⇔ µ = − 1
T log r

is an eigenvalue of L with positive eigenfunction u := u(t) = eµtU(t, 0)u0.

We have the following proposition about the positivity of µ.

Proposition 2.4 Assume (A) holds. Assume further that the zero-order term of A(t) satisfies

a0 ≥ 0 on D̄ × R, and that

a0 6≡ 0 on D̄ × R if B =
∂

∂ν
.

Then 0 < r < 1.

3 Definitions of periodic solutions in distributional sense

In this section, we give some definitions of periodic solutions in distributional sense, including

discrete time and discrete state stochastic process (also called stochastic sequence) and continuous

time and continuous state stochastic process.

We start to consider the discrete time and discrete state stochastic process. Suppose a stochastic

sequence {Xn}n≥1 defined on a complete probability space has a one-step transition probability ma-

trix P . Following the Chapman-Kolmogorov equation, we have the N -th step transition probability

matrix P (N) satisfying

P (N) = P · P (N−1) = · · · = PN .

Now, we suppose each particle has m state in a particle system and the particle system has an

initial distribution (x01, x
0
2, · · · , x

0
m)T . Consider the distribution of the system after being transferred

N -step (denoted by (xN1 , x
N
2 , · · · , x

N
m)T ), we have

(xN1 , x
N
2 , · · · , x

N
m)T = P (N)(x01, x

0
2, · · · , x

0
m)T = PN (x01, x

0
2, · · · , x

0
m)T .

Therefore, if the following holds

P (N)(x01, x
0
2, · · · , x

0
m)T = (x01, x

0
2, · · · , x

0
m)T ,

then the particle system turn back to the initial distribution. We give the first definition of periodic

solution in distributional sense.

Definition 3.1 (discrete time and discrete state stochastic process) Suppose a particle system

has one-step transition probability matrix P and contains m states with the initial distribution

(x01, x
0
2, · · · , x

0
m)T . If there exists a positive constant N ∈ N such that

P (N)(x01, x
0
2, · · · , x

0
m)T = (x01, x

0
2, · · · , x

0
m)T , (3.1)

then the particle system is called N -periodic system in distributional sense.

One can give some examples to satisfy (3.1). For example, suppose a particle system has five states

and the initial distribution is ( 1
10 ,

1
10 ,

7
20 ,

2
5 ,

1
20 )

T . Assume that the one-step transition probability

matrix is

P =













a1 b1 0 0 0
a2 b2 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0













,
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where 0 ≤ ai, bi ≤ 1, ai + bi = 1, i = 1, 2. Then one can find that

P 2

(

1

10
,
1

10
,
7

20
,
2

5
,
1

20

)T

=

(

1

10
,
1

10
,
7

20
,
2

5
,
1

20

)T

.

On the other hand, it is easy to see that if

P (N) = Im, (3.2)

where Im denotes m×m identity matrix (which is called Idempotent matrix in algebra), then the

equality (3.1) holds. A stochastic process is called strong N -periodic system in distributional sense

if (3.2) holds. We remark that the number N in (3.2) is definitely equal to least common multiple

of the periodicity of every particle.

For continuous time and continuous state stochastic process, we borrow the idea of [6, 7]. A

stochastic process is called T -periodic system in distributional sense if µ(t+ T, x) = µ(t, x) for all

t ≥ 0 and x ∈ Rd, where µ is defined as in Proposition 2.1.

Before we close this section, we establish the existence of periodic solution in distributional

sense on bounded domain. We generalize the result of [7] to the bounded domain. We remark that

the boundary of the bounded domain should be reflective. If the boundary is absorbing, then we

cannot get the limit in the following sense

µn(f) =

∫

D
fdµn →

∫

D
fdµ = µ(f), as n→ ∞,

where µn and µ are probability measure of some stochastic process on the bounded domain D ⊂ Rd.

The probability measure considered here keeps entirety, i.e., µn(D̄) = 1 and the limit probability

measure µ0(D̄) = 1. The results obtained here coincide with those in next section.

LetD be a convex domain in Rd and (Ω,F , P ) be a complete probability space with an increasing

family {Ft}t≥0 of sub-σ-fields of F . Suppose an Ft-adapt r-dimensional Brownian motion B(t) =

(B1(t), · · · , Br(t)) with B(0) = 0 is given. Let σ(t, x) and b(t, x) be Rd ⊗Rd-valued and Rd-valued

functions, both being defined on R+× D̄, respectively. Consider the stochastic differential equation

with reflection

dXt = b(t,X)dt + σ(t,X)dB + dΦ, X(0) = x, (3.3)

where x ∈ D̄ and {Φ(t)} is an associated process of {X(t)}. In [20], the authors gave the relationship

between Φ and X, i.e.,

Φt =

∫ t

0
ν(Xs)d|Φ|s, |Φ|t =

∫ t

0
1{Xs∈∂D}d|Φ|s,

where ν is the unit outward normal to ∂D at x, and kt stands for the total variation of k on [0, t].

In order to make the meaning of Φt clearly, we introduce the following spaces of functions, see [26,

Page 164] for more details.

C(R+,R
d) (resp. C(R+, D̄)) = the space of Rd-valued (resp. D̄-valued) continuous functions

on R+.

D(R+,R
d) (resp. D(R+, D̄)) = the space of Rd-valued (resp. D̄-valued) right continuous func-

tions on R+ with left limits.

On C(R+,R
d) and C(R+, D̄) we consider the compact uniform topology. Given a function ξ in

D(R+, D̄), a function Φ is said to be associated with ξ if the following three conditions are satisfied.

(i) Φ is a function in D(R+,R
d) with bounded variation and Φ(0) = 0.

(ii) The set {t ∈ R+ : ξ(t) ∈ D} has d|Φ|-measure zero.

(iii) For any η ∈ C(R+, D̄), (η(t)− ξ(t),Φ(dt)) ≥ 0.

Using the above properties, Tanaka proved that the following Lemma.
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Proposition 3.1 [26, Lemma 2.2] Let w, w̃ ∈ D(R+,R
d) with w(0), w̃(0) ∈ D̄, and ξ, ξ̃ be any

solutions of

ξ = w +Φ, ξ̃ = w̃ + Φ̃,

respectively. Then we have

|ξ(t)− ξ̃(t)|2 ≤ |w(t)− w̃(t)|2

+2

∫ t

0
(w(t)− w̃(t)−w(s) + w̃(s),Φ(ds)− Φ̃(ds)).

Tanaka [26] obtained the following result.

Proposition 3.2 [26, Theorem 4.1] If there exists a constant K > 0 such that

‖σ(t, x) − σ(t, y)‖ ≤ K|x− y|, ‖b(t, x)− b(t, y)‖ ≤ K|x− y|,

‖σ(t, x)‖ ≤ K(1 + |x|2)1/2, ‖b(t, x)‖ ≤ K(1 + |x|2)1/2,

then there exists a (pathwise) unique Ft-adapted solution (3.3) for any x ∈ D̄.

Later, Lions-Sznitman [20] generalized the results of [26]. Now, we follow the idea of [7] to prove the

existence of periodic solution in distributional sense on bounded domain. Note that the bounded

domain with reflection boundary is similar to the whole space, the proof is similar to that of [7]. We

only write out the difference. Due to that nothing is lost in the bounded domain, so the probability

measure on D̄ will be always 1. Using this fact, we can obtain a similar theorem on bounded domain

to [24, Theorem Page 9]. And thus Lemmas 2.3 and 2.4 in [7] hold for the bounded domain.

