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Abstract

Let R be a commutative ring with non-zero identity. The cozero-divisor graph of

R, denoted by Γ′(R), is a graph with vertices in W ∗(R), which is the set of all non-zero

and non-unit elements of R, and two distinct vertices a and b in W ∗(R) are adjacent

if and only if a 6∈ Rb and b 6∈ Ra. In this paper, we show that the cozero-divisor graph

of a von Neumann regular ring with finite clique number is not only weakly perfect

but also perfect. Also, an explicit formula for the clique number is given.

1 Introduction

The cozero-divisor graphs associated with commutative rings, as the dual notion of

zero-divisor graphs, was first introduced by Afkhami and Khashyarmanesh in [2], where

they investigated some fundamental properties on the structure of this graph and the re-

lation between cozero-divisor and zero-divisor graphs. Study of the complement of cozero-

divisor graphs and characterization of commutative rings with forest, star, double-star

or unicyclic cozero-divisor graphs were made bay the same authors in [3]. Planar, out-

erplanar and ring graph cozero-divisor graphs may be found in [4]. Akbari et al. gave

∗Key Words: Cozero-divisor graph; Von Neumann regular ring; Clique number; Chromatic number;

Perfect graph.

2010 Mathematics Subject Classification: 05C69; 13A15; 13E05; 16E50.

1

http://arxiv.org/abs/1804.07922v1


further results on rings with forest cozero-divisor graphs and diameter of cozero-divisor

graphs associated with R[x] and R[[x]] (see [6]). The cozero-divisor graph has also been

studied in several other papers (e.g., [5, 7, 8, 12]). In this paper, we deal with the coloring

cozero-divisor graphs problem. Interested readers may find some methods in coloring of

graphs associated with rings in [1, 13]. First we recall some terminology and notation.

Throughout this paper, all rings are assumed to be commutative with identity. We

denote by Max(R), U(R), W (R) and Nil(R), the set of all maximal ideals of R, the set

of all invertible elements of R, the set of all non-unit elements of R and the set of all

nilpotent elements of R, respectively. For a subset T of a ring R we let T ∗ = T \ {0}. The

ring R is said to be reduced if it has no non-zero nilpotent element. The ring R is called

von Neumann regular if for every r ∈ R, there exists an s ∈ R such that r = r2s. The

krull dimension of R, denoted by dim(R), is the supremum of the lengths of all chains

of prime ideals. For any undefined notation or terminology in ring theory, we refer the

reader to [9].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and E = E(G) is the

set of edges. By G, we mean the complement graph of G. We write u−v, to denote an edge

with ends u, v. If U ⊆ V (G), then by N(U) we mean the set of all neighbors of U in G. A

graph H = (V0, E0) is called a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover, H is called

an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and E0 = {{u, v} ∈ E |u, v ∈ V0}.

Also G is called a null graph if it has no edge. A clique of G is a maximal complete

subgraph of G and the number of vertices in the largest clique of G, denoted by ω(G),

is called the clique number of G. For a graph G, let χ(G) denote the vertex chromatic

number of G, i.e., the minimal number of colors which can be assigned to the vertices of

G in such a way that every two adjacent vertices have different colors. A graph G is said

to be weakly perfect if ω(G) = χ(G). A perfect graph G is a graph in which every induced

subgraph is weakly perfect. For any undefined notation or terminology in graph theory,

we refer the reader to [14].

Let R be a commutative ring with nonzero identity. The cozero-divisor graph of R,

denoted by Γ′(R), is a graph with the vertex set W ∗(R) and two distinct vertices a and

b in W ∗(R) are adjacent if and only if a 6∈ Rb and b 6∈ Ra. In this paper, it is shown

that the cozero-divisor graph of a von Neumann regular ring with finite clique number is

weakly perfect. Moreover, an explicit formula for the clique number is given. Finally, we
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strengthen this result; Indeed it is proved that this graph is perfect.

2 Clique and Chromatic Number of Γ′(R)

Let R be a von Neumann regular ring and ω(Γ′(R)) < ∞. The main of this section is to

show that ω(Γ′(R)) = χ(Γ′(R)) =
( n
[n/2]

)

, where n = |Min(R)|. First, we need a series of

lemma.

Lemma 2.1 Let R be a ring. If ω(Γ′(R)) < ∞, then R is a Noetherian ring.

