IS THERE ANY NONTRIVIAL COMPACT GENERALIZED SHIFT OPERATOR ON HILBERT SPACES?

FATEMAH AYATOLLAH ZADEH SHIRAZI, FATEMEH EBRAHIMIFAR

ABSTRACT. In the following text for cardinal number $\tau > 0$, and self-map $\varphi: \tau \to \tau$ we show the generalized shift operator $\sigma_{\varphi}(\ell^2(\tau)) \subseteq \ell^2(\tau)$ (where $\sigma_{\varphi}((x_{\alpha})_{\alpha < \tau}) = (x_{\varphi(\alpha)})_{\alpha < \tau}$ for $(x_{\alpha})_{\alpha < \tau} \in \mathbb{C}^{\tau}$ if and only if $\varphi : \tau \to \tau$ is bounded and in this case $\sigma_{\varphi} \upharpoonright_{\ell^2(\tau)} : \ell^2(\tau) \to \ell^2(\tau)$ is continuous, consequently $\sigma_{\varphi} \upharpoonright_{\ell^2(\tau)} : \ell^2(\tau) \to \ell^2(\tau)$ is a compact operator if and only if τ is finite.

2010 Mathematics Subject Classification: 46C99 Keywords: Compact operator, Generalized shift, Hilbert space.

1. Preliminaries

The concept of generalized shifts has been introduced for the first time in [2] as a generalization of one-sided shift $\{1, \ldots, k\}^{\mathbb{N}} \to \{1, \ldots, k\}^{\mathbb{N}}$ and two-sided shift $(a_1, a_2, \cdots) \mapsto (a_2, a_3, \cdots)$

 $\{1,\ldots,k\}^{\mathbb{Z}} \to \{1,\ldots,k\}^{\mathbb{Z}}$ [10, 9]. Suppose K is a nonempty set with at least two

 $(a_n)_{n\in\mathbb{Z}}\mapsto(a_{n+1})_{n\in\mathbb{Z}}$ elements, Γ is a nonempty set, and $\varphi:\Gamma\to\Gamma$ is an arbitrary map, then we call $\sigma_{\varphi}: \overset{\Gamma}{\underset{(x_{\alpha})_{\alpha\in\Gamma}\mapsto(x_{\varphi(\alpha)})_{\alpha\in\Gamma}}{K^{\Gamma}}} K^{\Gamma}$ a generalized shift (for one-sided and two-sided shifts con-

sider $\varphi(n) = n + 1$). It's evident that for topological space $K, \sigma_{\varphi} : K^{\Gamma} \to K^{\Gamma}$ is continuous, where K^{Γ} is equipped by product topology.

For Hilbert space H there exists unique cardinal number τ such that H and $\ell^2(\tau)$ are isomorphic [4, 8]. All members of the collection $\{\ell^2(\tau): \tau \text{ is a non-zero cardi-}$ nal number} are Hilbert spaces, moreover for cardinal number τ and $(x_{\alpha})_{\alpha < \tau} \in \mathbb{K}^{\tau}$ (where $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ depending on our choice for real Hilbert spaces or Complex Hilbert spaces) we have $x = (x_{\alpha})_{\alpha < \tau} \in \ell^2(\tau)$ if and only if $||x||^2 := \sum_{\alpha < \tau} |x_{\alpha}|^2 < +\infty$. Moreover for $(x_{\alpha})_{\alpha < \tau}, (y_{\alpha})_{\alpha < \tau} \in \ell^2(\tau)$ let $\langle (x_{\alpha})_{\alpha < \tau}, (y_{\alpha})_{\alpha < \tau} \rangle = \sum_{\alpha < \tau} x_{\alpha} \overline{y_{\alpha}}$ (inner product). For $\varphi : \tau \to \tau$, one may consider $\sigma_{\varphi} : \mathbb{K}^{\tau} \to \mathbb{K}^{\tau}$ in particular we may study $\sigma_{\varphi} \upharpoonright_{\ell^2(\tau)} : \ell^2(\tau) \to \mathbb{K}^{\tau}$.

