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Certain Metric Properties of Level Hypersurfaces

Pisheng Ding

Abstract. This note establishes several integral identities relating cer-

tain metric properties of level hypersurfaces of Morse functions.

1 Introduction

Let f be a C2 Morse function on an open connected subset Ω of Rn+1 where
n ≥ 2. Suppose that a and b are values of f such that f−1([a, b]) is compact. For
t ∈ [a, b], let ν(t) be the (n-dimensional) volume of the level-t set f−1(t). Note
that, since f is a Morse function, ν(t) is well-defined even if t is a critical value
and that ν : [a, b] → R is continuous. At each regular point (i.e., noncritical
point) on f−1(t), let N = − ∇f/ |∇f |. This choice of unit normal induces a
Gauss map G on the set of regular points on f−1(t), with G(p) = N(p) ∈ Sn.
The mean curvature H and the Gaussian curvature K are defined on the set of
regular points on f−1(t) by the standard definitions

H =
1

n
Tr dG and K = det dG .

We henceforth view H and K as functions on the set of regular points of
f−1([a, b]); i.e., H(p) and K(p) are the mean curvature and Gaussian curva-
ture of f−1(f(p)) at p.

We now state our main results, in which dµ is the Lebesgue measure on
R

n+1 and ∂i denotes the i-th partial derivative.

Theorem Assume the preceding assumptions and notation.

(a) ν(b)− ν(a) = n
∫

f−1([a,b])H dµ .

(b)
∫ b

a
ν(t) dt =

∫

f−1([a,b])
|∇f | dµ .

(c)
∫

f−1([a,b])K∂if dµ = 0 for each i ∈ {1, · · · , n+ 1}.

(Implicit in these results is the assertion that the functions H and K∂if are
integrable on f−1([a, b]). This is a consequence of f being a Morse function, as
we shall demonstrate.)

2 Two Preparatory Results

In many results, we assume the following hypothesis.

Hypothesis †: f is a C2 Morse function on an open connected
subset Ω of Rn+1 where n+1 ≥ 3; a and b are values of f such that
f−1([a, b]) is compact.

Lemma 1 Assume Hypothesis †. Suppose that g is a function that is continuous
on the set of regular points in f−1([a, b]) and integrable on f−1([a, b]). Then

∫

f−1([a,b])

g dµ =

∫ b

a

(

∫

f−1(t)

g

|∇f |
dσ

)

dt ,
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where dσ is the (n-dimensional) volume form on f−1(t) and
∫

f−1(t)
(g/ |∇f |) dσ

is only defined for t a regular value.1

Proof. There are two cases, according as whether [a, b] contains a critical value.
Case 1: [a, b] is free of critical values. For each p ∈ f−1(a), let t 7→ F (p, t)

be the integral curve for the field ∇f/ |∇f |
2
. The map F : f−1(a) × [a, b] →

f−1([a, b]) is then a diffeomorphism, providing the transformation of variables
that results in the claimed formula. (In detail, take a coordinate patch U on

f−1(a) and apply Fubini’s theorem to U × [a, b]
F |U×[a,b]
−→ F (U × [a, b]).)

Case 2: [a, b] contains a critical value. Let S be the (finite) set of critical
values in [a, b]. Then, (a, b) r S is a disjoint union of finitely many intervals
Ij := (cj , cj+1) of regular values. As f−1([a, b]) = ∪jf

−1(Ij) ∪ f−1 (S ∪ {a, b})
and f−1 (S ∪ {a, b}) has Lebesgue measure zero (as a subset of Rn+1),

∫

f−1([a,b])

g dµ =
∑

j

∫

f−1(Ij)

g dµ .

Applying Case 1 to f−1([cj + ǫ, cj+1 − δ]) and letting ǫ, δ → 0+, we have

∫

f−1(Ij)

g dµ = lim
ǫ,δ→0+

∫

f−1([cj+ǫ,cj+1−δ])

g dµ

= lim
ǫ,δ→0+

∫ cj+1−δ

cj+ǫ

(

∫

f−1(t)

g

|∇f |
dσ

)

dt

=

∫ cj+1

cj

(

∫

f−1(t)

g

|∇f |
dσ

)

dt .

