arXiv:1804.07900v1 [math.DG] 21 Apr 2018

Certain Metric Properties of Level Hypersurfaces

Pisheng Ding

ABSTRACT. This note establishes several integral identities relating cer-
tain metric properties of level hypersurfaces of Morse functions.

1 Introduction

Let f be a C? Morse function on an open connected subset € of R**! where
n > 2. Suppose that a and b are values of f such that f~!([a,b]) is compact. For
t € [a,b], let v(t) be the (n-dimensional) volume of the level-t set f~1(t). Note
that, since f is a Morse function, v(t) is well-defined even if ¢ is a critical value
and that v : [a,b] — R is continuous. At each regular point (i.e., noncritical
point) on f~1(¢), let N = — Vf/|Vf|. This choice of unit normal induces a
Gauss map G on the set of regular points on f~1(¢), with G(p) = N(p) € S™.
The mean curvature H and the Gaussian curvature K are defined on the set of
regular points on f~1(¢) by the standard definitions

H = lT1rdG and K =detdG.
n

We henceforth view H and K as functions on the set of regular points of
fY([a,b]); i.e., H(p) and K(p) are the mean curvature and Gaussian curva-

ture of f=1(f(p)) at p.
We now state our main results, in which du is the Lebesgue measure on

R"*1 and 9; denotes the i-th partial derivative.

Theorem Assume the preceding assumptions and notation.
(a) v(b)—v(a) = nff,l([a,b]) Hdu.

() Jy v dt = [ o IV ldp.

(©) Sy (ap) KOif du=0 for each i € {1,--- ,n+1}.

(Implicit in these results is the assertion that the functions H and K0, f are
integrable on f~!([a,b]). This is a consequence of f being a Morse function, as
we shall demonstrate.)

2 Two Preparatory Results

In many results, we assume the following hypothesis.

Hypothesis §: f is a C? Morse function on an open connected
subset 2 of R"*! where n+1 > 3; a and b are values of f such that
f~Y([a,b]) is compact.

Lemma 1 Assume Hypothesis t. Suppose that g is a function that is continuous
on the set of reqular points in f~1([a,b]) and integrable on f~1([a,b]). Then

b
g
gdu:/ / ——do | dt,
/fl([a,b]) a ( 1 VS


http://arxiv.org/abs/1804.07900v1

where do is the (n-dimensional) volume form on f~1(t) and ff*l(t) (g/ IV f])do
is only defined for t a reqular valuell

Proof. There are two cases, according as whether [a, b] contains a critical value.

Case 1: [a,b] is free of critical values. For each p € f~(a), let t — F(p,t)
be the integral curve for the field Vf/|Vf|>. The map F : f~'(a) x [a,b] —
f~Y(la,b]) is then a diffeomorphism, providing the transformation of variables
that results in the claimed formula. (In detail, take a coordinate patch U on

f~'(a) and apply Fubini’s theorem to U x [a, b] Floxg o F(U x [a,b]).)

Case 2: [a,b] contains a critical value. Let S be the (finite) set of critical
values in [a,b]. Then, (a,b) \ S is a disjoint union of finitely many intervals
I; := (cj,cj+1) of regular values. As f~1([a,b]) = U; f~1(I;) U f~1 (S U {a,b})
and f~!(SU{a,b}) has Lebesgue measure zero (as a subset of R"*1),

Applying Case 1 to f~'([¢j + €,¢j+1 — d]) and letting €,§ — 0T, we have
/ gdy = lim gdu
FHI) 0207 J -1 ([ejtescia1—0])

cjy1—0 g
lim / ——do | dt
€,0—0% cjte F=1() |Vf|

(e
——do | dt.
c; 1) IV

J

Summing these integrals over j proves the assertion. m

Recall from §1 the mean curvature H and Gaussian curvature K, both re-
garded as functions on the set of regular points of f. Explicit formulae are
known for H and K. To state them, let @) be the Hessian quadratic form asso-
ciated with f and define the quadratic form @Q* to be the one whose standard
matrix is the adjugate (or “classical adjoint”) of the standard matrix for Q; we
shall regard the two quadratic forms @ and Q* as real-valued functions of one
vector variable. Then,

2 *
po VDO QWH e QN
n|v] V"

These are implicit in [3} p.204] and made explicit in [2]. (In both of these

references, f~1(¢) is oriented by Vf/|V f|, the opposite of our choice of N.)

Lemma 2 For a C? Morse function f on an open set  C R"HL | the functions
H, KO;f, and K |V f| are all integrable on any compact subset of Q.

IThe “outer” integral f: ---dt on the right may first be interpreted as an improper Rie-
mann integral. Once the formula is proven, applying it to |g| shows that the one-variable
function ¢(t) := ff*l(t) (g/ |V f|) do is absolutely integrable over [a, b], since |p(t)| < h(t) :=

b b .
ff*l(t) (Igl/ IV f])do and [] h(t)dt = ff*l([a,b]) lgldp. Hence, [ @(t)dt may also be inter-
preted as a Lebesgue integral.



