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Abstract

We consider quantum systems described by the fractional powers of the
negative Laplacian and the interaction potentials. When a slowly decaying
potential function is given, we prove the nonexistence of the wave operators,
under the assumption that the Dollard-type modified wave operators exist
and that they are asymptotically complete. This nonexistence indicates the
borderline between short-range and long-range behavior.
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1 Introduction

We study scattering phenomena for the fractional powers of the negative Lapla-
cian. For 1/2 < p < 1, the fractional power of the negative Laplacian w,(D) as
a self-adjoint operator acting on L?(R") is defined by the Fourier multiplier with
the symbol

wo(&) = €7/ (2p), (1.1)


http://arxiv.org/abs/1804.07912v1

where D denotes the momentum operator D = —iV = —i(0,,,...,0,,). More
specifically, w,(D) can be represented by the Fourier integral operator

2(D)6(a) = (F'w,(€) Fo)(a)
= /n el‘%-i(ﬂp(&) (g¢)(£)d§/(2w)”/2

= [ e oty 2a)" (12)

for ¢ € 2(w,(D)) = H**(R™), which is the Sobolev space of order 2p. In par-
ticular, when p = 1, wi(D) is the standard free Schrédinger operator wy(D) =
-AJ2 = =370 8%, /2. Although we exclude the case where p = 1/2 in this
paper, wiy/2(D) is the massless relativistic Schrédinger operator wy/o(D) = Vv-A.

We assume that the potential function V' = V(x) is a real-valued multipli-
cation operator, and that its value vanishes with some decaying order when |z|
is sufficiently large. An apparent shape is going to be given later (Assumption
[L1). We here note that we treat the case where V' € L*(R) only. The total

Hamiltonian under consideration is represented by the sum of w,(D) and V/,
w,(D) + V. (1.3)

The operator (L3) is also self-adjoint on L?(R™) because V is bounded. In scat-
tering theory, we treat the potential functions with some kind of singularity, for
instance, of local Coulomb type. However, in this paper, we try to find a concrete
example of a potential function such that the usual wave operators do not exist.
Therefore, we do not have to consider the singularities.

In the case where the free side is the standard free Schrodinger operator

[DIF/2=—-A/2, (1.4)
if we write the decay condition on V' as
V()] < (x)™” (1.5)

with v > 0 and (z) = /1 4+ |z|?, then it is well known that, if v > 1, then the
wave operators exist, and if v < 1, then the wave operators do not exist (Dollard
[3] and Reed-Simon [I1]). That is to say, the borderline between short-range
and long-range behavior is v = 1. The classical trajectory of the particle in the
dynamics of the free Schrodinger equation has order z(t) = O(t) as t — oo. The
Cook-Kuroda method says that if

/ [Ve ™MPFRg||dt < oo (1.6)
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for ¢ € L?(R™), then the wave operators

ts;lzltlglo eit(‘D‘2/2+V)e_it|D|2/2 (17>

exist. This is because
||(ez’t1(\D\2/2+V)e—it1\D\2/2 _ ez’tz(\D\2/2+V)e—it2|D|2/2)¢||
t1 t1
< / ||at(6zt(\D\2/2+V)6—zt\D\2/2)¢Hdt _ / ||Ve—zt|D|2/2¢||dt — 50 (18)
to to

as t1,ts — 00. Therefore, we can formally verify the borderline by substituting
the classical order x(t) = O(t) for V(z),

[ e rla = [T s oar s [T evd )
1 1 1

because of the decay assumption (LH). This estimate is very rough and formal.
However, the right-hand side of (L) is bounded if and only if v > 1.
In the case where the free side is replaced by

HS =|D|?*/2—E -« (1.10)

with £ € R"\ {0}, HS is called the Stark Hamiltonian. The classical trajectory
has order z(t) = O(t?) as t — oo by solving the Newton equation #(t) = E. By
the rough estimate

/1 ||Ve‘“HOqu||dt§/l 2, (1.11)

we expect that the borderline will be v = 1/2. In fact, an affirmative answer to
this was obtained by Ozawa [10]. By giving a counter-example for the potential
function V' such that the wave operators
s-lim /(5 +V) g mithy (1.12)
t—=+o0
do not exist, Ozawa [10] determined that the borderline is vy = 1/2.