Convention. In the following text suppose $\tau > 1$ is a cardinal number and $\varphi: \tau \to \tau$ is arbitrary, we denote $\sigma_{\varphi} \upharpoonright_{\ell^2(\tau)} : \ell^2(\tau) \to \mathbb{K}^{\tau}$ simply by $\sigma_{\varphi}: \ell^2(\tau) \to \mathbb{K}^{\tau}$, and equip $\ell^2(\tau)$ with its usual inner product introduced in the above lines. Also for cardinal number ψ let (for properties of cardinal numbers and their arithmetic see [7]:

$$\psi^* := \begin{cases} \psi & \psi \text{ is finite ,} \\ +\infty & \text{otherwise .} \end{cases}$$

Moreover for $s \neq t$ let $\delta_s^t = 0$ and $\delta_s^s = 1$.

If X, Y are normed vector spaces, we say the linear map $S: X \to Y$ is an operator if it is continuous. We call (X,T) a linear dynamical system, if X is a normed vector space and $T: X \to X$ is an operator [5].

Let's recall that \mathbb{R} is the set of real numbers, \mathbb{C} is the set of complex numbers, and $\mathbb{N} = \{1, 2, \ldots\}$ is the set of natural numbers.

2. On generalized shift operators

In this section we show $\sigma_{\varphi}(\ell^2(\tau)) \subseteq \ell^2(\tau)$ (and $\sigma_{\varphi} : \ell^2(\tau) \to \ell^2(\tau)$ is continuous) if and only if $\varphi : \tau \to \tau$ is bounded. Moreover $\sigma_{\varphi}(\ell^2(\tau)) = \ell^2(\tau)$ if and only if $\varphi : \tau \to \tau$ is one-to-one.

Remark 2.1. We say $f : A \to A$ is bounded if there exists finite $n \ge 1$ such that for all $a \in A$ we have $\operatorname{card}(\varphi^{-1}(a)) \le n$ [6].

Theorem 2.2. The following statements are equivalent:

- 1. $\sigma_{\varphi}(\ell^2(\tau)) \subseteq \ell^2(\tau),$
- 2. $\varphi: \tau \to \tau$ is bounded,
- 3. $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is a linear continuous map.

Moreover in the above case we have $||\sigma_{\varphi}|| = \sqrt{\sup\{(\operatorname{card}(\varphi^{-1}(\alpha)))^* : \alpha \in \tau\}}$.

Proof. First note that for $x = (x_{\alpha})_{\alpha < \tau}$ we have

(*)
$$||\sigma_{\varphi}(x)||^{2} = \sum_{\alpha < \tau} |x_{\varphi(\alpha)}|^{2} = \sum_{\alpha < \tau} \left((\operatorname{card}(\varphi^{-1}(\alpha)))^{*} |x_{\alpha}|^{2} \right)$$

(where $0(+\infty) = (+\infty)0 = 0$).

"(1)
$$\Rightarrow$$
 (2)" Suppose $\sigma_{\varphi}(\ell^{2}(\tau)) \subseteq \ell^{2}(\tau)$, for $\theta < \tau$ we have $||(\delta^{\theta}_{\alpha})_{\alpha < \tau}|| = 1$ and:
 $||\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau})||^{2} = (\operatorname{card}(\varphi^{-1}(\theta)))^{*}$

by (*). Hence $(\delta^{\theta}_{\alpha})_{\alpha < \tau} \in \ell^2(\tau)$ and $\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau}) \in \sigma_{\varphi}(\ell^2(\tau)) \subseteq \ell^2(\tau)$, thus $\varphi^{-1}(\theta)$ is finite.

