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Abstract. This article establishes several remarkably simple identities

relating certain metric invariants of level curves of real and complex func-

tions. In particular, we relate lengths of level curves to their curvature

and to the gradient field of the function. Some geometric and analytic

applications of the results are shown.

1 Introduction

This article examines certain metric invariants of level curves of a real two-
variable function and of a complex analytic function. In particular, we relate
lengths of level curves to their curvature and to the gradient field.

We review some terminologies before stating the main result. A Morse
function on an open subset of Rn is a real-valued C2 function whose critical
points are nondegenerate (i.e., with nonsingular Hessian). Near a critical point,
a Morse function behaves as a nondegenerate quadratic form (i.e., its second-
degree Taylor approximation) and thus has no other critical points. A regular
value of a Morse function is a number which is not the image of a critical point1,
whereas a critical value is the image of a critical point.

Let f be a Morse function on an open connected subset of R2. Suppose
that a and b are values of f such that f−1([a, b]) is compact. For t ∈ [a, b], let
L(t) be the length of the level-t curve f−1(t); L(t) is well-defined even if t is a
critical value. At each regular point (i.e., noncritical point) on f−1(t), install a
unit tangent T and a unit normal N by letting N = −∇f/ |∇f | and requiring
that the frame (T,N) be positively-oriented. Then, the signed curvature κ of
f−1(t) at all regular points is defined by the equation dT/ds = κN, where s is
arc length (with its positive direction induced by T). Thereby, κ is defined at
all regular points of f−1([a, b]).

With the notations introduced, we now state our main result.

Main Result: If a and b are values of f such that f−1([a, b]) is compact,
then, for t ∈ [a, b],

d

dt

∫∫

f−1([a,t])

|∇f | dA = L(t) = L(a) +

∫∫

f−1([a,t])

κ dA .

By
∫∫

f−1([a,t]) κ dA, we mean either the (proper) Riemann integral of κ when

f−1([a, t]) is free of critical points, or the improper Riemann integral of κ oth-
erwise; the latter case will be addressed in detail.

These two identities are established in §2 and their counterparts for complex
analytic functions are given in §3. A number of applications are shown in §4,
including in §4.1 instances of curve evolution and a characterization of circles
and in §4.2 parallel results for level surfaces. Two technical details are relegated
to §5.

1As a seemingly peculiar (but useful for certain differential-topological purposes) conse-
quence of the definition, any number not in the range of the function is a regular value.
However, we will only be concerned with regular values that are attained by the function.

1

http://arxiv.org/abs/1804.07897v1


2 Level Curves of Real Functions

2.1 Preliminaries

Let Ω be an open connected subset of R2 and f be a Morse function (defined
in §1) on Ω. The notions of regular value, critical value, and regular point of f
have been introduced in §1.

We shall mean, by a regular (resp. critical) level of f , a nonempty level set
f−1(t) with t a regular (resp. critical) value. Near a regular point P , the set
f−1(f(P )) is locally a C2 curve (by the implicit function theorem). Therefore,
each component of a regular level is globally a C2 curve, and a compact regular
level is a disjoint union of simple closed curves.

Let [a, b] be an interval of regular values attained by f such that f−1([a, b])
is compact. As basic facts in differential topology, f−1(t) is diffeomorphic to
f−1(a) for t ∈ [a, b] and f−1([a, b]) is diffeomorphic to f−1(a)× [a, b]. The idea
is to start a flow originating from f−1(a) following the gradient field and to
control the flow’s speed so that points on f−1(a) all “drift” to points of the
same f -value at the same time; details are given in §2.2.

Suppose that f−1(t) is compact and consider its length L(t). We explain that
L(t) is well-defined even if t is a critical value. Near a critical point P ∈ f−1(t),
a local C2 coordinate system (u(x, y), v(x, y)) exists such that u(P ) = 0 =
v(P ) and f(x, y) = t + q(u, v) where q is a nondegenerate quadratic form;
see [14, pp. 54-58]. A neighborhood of P on f−1(t) is thus diffeomorphic to a
neighborhood of the origin on q−1(0), which is sufficiently well-behaved to admit
length. If f−1([a, b]) is compact, then L is continuous on [a, b]; its continuity at
a regular value t0 is due to the diffeomorphism between f−1([t0 − ǫ, t0 + ǫ]) and
f−1(t0) × [t0 − ǫ, t0 + ǫ], whereas its continuity at a critical value is due to the
good behavior of q−1(δ) as δ varies over (−ǫ, ǫ).

Recall from §1 our choice of N and T at regular points of f−1(t); i.e.,
N := −∇f/ |∇f | and (T,N) is a positively-oriented frame. At regular points
on f−1(t), the signed curvature κ and the frame (T,N) are (by definition)
related by

dT

ds
= κN and

dN

ds
= −κT ,

where s is arc length (with its positive direction induced by T). For a simple
closed component C of a regular level,

∫

C

κds = ±2π

where the plus sign is in force iff T induces the positive orientation2 on C; see
[7, pp. 36-37].

Henceforth, we will regard κ as a function on the set of regular points in Ω,
i.e., κ(P ) is the signed curvature at P of the curve f−1(f(P )).

It is a fact (shown in [5, p. 125]) that

κ =
fxxf

2
y − 2fxyfxfy + fyyf

2
x

|∇f |3
; (1)

2The positive orientation on a simple closed curve C is the one following which the traversal
of C gives a positive winding number around any interior point in the Jordan domain bounded
by C; see [7, pp. 392-396]. If C is convex, the positive orientation on C is counterclockwise.
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it is a matter of computation to verify that

div

( ∇f

|∇f |

)

= κ . (2)

As κ becomes unbounded near a critical point P , its improper Riemann integral
∫∫

D κdA over a small disc D around P nonetheless converges. We relegate this
matter to §5, in which we prove the integrability of κ under a hypothesis that
generalizes the Morse condition; before then, we take this fact for granted.