Summing these integrals over j proves the assertion.
Recall from §1 the mean curvature H and Gaussian curvature K, both re-

garded as functions on the set of regular points of f . Explicit formulae are
known for H and K. To state them, let Q be the Hessian quadratic form asso-
ciated with f and define the quadratic form Q∗ to be the one whose standard
matrix is the adjugate (or “classical adjoint”) of the standard matrix for Q; we
shall regard the two quadratic forms Q and Q∗ as real-valued functions of one
vector variable. Then,

H =
|∇f |

2
TrQ−Q(∇f)

n |∇f |
3 and K =

Q∗(∇f)

|∇f |
n+2 .

These are implicit in [3, p. 204] and made explicit in [2]. (In both of these
references, f−1(t) is oriented by ∇f/ |∇f |, the opposite of our choice of N.)

Lemma 2 For a C2 Morse function f on an open set Ω ⊂ R
n+1, the functions

H, K∂if , and K |∇f | are all integrable on any compact subset of Ω.

1The “outer” integral
∫ b

a
· · · dt on the right may first be interpreted as an improper Rie-

mann integral. Once the formula is proven, applying it to |g| shows that the one-variable
function ϕ(t) :=

∫
f−1(t)

(g/ |∇f |) dσ is absolutely integrable over [a, b], since |ϕ(t)| ≤ h(t) :=
∫
f−1(t) (|g| / |∇f |) dσ and

∫ b

a
h(t)dt =

∫
f−1([a,b]) |g| dµ. Hence,

∫ b

a
ϕ(t)dt may also be inter-

preted as a Lebesgue integral.
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Proof. It suffices to show that they are integrable “near” each critical point
p, i.e., on a closed ball D centered at p in which p is the only critical point.
Without loss of generality, assume that p is the origin 0 ∈ R

n+1. We notate a
typical point in R

n+1 by writing its position vector r and we let r = ‖r‖. Then,
for r near 0,

f(r) = f(0) + P (r) + o(r2)

where P (r) is the quadratic polynomial 1
2Q(r). For each i ∈ {1, · · · , n+ 1},

∂if = ∂iP + rǫi ,

where ǫi → 0 as r → 0, and for r ∈ D′ := D r {0},

∂iP (r) = rαi(r/r)

where αi is a function on Sn. Hence, on D′,

|∇f(r)|2 = r2
n+1
∑

i=1

(αi(r/r) + ǫi)
2 .

As f is a Morse function, 0 is the only critical point of P and thus
∑

i αi(r)
2 > 0

for r ∈ Sn. Letting

m = min
r∈Sn

n+1
∑

i=1

αi(r)
2 ,

we have, for sufficiently small r, 1
2mr2 ≤ |∇f(r)|

2
≤ 2mr2. Hence, there are

positive numbers C,M1,M2, δ such that, whenever r ≤ δ,

|∇f(r)| ≥ Cr

as well as
∣

∣

∣
|∇f |

2
TrQ−Q(∇f)

∣

∣

∣
(r) ≤ M1r

2 and |Q∗(∇f)| (r) ≤ M2r
2 .

Therefore, for r ≤ δ,

|H(r)| =

∣

∣

∣
|∇f |

2
TrQ−Q(∇f)

∣

∣

∣
(r)

n |∇f(r)|
3 ≤

M1

nC3

1

r

and

|K(r)∂if(r)| ≤ |K(r)∇f(r)| =
|Q∗(∇f)| (r)

|∇f |
n+1 ≤

M2

Cn+1

1

rn−1
.

It is a standard fact that, for any c > 0, 1/rn+1−c is integrable on any origin-
centered ball in R

n+1. Hence, H , K∂if , and K |∇f | are all integrable on D.

3 Main Results

We establish the main results of the article.

Theorem 3 Under Hypothesis †, ν(b)− ν(a) = n
∫

f−1([a,b])
H dµ.
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Proof. First recall (from [1, p. 142]) thatH = − 1
n
divN. WithN := −∇f/ |∇f |,

H =
1

n
div

∇f

|∇f |
.

In the following, let R = f−1([a, b]). There are two cases according as
whether [a, b] contains a critical value.

Case 1: [a, b] is free of critical values. Then, R is an (n + 1)-manifold with
boundary f−1(a) ∪ f−1(b). Let n denote the unit outward normal (relative to
R) on ∂R; then n = −∇f/ |∇f | on f−1(a) and n = ∇f/ |∇f | on f−1(b). Now,

ν(b)− ν(a) =

∫

∂R

〈

∇f

|∇f |
,n

〉

dσ =

∫

R

div
∇f

|∇f |
dµ =

∫

R

nH dµ .