Let P(D̄) be the set of Borel probability measures on D̄. We denote the law of X on D̄ by

µ : R → P(D̄). Assume there exists a stochastic process L such that the solution Y (t) on R+ of

(3.3) satisfying

|Y (nT )| ≤ L, E|L|2 <∞, n = 1, 2, · · · , . (3.4)

We borrow symbols from the [7]. P ◦ [Y (t)]−1 denotes the distribution of Y (t). Similar to Section

2 of [7], we define the dBL which means the distance of bounded and Lipschitz function.

‖h‖∞ = sup
D̄

|h(x)|, ‖h‖L = sup
x,y∈D̄,x 6=y

{
|h(x) − h(y)|

|x− y|
},

‖h‖BL = max{‖h‖∞, ‖h‖L}, dBL(µ, ν) = sup
‖h‖BL≤1

∣

∣

∣

∫

hd(µ − ν)
∣

∣

∣

for all µ, ν ∈ P(D̄) and all Lipschitz continuous real-valued functions h on D̄. It is easy to check

that (dBL,P(D̄)) is a complete metric space, see [9, Page 390] for details. The main result is the

following theorem.

Theorem 3.1 Let b and σ be continuous functions which are T -periodic in the time variable

and satisfy the assumptions of Proposition 3.2. If (3.4) holds and

lim
k→∞

1

nk + 1

nk
∑

m=0

dBL(P ◦ [Y ((m+ 1)T )1Am ]−1, P ◦ [Y (mT )1Am ]
−1) = 0, (3.5)

where Y (t) is a solution of (3.3), Am is defined as in (3.7) and {nk} is a sequence of integers tending

to +∞ and dBL is a metric, then there exists an L2-bounded T -periodic solution in distribution

sense of (3.3).
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Proof. Inspired by [7], define the stochastic process

Xk(0, ω) = Y (χk(ω)), Xk(t, ω) = Y (t+ χk(ω), ω),

where ω ∈ Ω, χk is a random variable independent of Bt and Y (0, ω) such that P (χk = nT ) = 1
k+1 ,

n = 0, 1, · · · , k. Due to the functions b and σ are T -periodic in time variable and the fact that Φt

just depends on Xt, Xk is still a solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dB̃t + dΦt, B̃t = B(t+ nT )−B(nT ),

where B̃t has the same distribution with Bt. Similar to [7], using the fact that χk is independent

of B̃t, we have

P (Xk(t) ∈ A0) =
1

k + 1

k
∑

n=0

P (Y (t+ nT ) ∈ A0), (3.6)

where A0 ⊂ D̄ is a Borel set. It follows from (3.4), (3.6) and Chebyshev’s inequality that

P (|Xk(0, ω)| > R) ≤
1

k + 1

k
∑

n=0

E|Y (nT )|2

R2
≤

C

R2
→ 0 as R→ ∞.

Applying Skorokhod’ Lemma ([7, Lemmas 2.3 and 2.4]), we have that in some probability space

(Ω̃, F̃ , P̃ ) there exists a sequence X̃k(0, ω̃) (k = 0, 1, · · · ) with the same distribution as Xk(0, ω)

such that some subsequence {X̃nk
(0, ω̃)}k=0,1,··· converges in probability to X̃(0, ω̃). Also, we can

construct random variables Xk(ω) and X(ω) on the space (Ω,F , P ), whose joint distribution is the

same as the joint distribution of X̃k(ω̃) and X̃(ω̃). Notice that X̃nk
(0, ω̃) has the same distribution

as Xnk
(0, ω), and thus we have E|X̃nk

(0, ω̃)|2 = E|Xnk
(0, ω)|2, |X̃nk

(0, ω̃)| ≤ L and E|L|2 < ∞.

The Vitali’s theorem implies that E|X̃nk
(0, ω̃)− X̃(0, ω̃)|2 → 0 as k → ∞.

Let X̃nk
(t) be the solution of

dXt = b(t,Xt)dt+ σ(t,Xt)dB̃t + dΦt

with initial data X̃nk
(0, ω̃) = Xnk

(ω̃) on the probability space (Ω̃, F̃ , P̃ ). Note that

X̃nk
(t)− X̃(t) = X̃nk

(ω̃)− X̃(ω̃) +

∫ t

0
(b(s, X̃nk

(t))− b(s, X̃(s)))ds

+

∫ t

0
(σ(s, X̃nk

(t))− σ(s, X̃(s)))dB̃s +Φt − Φ̃t,

we have

|X̃nk
(t)− X̃(t)|2 ≤ 3|X̃nk

(ω̃)− X̃(ω̃)|2 + 3|

∫ t

0
(b(s, X̃nk

(t))− b(s, X̃(s)))ds|2

+3|

∫ t

0
(σ(s, X̃nk

(t))− σ(s, X̃(s)))dB̃s +Φt − Φ̃t|
2.

Let

ξ(t) = w(t) + Φt, ξ̃(t) = w̃(t) + Φ̃t,

w(t) =

∫ t

0
σ(s, X̃nk

(t))dB̃s, w̃(t) =

∫ t

0
σ(s, X̃(t))dB̃s.
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Then applying Proposition 3.1, using Itô isometry, and noting that w(t) is a martingale with

respect to F̃ , we have (also see the proof of [26, Theorem 4.1], and here we use the reason why ”the

reminder” disappear in (4.4) on Page 175)

E|X̃nk
(t)− X̃(t)|2 ≤ 3E|X̃nk

(ω̃)− X̃(ω̃)|2 + 3tE

∫ t

0
‖b(s, X̃nk

(s))− b(s, X̃(s))‖2ds

+3E
∣

∣

∫ t

0
(σ(s, X̃nk

(t))− σ(s, X̃(s)))dB̃s

∣

∣

2

+6E

∫ t

0
(w(t) − w̃(t)− w(s) + w̃(s),Φ(ds)− Φ̃(ds))

≤ 3E|X̃nk
(ω̃)− X̃(ω̃)|2 + 3tK2E

∫ t

0
|X̃nk

(s))− X̃(s)|2ds

+6E

∫ t

0
|σ(s, X̃nk

(t))− σ(s, X̃(s))|2ds

≤ 3E|X̃nk
(ω̃)− X̃(ω̃)|2 + 3K2(t+ 2)E

∫ t

0
|X̃nk

(s))− X̃(s)|2ds,

where we used the fact that (independent increment of Brownian motion)

E

∫ t

0
(w(t) − w̃(t)− w(s) + w̃(s),Φ(ds) − Φ̃(ds)) = 0.

By Gronwall’s inequality, we have

E|X̃nk
(t)− X̃(t)|2 ≤ 3E|X̃nk

(ω̃)− X̃(ω̃)|2e3(t+2)K2

→ 0 as k → ∞.

Since the uniqueness of weak solutions implies the uniqueness of laws, we have

P ◦ [Xnk
(t)]−1 = P ◦ [X̃nk

(t)]−1 → P ◦ [X̃(t)]−1

unformly on [0, T ]. Moreover, we can replace X̃(0, ω̃) on (Ω̃, F̃ , P̃ ) by X(0, ω̃) on (Ω,F , P ) with

the same law. Then the solution X(t) admits the same distribution of X̃(t) by weak uniqueness of

the equation (3.3). It suffices to prove that

P ◦ [X(T )]−1 = P ◦ [X(0)]−1.

Denote

Am = {ω ∈ Ω : χnk
(ω) = mT}, m = 0, 1, · · · , nk, (3.7)

then we have

P (Am) =
1

nk + 1
, m = 0, 1, · · · , nk.