2.2 Length in Relation to Curvature and Gradient

For a number of results, we assume the following hypothesis.

Hypothesis (†) f is a C2 Morse function on an open connected subset Ω of
R2; a and b are values attained by f such that f−1([a, b]) is compact. (As Ω is
connected, each t ∈ [a, b] is also a value attained by f .)

We begin with a key lemma, upon which many of our results rest.

Lemma 1 Assume Hypothesis (†). If a function g is continuous on the set of
regular points in f−1([a, b]) and is Riemann-integrable on f−1([a, b]), then

∫∫

f−1([a,b])

g dA =

∫ b

a

(

∫

f−1(t)

g

|∇f |ds
)

dt ,

where the line integral
∫

f−1(t)
(g/ |∇f |) ds is only defined for t a regular value.3

When [a, b] is free of critical values, this formula is (somewhat informally)
shown in [5, p. 298-300]. We shall sketch a proof based on a differential-topological
construction, which will be of use in a later argument.

Proof. There are two cases, according as whether [a, b] contains a critical value.
Case 1. Suppose that [a, b] contains no critical value. For each p ∈ f−1(a),

let t 7→ H(p, t) be the flow (i.e. the integral curve) for the field ∇f/ |∇f |2,
originating from p at the initial time t = a; i.e., H(p,−) is the solution to the
initial value problem

∂H

∂t
(p, t) =

∇f (H(p, t))

|∇f (H(p, t))|2
with H(p, a) = p . (3)

Clearly, f(H(p, t)) = t, as f(H(p, t)) − f(H(p, a)) =
∫ t

a ∇f · (∂H/∂τ) dτ =
∫ t

a 1dτ . Due to existence, uniqueness, and smooth dependence on initial condi-
tion of solution to the initial value problem, the map H(−, t) : f−1(a) → f−1(t),
and consequently the mapH : f−1(a)×[a, b] → f−1([a, b]), are diffeomorphisms;
see [14, p. 65] and the Remark that follows this proof.

Now assume that f−1(a) is connected and hence a simple closed curve; oth-
erwise, treat each component of f−1(a) and its corresponding component of
f−1([a, b]) separately. Let γ(−, a) : [0, 1] → R2 be a regular parametrization of

3The improper Riemann integral
∫ b

a
ϕ(t)dt is a well-defined notion when ϕ is continuous

at all but finitely many t ∈ [a, b]. In the present case, ϕ(t) =
∫

f−1(t)
(g/ |∇f |) ds.

3



f−1(a) that is one-to-one on [0, 1) with γ(0, a) = γ(1, a) and that induces the
same orientation that T does on f−1(a). The map

γ(u, t) := H(γ(u, a), t) (4)

then parametrizes f−1([a, b]), with

∣

∣

∣

∣

det
∂(x, y)

∂(u, t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂γ

∂t
× ∂γ

∂u

∣

∣

∣

∣

=

∣

∣

∣

∣

∂γ

∂t

∣

∣

∣

∣

∣

∣

∣

∣

∂γ

∂u

∣

∣

∣

∣

=
1

|∇f |

∣

∣

∣

∣

∂γ

∂u

∣

∣

∣

∣

.

Hence, by changing variables in integration,

∫∫

f−1([a,b])

g dA =

∫ b

a

(
∫ 1

0

g

|∇f | ·
∣

∣

∣

∣

∂γ

∂u

∣

∣

∣

∣

du

)

dt =

∫ b

a

(

∫

f−1(t)

g

|∇f |ds
)

dt .

Case 2. Suppose that [a, b] contains critical values comprising the (finite) set
S. Then, (a, b)r S is a disjoint union of finitely many intervals Ij := (cj , cj+1)
of regular values attained by f . As f−1([a, b]) = ∪jf

−1(Ij) ∪ f−1 (S ∪ {a, b})
and f−1 (S ∪ {a, b}) has zero area,

∫∫

f−1([a,b])

g dA =
∑

j

∫∫

f−1(Ij)

g dA .

Applying Case 1 to f−1([cj + ǫ, cj+1 − δ]) and letting ǫ, δ → 0+, we have

∫∫

f−1(Ij)

g dA = lim
ǫ,δ→0

∫∫

f−1([cj+ǫ,cj+1−δ])

g dA

= lim
ǫ,δ→0

∫ cj+1−δ

cj+ǫ

(

∫

f−1(t)

g

|∇f |ds
)

dt

=

∫

Ij

(

∫

f−1(t)

g

|∇f |ds
)

dt .

Summing these integrals over j proves the assertion. �

Choices for g in Lemma 1 yield integral identities. For example, the choice

g ≡ 1 gives the area of f−1([a, b]) as
∫ b

a

(

∫

f−1(t) 1/ |∇f | ds
)

dt. We next show

that Lemma 1 can result in interesting relations among the length of level curves,
their curvature, and the gradient field.

Theorem 2 Assume Hypothesis (†).

(a)
∫∫

f−1[a,b]
(h ◦ f) · |∇f | dA =

∫ b

a
h(t)L(t) dt for any function h such that both

members of the equation are meaningful. In particular, for any t ∈ [a, b],

∫ t

a

L(τ ) dτ =

∫∫

f−1([a,t])

|∇f | dA ,

or equivalently,

L(t) =
d

dt

∫∫

f−1([a,t])

|∇f | dA .
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(b) For any regular value t ∈ [a, b],

L′(t) =

∫

f−1(t)

κ

|∇f |ds ,

or equivalently, for any t ∈ [a, b],

L(t) = L(a) +

∫∫

f−1([a,t])

κdA .

As promised in §2.1, the integrability of κ will be proven in §5.
Proof. Part (a) follows from Lemma 1 by letting g = (h ◦ f) · |∇f |; the “par-
ticular” case results from letting h = χ[a,t], the characteristic function of the
interval [a, t]. (Continuity of L makes applicable the fundamental theorem of

calculus, i.e., d
dt

∫ t

a
L(τ)dτ = L(t).)