Case 2: [a, b] contains a critical value. Let S be the (finite) set of critical
values in [a, b]. Then, (a, b) r S is a disjoint union of finitely many intervals
Ij = (cj , cj+1) of regular values. As R = ∪jf

−1(Ij) ∪ f−1 (S ∪ {a, b}) and
f−1 (S ∪ {a, b}) has Lebesgue measure zero,

∫

R

H dµ =
∑

j

∫

f−1(Ij)

H dµ .

It remains to note that, for each j,

∫

f−1(Ij)

H dµ = lim
ǫ→0+

∫

f−1([cj+ǫ,cj+1−ǫ])

H dµ (by integrability of H)

= lim
ǫ→0+

1

n
(ν(cj+1 − ǫ)− ν(cj + ǫ)) (by Case 1)

=
1

n
(ν(cj+1)− ν(cj)) (by continuity of ν).

With the aid of Lemma 1, Theorem 3 easily yields a formula for ν′, which
would take considerable effort to obtain otherwise.

Corollary 4 Assume Hypothesis †. For any regular value t0 ∈ [a, b],

ν′(t0) = n

∫

f−1(t0)

H

|∇f |
dσ .

Proof. For a regular value t0 ∈ (a, b),

ν′(t0) =
d

dt

∣

∣

∣

∣

t0

∫

f−1([a,t])

nH dµ (by Theorem 3)

=
d

dt

∣

∣

∣

∣

t0

∫ t

a

(

∫

f−1(τ)

nH

|∇f |
dσ

)

dτ (by Lemma 1)

=

∫

f−1(t0)

nH

|∇f |
dσ (by fundamental theorem of calculus).

We show more applications of Lemma 1 with a certain choice of g.
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Theorem 5 Under Hypothesis †,
∫

f−1[a,b]
(h ◦ f) · |∇f | dµ =

∫ b

a
h(t)ν(t) dt for

any integrable function h on [a, b]. In particular, for any t0 ∈ [a, b],
∫ t0

a

ν(t) dt =

∫

f−1([a,t0])

|∇f | dµ ,

or equivalently,

ν(t0) =
d

dt

∣

∣

∣

∣

t0

∫

f−1([a,t])

|∇f | dµ .

Proof. The first assertion follows from Lemma 1 by letting g = (h ◦ f) · |∇f |.
The second assertion results from letting h be the indicator function for [a, t0].
Continuity of ν makes applicable the fundamental theorem of calculus, yielding
the last assertion.

Proposition 6 Assume Hypothesis †.

(a)
∫

f−1([a,b])K∂if dµ = 0 for i ∈ {1, · · · , n+ 1}.

(b) If, in addition, n is even and [a, b] is free of critical values, then
∫

f−1([a,b])

K |∇f | dµ =
1

2
(b − a)χ(f−1(a))ν(Sn) ,

where ν(Sn) is the (n-dimensional) volume of the unit sphere Sn and
χ(f−1(a)) is the Euler characteristic of f−1(a).

Proof. For Part (a), let g in Lemma 1 be the vector-valued function K∇f .
Then,

∫

f−1([a,b])

K∇f dµ =

∫ b

a

(

∫

f−1(t)

K
∇f

|∇f |
dσ

)

dt .

Now, note that
∫

f−1(t)

K
∇f

|∇f |
dσ = −

∫

f−1(t)

KN dσ = 0 .

For detail of the last equality, let M denote f−1(t) and define the vector-valued
n-form ω on Sn by letting ω = IdSn dσSn , where dσSn is the volume form on
Sn. Then, with G being the Gauss map p 7→ N(p), G∗ω = KN dσ as can be
verified pointwise. Hence,

∫

M

KN dσ =

∫

M

G∗ω = degG ·

∫

Sn

ω .

But
∫

Sn

ω =

∫

Sn

IdSn dσSn = 0

due to cancellation of antipodal contributions.
Under the hypothesis of Part (b), f−1(t) is diffeomorphic to f−1(a) for

t ∈ [a, b]. By Gauss-Bonnet theorem,
∫

f−1(t)

K dσ =
1

2
χ(f−1(t))ν(Sn) =

1

2
χ(f−1(a))ν(Sn)

Letting g = K |∇f | in Lemma 1 then proves Part (b).
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