Thus $\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in \tau\}$ is a collection of finite cardinal numbers. If $\sup\{(\operatorname{card}(\varphi^{-1}(\alpha)))^* : \alpha \in \tau\} = +\infty$, then there exists a strictly increasing sequence $\{n_k\}_{k\geq 1}$ in \mathbb{N} and sequence $\{\alpha_k\}_{k\geq 1}$ in τ such that for all $k \geq 1$ we have $\operatorname{card}(\varphi^{-1}(\alpha_k)) = n_k$. Since $\{n_k\}_{k\geq 1}$ is a one-to-one sequence, $\{\alpha_k\}_{k\geq 1}$ is a one-to-one sequence too. Consider $(x_{\alpha})_{\alpha<\tau}$ with:

$$x_{\alpha} := \begin{cases} \frac{1}{k} & \alpha = \alpha_k, k \ge 1, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\sum_{\alpha < \tau} |x_{\alpha}|^2 = \sum_{k \ge 1} x_{\alpha_k}^2 = \sum_{k \ge 1} \frac{1}{k^2} < +\infty$ and $(x_{\alpha})_{\alpha < \tau} \in \ell^2(\tau)$. On the other hand by (*) we have $||\sigma_{\varphi}((x_{\alpha})_{\alpha < \tau})||^2 = \sum_{k \ge 1} \frac{n_k}{k^2} \ge \sum_{k \ge 1} \frac{1}{k} = +\infty$ (note that $n_k \ge k$ for all $k \ge 1$), in particular $\sigma_{\varphi}((x_{\alpha})_{\alpha < \tau}) \notin \ell^2(\tau)$ which leads to the contradiction $\sigma_{\varphi}(\ell^2(\tau)) \not\subseteq \ell^2(\tau)$. Therefore $\sup\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in \tau\}$ is finite and is a natural number.

"(2) \Rightarrow (3)" Suppose $n := \sup\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in \tau\}$ is finite. For all $x = (x_{\alpha})_{\alpha < \tau} \in \ell^{2}(\tau)$ we have:

$$||\sigma_{\varphi}(x)|| = \sqrt{\sum_{\alpha < \tau} \left(\left(\operatorname{card}(\varphi^{-1}(\alpha)) \right)^* |x_{\alpha}|^2 \right)} \le \sqrt{\sum_{\alpha < \tau} \left(n |x_{\alpha}|^2 \right)} = \sqrt{n} ||x||$$

which shows continuity of σ_{φ} and $||\sigma_{\varphi}|| \leq \sqrt{n}$. On the other hand, there exists $\theta < \tau$ with $\operatorname{card}(\varphi^{-1}(\theta) = n$. By $||(\delta^{\theta}_{\alpha})_{\alpha < \tau}|| = 1$ and (*) we have $||\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau})|| = \sqrt{n}$ which leads to $||\sigma_{\varphi}|| \geq \sqrt{n}$. By [1, Lemma 4.1] and [2], $\varphi: \tau \to \tau$ is one-to-one (resp. onto) if and only if $\sigma_{\varphi}: \mathbb{K}^{\tau} \to \mathbb{K}^{\tau}$ is onto (resp. one-to-one), however the following lemma deal with $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau).$

Lemma 2.3. The following statements are equivalent:

1. $\sigma_{\varphi}(\ell^{2}(\tau)) = \ell^{2}(\tau),$

2. $\sigma_{\varphi}(\ell^2(\tau))$ is a dense subset of $\ell^2(\tau)$,

3. $\varphi: \tau \to \tau$ is one-to-one.

In addition the following statements are equivalent too:

- i. $\sigma_{\varphi}: \ell^2(\tau) \to \mathbb{K}^{\tau}$ is one-to-one,
- ii. $\varphi: \tau \to \tau$ is onto.