In Part (b), the equivalence between the two assertions is due to Lemma 1,
as we now show. First, assume the formula for L′. Since L is continuous at
the (finitely many) critical values in [a, b], the fundamental theorem of calculus
applies to give, for t ∈ [a, b],

L(t)− L(a) =

∫ t

a

L′(τ ) dτ =

∫ t

a

(

∫

f−1(τ)

κ

|∇f |ds
)

dτ =

∫∫

f−1([a,t])

κdA ,

where the last equality follows from Lemma 1 (with t playing the role of b).
Now assume the integral formula for L. Then, for a regular value t ∈ (a, b),

L′(t) =
d

dt

∫∫

f−1([a,t])

κ dA =
d

dt

∫ t

a

(

∫

f−1(τ)

κ

|∇f |ds
)

dτ =

∫

f−1(t)

κ

|∇f |ds ,

where, in the last equality, t being a regular value is essential, as d
dt

∫ t

a
ϕ(τ )dτ =

ϕ(t) iff ϕ is continuous at t.
We now give two alternative proofs for Part (b) by directly proving each of

the two equivalent formulae.
To prove the formula for L′, let t ∈ (a, b) be a regular value. There is an

interval [a′, b′] of regular values such that t ∈ (a′, b′) ⊂ [a, b]. Let a′ and b′ play
the role of a and b in case 1 of the proof of Lemma 1 and let

γ : [0, 1]× [a′, b′] → f−1([a′, b′])

be as in (4). For the speed v := |∂γ/∂u|, we have v2 = 〈∂γ/∂u, ∂γ/∂u〉 and

1

2

∂(v2)

∂t
=

〈

∂

∂u

(

∂γ

∂t

)

,
∂γ

∂u

〉

=

〈

∂

∂u

(

∇f

|∇f |2

)

,
∂γ

∂u

〉

=

〈

∂

∂u

( −1

|∇f |N
)

, vT

〉

=

〈 −1

|∇f |
∂N

∂u
, vT

〉

.

As ∂N/∂u = v∂N/∂s = −vκT,

∂v

∂t
=

1

2v

∂(v2)

∂t
=

1

v

〈

1

|∇f |vκT, vT

〉

=
κv

|∇f | .
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and

L′(t) =
d

dt

∫ 1

0

v du =

∫ 1

0

∂v

∂t
du =

∫ 1

0

κ

|∇f |vdu =

∫

f−1(t)

κ

|∇f |ds .

To prove the integral formula for L, first consider the case when [a, b] is free of
critical values. Let R denote f−1([a, b]) in this argument. Let n denote the unit
outward normal (relative to R) on ∂R; it should be clear that n = −∇f/ |∇f |
on f−1(a) and n = ∇f/ |∇f | on f−1(b). Then, by Green’s theorem and (2),

L(b)− L(a) =

∫

∂R

〈 ∇f

|∇f | ,n
〉

ds =

∫∫

R

div

( ∇f

|∇f |

)

dA =

∫∫

R

κ dA .

If [a, b] has critical values only in its interior, this argument can be modified by
excising from R small discs around the critical points (where ∇f/ |∇f | ceases
to be defined); if a (resp. b) is a critical value, replace it by a+ ǫ (resp. b− ǫ).
We omit the details but note that the integrability of κ over R is essential. �

Comparing the two proofs given for Theorem 2(b), the one deriving the
formula for L′ is perhaps more geometrically revealing, for, besides its indepen-
dence on (2), it shows directly how curvature and gradient affect length of level
curves. Indeed, varying metric properties of a family of curves belong to the
broader field of evolution of curves and surfaces, which encompasses topics such
as the curve-shortening flow and mean curvature flow. In §4.1, we show how
our results on level curves may inform certain instances of curve evolution.

Remark Assume Hypothesis (†). By Theorem 2(a), we have the estimate

min
t∈[a,b]

L(t) <
1

b− a

∫∫

f−1([a,b])

|∇f | dA < max
t∈[a,b]

L(t) .

This inequality is optimal over all f satisfying the hypothesis, as evidenced by
the functions rn (n ∈ N) on the unit disc. �

Remark Suppose that R ⊂ Ω is a closed Jordan domain bounded by a com-
ponent of a level set of f . Then, the length L(∂R) of ∂R has a simple formula

L(∂R) = ±
∫∫

R

κdA . (5)

The proof for the integral formula in Theorem 2(b) will also prove this result,
once we note that no critical points of f lie on ∂R (due to our assumption that
f is a Morse function4); the integrability of κ is again essential, as R necessarily
contains critical points in its interior. �

3 Level Curves of Complex Analytic Functions

3.1 Level Curves near a Critical Point

We explain why level curves of a complex analytic function are locally so well-
behaved that their intersections with a small disc around any point admit con-
tinuous length.

4While a level curve passing through a saddle point of a Morse function necessarily self-
intersects, this may not be so in general, as evidenced by the level-0 curve of the function
g(x, y) = y3 − x6.
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For z0 ∈ C and r > 0, let

D(z0; r) = {z : |z − z0| < r} and C(z0; r) = {z : |z − z0| = r} .

Let f denote a nonconstant analytic function on an open connected subset Ω
of C. By the level-t set of f , we mean the level-t set of |f |. As |f | is not

differentiable at any simple zero of f , we will consider |f |2 when classifying
level curves. By a regular (resp. critical) level of f , we mean a regular (resp.

critical) level of |f |2. Let L(t) denote the length (whenever it can be defined) of
the level-t set of f .

A simple calculation using the Cauchy-Riemann equations shows that
∣

∣

∣
∇
(

|f |2
)∣

∣

∣
= 2 |f · f ′| .