By using the above equality, we get

∫

Ω
φ(Xnk

(T ))dP =
1

nk + 1

nk
∑

m=0

∫

Am

φ(Y ((m+ 1)T ))dP. (3.8)

Set

1Am(ω) =

{

1, ω ∈ Am,

0, ω 6∈ Am.
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It follows from (3.5), (3.6) and (3.8) that (see the proof of [7] in Page 292 for details)

dBL(P ◦ [X(T )]−1, P ◦ [X(0)]−1)

= lim
k→∞

dBL(P ◦ [Xnk
(T )]−1, P ◦ [Xnk

(0)]−1) (by the definition)

= lim
k→∞

sup
‖φ‖BL≤1

∣

∣

∣

∣

∫

D
φdP ◦ [Xnk

(T )]−1 −

∫

D
φdP ◦ [Xnk

(0)]−1

∣

∣

∣

∣

= lim
k→∞

sup
‖φ‖BL≤1

∣

∣

∣

∣

∫

Ω
φ(Xnk

(T ))dP −

∫

Ω
φ(Xnk

(0))dP

∣

∣

∣

∣

= lim
k→∞

sup
‖φ‖BL≤1

∣

∣

∣

∣

∣

1

nk + 1

nk
∑

m=0

∫

Am

φ(Y ((m+ 1)T ))dP −
1

nk + 1

nk
∑

m=0

∫

Am

φ(Y (mT ))dP

∣

∣

∣

∣

∣

= lim
k→∞

sup
‖φ‖BL≤1

∣

∣

∣

∣

∣

1

nk + 1

nk
∑

m=0

∫

Am

[φ(Y ((m+ 1)T )) − φ(Y (mT ))]dP

∣

∣

∣

∣

∣

≤ lim
k→∞

sup
‖φ‖BL≤1

1

nk + 1

nk
∑

m=0

∣

∣

∣

∣

∫

Am

[φ(Y ((m+ 1)T )) − φ(Y (mT ))]dP

∣

∣

∣

∣

≤ lim
k→∞

1

nk + 1

nk
∑

m=0

dBL(P ◦ [Y ((m+ 1)T )1Am ]−1, P ◦ [Y (mT )1Am ]
−1)

= 0, (3.9)

that is to say, X(T ) has the same distribution as X(0).

Define the function z : R+ → D̄ by

z(t) = Y (t− ntT ),

where nt = max{n ∈ N|nT ≤ t}. Then z(t) is a T -periodic solution to (3.3). The proof is complete.

�

Remark 3.1 Comparing with the assumptions in Theorem 3.1 with [7, Theorem 1.2], one can

find there is a little difference from [7, Theorem 1.2]. The reason is that in (3.9), the second last

equality we use an equality, which different from [7], where they used the following inequality

lim
k→∞

sup
‖φ‖BL≤1

1

nk + 1

nk
∑

m=0

∣

∣

∣

∣

∫

Am

[φ(Y ((m+ 1)T ))− φ(Y (mT ))]dP

∣

∣

∣

∣

≤ lim
k→∞

sup
‖φ‖BL≤1

1

nk + 1

nk
∑

m=0

dBL(P ◦ [Y ((m+ 1)T )]−1, P ◦ [Y (mT )]−1).

Noting that

dBL(P ◦ [Y ((m+ 1)T )1Am ]−1, P ◦ [Y (mT )1Am ]
−1) ≤ dBL(P ◦ [Y ((m+ 1)T )]−1, P ◦ [Y (mT )]−1),

implies that the condition (3.5) is weaker than [7, (5)].

On the other hand, if σ = 0, the condition (3.5) becomes

lim
k→∞

sup
‖φ‖BL≤1

1

nk + 1

nk
∑

m=0

1Am |Y ((nk + 1)T )− Y (0)| = 0.

which is an extension assumption to Halanay [2].

Similarly, if we define

P (Am) = pm,
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then the condition (3.5) becomes

lim
k→∞

nk
∑

m=0

pmdBL(P ◦ [Y ((m+ 1)T )1Am ]−1, P ◦ [Y (mT )1Am ]−1) = 0.

For different choice of pm, we can get the different periodic solution, and thus there are infinity

periodic solutions in distributional sense.

One can also obtain the existence of periodic solution to (4.11) similar to [7, Theorem 1.1]. Base

on the Theorem 3.1, one can establish the uniqueness of periodic solution under similar assumptions

to [7, Theorem 1.4] and give the Lyapunov functional to verify the existence of periodic solution to

(3.3), see [7, Theorem1.3]. Due to similarity, we omit the details to readers.

4 Existence of periodic solutions on bounded domain and in the

whole space

In this section, we obtain some properties of PDF by considering the existence of periodic solutions

to the Fokker-Planck equations. In order to establish the desired results, we divide this section into

two parts.

4.1 Bounded domain with Dirichlet boundary condition

The reason why we first consider the Dirichlet boundary condition problem is the assumptions on

(A,B). More precisely, in Section 2, we make the assumption that B = B(x,D) is independent of

t ∈ [0, T ]. In this subsection, we assume that a stochastic process Xt satisfies
{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x,
(4.1)

where b is an d-dimensional vector function, σ is an d×mmatrix function andBt is anm-dimensional

Brownian motion. Our aim is to study the properties of PDF by considering the existence of periodic

solution to the corresponding Fokker-Planck equation. Throughout this subsection, we assume the

particle (in the system) will die if it touch the boundary. That is to say, the PDF of this system

satisfies the following evolution equation






∂tp(t, x) = A∗p(t, x), in D × (0, T ],
p = 0, on ∂D × (0, T ],
p(0, x) = p0(x), in D,

(4.2)

where

A∗p = −
∑

i

∂

∂xi
(bip) +

1

2

∑

i,j

∂2

∂xi∂xj
((σσT )ijp).

In order to get the properties of p in (4.2), we need consider the following auxiliary equation






∂tu(t, x) = A∗u(t, x) + µu, in D × (0, T ],
u = 0, on ∂D × (0, T ],
u(0, x) = u(T, x), in D.

(4.3)

In order to get the existence of solution of (4.3), we first consider the following initial boundary

problem






∂tu(t, x) = A∗u(t, x) + µu(t, x), in D × (0, T ],
u = 0, on ∂D × (0, T ],
u(0, x) = u0(x), in D,

(4.4)
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where u0(x) is a fixed function and will be given later. It is easy to see that there exists an evolution

operator U(t, s) such that the solution of (4.4) can be represented in the following form (see section

13 in [15])

u(t) = U(t, 0)u0 + µ

∫ t

0
U(t, s)u(s)ds.

If we set v(t, x) = e−µtu(t, x), then we have

v(t, x) = U(t, 0)v0 = U(t, 0)u0,

that is to say,

u(t, x) = eµtU(t, 0)u0.

It is easy to check that v(t, x) is a solution of (4.2) with p0 = u0.

We assume that

(C2) The operator A∗ is a uniform elliptic operator, (σσT )ij(t, x) ∈ C2+θ,1+ θ
2 (D̄×R), bi(t, x) ∈

C1+θ, 1+θ
2 (D̄ × R), and both (σσT )ij(t, x) and bi(t, x) are T-periodic in t.

Set K = U(T, 0). Then the Krein-Rutman theorem [15, Theorem 7.2] implies that r :=

spr(K) > 0. Proposition 2.3 yields that µ > 0 if r < 1.

Lemma 4.1 Assume that the condition (C2) holds. Assume further that

a0(t, x) := −
1

2

∑

i,j

∂2

∂xi∂xj
(σσT )ij + divb(t, x) ≥ 0.

Then 0 < r < 1, where r := spr(K).