Proof. "(2) \Rightarrow (3)" Suppose $\varphi : \tau \to \tau$ is not one-to-one, then there exists $\theta \neq \tau$ ψ with $\mu := \varphi(\theta) = \varphi(\psi)$. There exists $(y_{\alpha})_{\alpha < \tau} \in \ell^2(\tau)$ with $||\sigma_{\varphi}((y_{\alpha})_{\alpha < \tau}) - \varphi(\psi)| = \varphi(\psi)$.
$$\begin{split} |(\delta^{\theta}_{\alpha})_{\alpha<\tau}|| &< \frac{1}{4}, \text{ thus for all } \alpha < \tau \text{ we have } |y_{\varphi(\alpha)} - \delta^{\theta}_{\alpha}| < \frac{1}{4} \text{ in particular } |y_{\varphi(\psi)} - \delta^{\theta}_{\psi}| < \frac{1}{4} \text{ and } |y_{\varphi(\theta)} - \delta^{\theta}_{\theta}| < \frac{1}{4}, \text{ thus } |y_{\mu}| < \frac{1}{4} \text{ and } |y_{\mu} - 1| < \frac{1}{4}, \text{ which is a contradiction,} \end{split}$$
therefore $\varphi: \tau \to \tau$ is one-to-one.

"(3) \Rightarrow (1)" Suppose $\varphi: \tau \to \tau$ is one-to-one, then by Theorem 2.2, $\sigma_{\varphi}(\ell^2(\tau)) \subseteq$ $\ell^2(\tau)$. For $y = (y_\alpha)_{\alpha < \tau} \in \ell^2(\tau)$, define $x = (x_\alpha)_{\alpha < \tau}$ in the following way:

$$x_{\alpha} = \begin{cases} y_{\beta} & \alpha = \varphi(\beta), \beta < \tau ,\\ 0 & \alpha \in \tau \setminus \varphi(\tau) , \end{cases}$$

then ||x|| = ||y|| and $x \in \ell^2(\tau)$, moreover $\sigma_{\varphi}(x) = y$, which leads to $\sigma_{\varphi}(\ell^2(\tau)) =$ $\ell^2(\tau).$

In order to complete the proof we should prove that (i) and (ii) are equivalent however by [1, Lemma 4.1], (ii) implies (i), so we should just prove that (i) implies (ii).

"(i) \Rightarrow (ii)" Suppose φ : $\tau \rightarrow \tau$ is not onto and choose $\theta \in \tau \setminus \varphi(\tau)$. Then $(\delta^{\theta}_{\alpha})_{\alpha < \tau}, (0)_{\alpha < \tau}$ are two distinct elements of $\ell^2(\tau)$, however

$$\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau}) = \sigma_{\varphi}((0)_{\alpha < \tau}) = (0)_{\alpha < \tau}$$

and $\sigma_{\varphi}: \ell^2(\tau) \to \mathbb{K}^{\tau}$ is not one-to-one.

Corollary 2.4. The following statements are equivalent:

- 1. $\varphi: \tau \to \tau$ is bijective,
- 2. $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is bijective, 3. $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is an isomorphism,
- 4. $\sigma_{\omega}: \ell^2(\tau) \to \ell^2(\tau)$ is an isometry.

Proof. Using Lemma 2.3, (1) and (2) are equivalent. It's evident that (3) implies (2), moreover if $\varphi : \tau \to \tau$ is bijective, then by Theorem 2.2 two linear maps $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ and its inverse $\sigma_{\varphi^{-1}}: \ell^2(\tau) \to \ell^2(\tau)$ are continuous, hence (1) implies (3).

(1) implies (4), is evident by (*) in Theorem 2.2. In order to complete the proof, we should just prove that (4) implies (1).

"(4) \Rightarrow (1)" Suppose $\sigma_{\varphi} : \ell^2(\tau) \to \ell^2(\tau)$ is an isometry, then $\sigma_{\varphi} : \ell^2(\tau) \to \ell^2(\tau)$ is one-to-one and by Lemma 2.3, φ : $\tau \to \tau$ is onto. Moreover, $||\sigma_{\varphi}|| = 1$ since $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is an isometry. By Lemma 2.2 we have $1 = ||\sigma_{\varphi}||^2 =$ $\sup\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in \tau\}$, thus for all $\alpha < \tau$ we have $\operatorname{card}(\varphi^{-1}(\alpha)) \leq 1$ and $\varphi: \tau \to \tau$ is one-to-one.