The critical points of |f |2 are then the zeros of f and of f ′. If |f(z0)|2 = t2

(t > 0) is a regular value of |f |2, then, since f ′(z0) 6= 0, f conformally maps an
arc C ∋ z0 on the level-t curve onto an arc on the circle C(0; t). In other words,
C is the conformal image (under the inverse of f |D(z0;δ)) of a circular arc; hence
a regular level of f is an analytic curve, the smoothest of all.

However, |f |2 may not be a Morse function; its level curves near a saddle
point are somewhat more complicated but still have a simple description. For
simplicity, we will call z0 a saddle point of f if it is a saddle point of |f |2. If
z0 a saddle point of f , then f(z0) 6= 0 but f ′(z0) = 0, and we show that level
curves of f within D(z0; ǫ) are images under a conformal map of level curves
of zn − 1 within D(0; δ), where n is the order of z0 as a zero of f(z) − f(z0).
(For contrast, recall that the behavior of a nondefinite quadratic form near the
origin dictates that of a Morse function near a saddle point.)

In general, if f is analytic at z0, then there is a neighborhood U of z0 and a
conformal equivalence w : U → D(0; δ) with δ < 1 such that

f(z) = [w(z)]
n
+ f(z0) for z ∈ U ;

necessarily, w(z0) = 0 and n = min
{

k : f (k)(z0) 6= 0
}

.

Suppose now that z0 is a critical point of |f |2, in which case either f(z0) = 0
or f ′(z0) = 0.

If f(z0) = 0, then the level-0 set of f |U is the singleton {z0}, while the level-ǫ
set of f |U (for small ǫ > 0) is the level- n

√
ǫ set of w, which is the (conformal)

image under w−1 of the origin-centered circle of radius n
√
ǫ. So the length L(t)

of the level-t curves of f |U is continuous at 0 = |f(z0)|.
If f(z0) 6= 0 but f ′(z0) = 0, then, by considering −f(z)/f(z0), we may

assume that f(z0) = −1, in which case f = wn − 1 on U (with n ≥ 2). For
t near the critical value 1, the level-t set of f |U is the image under w−1 of the
set {ζ ∈ D(0; δ) : |ζn − 1| = t}. Hence, it suffices to consider the level-t curves
(with t near 1) of the function pn : ζ 7→ (ζn − 1) on D(0; δ), to which we now
turn.

Denote the input for pn by z (instead of ζ). With Γt denoting the level-t set
of pn in D(0; δ), i.e.,

Γt := {z ∈ D(0; δ) : |zn − 1| = t} ,

we have
z ∈ Γt iff zn ∈ Σt := C(1; t) ∩D(0; δn) ;

7



in other words, Γt is comprised of all the nth roots of every complex number on
the circular arc Σt.

As t ranges over [1− ǫ, 1], the circular arc Σt sweeps out the “annular strip”
∪t∈[1−ǫ,1]Σt, on which there are exactly n continuous nth roots, i.e., continuous
functions g1, · · · , gn on ∪t∈[1−ǫ,1]Σt such that [gj(w)]

n
= w. As a result, for

each t ∈ [1− ǫ, 1], Γt has exactly n branches, with the jth branch parametrized
by

θ 7→ gj
(

1 + teiθ
)

(where the range of θ depends continuously on t as well). It is then clear that
the length of Γt varies continuously with t. For t ranging over [1, 1 + ǫ], similar
consideration leads to the same conclusion concerning length but results in a
different partition of Γ1 into branches.

Remark Concerning the polynomial pn(z) := zn − 1, we mention two con-
nections, one a simple fact while the other possibly (but improbably) fiction.
First, |pn(z)| = t iff |z|2n − 2Re(zn) + 1 = t2, and the latter is a real polyno-
mial equation of degree 2n in (Re z, Im z); therefore the level curves of pn are
real algebraic curves of degree 2n. Second, for n ≥ 2, the level-1 curve of pn
is conjectured around the mid-twentieth century by [9] to be no shorter than
the level-1 curve of any monic nth-degree polynomial. This conjecture remains
undecided except for the case n = 2, which is proven true by [10] near the end
of the last century. The level-1 curve of z2 − 1 is a Bernoulli’s lemniscate. �

3.2 Length in Relation to Curvature and Derivative

With the same notation as in §3.1, let f be a nonconstant analytic function on
an open connected subset Ω of C.

The real function |f | is not differentiable at and only at simple zeros of f ,
as shown in [1]. Where it is differentiable,

|∇ |f || = |f ′| = |∇Re f |

by the Cauchy-Riemann equations. The critical points of |f |, including points
at which |f | is not differentiable, are isolated and Lemma 1 is applicable to
|f |.5 Given the good behavior of length of level curves of f (as seen in §3.1),
the theory developed in §2.2 applies to |f | verbatim, as long as the curvature
κ of level curves is integrable over a disc around any critical point. While the
integrability of κ is to be established in §5, we state brief versions of the results
in Lemma 1 and Theorem 2.

Theorem 3 Let a, b be values attained by |f | such that D := {z : |f(z)| ∈ [a, b]}
is compact. Then,

(a) the area of D equals
∫ b

a

(

∫

{z:|f(z)|=t}
(1/ |f ′(z)|) |dz|

)

dt ;

(b)
∫ b

a L(t) dt =
∫∫

D |f ′| dA ;

(c) L(b) = L(a) +
∫∫

D κdA .

5If one wishes to avoid dealing with nondifferentiable functions, one may work with |f |2

instead. A change of variable will result in the same formula as obtained by working with |f |.
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Remark. Suppose that a component of the level-c curve of f bounds an open
Jordan domain D ⊂ Ω. In this Remark, let L(t) denote the length of the level-t
curve of f |D.

This situation is markedly simpler than its counterpart for real functions
discussed for (5) in §2.2. The extrema principle for analytic functions implies
that |f | never again attains the value c in D, that f vanishes somewhere in D,
and that {|f(z)| : z ∈ D} = [0, c).