Proof. For completely, we give the outline of the proof. To show that r < 1, let u0 ∈W
2,p
0 (D),

u0 ≫ 0 be a principal eigenfunction of K, i.e., Ku0 = ru0. Then u := U(·, 0)u0 solves






∂tu(t, x)−A∗u(t, x) = 0, in D × (0, T ],
u = 0, on ∂D × (0, T ],
u(0, x) = u0(x), in D.

If a0 ≥ 0 in D̄ × [0, T ] and u0 > 0 in W 2,p
0 (D), the Propositions 13.1 and 13.3 and Remark 13.2 in

[15] that U(t, τ)u0 ≫ 0 in W 2,p
0 (D) for τ < t ≤ T . Now let v := ‖u0‖C(D̄) − u, then v satisfies







∂tv(t, x)−A∗v(t, x) = a0‖u0‖C(D̄) ≥ 0, in D × (0, T ],

v ≥ 0, on ∂D × (0, T ],
v(0, x) ≥ 0, in D,

(4.5)

and hence v ≫ 0 in W 2,p
0 (D) for each 0 < t ≤ T by the Propositions 13.1 and 13.3 and Remark

13.2 in [15]. In particular,

r‖u0‖C(D̄) = ‖Ku0‖C(D̄) = ‖u(T )‖C(D̄) < ‖u0‖C(D̄),

which implies that r < 1. �

Theorem 4.1 Under the assumptions of Lemma 4.1, there exists a unique solution to the

equation (4.3). Hence the solution of (4.2) satisfies exponential decay for any fixed point in D

as time goes to infinity under the special initial data. That is to say, the solution p(t, x) has the

following property:

p(nT, x) = e−µnT p0(x), x ∈ D, n ∈ Z,

where µ > 0 is given as in (4.3) and p0(x) satisfies Kp0 = rp0 with K = U(T, 0).
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Proof. It follows from Lemma 4.1 that the principal eigenvalue of K satisfies 0 < r < 1.

Proposition 2.3 implies that

µ = −
1

T
log r

is an eigenvalue of (4.3) with the positive eigenfunction

u(t) = eµtU(t, 0)u0.

Take u0 be the principal eigenfunction of K (take p0(x) be the principal eigenfunction of corre-

sponding K in equation (4.3)). And thus we have

u(T ) = eµTU(T, 0)u0 =
1

r
Ku0 = u(0).

That is to say, u(t) is the solution of (4.3). The uniqueness of principal eigenvalue implies the

uniqueness of solution of (4.3). By T -periodicity of A(t), we have U(t, τ) = U(t + nT, τ + nT ),

n ∈ Z. Noting that the solution of (4.2) can be written as

p(t, x) = e−µtu(t, x),

we have

p(T, x) = e−µTu(T, x) = e−µTu(0, x) = e−µT p0(x).

By using the properties

U(t, t) = I, U(s, t)U(t, τ) = U(s, τ), 0 ≤ τ ≤ t ≤ s ≤ T,

we have

p(nT, x) = U(nT, 0)p0(x) = U(nT, (n − 1)T ) · · ·U(T, 0)p0(x) = e−µnT p0(x),

where we used the fact that U(T, 0)p0(x) = e−µT p0(x). �

Remark 4.1 In the proof of Lemma 4.1, we know that the initial data u0 (or P0) is special

function, that is, u0 satisfies Ku0 = ru0. Now, we give an example to show that this is possible.

Consider the problem







∂tu(t, x)−∆u(t, x) = 0, in D × (0, T ],
u = 0, on ∂D × (0, T ],
u(0, x) = u0(x), in D.

Assume that u0 satisfies (r > 0)

−∆u0 = ru0, in D, u|∂D = 0,

and by using the fact

u(t, x) = et∆Du0,

where ∆D denotes the Laplace operator with Dirichlet boundary, then we get (by Taylor expansion)

u(t, x) =

∞
∑

i=0

(t∆D)
i

i!
u0 =

∞
∑

i=0

(−tr)i

i!
u0 = e−tru0.
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And thus the solution of the following equation







∂tv(t, x)−∆v(t, x) = µv(t, x), in D × (0, T ],
v = 0, on ∂D × (0, T ],
v(0, x) = u0(x), in D.

can be written as

v(t, x) = eµtu(t, x) = et(µ−r)u0.

If we want to get v(T, x) = v0(x), we will take µ = r. Because there is no concrete value for T , we

obtain that the solution u satisfies u(t, x) = e−µtu0 for all t > 0 and x ∈ D.

It follows from Theorem 4.1 that it is difficult to obtain the existence of periodic solution to linear

parabolic equation. Now we turn to the nonlinear case. In 1998 Pardoux and Zhang proved in [22]

a probabilistic formula for the viscosity solution of a system of semilinear PDEs with Neumann

boundary condition







∂tu+A(u) + f(t, x, u)(t, x)) = 0, in D × (0, T ],
∂u
∂ν + g(t, x, u) = 0, on ∂D × (0, T ],
u(T, x) = h(x), in D,

where D is an open connected bounded subset of Rd.

In order to get the existence of periodic solution for Dirichlet problem, we need to consider the

nonlinear parabolic equation







∂tu(t, x) = A∗u(t, x) + f(t, x, u), in D × (0, T ],
u = 0, on ∂D × (0, T ],
u(0, x) = u0(x), in D.

(4.6)

The assumptions on f will be given later.

We first recall some results. In [15], Hess considered the following periodic initial boundary

problem







∂tu(t, x) +A(t)u(t, x) = f(x, t, u), in D × (0, T ],
Bu := ∂νu+ bu = 0, on ∂D × (0, T ],
u(0, x) = u(T, x), in D,

(4.7)

where they assumed the function b does not depend on t, and

A(t)u = −
∑

i,j

aij(t, x)
∂2

∂xj∂xk
u+

∑

i

ai(t, x)
∂

∂xi
u+ a0(t, x)u.

They used the upper and lower solution method to prove the existence of periodic solution of (4.7).

We first recall the definition of upper (lower) solution.

Definition 4.1 Let u ∈ C1,0([0, T ] × D̄) ∩ C2,1([0, T ) ×D). Such a function u is referred to

as an upper (lower) solution if







∂tu(t, x) +A(t)u(t, x) ≥ (≤)f(x, t, u), in D × (0, T ],
Bu ≥ (≤)0, on ∂D × (0, T ],
u(0, x) ≥ (≤)u(T, x), in D,
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Let ū ≥ u be the upper and lower solution of (4.7), respectively. We define σ = min[0,T ]×D̄ u and

ω = max[0,T ]×D̄ ū. Set

W 2
p,B(D) = {u ∈W 2

p (D) : [∂νu+ b(x)u = 0}, p > d.

Proposition 4.1 Suppose ū ≥ u are the upper and lower solutions of (4.7), respectively. Let

f(·, ·, u) ∈ Cα/2,1+α([0, T ] × D̄) be uniformly with respect to u ∈ [σ, ω] and f(x, 0, 0) = 0 on ∂D.

Fixed p > max{d, 1+ d
2}. If there exists at least one u0 ∈W 2

p,B satisfying u(0, x) ≤ u0(x) ≤ ū(0, x),

then the problem (4.7) has at least one solution u ∈ C1+α/2,2+α([0, T ] × D̄) and satisfies

u ≤ u ≤ ū on [0, T ] × D̄.

The proof of Proposition 4.1 is standard and we omit it here. Now, by using the Proposition 4.1,

we only need find a pair of upper and lower solution to the problem (4.7). In order to do that, we

need consider the periodic parabolic eigenvalue problem






∂tu(t, x) +A(t)u(t, x) = λu, in D × (0, T ],
Bu = 0, on ∂D × (0, T ],
u(0, x) = u(T, x), in D.