Lemma 2.5. Let $\mathcal{D} = \{z \in \ell^2(\tau) : \sigma_{\varphi}(z) \in \ell^2(\tau)\}$ (consider \mathcal{D} with induced normed and topology of $\ell^2(\tau)$), then:

- 1. \mathcal{D} is a subspace of $\ell^2(\tau)$,
- 2. $\{\theta < \tau : \exists (z_{\alpha})_{\alpha < \tau} \in \mathcal{D} \ z_{\theta} \neq 0\} = \{\alpha < \tau : \varphi^{-1}(\alpha) \text{ is finite } \}.$

Proof. Since $\sigma_{\varphi} : \ell^2(\tau) \to \mathbb{K}^{\tau}$ is linear, we have immediately (1). 2) We have

(**)
$$||\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau})|| = \begin{cases} \sqrt{(\operatorname{card}(\varphi^{-1}(\theta)))^{*}} & \varphi^{-1}(\theta) \text{ is finite,} \\ +\infty & \varphi^{-1}(\theta) \text{ is infinite.} \end{cases}$$

Thus if $\varphi^{-1}(\theta)$ is finite we have $\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau}) \in \ell^{2}(\tau)$ and $(\delta^{\theta}_{\alpha})_{\alpha < \tau} \in \mathcal{D}$, which shows $\theta \in \{\beta < \tau : \exists (z_{\alpha})_{\alpha < \tau} \in \mathcal{D} \ z_{\beta} \neq 0\}.$ Therefore:

$$\{\alpha < \tau : \varphi^{-1}(\alpha) \text{ is finite }\} \subseteq \{\theta < \tau : \exists (z_{\alpha})_{\alpha < \tau} \in \mathcal{D} \ z_{\theta} \neq 0\}$$

Now for $\theta < \tau$ suppose there exists $(z_{\alpha})_{\alpha < \tau} \in \mathcal{D}$ with $z_{\theta} \neq 0$. Using the fact that \mathcal{D} is a subspace of $\ell^2(\tau)$ we may suppose $z_{\theta} = 1$, now we have (since $\sigma_{\varphi}(z) \in \ell^2(\tau)$):

$$||\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha<\tau})|| = ||\sigma_{\varphi}((z_{\alpha}\delta^{\theta}_{\alpha})_{\alpha<\tau})|| \le ||\sigma_{\varphi}(z)|| < +\infty,$$

by (**), $\varphi^{-1}(\theta)$ is finite, which completes the proof of (2).

Note 2.6. For $H \subseteq \tau$ the closure of subspace generated by $\{(\delta^{\theta}_{\alpha})_{\alpha < \tau} : \theta \in H\}$ (in $\ell^2(\tau)$) is $\{(x_\alpha)_{\alpha<\tau}\in\ell^2(\tau): \forall \alpha\notin H\ (x_\alpha=0)\}.$

Theorem 2.7. For $\mathcal{D} = \{z \in \ell^2(\tau) : \sigma_{\varphi}(z) \in \ell^2(\tau)\}$ as in Lemma 2.5 and M := $\{\alpha < \tau : \varphi^{-1}(\alpha) \text{ is finite }\}, \text{ the following statements are equivalent:}$

- 1. $\sigma_{\varphi} \upharpoonright_{\mathcal{D}} : \mathcal{D} \to \ell^2(\tau)$ is continuous,
- 2. there exists finite $n \ge 1$ with $\operatorname{card}(\varphi^{-1}(\alpha)) \le n$ for all $\alpha \in M$, 3. $\mathcal{D} = \{(x_{\alpha})_{\alpha < \tau} \in \ell^{2}(\tau) : \forall \theta \notin M \ x_{\theta} = 0\},$ 4. \mathcal{D} is a closed subspace of $\ell^{2}(\tau)$,