If, for each t ∈ (0, c), the level-t set of f in D is a simple closed convex curve
(in which case f−1(0)∩D is necessarily a singleton {z0} and f ′ does not vanish
on D r {z0}), then

L′(t) =

∫

{z∈D:|f(z)|=t}

κ

|f ′(z)| |dz| > 0

for t ∈ (0, c).6 Hence, L is strictly increasing and we have the estimate

L(c) >
1

c

∫∫

D

|f ′| dA ,

which is optimal as exemplified by the functions zn on D(0; 1) for n ∈ N. �

In closing this section, we say a word about curvature. Since each regular
level of f is an analytic curve, its Schwarz function in principle can yield its
curvature; see [6, p. 45]. In practice, with machine-aided computation, the cur-

vature formula (1) applied to |f |2 suffices. However, we note a formula for κ
purely in terms of f and f ′ (which, despite the best efforts of the author, has
not been found in the literature), and we leave its derivation to the reader.

Proposition 4 The level curves of an analytic function f has curvature

κ =
|f ′|
|f | − 〈∇|f |,∇|f ′|〉

|f ′|2 .

4 Applications and Extensions

In §4.1, we give some geometric applications, among which is an analytic char-
acterization of circles. In §4.2, we deduce some additional identities relating
curvature and gradient and then extend our results to level surfaces.

4.1 Curve Evolution: Two Instances

We show that some simple instances of curve evolution in the plane can be
framed in our elementary setting and addressed by our lines of inquiry. Although
most results that we deduce are well-known, it is the simplicity of our method
in obtaining them that we wish to illustrate. As a by-product, we obtain a
characterization of circles in terms of existence of certain functions.

Consider a C2 function f on an open planar domain. Suppose that the
interval [a, b] consists only of regular values attained by f and that f−1([a, b])

6This positivity assertion is due to two reasons: our orientation stipulation subject to
which the formula for L′ holds, and semi-definiteness of the sign of κ because of the convexity
assumption on the curve |f(z)| = t.
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is connected and compact. For each t ∈ [a, b], f−1(t) is then a simple closed
curve. At P ∈ f−1([a, b]), let n(P ) be the outward unit normal at P of the
(simple closed) curve f−1(f(P )) and define

σ(P ) =

〈

n(P ),
∇f(P )

|∇f(P )|

〉

.

Being continuous and integer-valued, σ is constant on (the connected) f−1([a, b]).
By our stipulation in §2.1, the level curves comprising f−1([a, b]) all receive pos-
itive (resp. negative) orientation iff σ = +1 (resp. −1). It is in this context
that we will apply our results to curve evolution.

Let A(t) be the area enclosed by f−1(t). By Lemma 1 and Theorem 2,

L(b) = L(a)+

∫ b

a

(

∫

f−1(t)

κ

|∇f |ds
)

dt ; A(b) = A(a)+σ

∫ b

a

(

∫

f−1(t)

1

|∇f |ds
)

dt .

Example 1 Parallel closed curves and a characterization of circles
Let α : [0, 1] → R2 be a simple closed C2 curve. For t ≥ 0, define γt :

[0, 1] → R
2 to be α+ tn, where n is the outward unit normal field along α; i.e.,

the point γt(u) is obtained by traveling from α(u) along n(u) for a distance of t
units. As long as t is sufficiently small, γt defines a simple closed curve; if α is
convex, then γt will be simple and convex for any t > 0. In any case, for any t
such that γτ remains a simple closed curve for all τ ∈ [0, t], we seek the length
L(t) of γt and the area A(t) bounded by γt.

Define a function f on the exterior of α by letting f assume the value t on the
curve γt; i.e., f (γt(u)) := t. Then, γt is the level-t curve of f , ∇f (γt(u)) points
in the outward normal direction n(u), and γt is given the positive orientation
according to the stipulation in §2.1. Now, |∇f |, being the derivative of f with
respect to distance along n, clearly equals 1 (as f is the normal distance from
α). Hence,

L(t) = L(0) +

∫ t

0

(

∫

γτ

κ ds

)

dτ = L(0) +

∫ t

0

2π dτ = L(0) + 2πt , (6)

and

A(t) = A(0) +

∫ t

0

(

∫

γτ

1 ds

)

dτ = A(0) +

∫ t

0

L(τ ) dτ

= A(0) + L(0)t+ πt2 , (7)

which are well known and stated for convex curves in [7, p. 47].
Note by the way an interesting consequence of (6) and (7). If a simple

closed convex curve were to undergo inward parallel evolution, then A(t) and
L(t) vanish at the same time iff A(0) = L(0)2/4π, in which case the initial curve
is the optimal curve for the isoperimetric inequality, i.e., a circle. For a more
general notion of parallel curves in relation to the isoperimetric inequality, see
[11, pp. 79-85].

Formula (6) shows that the evolving parallel curves lengthen at the rate of
2π per unit normal distance ∆t. We can draw the same conclusion under a
somewhat weaker hypothesis.
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Proposition 5 Suppose that f−1([a, b]) is compact and that, for each t ∈ [a, b],
f−1(t) is a simple closed curve on which |∇f | equals a positive constant c(t).
Then,

(a) |∇(L ◦ f)| ≡ 2π on f−1([a, b]);

(b) the area of f−1([a, b]) equals
∣

∣L(b)2 − L(a)2
∣

∣ /4π.

Proof. Letting ℓ denote L◦f and P0 ∈ f−1([a, b]) with f(P0) = t0, we calculate:

|∇ℓ(P0)| = |L′(t0)| · |∇f(P0)| =
∣

∣

∣

∣

∣

∫

f−1(t0)

κ

|∇f |ds
∣

∣

∣

∣

∣

· |∇f(P0)|

=
1

|∇f(P0)|

∣

∣

∣

∣

∣

∫

f−1(t0)

κds

∣

∣

∣

∣

∣

· |∇f(P0)| = 2π ,

proving Part (a).
For Part (b), recall that σ := 〈n,∇f/ |∇f |〉 is constant on f−1([a, b]). Noting

our orientation stipulation (subject to which Theorem 2(b) holds), we have

L′(t) =

∫

f−1(t)

κ

|∇f |ds =
1

c(t)

∫

f−1(t)

κ ds = σ
2π

c(t)
.