(4.8)

It is easy to check that if b ≥ 0 on ∂D × (0, T ], then the maximum principle holds for the problem

(A,B). We will need the following Lemmas.

Lemma 4.2 [15, Proposition14.4] The principal eigenvalue λ1 of (4.8) exists uniquely. Fur-

thermore, if a0 ≥ 0, and a0 6≡ 0 when B = ∂ν , then λ1 > 0. In case a0 = 0 and B = ∂ν, we have

λ1 = 0.

We want to know how the principle eigenvalue λ1 depends on the zero-order term a0. Because in

Fokker-Planck equations, the role of drift term is reflected in the zero-order term a0. In order to

do that, we need the following lemma.

Lemma 4.3 [15, Proposition16.6] For the inhomogeneous problem

∂tu(t, x) +A(t)u(t, x)− λu = h, h ≥, 6≡ 0, (4.9)

where h ∈ F (see Section 2 for the definition of F). Let λ1 be the principal eigenvalue λ1 of (4.8).

Then we have

(i) If λ < λ1, then the problem (4.9) has a unique solution u and u > 0 in F1;

(ii) If λ ≥ λ1, then the problem (4.9) has no positive solution, and no solution at all if λ = λ1.

By using the above Lemma 4.3, it is easy to prove the following Lemma.

Lemma 4.4 Let λ1 = λ1(a0) be the principal eigenvalue of (4.8). Then λ(a0) is strictly

increasing in a0.

Proof. suppose a10(t, x) ≤ a20(t, x) and a10(t, x) 6≡ a20(t, x). Suppose φi is the corresponding

positive eigenfunction to λ1(a
i
0) and λ1(a

i
0) > 0, i = 1, 2. Denote A0 = A − a0. We aim to prove

that λ1(a
1
0) < λ1(a

2
0). On the contrary, we suppose λ1(a

1
0) ≥ λ1(a

2
0), then we have

∂t(φ1 − φ2) +A0(t)(φ1 − φ2) + a20(φ1 − φ2)

= ∂tφ1 +A0(t)φ1 + a20φ1 − λ1(a
2
0)φ2

≥ ∂tφ1 +A0(t)φ1 + a10φ1 − λ1(a
2
0)φ2

= λ1(a
1
0)φ1 − λ1(a

2
0)φ2

≥ λ1(a
1
0)(φ1 − φ2),
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that is to say,

∂t(φ1 − φ2) +A0(t)(φ1 − φ2) + a20(φ1 − φ2)− λ1(a
1
0)(φ1 − φ2) =: h ≥, 6≡ 0.

By using comparison principle, we deduce that φ1 − φ2 > 0 if λ1(a
1
0) > λ1(a

2
0). We obtain a

contradiction with (ii) of Lemma 4.3. �

Now, we use the above discussion to solve the problem (4.6).

Theorem 4.2 Suppose there exist two positive constants c0 and M0 satisfying

a0(t, x) ≥ c0, f(t, x, 0) > 0, f(t, x, ξ) ≤ 0 for ξ ≥M0, f ∈ F.

Then the problem (4.6) admits a unique solution.

Proof. The existence of periodic solution is obtained by using Proposition 4.1. We only need

find a pair of upper-lower solution of (4.6). Actually, from the assumptions on a0 and f , we see

that ū =M ≥M0 is an upper solution. Let φ be a positive eigenfunction corresponding to λ1(a0),

i.e., φ is the solution of (4.8) with λ = λ1(a0). Take ε > 0 and set u = εφ, then u is s lower solution

of (4.6). Moreover, u and ū are the ordered upper and lower solutions of (4.6) if we choose ε ≪ 1

and M ≫ 1. According to Proposition 4.1, the problem (4.6) has at least one solution u satisfying

εφ ≤ u ≤M . The proof of uniqueness follows from the comparison principle. �

Remark 4.2 Following Lemma 4.2, we can see that if a0 = 0, then the problem (4.8) with

Neumann boundary admits the principle eigenvalue λ1 = 0 and eigenfunction φ = 1.

A typical example in 4.2 is f(t, x) = f1(t, x) − uf2(t, x) with fi(t, x) ∈ (N1, N2) for all (t, x) ∈

[0, T ]× D̄ and N1 > 0.

The assumptions on f can be given weaker, but it is not our aim. See [28] for f = u(h1(t, x)−

h2(t, x)u) and hi, i = 1, 2, are some functions.

4.2 Bounded domain with reflecting boundary condition

It is easy to see that there is no periodic solution to equation (4.2). Now, we consider another case.

We assume that a stochastic process Xt satisfies

{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt,

X0 = x,
(4.10)

with the reflecting boundary condition [14, Section 5.1.1], where b is an d-dimensional vector func-

tion, σ is an d × m matrix function and Bt is an m-dimensional Brownian motion. Our aim is

to study the existence of periodic solution to the corresponding Fokker-Planck equation, i.e., the

existence of the following equations







∂tp(t, x) = A∗p(t, x), in D × (0, T ],
(b · ν)p− p∂D · ν = 0, on ∂D × (0, T ],
p(0, x) = p(T, x), in D,

(4.11)

where

A∗p = −
∑

i

∂

∂xi
(bip) +

1

2

∑

i,j

∂2

∂xi∂xj
((σσT )ijp),

p∂D = (
∑

i

∂

∂xi
((σσT )i1p), · · · ,

∑

i

∂

∂xi
((σσT )idp)).
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It follows the results of [8] that for the existence of probability density function, the necessary

condition is that operator A∗ is a uniform elliptic operator. Throughout this section we assume

that the operator A∗ is a uniform elliptic operator.

We first consider a special case. It is noted that most of work on the periodic parabolic problem

the authors assumed the boundary function b does not depend on the time t. Because under this

assumption, one can apply the standard theory of evolution equation of ”parabolic type”, see [1, 28].

So we assume

(σσT )ij(t, x) = α(t), 0 < α0 ≤ α(t) ≤ α1, b(t, x) = α(t) × b0(x).

Then the problem (4.11) becomes







∂tp(t, x) = A∗p(t, x), in D × (0, T ],
∂νp− b0p = 0, on ∂D × (0, T ],
p(0, x) = p(T, x), in D.

(4.12)

We can use the similar method to deal with the problem (4.12).

It is well known that the upper-lower method is not suitable to the linear parabolic equation.

The reason is that if we find an upper solution φ for a linear parabolic equation, then λφ will be an

upper solution for any λ > 0. Hence we can not obtain the existence of non-negative solution for

this linear parabolic equation. And in this subsection, we only consider the one dimensional case

because it can be calculated clearly. We want to obtain the existence of periodic solution of (4.11).

For simplicity, we denote a(t, x) = (σσT )(t, x) and D = (0, 1). Due to the operator A∗ is a uniform

elliptic operator, we have a(t, x) > 0 for (t, x) ∈ [0, T ] × [0, 1]. The one dimensional problem will

be written as






∂tp(t, x)− (a(t, x)p(t, x))xx + (b(t, x)p(t, x))x = 0, in D × (0, T ],
(a(t, x)p(t, x))x − bp = 0, on ∂D × (0, T ],
p(0, x) = p(T, x), in D.

(4.13)

We first assume that

(a(t, x)p(t, x))x − bp = 0, in [0, T ]× [0, 1].

Then we get

p(t, x) = exp

(
∫

b− ax

a
dx

)

, (4.14)

which implies that pt = 0, i.e.,

∫

a(bt − axt)− at(b− ax)

a2
dx = 0. (4.15)

That is to say, the stochastic process has stationary probability measure. Summing the above

discussion, we have

Theorem 4.3 Suppose (4.15) hold. Then problem (4.13) admits a solution p satisfying (4.14).