Proof. It suffices to show that they are integrable “near” each critical point
p, i.e., on a closed ball D centered at p in which p is the only critical point.
Without loss of generality, assume that p is the origin 0 € R"*!. We notate a
typical point in R**! by writing its position vector r and we let = ||r||. Then,
for r near O,

f(x) = f(0) + P(r) + o(r?)
where P(r) is the quadratic polynomial £Q(r). For each i € {1,--- ,n+ 1},
Oif = 0P +re;,
where ¢, — 0 as r — 0, and for r € D’ := D ~ {0},
0;P(r) = ray(x/r)
where «; is a function on S™. Hence, on D',

n+1

V@) =1 Z (ilr/r) + ) .

As f is a Morse function, 0 is the only critical point of P and thus Y, a;(r)? > 0
for r € S™. Letting

2

we have, for sufficiently small 7, %mr2 < |Vf(r)|2 < 2mr“. Hence, there are

positive numbers C, M1, M, § such that, whenever r < §,
Vf(r)]=Cr
as well as
VIPTeQ = V)| (1) < Mir® and  [Q1(V)] () < Mar?

Therefore, for r < 4§,

IVAPTrQ -V (x)
H(r)|:’ <Ml

n|V ) — Gt
and

QNI M1

(K (r)0;f(r)] < |[K(r)Vf(r)] VT S et

It is a standard fact that, for any ¢ > 0, 1/7r"T1=¢ is integrable on any origin-
centered ball in R" ™. Hence, H, K9;f, and K |V f| are all integrable on D.
]

3 Main Results

We establish the main results of the article.

Theorem 3 Under Hypothesis T, v(b) — v(a) = ”ff*l([a o)) H dp.



Proof. First recall (from [I} p. 142]) that H = —1 divN. With N := =V f/ [V f|,

1. Vf
H = —div—.
n |V

In the following, let R = f~!([a,b]). There are two cases according as
whether [a, b] contains a critical value.

Case 1: [a, b] is free of critical values. Then, R is an (n + 1)-manifold with
boundary f~1(a) U f~1(b). Let n denote the unit outward normal (relative to
R) on OR; then n = —Vf/|Vflon f~!(a) and n = Vf/|Vf| on f~1(b). Now,

—v(a) = V_f o= iv v/ = [ n
0ot = [ (gpom i = [ v gpan= [t

Case 2: [a,b] contains a critical value. Let S be the (finite) set of critical
values in [a,b]. Then, (a,b) \ S is a disjoint union of finitely many intervals
I; = (cj,cj+1) of regular values. As R = U;f~'(I;) U f~' (SU{a,b}) and
f~1 (S U{a,b}) has Lebesgue measure zero,

Hdu = / Hdy.
/R ; f=1I5)

It remains to note that, for each j,

/ Hdy = lim Hdp (by integrability of H)
f=1(1;)

€07 Jr=1([ej+e,cip1—€])

.1
= el—l)Ig)l+ - (v(cj+1 —€) —v(cj +€)) (by Case 1)

1
— (v(¢j+1) —v(cj))  (by continuity of v).
n

[
With the aid of Lemma [I Theorem [l easily yields a formula for v/, which
would take considerable effort to obtain otherwise.

Corollary 4 Assume Hypothesis t. For any regular value ty € [a,b],

H
V(to) = n/ ——do .
1ty IV 1

Proof. For a regular value ty € (a,b),

4
dt
d
dt

V/(to) =

/ nH du  (by Theorem [3))
to 4 f~([ast])

t nH
——do | dr (by Lemma [I])
to /a (/fl(‘r) |Vf| ) (

H
= / I do (by fundamental theorem of calculus).
F-1tto) [V

]
We show more applications of Lemma [I] with a certain choice of g.



Theorem 5 Under Hypothesis t, ff*l[a b (ho f) - |Vfldu = fab h(t)v(t)dt for
any integrable function h on [a,b]. In particular, for any to € [a,b],

to
[ vwd= [ IV f] .,
a f=1([a,to])

or equivalently,

d
v(to) = o

[ Vil
to 7 f~1([ast])

Proof. The first assertion follows from Lemma [Il by letting g = (ho f) - |V f].
The second assertion results from letting s be the indicator function for [a, to].
Continuity of v makes applicable the fundamental theorem of calculus, yielding
the last assertion. m

Proposition 6 Assume Hypothesis t.
(@) [i-1(jap) KOif du=0 forie{l,--- ,n+1}.
(b) If, in addition, n is even and [a,b] is free of critical values, then
1 - n
[ KIVSdu= 50— ax( (s,
=1 ([a,0])
where v(S™) is the (n-dimensional) volume of the unit sphere S™ and

x(f~(a)) is the Euler characteristic of f~'(a).

Proof. For Part (a), let g in Lemma [l be the vector-valued function KV f.

Then,
b
[ kvim- /(/ K_Vfdg)dt.
F1(ab]) o« \Jr1@w [V

Now, note that
/ Kv—fda:—/ KNdo=0.
e IV 0!

For detail of the last equality, let M denote f~1(t) and define the vector-valued
n-form w on S™ by letting w = Idgn dogn, where dogn is the volume form on
S™. Then, with G being the Gauss map p — N(p), G*w = KN do as can be
verified pointwise. Hence,

KNdo:/ G*w:degG~/ w.
M M n

/ w:/ IdSndUSn =0

due to cancellation of antipodal contributions.
Under the hypothesis of Part (b), f~1(¢) is diffeomorphic to f~!(a) for
t € [a,b]. By Gauss-Bonnet theorem,

[ Ko = g 05 = x5 @p(s™)
f71

Letting g = K |V f] in Lemma [I] then proves Part (b). m
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