Recently, Ishida [5] found the borderline in the case where the free side is the
so-called repulsive Hamiltonian

Hy' = |D[*/2 = |=f*/2 (1.13)

by applying the approach developed by Ozawa [10]. If —|z|? is replaced by +|z|? in
(LI3)), then this operator is the well-known harmonic oscillator and the particle
does not scatter in this case. However, in the repulsive case, the particle can
scatter with surprising velocity. Indeed, the classical trajectory is given by solving
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the Newton equation Z(t) = z(t), and thus we have z(t) = O(e') as t — oo. From
our previous discussion, when we impose the decay condition on V' by

V()| S (log(z)) ™" (1.14)

with v > 0, it is reasonable to expect the borderline to be v = 1 because
/ Ve ™5 g||dt < / tdt. (1.15)
1 1

This expectation is also true. Ishida [5] gave a counter-example for the potential
V' such that the wave operators

it(HE+V)

s-lim e e~ MG (1.16)

t—=+o0

do not exist.
We now discuss the system governed by the fractional pair w,(D) and w,(D)+
V. The derivative of the symbol w, at § is

(Vew,)(&) = [6]*7%. (1.17)

Thus, by the canonical equation of motion, the classical trajectory of the particle
follows
a(t) = [¢]*2¢t (1.18)

and so has the order z(t) = O(t) as t — oo. This suggests that the borderline is
~v = 1 when we write the decay condition on V' as in (LH]). Before presenting our
main theorem, we state some assumptions.

Assumption 1.1. Let the potential function V =V (x) be a real-valued multipli-
cation operator and have the following shape

V(x) = Me|F(ja] > 1) (1.19)

with 0 <y <1 and 0 # X\ € R, where F(---) is the characteristic function of the

set {---}.

For the potential function (ILI9)), we define the Dollard-type modification fac-
tor M, »(t) by

t
M, (t) = exp l—z/ V((Vew,)(D)T)dr (1.20)
0
which uses the Fourier multiplier. Moreover, we write the total Hamiltonian as
H,=w,(D)+V (1.21)

for simplicity.



Assumption 1.2. The Dollard-type modified wave operators

W:@(Hmwp(D)) = slim e et DL (1) (1.22)

t—+o0

exist and are asymptotically complete. That is, the strong limits

ij’:@(wp(D), Hp) = ts;liro% Mp,@(t)*eitw(D)e_ithPac(Hp) (1.23)
ezist, where P,.(H,) denotes the orthogonal projection to the absolutely continuous
subspace of H,.

The Dollard-type modified wave operators were first introduced into scattering
theory by Dollard [2, 3] to discuss |D|?/2 and the Coulomb interactions. Many
details of the general long-range potentials are stated in Dereziniski-Gérard [4].
It also known that this modification works well for the Stark effect (see Jensen-
Yajima [12], White [13] and Adachi-Tamura [1]). The Dollard-type modification
factor is constructed from a solution of the Hamilton-Jacobi equation. In our case,
we construct this modifier by solving the equation

(0:5)(,€) = wp(§) (1.24)
and substituting (V¢S5)(¢,€) into

exp {—i/o V((VeS)(r,8))dr| . (1.25)

This is equal to the symbol for M, »(¢) in (L20).
We now state the main theorem of this paper, which gives an affirmative
answer to the question above.

Theorem 1.1. Under these assumptions, the usual wave operators

WE(H,,w,(D)) = s-lim ere=r(P) (1.26)

t—+o0

do not exist.

In scattering theory, it is very important to clarify the borderline between
short-range and long-range behavior. In the long-range case, the usual wave
operators do not exist. Therefore, we instead have to consider some kind of
modified wave operator. The modification is not always unique. For the fractional
powers of the negative Laplacian, Kitada [8] [9] proposed the Isozaki-Kitada-type
modified wave operators and discussed their existence and completeness for 1/2 <
p < 1. Inverse scattering problems were also studied by Jung [7] for p = 1/2 and
by Ishida [6] for 1/2 < p < 1, in the case of the short-range interactions.
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2 Nonexistence of Wave Operators

We prove Theorem [I1] in the second section. Our proof is motivated by the
original idea in Dollard [3] (see also Reed-Simon [11]), which differs from the
approaches in Ozawa [10] and Ishida [5].

The following proposition yields the proof of Theorem [

Proposition 2.1. Under Assumptions (1.1 and[1.2,

?:Elgol eithe—itwp(D) =0 (21)

holds.
Before proving Proposition 2T we first give a proof of Theorem [Tl

Proof of Theorem[1.1. According to Proposition 2.1, if we assume that the strong
limits W (H,,w,(D)) in (L26) exist, then the limits have to be equal to zero.

However, , .
et g = 19| (2.2)

holds for any ¢ € L*(R") because e () and e®*» are unitary. Therefore,
eHoe=wp(D) cannot converge to zero in the strong sense. This is a contradiction.

