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IS THERE ANY NONTRIVIAL COMPACT GENERALIZED
SHIFT OPERATOR ON HILBERT SPACES?

FATEMAH AYATOLLAH ZADEH SHIRAZI, FATEMEH EBRAHIMIFAR

ABSTRACT. In the following text for cardinal number 7 > 0, and self-map
¢ : T — T we show the generalized shift operator o, (¢2(7)) C £2(7) (where
go((za)a<r) = (Tp(a))a<r for (za)acr € C7) if and only if ¢ : 7 — 7 is
bounded and in this case oy [p2(7y: £2(1) — £2(7) is continuous, consequently
¢ le2(r): £2(1) — £2(7) is a compact operator if and only if T is finite.

2010 Mathematics Subject Classification: 46C99
Keywords: Compact operator, Generalized shift, Hilbert space.

1. PRELIMINARIES

The concept of generalized shifts has been introduced for the first time in [2] as
a generalization of one-sided shift {1,...,k}N — {1,...,k} and two-sided shift
(al,ag,»»»)—)(ag,ag,---)

{1,...,k}2 — {1,...,k}2 [10, 9]. Suppose K is a nonempty set with at least two

(an)nez—=(ant1)nez
elements, I' is a nonempty set, and ¢ : I' — I is an arbitrary map, then we call
o, KU'— KV a generalized shift (for one-sided and two-sided shifts con-

(104)0¢EF’_’($&P(0‘))0<€I‘

sider p(n) = n+1). It’s evident that for topological space K, o, : KI' — KT is
continuous, where KT is equipped by product topology.

For Hilbert space H there exists unique cardinal number 7 such that H and ¢3(7)
are isomorphic [4, 8]. All members of the collection {¢?(7) : 7 is a non-zero cardi-
nal number} are Hilbert spaces, moreover for cardinal number 7 and (24 )a<r € K7
(where K € {R,C} depending on our choice for real Hilbert spaces or Complex
Hilbert spaces) we have & = (24 )a<, € ¢?(7) if and only if ||z||? := § |za|? < +oc.

a<T

Moreover for (Zo)a<rs (Ya)a<r € £2(7) let < (0)a<r, (Ya)acr >= % ZoTq (Inner
a<T

product). For ¢ : 7 — 7, one may consider o, : K” — K7 in particular we may
study oy [e2(ry: £2(1) = K.
Convention. In the following text suppose 7 > 1 is a cardinal number and
@ : 7 — 7 is arbitrary, we denote o, [¢2(7): 0%(1) — KT simply by o, : £3(1) = K7,
and equip ¢?(7) with its usual inner product introduced in the above lines. Also
for cardinal number v let (for properties of cardinal numbers and their arithmetic
see [7]):
. { 0 1) is finite ,
' 400 otherwise .
Moreover for s # t let 6% = 0 and 6% = 1.
If X,Y are normed vector spaces, we say the linear map S : X — Y is an operator
if it is continuous. We call (X,T) a linear dynamical system, if X is a normed
1
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vector space and T': X — X is an operator [5].
Let’s recall that R is the set of real numbers, C is the set of complex numbers, and
N ={1,2,...} is the set of natural numbers.

2. ON GENERALIZED SHIFT OPERATORS

In this section we show o, (¢%(7)) C £%(7) (and oy, : £*(7) — £3(7) is continuous)
if and only if ¢ : 7 — 7 is bounded. Moreover o, (¢*(7)) = ¢*(7) if and only if
(¢ :T — T is one-to—one.

Remark 2.1. We say f: A — A is bounded if there exists finite n» > 1 such that
for all @ € A we have card(¢~*(a)) < n [0].

Theorem 2.2. The following statements are equivalent:
L. o, (£3(7)) € 3(7),
2. ¢ : 7 — 7 is bounded,
3. 0y : 0%(1) — £(7) is a linear continuous map.

Moreover in the above case we have ||o,|| = /sup{(card(¢=1(a)))* : a € T}.
Proof. First note that for © = (z4)a<r we have
Q low@? = S lrpel = £ ((eard(o™ ()" ral?)

(where 0(+00) = (+00)0 = 0).
“(1) = (2)” Suppose o, (£2(1)) C ¢2(7), for 6 < 7 we have ||(0%)a<-|| = 1 and:

1o ((0)asr )1 = (card(™(0)))"

by (*). Hence (0%)a<- € £2(7) and 0,((6%)a<r) € 0,(0%(1)) C £%(7), thus ¢~ 1(0)
is finite.