For d ≥ 2, we can not calculate it clearly. But we guess there exists a positive periodic solution

to problem (4.11). Indeed, it follows from (4.11) that

∫

D
p0(x)dx =

∫

D
p(t, x)dx, ∀t > 0. (4.16)
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The existence of periodic solution to (4.11) is equivalent to getting p(0, x) = p(T, x) point by point

for x ∈ D from (4.16).

In 2000, Lieberman [17, 18, 19] did a series of work about the periodic solution of parabolic

equation on bounded domain. Especially in [19], Lieberman obtained the existence of periodic of

the following parabolic equation






ut − divA(t, x, u,∇u) +B(t, x, u,∇u) = 0, in (0, T )× ∂D,

A(t, x, u,∇u) · ν + ψ(t, x, u) = 0, on (0, T ) × ∂D,

u(0, x) = u(T, x), in D.

If b, σ satisfy the conditions of [19, Lemma 2.1], then the (4.11) will admit a periodic solution p.

4.3 Whole space

In this subsection, we consider the existence of periodic solutions of Fokker-Planck equations in the

whole space. For a stochastic process Xt satisfies equation (4.1), the corresponding Fokker-Planck

equation is the following form

∂tp = −
∑

i

∂

∂xi
(bip) +

1

2

∑

i,j

∂2

∂xi∂xj
((σσT )ijp). (4.17)

Furthermore, if the probability density p(t, x) satisfies p(t + T, x) = p(t, x), ∀(t, x), then p(t, x) is

call a T -periodic solution of (4.17).

By using the method of [13], we will obtain the existence of periodic solution of (4.17). In [13],

the author considered the following periodicity problem
{

ut −∆u = f(t, x, u, ux), t > 0, x ∈ Rd,

u(t, x) = u(t+ T, x), t ≥ 0, x ∈ Rd,
(4.18)

where d ≥ 2, f ∈ C(R,Rd,R,Rd), ux = (ux1
, ux2

, · · · , uxd
), f is T -periodic function with respect to

the time variable t, the period T > 0 is arbitrary chosen and fixed. They got the following result.

Proposition 4.2 Let d ≥ 2, n ∈ N be fixed, T > 0 be fixed, f ∈ C(R,Rd,R,Rd). f is T -

periodic with respect to the time variable t. Also let 0 ≤ ci, li,mi, pi, qi, li < ∞, i = 1, 2, · · · , n, be

fixed constants, 0 ≤ ki, ni < ∞, i = 1, 2, ·, d, be fixed constants, bi(t) ∈ C(R+), gi(x) ∈ C(Rd),

supR+
|bi(t)| <∞, supRd |gi(x)| <∞, i = 1, 2, · · · , n,

|f(t, x, u, ux)| ≤

n
∑

i=1

(

ci|bi(t)|
pi + li|u|

qi +mi|gi(x)|
li
)

+

d
∑

i=1

ki|uxi
|ni

for every (t, x, u, ux) ∈ (R,Rd,R,Rd). Then the problem (4.18) has a solution u ∈ C1(R+, C
2(Rd))

(C1(R+, C
2(Rd)) will be defined later).

Comparing the problem (4.17) and (4.18), we see that the problem (4.17) is a linear problem

and problem (4.18) will contain problem (4.17) if (σσT )ij = constant. Firstly, it is remarked that

when d = 1, the results in subsection 3.2 also holds for problem (4.17). That is to say, theorem 4.3

holds for (4.17). In order to get the existence of solutions to (4.17) for d ≥ 2, we suppose that a(t)

is continuous positive T -periodic function, which is defined on the whole real axis R. We denote

[a] = 1
T

∫ T
0 a(t)dt. For D ⊂ Rd, set

C1([0, T ], C2(D)) = {u(t, x) : continuously − differentiable in t ∈ R+,

twice continuously − differentiable in x ∈ D,

u(t+ T, x) = u(t, x) for t ≥ 0 and x ∈ D}.
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Fix 0 < Q <∞, 0 < ε < 1 and denote

F = max







sup
t≥0,x∈Rd

divb(t, x), sup
t≥0,x∈Rd

d
∑

i=1

|bi(t, x)|, sup
t≥0,x∈Rd

d
∑

i,j=1

|(σσT )ij(t, x)|







,

G = max

{

sup
0≤t,s≤T

e−[a]T

1− e−[a]T
e
∫ t+s

t
a(r)dr , sup

0≤t≤T
a(t), sup

0≤t≤T
e
∫ t

0
a(r)dr

}

,

S = (2d+ 1)(F 2 +Q2).

If we assume supt,x |bi(t, x)| < ∞, supt,x |(σσ
T )ij(t, x)| < ∞, i, j = 1, 2, · · · , d, we have that 0 ≤

F <∞. Note that a(t) is a continuous positive T -periodic function, which is defined on the whole

real axis R, we conclude that 0 ≤ G <∞. From here and 0 < Q <∞ we get 0 ≤ S <∞.

The main result of this subsection is the following theorem.

Theorem 4.4 Assume that the SDEs (4.1) admits a probability density function p(t, x) satis-

fying (4.17). Assume further that F < ∞ and bi, σ are T -periodic functions, then there exists a

periodic solution p(t, x) ∈ C1(R+, C
2(Rd)) satisfying (4.17) with p(t+ T, x) = p(t, x) for t ≥ 0 and

x ∈ Rd.
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We choose the constants Ai, i = 1, 2, · · · , d, so that Ai > 0 satisfying

(A1 · · ·Ad)
2Q+GT

[

G(A1 · · ·Ad)
2Q+

d
∑

i=1

(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

+

d
∑

i,j=1,i 6=j

AiAj(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ad)
2SQ

+
d

∑

i=1

Ai(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ (1− ε)Q,

(A1 · · ·Ad)
2Q+ (G3T + 1)

[

G(A1 · · ·Ad)
2Q+

d
∑

i=1

(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

+

d
∑

i,j=1,i 6=j

AiAj(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ad)
2SQ

+

d
∑

i=1

Ai(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ (1− ε)Q, (4.19)

(A1 · · ·Ak−1Ak+1 · · ·Ad)
2AkQ+ (G3T + 1)

[

GT (A1 · · ·Ak−1Ak+1 · · ·Ad)
2AkQ

+

d
∑

i=1,i 6=k

(A1 · · ·Ai−1Ai+1 · · ·Ak−1Ak+1 · · ·Ad)
2AkSQ+ (A1 · · ·Ai−1Ai+1 · · ·Ad)

2SQ

+
d

∑

i,j=1,i 6=j 6=k

AiAjAk(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+2

d
∑

j,k=1,k 6=j

AkAj(A1 · · ·Aj−1Aj+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+

d
∑

i=1,i 6=k

AiAk(A1 · · ·Ai−1Ai+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ (1− ε)Q ∀j = 1, 2, · · · , d,

A0 = An+1 = 1.

Such choice is suitable if 0 < Ai < 1, i = 1, 2, · · · , d, is small enough. We set A = (A1, A2, · · · , Ad)

and

B1 = {x ∈ Rd : 0 ≤ xi ≤ Ai, i = 1, 2, · · · , d}.