Thus, L′ has a definite sign on [a, b], i.e., that of σ, and so L′ ◦ f = σ |L′ ◦ f |.
Hence

(L′ ◦ f) |∇f | = σ |L′ ◦ f | |∇f | = σ |∇ (L ◦ f)| = 2πσ .

Now consider

I :=

∫∫

f−1[a,b]

(L′ ◦ f) |∇f | dA .

On one hand,

I =

∫∫

f−1[a,b]

2πσdA = 2πσ

∫∫

f−1[a,b]

1dA ;

on the other hand, by Theorem 2(a) (with h = L′),

I =

∫ b

a

L′(t)L(t)dt =
1

2

[

L(b)2 − L(a)2
]

.

Comparing the two expressions for I proves the identity. �

In light of this result, we raise and address the following question.

Problem Given a simple closed C2 curve C bounding a compact Jordan do-
main R and a point P interior to R, does there exist a C2 Morse function
f : R → [0, 1] such that f−1(0) = {P}, f−1(1) = C, and, for each t ∈ (0, 1],
f−1(t) is a simple closed curve on which |∇f | equals a positive constant?

Solution. It is perhaps plausible thatR would have to be “highly symmetric” (i.e.
a disc) about P . This is indeed the case, and can be deduced from Proposition
5(b). If there were such a function f , then the area of f−1([ǫ, 1]) would equal
[

L2(1)− L2(ǫ)
]

/4π. Letting ǫ → 0, it follows that the area A(R) of R would
equal L(C)2/4π, which, unless C is a circle, violates the isoperimetric inequality.
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In conclusion, only when C is a circle can such a function exist; in other words,
existence of such a function characterizes the circular domain that supports it.
�

Example 2 The curve-shortening flow
Begin with a simple closed convex C2 curve γ0 : [0, 1] → R2 with nonvan-

ishing curvature. Move each point P on γ0 following the inward normal with
initial speed equal to the curvature of γ0 at P . Once motion begins (i.e., after
an infinitesimal period of time), the moved points comprise a new curve and will
then be moved with a new speed equal to the curvature of the new curve, so on
and so forth. (As points with differing curvature moves with different speed, it
is geometrically apparent that the evolution has the tendency to uniformize cur-
vature.) Obviously, we are attempting a verbal description of a one-parameter
family of evolving curves γt : [0, 1] → R2 governed by a differential equation.
The velocity of the point γt(u) is on one hand ∂γt(u)/∂t by definition and on
the other hand ∂2γt(u)/∂s

2 by prescription (where s is arc length along γt);
i.e.,

∂γt

∂t
=

∂2γt

∂s2
. (8)

We assume the existence, uniqueness, and smoothness of solution (over a time
interval [0, t]) to this equation7, as well as the simplicity and convexity of any
future curve γt; see [4] for a thorough account or [2, Appendix B] for a brief
account. The solution is known as the curve-shortening flow for γ0.

Define a function f by letting f assume the value t on the curve γt. Then, γt

is the level-t curve of f , along which ∇f points in the inward normal direction
−n. According to our stipulation in §2.1, γt is given the negative orientation
and its curvature κ ≤ 0. Now, |∇f |, being the derivative of time t with respect
to distance along −n, clearly equals the reciprocal of the speed of evolution, i.e.,

|∇f | = 1/ |κ| = −1/κ .

Therefore,

L(t) = L(0)−
∫ t

0

(

∫

γτ

κ2ds

)

dτ

and A(t) = A(0)−
∫ t

0

(

∫

γτ

1

−1/κ
ds

)

dτ = A(0)− 2πt ,

from which it follows that the evolution ceases by the time A(0)/2π and that L
is a strictly decreasing function because

∫

γτ
κ2ds > 0.

Remark When γ0 is not convex, the PDE (8) still well-defines the curve-
shortening flow of γ0. (In this case, points on γt where the curve is not convex
move outward.) Then the difficulty in applying our method lies in the construc-
tion of f , because γt may intersect γt′ whereas the level curves of f should not
intersect. If we wish, we may disentangle the intersecting curves by constructing
the surface

S := {(γt(u), t) : u ∈ [0, 1], t ∈ [0, T ]} ⊂ R
3

7This matter, belonging to the realm of partial differential equations, is highly nontrivial
and will take us too far afield.
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and then define f on S by (γt(u), t) 7→ t. The level-t set of f is then the curve
γt lifted to altitude t. Our results, once generalized to functions on surfaces,
may conceivably address this situation. �

4.2 Extensions

Before we mention extensions of our results to level (hyper)surfaces, we first note
two additional relations between the curvature of level curves of a two-variable
function and its gradient field.

Proposition 6 Assume Hypothesis (†). Then,

(a)
∫∫

f−1([a,b]) κfxdA = 0 =
∫∫

f−1([a,b]) κfydA ;

(b) if, in addition, [a, b] is free of critical values and f−1([a, b]) is connected,
then

∫∫

f−1([a,b])
κ |∇f | dA = ±2π(b − a).

Proof. For Part (a), let g in Lemma 1 be the vector-valued function κ∇f . Then,

∫∫

f−1([a,b])

κ∇f dA =

∫ b

a

(

∫

f−1(t)

κ
∇f

|∇f |ds
)

dt .