Proof. "(1) \Rightarrow (2)" Suppose $\sigma_{\varphi} \upharpoonright_{\mathcal{D}} : \mathcal{D} \to \ell^2(\tau)$ is continuous, consider $\theta < \tau$ with finite $\varphi^{-1}(\theta)$. By proof of item (2) in Lemma 2.5, $(\delta^{\theta}_{\alpha})_{\alpha < \tau} \in \mathcal{D}$ and $||\sigma_{\varphi}((\delta^{\theta}_{\alpha})_{\alpha < \tau})|| =$ $\sqrt{(\operatorname{card}(\varphi^{-1}(\theta)))^*}$, thus

$$+\infty > ||\sigma_{\varphi}|| \ge \sup\{\sqrt{(\operatorname{card}(\varphi^{-1}(\theta)))^*} : \theta \in M\}$$

"(2) \Rightarrow (1)" For $n := \sup\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in M\} < +\infty$ and $x = (x_{\alpha})_{\alpha < \tau} \in \mathcal{D}$ we have $||\sigma_{\varphi}(x)|| = \sqrt{\sum_{\alpha \in M} ((\operatorname{card}(\varphi^{-1}(\alpha)))^* |x_{\alpha}|^2)} \le \sqrt{\sum_{\alpha \in M} (n|x_{\alpha}|^2)} = \sqrt{n}||x||$ which shows continuity of $\sigma_{\varphi} \upharpoonright_{\mathcal{D}} : \mathcal{D} \to \ell^2(\tau)$.

"(3) \Rightarrow (4)" Note that for nonempty M, $\{(x_{\alpha})_{\alpha < \tau} \in \ell^2(\tau) : \forall \theta \notin M \ x_{\theta} = 0\}$ is just $\ell^2(M).$

"(4) \Rightarrow (3)" By proof and notations in Lemma 2.5, we have $\{(\delta^{\theta}_{\alpha})_{\alpha < \tau} : \theta \in M\} \subseteq \mathcal{D}.$ Use Note 2.6 to complete the proof.

"(2) \Rightarrow (3)" For $n := \sup\{\operatorname{card}(\varphi^{-1}(\alpha)) : \alpha \in M\} < +\infty \text{ and } x = (x_{\alpha})_{\alpha < \tau} \in \ell^{2}(\tau)$ with $x_{\alpha} = 0$ for all $\alpha \notin M$ we have $||\sigma_{\varphi}(x)|| \leq \sqrt{n}||x||$ which shows $x \in \mathcal{D}$ and $\{(x_{\alpha})_{\alpha < \tau} \in \ell^2(\tau) : \forall \theta \notin M \ x_{\theta} = 0\} \subseteq \mathcal{D}$. Using Lemma 2.5 we have $\mathcal{D} \subseteq \{ (x_{\alpha})_{\alpha < \tau} \in \ell^2(\tau) : \forall \theta \notin M \ x_{\theta} = 0 \}.$

"(3) \Rightarrow (2)" If sup{(card($\varphi^{-1}(\alpha)$))* : $\alpha \in M$ } = + ∞ , then there exists a strictly increasing sequence $\{n_k\}_{k\geq 1}$ in \mathbb{N} and sequence $\{\alpha_k\}_{k\geq 1}$ in M such that for all $k\geq 1$

we have $\operatorname{card}(\varphi^{-1}(\alpha_k)) = n_k$. Using a similar method described in Lemma 2.2, consider $(x_{\alpha})_{\alpha < \tau} \in \mathcal{D}$ with:

$$x_{\alpha} := \begin{cases} \frac{1}{k} & \alpha = \alpha_k, k \ge 1, \\ 0 & \text{otherwise}. \end{cases}$$

Then $||\sigma_{\varphi}((x_{\alpha})_{\alpha<\tau})||^2 = \sum_{k\geq 1} \frac{n_k}{k^2} \geq \sum_{k\geq 1} \frac{1}{k} = +\infty$, in particular $\sigma_{\varphi}((x_{\alpha})_{\alpha<\tau}) \notin \ell^2(\tau)$ which is in contradiction with $(x_{\alpha})_{\alpha<\tau} \in \mathcal{D}$ and completes the proof. \Box

2.1. Compact generalized shift operators. For normed vector spaces X, Y we say the operator $T : X \to Y$ is a compact operator, if $\overline{T(B^X(0,1))}$ is a compact subset of Y, where $B^X(0,1) = \{x \in X : ||x|| < 1\}$ [3].