Thus {card(¢~!(a)) : o € 7} is a collection of finite cardinal numbers. If
sup{(card(p"1()))* : @ € T} = +o0, then there exists a strictly increasing se-
quence {ny}r>1 in N and sequence {ay}r>1 in 7 such that for all & > 1 we have
card(¢p~!(ax)) = ng. Since {ng}r>1 is a one-to-one sequence, {ay }r>1 is a one—
to—one sequence too. Consider (x4 )q<, With:

% a=a,k>1,
Tg 1= .
otherwise .
Then ¥ |z = © 22, = ¥ & < 400 and (¥a)a<r € £*(7). On the other
a<r k>1 k>1

hand by (*) we have ||o,((Za)a<r)||> = & % > ¥ + = +oo (note that n, > k

k>1 k>1
(1) which leads to the contradiction

for all k£ > 1), in particular o, ((za)a<r) ¢ (T
)) : a € 7} is finite and is a natural

62
0,(0%(1)) € €*(7). Therefore sup{card(¢p~!(a
number.
“(2) = (3)” Suppose n := sup{card(p () : a € 7} is finite. For all z =
(To)a<r € £2(T) we have:

lop@)ll = /3 _(eardle (@) Teal) < [ 3 (nleal) = Vel

which shows continuity of o, and ||o,,|| < y/n. On the other hand, there exists 6 <
with card(¢™"(0) = n. By [/(3)a<-|| = 1 and (*) we have ||o,((03)a<r)|l = v
which leads to ||o,|| > /n. O
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By [l, Lemma 4.1] and [2], ¢ : 7 — 7 is one-to—one (resp. onto) if and only if
o, : KT — K is onto (resp. one-to-one), however the following lemma deal with
oy L2(T) = 02(7).
Lemma 2.3. The following statements are equivalent:

L. 0, ((r)) = (1),

2. 0,(0?(7)) is a dense subset of £*(),

3. ¢ : 7 — T is one-to-one.

In addition the following statements are equivalent too:
i. 0, 0%(1) — K7 is one-to-one,
ii. ¢ : 7 — 7 is onto.

Proof. “(2) = (3)” Suppose ¢ : 7 — T is not one-to—one, then there exists 6 #
¢ with == (0) = p(¥). There exists (Ya)a<r € £3(7) With [|op((Ya)a<r) —
(09)a<rl < %, thus for all v < 7 we have |y, (o) — 05| < 1 in particular [y, ) —8%| <
1 and |y, — 05| < 1, thus |y,| < & and |y, — 1| < §, which is a contradiction,
therefore ¢ : 7 — 7 is one—to—one.

“(3) = (1)” Suppose ¢ : T — 7 is one-to-one, then by Theorem 2.2, o,,(¢*(1)) C
02(1). For y = (Ya)a<r € €3(1), define z = (24)a<- in the following way:

| p azsisT
710 aeT\o(r),

then ||z|| = |ly|| and = € ¢*(7), moreover o,(z) = y, which leads to o, (¢*(1)) =
02(1).

In order to complete the proof we should prove that (i) and (ii) are equivalent
however by [1, Lemma 4.1], (ii) implies (i), so we should just prove that (i) implies
(i)

“() (ii)” Suppose ¢ : 7 — 7 is not onto and choose § € 7\ (7). Then
(6%)a<r, (0)a<r are two distinct elements of ¢£2(7), however

U«p((ag)a<7) = U«p((o)a<‘r) = (0)a<r

and oy, : £%(1) — K7 is not one-to-one. O

Corollary 2.4. The following statements are equivalent:
1. ¢ : 7 — 7 is bijective,
2. 0, : 0%(1) — £3(7) is bijective,
3. 0, : £3(1) = (*(7) is an isomorphism,
4. 0y £2(T) — £2(7) is an isometry.

Proof. Using Lemma 2.3, (1) and (2) are equivalent. It’s evident that (3) implies
(2), moreover if ¢ : 7 — 7 is bijective, then by Theorem 2.2 two linear maps
o, : £2(1) — (*(7) and its inverse o,-1 : £*(T) — €*(7) are continuous, hence (1)
implies (3).

(1) implies (4), is evident by (*) in Theorem 2.2. In order to complete the proof,
we should just prove that (4) implies (1).

“(4) = (1)” Suppose o, : £*(7) — (2(7) is an isometry, then o, : £2(1) — ¢*(7)
is one-to-one and by Lemma 2.3, ¢ : 7 — 7 is onto. Moreover, |lo,|| = 1
since o, : £%(1) — (*(7) is an isometry. By Lemma 2.2 we have 1 = ||o,||* =
sup{card(p~!(a)) : @ € 7}, thus for all @ < 7 we have card(p~!(a)) < 1 and
@ T — T is one-to-one. O
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Lemma 2.5. Let D = {z € (*(1) : 0,(z) € (*(1)} (consider D with induced
normed and topology of ¢?(7)), then:

1. D is a subspace of £?(7),
2. {0 <7:3(2a)acr €EDzg # 0} ={a < 7:9p () is finite }.

Proof. Since o, : £3(1) — K" is linear, we have immediately (1).
2) We have

sk 0 - (card(p=1(0)))* ¢~ 1(0) is finite,
() llol@aell = { YE i e
Thus if o~ 1(0) is finite we have 0, ((62)a<r) € £2(7) and (6%)a<, € D, which shows

0 e {8 <7:32a)acr € D zg # 0}. Therefore:
{a<7:97Ha)is finite } C {0 <7 :3(24)acr € D 29 # 0}

Now for 6 < 7 suppose there exists (2o )a<r € D with 2y # 0. Using the fact that D
is a subspace of £2(7) we may suppose zg = 1, now we have (since o,(z) € £*(7)):

1o ((00)asr)ll = lop((za08)acr )l < llow(2)]] < 400,

by (**), ¢~1(#) is finite, which completes the proof of (2). O

Note 2.6. For H C 7 the closure of subspace generated by {(62)a<, : 0 € H} (in
%(1)) is {(za)a<r € 2(1) : Va & H (zo = 0)}.

Theorem 2.7. For D = {z € (*(7) : 0,(z) € (*(7)} as in Lemma 2.5 and M :=
{a < 7: ¢ Ha) is finite }, the following statemnts are equivalent:

1. 0, [p: D — ¢*(7) is continuous,

2. there exists finite n > 1 with card(¢~!(a)) < n for all a« € M,
3. D={(za)a<r € *(1) : V0 ¢ M x4y =0},

4. D is a closed subspace of £%(1),

Proof. “(1) = (2)” Suppose o, [p: D — £%(7) is continuous, consider § < 7 with fi-
nite ¢~ *(#). By proof of item (2) in Lemma 2.5, (62)a<, € D and ||o,((02)a<-)|| =

V/(card(p~1(0)))*, thus
00> [logl > sup{y/(card(g=1(@))" : 6 € M}

“(2) = (1) For n := sup{card(p? (a)) o€ M} < +oo and = (T4 )a<r € D we
have [|og (z)[| = \/ 2 ((card(p~!(a)))*[zal?) < \/ Y (nfzal?) = v/nllz[| which
aeM

shows continuity of o, [p: D — £3(7).

“(3) = (4)” Note that for nonempty M, {(z4)a<r € £?(7) : VO & M xo = 0} is just
02(M).

“(4) = (3)” By proof and notations in Lemma 2.5, we have {(6%)a<, : 0 € M} C D.
Use Note 2.6 to complete the proof.

“(2) = (3)” For n :=sup{card(¢~!(a)) : a0 € M} < 400 and & = (24 )a<r € £*(7)
with , = 0 for all @« ¢ M we have ||o,(z)|| < v/n|/z|| which shows 2 € D
and {(za)a<r € €*(1) : VO ¢ M x5 = 0} C D. Using Lemma 2.5 we have
D C {(za)a<r €L2(1):V0 & M x9 = 0}.

“(3) = (2)” If sup{(card(p ™ (a)))* : @« € M} = +o0, then there exists a strictly
increasing sequence {ny}r>1 in N and sequence {ay }r>1 in M such that for all k > 1
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we have card(¢~!(ay)) = ng. Using a similar method described in Lemma 2.2,
consider (z4)a<r € D with:
T a=apk>1,
To = .
@ 0 otherwise .

Then |loy((Za)a<r)|? = £ % > ¥ 3 = 400, in particular 0,((2a)a<r) & €3(7)
k>1 k>1

which is in contradiction with (xa)o;T € D and completes the proof. O

2.1. Compact generalized shift operators. For normed vector spaces X,Y we
say the operator T : X — Y is a compact operator, if T(BX(0,1)) is a compact
subset of Y, where BX(0,1) = {z € X : ||z|| < 1} [3].

Theorem 2.8. The generalized shift operator o, : £2(7) — ¢2(7) is compact if and
only if 7 is finite.

Proof. If 7 is infinite, then by Theorem 2.2, {¢~!(a) : a < 7} \ {@} is a partition
of 7 to its finite subsets, thus there exists a one-to—one sequence {ay, },>1 in 7 such
that {¢p~!(an}n>1 is a sequence of nonempty finite and disjoint subsets of 7. For
all distinct n,m > 1 we have

o ((8a™)a<r) = 0 (0™ Jaxr )l = V2

$0 {0,(3(08")a<r) tn>1 (is a sequence in oy, (B((0)a<, 1))) without any converging

subsequence. Therefore o, (B((0)a<r, 1)) is not compact and o, : £2(1) — ¢*(7) is
not a compact operator.

On the other hand, if 7 is finite, then every linear operator on ¢2(7) is compact,
hence o, : £%(1) — ¢*(7) is a compact operator. O
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