It suffices to note that
∫

f−1(t)

κ
∇f

|∇f |ds = −
∫

f−1(t)

κN ds = −
∫

f−1(t)

dT

ds
ds = 0

where the line integral is taken over all the components of f−1(t).
In Part (b), f−1([a, b]) is diffeomorphic to f−1(a)× [a, b] and f−1(a) is then

also connected. Hence, for t ∈ [a, b], f−1(t), being diffeomorphic to f−1(a), is a
simple closed curve and

∫

f−1(t) κds = ±2π (with the same sign in force for all

t, as shown in §4.1). Letting g = κ |∇f | in Lemma 1 proves the assertion. �

To extend these and earlier results to level surfaces, we recall a few differential-
geometric preliminaries. Let M be a connected, oriented, compact C2 surface
in R3. An orientation on M is a choice of a continuous unit normal field N on
M ; the map

G : M → S2; P 7→ N(P )

is known as the Gauss map. For P ∈ M and a unit vector v ∈ TPM := N(P )⊥,
take the normal section Γv of M whose velocity at P is v.8 The (signed)
curvature κv of the curve Γv at P is defined by

d2Γv

ds2

∣

∣

∣

∣

P

= κvN(P ) .

The mean curvature H at P is defined9 to be, as the term suggests, the mean
of κv for v varying over the unit circle in TPM ; in explicit terms,

H(P ) :=
1

2π

∫

{v∈TPM :|v|=1}

κvds .

8The curve Γv is the instersection of M with the plane determined by N and v.
9Depending on the approach taken, there are various ways to define H. We adopt the one

that is the easiest to motivate.
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(Euler’s theorem on κv then implies that H(P ) = (κ1 + κ2)/2, where κ1 and
κ2 are the extrema of κv, known as the principal curvatures at P .) The sign of
H(P ) obviously depends on the orientation of M . The Gaussian curvature K
is simpler to define:

K(P ) := det
(

dGP : TPM → TN(P )S
2
)

,

which can be interpreted as the local (signed) area expansion factor at P of
the Gauss map. Clearly, K(P ) is independent of orientation on M . (As a
matter of fact, the principal curvatures κ1 and κ2 are the eigenvalues of dGP ,
K(P ) = κ1κ2, and H(P ) = (Tr dGP ) /2.)

Several facts are relevant here. Concerning K, we have
∫∫

M

KN dσM = 0 and

∫∫

M

K dσM = 2πχ(M) , (9)

where dσM is the surface area form on M and χ(M) is the Euler characteristic
of M . The second identity is the well-known Gauss-Bonnet Theorem, while
the first identity follows from a routine calculation with differential forms.10

Concerning H , it is a fact (as shown in [8, p. 142]) that

H = −1

2
divN .

Returning to our context, assume for simplicity that

f is a C2 function on a connected open set Ω ⊂ R3, [a, b] is an
interval of regular values attained by f , and f−1([a, b]) is connected
and compact.

Then, for t1, t2 ∈ [a, b], f−1(t1) and f−1(t2) are diffeomorphic compact surfaces.
We orient f−1(t) by letting N = −∇f/ |∇f |. Then, H and K, both meaningful
on f−1(t), become functions on f−1([a, b]) and have explicit formulae in terms
of the partial derivatives of f , as shown in [12, p. 204]. With our choice of N,

H = −1

2
divN =

1

2
div

∇f

|∇f | .

Lemma 1 in the present context takes the form

∫∫∫

f−1([a,b])

gdV =

∫ b

a

(

∫∫

f−1(t)

g

|∇f |dσ
)

dt , (10)

which yields a formula for the volume of f−1([a, b]) upon letting g ≡ 1.
Applying (10) with suitable choices of g, we have, as consequences of (9),

∫∫∫

f−1([a,b])

K∇f dV = 0 and

∫∫∫

f−1([a,b])

K |∇f | dV = 2π(b−a)χ(f−1(a)) .

10For detail, define the vector-valued 2-form ω on S2 by letting ω = IdS2 dσS2 . Then
G∗ω = KN dσM , as can be verified pointwise. Hence,

∫

M

KN dσM =

∫

M

G∗ω = degG ·

∫

S2

ω.

But
∫

S2 ω =
∫

S2 IdS2 dσS2 = 0 due to cancellation of antipodal contributions.
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Writing A(t) for the surface area of f−1(t), we have, for t ∈ (a, b),

d

dt

∫∫∫

f−1([a,t])

|∇f | dV = A(t) = A(a) + 2

∫∫∫

f−1([a,t])

H dV ,

with the latter equality equivalent to

A′(t) =

∫∫

f−1(t)

2H

|∇f |dσ .

The proofs for these statements parallel those given for their counterparts on
level curves; except for the integral identity concerning K |∇f |, we may as well
allow [a, b] to have critical values. Similar to the treatment of curve evolution
in §4.1, certain instances of surface evolution, such as parallel expansion and
mean curvature flow of a convex surface, can be treated by these results.

We conclude with a cursory mention of level hypersurfaces of multivariable
functions. Given the background laid, it suffices to note that, for a connected
oriented one-codimensional compact submanifold M of Rn+1 with Gauss map
G : M ∋ P 7→ N(P ) ∈ Sn, we have the mean curvature11 and the Gaussian
curvature

H :=
1

n
Tr dG and K := det dG

satisfying

H = − 1

n
divN and

∫

M

K dσM =
1

2
χ(M)σ(Sn) =

π(n+1)/2

Γ
(

n+1
2

)χ(M) .

5 Integrability of Curvature and a Generalized

Morse Condition

Finally, we prove that, if f is a Morse function or the square of the modulus of
an analytic function, then the curvature κ of its level curves is integrable over
a small neighborhood of any critical point. In fact, the proof is valid under a
more general hypothesis.