Theorem 2.8. The generalized shift operator $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is compact if and only if τ is finite.

Proof. If τ is infinite, then by Theorem 2.2, $\{\varphi^{-1}(\alpha) : \alpha < \tau\} \setminus \{\emptyset\}$ is a partition of τ to its finite subsets, thus there exists a one-to-one sequence $\{\alpha_n\}_{n\geq 1}$ in τ such that $\{\varphi^{-1}(\alpha_n\}_{n\geq 1} \text{ is a sequence of nonempty finite and disjoint subsets of <math>\tau$. For all distinct $n, m \geq 1$ we have

$$||\sigma_{\varphi}((\delta_{\alpha}^{\alpha_n})_{\alpha<\tau}) - \sigma_{\varphi}((\delta_{\alpha}^{\alpha_m})_{\alpha<\tau})|| = \sqrt{2}$$

so $\{\sigma_{\varphi}(\frac{1}{2}(\delta_{\alpha}^{\alpha_n})_{\alpha<\tau})\}_{n\geq 1}$ (is a sequence in $\overline{\sigma_{\varphi}(B((0)_{\alpha<\tau},1))}$) without any converging subsequence. Therefore $\overline{\sigma_{\varphi}(B((0)_{\alpha<\tau},1))}$ is not compact and $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is not a compact operator.

On the other hand, if τ is finite, then every linear operator on $\ell^2(\tau)$ is compact, hence $\sigma_{\varphi}: \ell^2(\tau) \to \ell^2(\tau)$ is a compact operator.

References

- F. Ayatollah Zadeh Shirazi, D. Dikranjan, Set theoretical entropy: A tool to compute topological entropy, Proceedings ICTA 2011, Islamabad, Pakistan, July 4–10, 2011 (Cambridge Scientific Publishers), 2012, 11–32.
- [2] F. Ayatollah Zadeh Shirazi, N. Karami Kabir, F. Heidari Ardi, A Note on shift theory, Mathematica Pannonica, Proceedings of ITES-2007, 19/2 (2008), 187–195.
- [3] J. B. Conway, A course in abstract analysis, Graduate Studies in Mathematics, 141, American Mathematical Society, Providence, RI, 2012.
- [4] G. B. Folland, Real analysis: Modern techniques and their applications, Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication, 1999.
- [5] K.-G. Grosse-Erdmann, A. Peris Manguillot, *Linear chaos*, Universitext, Springer, 2011.
- [6] A. Giordano Bruno, Algebraic entropy of generalized shifts on direct products, Communications in Algebra, 38, no. 11 (2010), 4155–4174.
- [7] M. Holz, K. Steffens, E. Weitz, Introduction to cardinal arithmetic, Birkhuser Advanced Texts: Basler Lehrbcher, Birkhuser Verlag, Basel, 1999.
- [8] E. Kreyszig, Introductory functional analysis with applications, Wiley Classics Library. John Wiley & Sons, Inc., 1989.
- [9] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math., 4 (1970), 337–352.
- [10] P. Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer-Verlag, 1982.

Fatemah Ayatollah Zadeh Shirazi, Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Enghelab Ave., Tehran, Iran (*e-mail:* fatemah@khayam.ut.ac.ir)

Fatemeh Ebrahimifar, Faculty of Mathematics, Statistics and Computer Science, College of Science, University of Tehran , Enghelab Ave., Tehran, Iran (*e-mail*: ebrahimifar64@ut.ac.ir)