[
We now give the proof of Proposition 2.1]

Proof of Proposition[2.1. We only consider the case of t — oo because the other
case can be treated analogously. Let ¢ be taken from .#(R™), which is the
Schwartz functional space, such that the Fourier transform .% ¢ belongs to C3°(R™\
{0}) and its support satisfies

supp F¢ C {€ € R" | [¢] > €} (2.3)
with € > 0. By the shape of the potential (IL.I9), M, »(t) in (L.20) is

¢
M, (t) = exp [—z’)\|D|_7(2p_l)/ TVF(|D* 1 r > 1)d7‘} . (2.4)
0

When |€] > € and 7 > €} 7%,
FePtr=1) =1 (2.5)
holds. We thus have, under [£| > e,

t el=2 t
| rE(epeie > vy - </ o ) IR(EP e > 1dr
0 0 el=2p

1-2p

= / TF(EP 7 > D)dr + T, (t), (2.6)
0



where T, () in (2.6)) is defined by

=7 — (=20)0-7)Y /(1 — if 0<~<1
Ton(t) = ( ‘ ) /! 7 1 ! ’ (2.7)
’ log(t/e'=2¢) if y=1.
Clearly,
T)~(t) — o0 (2.8)
holds as t — oco. By (2.6), M, (t)¢ can be represented by
Mp,.@(t)¢ = €Xp [_i)‘Tp,’y (t)|D|_’Y(2p_1)} R(D)¢a (29)
where R(D) is also a Fourier multiplier with its symbol
6172p
R(£) = exp [—M\g\ﬂ@ﬂ—l)/ TVF(|EP 7 2 Ddr | (2.10)
0
Therefore, from this representation of M, »(t)¢, it follows that
(Mp,5(t)¢, %) — 0 (2.11)

as t — oo for any ¢ € L?*(R"). Here, (-,-) denotes the usual scalar product in
L*(R™). For a more detailed explanation of limit (Z.I1]), note that the operator
| D|77(1=20) is self-adjoint and absolutely continuous, so we can write its spectral
measure as (,. By the spectral decomposition theorem and the Radon-Nikodym
theorem, there exists f, = f, 4, € L'(R) such that

(My(000.6) = [ 0l () R(D)o. )
= [ et o) = VER(F ) VT, (1), 2.12)

From (2.8), the Reimann-Lebesgue lemma concludes that
(Zfo)(AT,5(t) — 0 (2.13)

as t — 0o. The convergence in (2.11]) and the density argument imply that

w-lim M, »(t) = 0. (2.14)
t—00
In the same way, we have '
w-lim e~ (D) — (2.15)
—00

because w,(D) is self-adjoint and absolutely continuous.
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Now, let us take any ¢ and v from L?(R™). We note that the singular con-
tinuous spectrum of H, is empty under our assumption as proved by Kitada [§].
Therefore, there exist eigenvalues £, = F,, € R such that

Hp(l - PaC(Hp))Q/J = Ep(l - PaC(Hp))¢- (2-16)

By (2.13)) and (ZI0), we can compute
((1 . Pac(Hp))eithe_itwp(D)¢, w) — (e—itwp(D)¢’ e—ith(l . PaC(Hp))w)
= "B (emr(P)y (1 — Poo(H,))Y) — 0 (2.17)
as t — 0o. On the other hand,
(Pac(Hy)ere™ 0P 4p) = (Myy(8), My, (1) Pac(Hy) '™ P)e= o)
= (

MP,@(tM)v W::@(WP(D)v Hpﬁ/})
+(My5 (), (M, 5 (t)* Pac(H,) e e (Pl e™ e — W= (w,(D), Hy))1b). (2.18)

The first term of the right-hand side of (2.18) goes to zero by (214) as t — oc.
By the Schwarz inequality and the unitariness of M, »(t), the absolute value of
the second term is

(M5 (8) b, (Mp,5(t)" Pac (Hy )" Pe ™M — W2, (w, (D), H,)) )]
< NI (M, ()" Pac(Hp)e™ e — WiE, (w, (D), Hy))o|l,  (2.19)

where || - || denotes the usual L?>-norm, which also goes to zero as t — oo by
Assumption We thus obtain, as t — oo,

(Pac(Hy)eMremrP)gy ) — 0. (2.20)

Combining (2.17) and (2.20) shows that (2.I]) holds. This completes the proof. [

We have to exclude the case where p = 1/2 because ([2.I4]) does not always
hold in this case. When p = 1/2, M5 »(t) has the following shape

Mij2,5(t) = exp [—iAT1j24(1)] - (2.21)

This is a scalar and oscillates as t — co. As stated in the first section, the operator
wi/2(D) = v/ —A describes a relativistic system and so there are large differences
between the cases p =1/2 and 1/2 < p < 1.
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