We first prove that the periodicity problem

{

∂tp = −
∑

i
∂
∂xi

(bip) +
1
2

∑

i,j
∂2

∂xi∂xj
((σσT )ijp), t > 0, x ∈ B1,

p(t, x) = p(t+ T, x), t ≥ 0, x ∈ B1.
(4.20)

We will use the fixed point arguments to prove the existence of solution to (4.20). Following the

idea of [13], we give the following lemma.
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Lemma 4.5 If p ∈ C1([0, T ], C2(B1)) satisfies the equation

∫ A

x

∫ A

y
p(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y

p(t+ s, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)p(t+ s, ẑi)dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdy

+
d

∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p(t+ s, z̆i)]dz̆idy
)

ds = 0, (4.21)

then p(t, x) is a solution to the problem (4.20). We use the following symbols

∫ A

x
=

∫ A1

x1

∫ A2

x2

· · ·

∫ Ad

xd

,

∫ A

x̄i

=

∫ A1

x1

· · ·

∫ Ai−1

xi−1

∫ Ai+1

xi+1

· · ·

∫ Ad

xd

,

∫ A

ȳij

=

∫ A1

y1

· · ·

∫ Ai−1

yi−1

∫ Ai+1

yi+1

· · ·

∫ Aj−1

yj−1

∫ Aj+1

yj+1

· · ·

∫ Ad

xd

,

∫ A

y̆i

=

∫ A1

y1

· · ·

∫ Ai−1

yi−1

∫ Ai+1

yi+1

· · ·

∫ Ad

yd

, z̆i = (z1, · · · , zi−1, yi, zi+1, zd),

ŵi = (w1, · · · , wi−1, xi, wi+1, · · · , wd), dŵi = dw1 · · · dwi−1dwi+1 · · · dwn, w = y or z,

ẑij = (z1, · · · , zi−1, yi, zi+1, · · · , zj−1, yj, zj+1, zd).

Proof. Differentiating the (4.21) twice in x1, twice in x2, · · · , twice in xd and using the pe-

riodicity of a, p, b and σ, we can obtain the desired result. See [13, Lemma 2.1] for more details.

�

Lemma 4.5 implies that the existence of solution to (4.20) is equivalent to the existence of fixed

point of L1, i.e., L1(p) = p, where

L1(p) = p(t, x) +

∫ A

x

∫ A

y
p(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y

p(t+ s, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)p(t+ s, ẑi)dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdy

+
d

∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p(t+ s, z̆i)]dz̆idy
)

ds.

In order to get the fixed point of L1, we define

D1 = {u ∈ C1([0, T ], C2(B1)) : |u| ≤ Q, |ut| ≤ Q, |uxi
| ≤ Q, i = 1, 2, · · · , d},

D̃1 = {u ∈ C1([0, T ], C2(B1)) : |u| ≤ (1 + ε)Q, |ut| ≤ (1 + ε)Q,

|uxi
| ≤ (1 + ε)Q, i = 1, 2, · · · , d}.

In the set D1 and D̃1, we define a norm as follows:

‖u‖ = max

{

max
t∈[0,T ],x∈B1

|u|, max
t∈[0,T ],x∈B1

|ut|, max
t∈[0,T ],x∈B1

|uxi
|, i = 1, 2, · · · , d

}

.
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Then D1, D̃1 and C1([0, T ], C2(B1)) are completely normed spaces with respect to this norm, see

Appendix of [13]. We rewrite the operator L1 in the following form

L1(p) =M1(p) +N1(p),

where

M1(p) = (1 + ε)p,

N1(p) = −εp+

∫ A

x

∫ A

y
p(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y

p(t+ s, z)dzdy +
d

∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)p(t+ s, ẑi)dẑidŷi

+
d

∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdy

+

d
∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p(t+ s, z̆i)]dz̆idy
)

ds.

To obtain the operator L1 has a fixed point in the space C1([0, T ], C2(B1)) we need the following

lemma.

Lemma 4.6 [29, Corollary 2.4, p.3231] Let X be a nonempty closed convex subset of a Banach

space Y . Suppose that T and S map X into Y such that

(i) S is continuous, S(X) resides in a compact subset of Y ;

(ii) T : X → Y is expansive and onto.

Then there exists a point x∗ ∈ X with Sx∗ + Tx∗ = x∗.

We recall the definition of expansive operator.

Definition 4.2 [29] Let (X, d) be a metric space and M be a subset of X. The mapping

T :M → X is said to be expansive, if there exists a constant h > 1 such that

d(Tx, Ty) ≥ hd(x, y), ∀x, y ∈M.

It is easy to check the following lemma, see [13, lemma 2.3] for the details.

Lemma 4.7 The operator M1 : D1 → D̃1 is an expansive operator and onto.

Next we prove the operator N1 satisfies the (i) of Lemma 4.6.

Lemma 4.8 The operator N1 : D1 → D1 is continuous and D1 is a compact set in D̃1.
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Proof. We first prove N1 maps D1 to D1. For any p ∈ D1, by using (4.19), we have

|N1(p)| ≤ ε|p|+

∫ A

x

∫ A

y
|p(t, z)|dzdy +

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y

|p(t+ s, z)|dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

|(σσT )ii(t+ s, ẑi)p(t+ s, ẑi)|dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

|(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)|dẑijdy

+

d
∑

i=1

∫ A

x

∫ A

y̆i

|bi(t+ s, z̆i)p(t+ s, z̆i)|dz̆idy
)

ds

≤ εQ+ (A1 · · ·Ad)
2Q+GT

[

G(A1 · · ·Ad)
2Q

+
d

∑

i=1

(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

+
d

∑

i,j=1,i 6=j

AiAj(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ad)
2SQ

+

d
∑

i=1

Ai(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ εQ+ (1− ε)Q

for every t ∈ [0, T ] and every x ∈ B1.

For (N1(p))t, we get

(N1(p))t = −εpt +

∫ A

x

∫ A

y
pt(t, z)dzdy +

e−[a]T

1− e−[a]T
a(t)e−

∫ t

0
a(r)dr

∫ t+T

t
e
∫ t1
0

a(r)dr

×
[

a(t1)

∫ A

x

∫ A

y
p(t1, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t1, ẑi)p(t1, ẑi)dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t1, ẑij)p(t1, ẑij)dẑijdy

+
d

∑

i=1

∫ A

x

∫ A

y̆i

[bi(t1, z̆i)p(t1, z̆i)]dz̆idy
]

dt1

+
[

a(t)

∫ A

x

∫ A

y
p(t, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t, ẑi)p(t, ẑi)dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t, ẑij)p(t, ẑij)dẑijdy

+

d
∑

i=1

∫ A

x

∫ A

y̆i

[bi(t, z̆i)p(t, z̆i)]dz̆idy
]
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which implies that (using (4.19) again)

|(N1(p))t| ≤ εQ+ (A1 · · ·Ad)
2Q+ (G3T + 1)

[

G(A1 · · ·Ad)
2Q

+

d
∑

i=1

(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

+

d
∑

i,j=1,i 6=j

AiAj(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ad)
2SQ

+

d
∑

i=1

Ai(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ εQ+ (1 − ε)Q, ∀t ∈ [0, T ], x ∈ Rd.