We first review the definition of improper multiple integral in a limited con-
text that meets our purpose; cf. [3, pp. 221-223] or [5, pp. 257-260]. Let D be
a closed disc centered at P and let g be continuous on D r {P}. Consider
Ij :=

∫∫

Dj
g dA where {Dj} is an approximating sequence of D r {P}, i.e., an

expanding sequence of Jordan measurable closed subsets of D r {P} such that
any interior point of Dr {P} is eventually interior to some Dj. If Ij converges
to a limit that is independent of the choice of the approximating sequence {Dj},
then lim Ij is taken to be the value of the improper Riemann integral

∫∫

D g dA.
It is shown in [3, pp. 221-223] and [5, pp. 257-260] that

∫∫

D
g dA converges iff

∫∫

D |g| dA converges. If |g(X)| is bounded by 1/ |XP | for X ∈ D, a calculation
in polar coordinates shows the convergence of

∫∫

D
|g| dA and hence of

∫∫

D
g dA.

11There is a more general notion of mean curvature µr := pr(κ1, · · · , κn)/
(

n
r

)

where pr
is the rth-degree elementary symmetric polynomial and κj ’s are the principal curvatures,
i.e., the eigenvalues of dG. Then, µ1 = H and µn = K. The integral of µr has geometric
significance as well, but discussion of them will take us too far afield.
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Proposition 7 Suppose that, near the origin O, f(x, y) = f(O)+p(x, y)+o(rn)
for some homogeneous polynomial p of degree n ≥ 2. If O (necessarily a critical
point of f) is the only critical point of p (and hence an isolated critical point
of f), then the improper Riemann integral

∫∫

D
κ dA converges on a sufficiently

small disc D centered at O.

Proof. Take D to be so small that O is the only critical point of f in it, in which
case κ is continuous on D′ := D r {O}. (Recall (1) in §2.1, a formula for κ.)

Under our hypothesis,

fx = px + rn−1ǫ1 and fy = py + rn−1ǫ2 ,

where ǫj → 0 as r → 0. Using polar coordinates (r, θ) in D′, we may write
px(r) = rn−1α1(θ) and py(r) = rn−1α2(θ), where, e.g., α1(θ) = px(cos θ, sin θ).
Hence, on D′,

|∇f(r)|2 = r2n−2
[

(α1(θ) + ǫ1)
2
+ (α2(θ) + ǫ2)

2
]

.

As O is assumed to be the only critical point of p, α1(θ)
2 + α2(θ)

2 6= 0 for
θ ∈ [0, 2π]. Letting m = min

(

α1(θ)
2 + α2(θ)

2
)

, then m > 0 and we have, for

sufficiently small r, that |∇f(r)|2 > 1
2mr2n−2 and hence

|∇f(r)|3 > Cr3n−3

for some constant C > 0. By an entirely similar analysis, we can show that, for
sufficiently small r, there is some constant M such that

∣

∣fxxf
2
y − 2fxyfxfy + fyyf

2
x

∣

∣ (r) < Mr3n−4.

By (1), we have

|κ(r)| =
∣

∣fxxf
2
y − 2fxyfxfy + fyyf

2
x

∣

∣ (r)

|∇f(r)|3
<

M

C

1

r

for sufficiently small r. Hence, κ is integrable on D. �

The hypothesis of Proposition 7 motivates the following definition.

Definition Let n ≥ 2. A Cn function f on a planar domain is said to satisfy
the generalized Morse condition of degree n if, at any critical point (x0, y0), its
nth-degree Taylor polynomial equals

f(x0, y0) + p(x− x0, y − y0)

for a homogeneous nth-degree polynomial p whose only critical point is the
origin.

Lastly, we show that, for an analytic function f , the function |f |2 satisfies
the generalized Morse condition.

Lemma 8 For an analytic function f , the function |f |2 satisfies the generalized
Morse condition.

16



Proof. Let Q = |f |2. Suppose, without loss of generality, that 0 is a critical
point of Q, in which case either f(0) = 0 or f ′(0) = 0. For z near 0,

f(z) = f(0) + zng(z)

for a unique integer n ≥ 1 and a unique analytic function g with g(0) 6= 0.
If f(0) = 0,

Q(z) = |zng(z)|2 = z2n |g(z)|2 = (x2 + y2)n |g(z)|2

and therefore (x2 + y2)n is the lowest-degree term in the Taylor expansion of
Q(x, y) (as a real function). Obviously, (x2 + y2)n has only one critical point at
the origin, and hence Q satisfies the generalized Morse condition of degree 2n.

If f ′(0) = 0, then n ≥ 2. Let a = f(0) and b = g(0). Then

Q(z) = |a+ zng(z)|2 = (a+ zng(z))
(

a+ zng(z)
)

= |a|2 + 2Re(azng(z)) + |z|2n |g(z)|2

= |a|2 +Re(2abzn) + o(|z|n) .

Let p(x, y) = Re(2ab(x+ iy)n), a homogeneous real polynomial of degree n ≥ 2.
To see that ∇p(x, y) = 0 iff x = 0 = y, it suffices to note that, for any analytic
function w, |∇Rew| = |w′| (by Cauchy-Riemann equations). Hence, Q satisfies
the generalized Morse condition of degree n. �

At long last, Proposition 7 and Lemma 8 imply the following.

Corollary 9 The curvature of level curves of an analytic function is integrable
around each of its critical points.

References

[1] J. Bak, P. Ding, and D. J. Newman, Extremal Points, critical Points, and saddle

Points of Analytic Functions, Monthly 114 (2007) 540-546.

[2] K. Brakke, The Motion of a Surface by Its Mean Curvature, Princeton University

Press, Princeton, 1978.

[3] R. C. Buck, Advanced Calculus, 3rd ed., McGraw-Hill, New York, 1978.

[4] K. Chou and X. Zhu, The Curve Shortening Problem, Chapman & Hall/CRC,

Boca Raton, 2001.

[5] R. Courant, Differential and Integral Calculus, Vol. 2, Interscience Publishers,

New York, 1936.

[6] P. J. Davis, The Schwarz Function and Its Applications, MAA, 1974.

[7] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall,

Upper Saddle River, 1976.

[8] M. P. do Carmo, Riemannian Geometry, Birkhäuser, Boston, 1992.
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