Let k ∈ {1, 2, · · · , d} be arbitrary chosen and fixed. Then we have

(N1(p))xk
= −εpxk

−

∫ A

x̄k

∫ A

ŷk

pt(t, z)dzdŷk

−
e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

− a(t+ s)

∫ A

x̄k

∫ A

ŷk

p(t+ s, z)dzdŷk

+
d

∑

i=1,i 6=k

∫ A

(x̄i)k

∫ A

(̂ȳi)k

(σσT )ii(t+ s, ẑi)p(t+ s, ẑi)dẑid(̂ȳi)k

+

∫ A

x̄k

∫ A

ȳk

(σσT )kk(t+ s, ẑk)p(t+ s, ẑk)dẑkdŷk

+
d

∑

i,j=1,i 6=j 6=k

∫ A

x̄k

∫ A

(̂ȳij)k

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdŷk

+

d
∑

i,j=1,i 6=j,j=k

∫ A

x̄k

∫ A

ȳik

(σσT )ik(t+ s, ẑik)p(t+ s, ẑik)dẑikdŷk

+

d
∑

i,j=1,i 6=j,i=k

∫ A

x̄k

∫ A

ȳkj

(σσT )kj(t+ s, ẑkj)p(t+ s, ẑkj)dẑkjdŷk

+
d

∑

i=1,i 6=k

∫ A

xk

∫ A

(̂y̆i)k

[bi(t+ s, (̂z̆i)k)p(t+ s, (̂z̆i)k)]d(̂z̆i)kdŷk

+

∫ A

x̄k

∫ A

ŷi

[bi(t+ s, ẑi)p(t+ s, ẑi)]dẑidy
)

ds.
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Using (4.19), we obtain

|(N1(p))xk
| ≤ εQ+ (A1 · · ·Ak−1Ak+1 · · ·Ad)

2AkQ

+(G3T + 1)
[

GT (A1 · · ·Ak−1Ak+1 · · ·Ad)
2AkQ

+

d
∑

i=1,i 6=k

(A1 · · ·Ai−1Ai+1 · · ·Ak−1Ak+1 · · ·Ad)
2AkSQ

+(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

+
d

∑

i,j=1,i 6=j 6=k

AiAjAk(A1 · · ·Ai−1Ai+1 · · ·Aj−1Aj+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+2

d
∑

j,k=1,k 6=j

AkAj(A1 · · ·Aj−1Aj+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+

d
∑

i=1,i 6=k

AiAk(A1 · · ·Ai−1Ai+1 · · ·Ak−1Ak+1 · · ·Ad)
2SQ

+(A1 · · ·Ai−1Ai+1 · · ·Ad)
2SQ

]

≤ εQ+ (1− ε)Q, ∀t ∈ [0, T ], x ∈ Rd.

Consequently, N1 : D1 → D1. It follows from the above estimates that if pn → p in sense of the

topology of the set D1 we have N1(pn) → N1(p) in sense of the topology of the set D1. Therefore

the operator N1 : D1 → D1 is a continuous operator. It follows from the definitions of D1 and D̃1

that D1 is a compact set in the space D̃1. �

Proof of Theorem 4.4 Combining the Lemmas 4.7 and 4.8, and using Lemma 4.6, we deduce

that the operator L1 has a fixed point p1 ∈ D1. Hence p
1 is a solution to (4.20) in D1. In order to

get the global existence, we need to define the set

B2 = {x ∈ Rd : Ai ≤ xi ≤ 2Ai, i = 1, 2, · · · , d}.

We consider the problem (4.20) in B2. In order to do that, we consider the operator

L2(p) = p(t, x) +

∫ A

x

∫ A

y
p(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y

p(t+ s, z)dzdy +
d

∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)
[

p(t+ s, ẑi)

−p1(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

+(Ai − xi)p
1
xi
(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

]

dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdy

+
d

∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p(t+ s, z̆i)]dz̆idy
)

ds

under the sets

D2 = {u ∈ C1([0, T ], C2(B2)) : |u| ≤ Q, |ut| ≤ Q, |uxi
| ≤ Q, i = 1, 2, · · · , d},

D̃2 = {u ∈ C1([0, T ], C2(B2)) : |u| ≤ (1 + ε)Q, |ut| ≤ (1 + ε)Q,

|uxi
| ≤ (1 + ε)Q, i = 1, 2, · · · , d}.
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In the set D2 and D̃2, we define a norm as follows:

‖u‖ = max

{

max
t∈[0,T ],x∈B2

|u|, max
t∈[0,T ],x∈B2

|ut|, max
t∈[0,T ],x∈B2

|uxi
|, i = 1, 2, · · · , d

}

.

Similar to the operator L1, we define

L2(p) =M2(p) +N2(p),

where

M2(p) = (1 + ε)p,

N2(p) = −εp+

∫ A

x

∫ A

y
p(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y
p(t+ s, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)
[

p(t+ s, ẑi)

−p1(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

+(Ai − xi)p
1
xi
(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

]

dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p(t+ s, ẑij)dẑijdy

+

d
∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p(t+ s, z̆i)]dz̆idy
)

ds.

Similar to the case of L1, we obtain the operator L2 has a fixed point p2(t, x) in the set D2, which

is a solution to (4.20) in D2. Following Lemma 4.5, we have p2(t, x) satisfies

∫ A

x

∫ A

y
p2(t, z)dzdy −

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

a(t+ s)

∫ A

x

∫ A

y
p2(t+ s, z)dzdy +

d
∑

i=1

∫ A

x̄i

∫ A

ȳi

(σσT )ii(t+ s, ẑi)
[

p2(t+ s, ẑi)

−p1(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

+(Ai − xi)p
1
xi
(t+ s, z1, · · · , zi−1, Ai, zi+1, · · · , zd)

]

dẑidŷi

+

d
∑

i,j=1,i 6=j

∫ A

x

∫ A

ȳij

(σσT )ij(t+ s, ẑij)p
2(t+ s, ẑij)dẑijdy

+

d
∑

i=1

∫ A

x

∫ A

y̆i

[bi(t+ s, z̆i)p
2(t+ s, z̆i)]dz̆idy

)

ds = 0. (4.22)

When x1 = A1, the above equality deduces that

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

∫ A

x̄1

∫ A

ȳ1

(σσT )11(t+ s,A1, z2, · · · , zd)

[

p2(t+ s,A1, z2, · · · , zd)− p1(t+ s,A1, z2, · · · , zd)
]

dẑ1dŷ1 = 0.

Differentiating the above equality with respect to t, and using the periodicity of σ, p1 and p2 and

(σσT )ij > 0, one can obtain

p1(t, A1, x2, · · · , xd) = p2(t, A1, x2, · · · , xd).
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Differentiating (4.22) with respect to x1, after which we put x1 = A1, we get

e−[a]T

1− e−[a]T

∫ T

0
e
∫ t+s

t
a(r)dr

(

∫ A

x̄1

∫ A

ȳ1

(σσT )11(t+ s,A1, z2, · · · , zd)

[

p2x1
(t+ s,A1, z2, · · · , zd)− p1x1

(t+ s,A1, z2, · · · , zd)
]

dẑ1dŷ1 = 0.

Similarly, we get

p1x1
(t, A1, x2, · · · , xd) = p2x1

(t, A1, x2, · · · , xd).

As in above discussion, we can deduce that

p1(t, x1, A2, · · · , xd) = p2(t, x1, A2, · · · , xd),

p1x2
(t, x1, A2, · · · , xd) = p2x2

(t, x1, A2, · · · , xd),

...

p1(t, x1, x2, · · · , Ad) = p2(t, x1, x2, · · · , Ad),

p1xd
(t, x1, x2, · · · , Ad) = p2xd

(t, x1, x2, · · · , Ad).

The function

p(t, x) =

{

p1(t, x), t ≥ 0, x ∈ B1,

p2(t, x), t ≥ 0, x ∈ B2,

is a solution to the following problem
{

∂tp = −
∑

i
∂
∂xi

(bip) +
1
2

∑

i,j
∂2

∂xi∂xj
((σσT )ijp), t > 0, x ∈ B1 ∪B2,

p(t, x) = p(t+ T, x), t ≥ 0, x ∈ B1 ∪B2.

Repeating the above steps, using partitioning of Rd into cubes, we obtain a periodic solution to

(4.17). The proof is complete. �
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