Proof. It is enough to show that every ideal of R is finitely generated. Suppose to the

contrary, there exists an ideal I of R which is generate by the set (xi)i∈Λ, where |Λ| = ∞

and it is not generate by the set (xi)i∈Υ, where Υ = Λ\{i}, for every i ∈ Λ. Thus xi 6∈ Rxj
and xj 6∈ Rxi, for every two distinct elements i, j ∈ Λ. Hence the set (xi)i∈Λ is a clique

of Γ′(R) and so ω(Γ′(R)) = ∞, which is a contradiction. Therefore, every ideal of R is

finitely generated. �

Lemma 2.2 Let R be a von Neumann regular ring. If ω(Γ′(R)) < ∞, then R ∼=

F1 × · · · × Fn, where every Fi is a field and |Min(R)| = n.

Proof. By [11, Theorem 3.1], R is a reduced ring and dim(R) = 0. Moreover, by

Lemma 2.1, R is a Noetherian ring. Thus R is a reduced Artinian ring. The result now

follows from [9, Theorem 8.7]. �

Lemma 2.3 Let R be a ring. Then the following statements are equivalent.

(1) a− b is an edge of Γ′(R).

(2) Ra * Rb and Rb * Ra.

Proof. It is straightforward. �

Lemma 2.4 Let R be a ring and x, y ∈ V (Γ′(R)) such that Ra = Rb. Then N(a) =

N(b).

Proof. Suppose that c ∈ N(a). By Lemma 2.3, Ra * Rc and Rc * Ra. Since

Ra = Rb, we deduce that Rb * Rc and Rc * Rb and thus by Lemma 2.3, c ∈ N(b). Hence

N(a) ⊆ N(b). Similarly, N(b) ⊆ N(a), as desired. �
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Lemma 2.5 Let 2 ≤ n < ∞ be an integer and R = Z2 × · · · × Z2 (n times). Then

ω(Γ′(R)) = χ(Γ′(R)) =

(

n

[n/2]

)

.

Proof. Let x = (x1, . . . , xn) ∈ V (Γ′(R)). Obviously, xi = 0 for some i ∈ {1, . . . , n}.

Let NZC(x) be the number zero xi’s in x, for every x = (x1, . . . , xn) ∈ V (Γ′(R)). Clearly,

1 ≤ NZC(x) ≤ n− 1, for every x = (x1, . . . , xn) ∈ V (Γ′(R)). For every 1 ≤ i ≤ n− 1, let

Ai = {x = (x1, . . . , xn) ∈ V (Γ′(R))| NZC(x) = i}.

It is easily seen that V (Γ′(R)) = ∪n−1
i=1 Ai and Ai ∩ Aj = ∅, for every i 6= j and so

{A1, . . . , An−1} is a partition of V (Γ′(R)). We show that Γ′(R)[Ai] is a complete (induced)

subgraph of Γ′(R), for every 1 ≤ i ≤ n− 1. Let x = (x1 . . . , xn), y = (y1, . . . , yn) ∈ Ai, for

some 1 ≤ i ≤ n− 1 and x 6= y. Since NZC(x) = NZC(y), there exist 1 ≤ i 6= j ≤ n such

that xi = 0, yi = 1 and xj = 1, yj = 0. This implies that x 6∈ Ry and y 6∈ Rx and so x

and y are adjacent. Hence Γ′(R)[Ai] is a complete (induced) subgraph of Γ′(R), for every

1 ≤ i ≤ n − 1. Furthermore, |Ai| =
(n
i

)

, for every 1 ≤ i ≤ n and |At| ≥ |Ai|, for every

1 ≤ i ≤ n − 1, where t = [n/2]. Let i 6= j and i < j < t. Then |Ai| ≤ |Aj | and for every

x ∈ Ai there exists a vertex y ∈ Aj such that Ry ⊆ Rx. Thus by Lemma 2.3, x is not

adjacent to y (by replacing one of the zero components of y ∈ Aj by 1, we have x ∈ Ai).

Hence

ω(Γ′(R)[∪t
i=1Ai]) = χ(Γ′(R)[∪t

i=1Ai]) =

(

n

t

)

.

Similarly,

ω(Γ′(R)[∪n−1
i=t Ai]) = χ(Γ′(R)[∪n−1

i=t Ai]) =

(

n

t

)

.

Indeed, there are enough colors in Γ′(R)[At] to color Γ′(R). Thus

ω(Γ′(R) = χ(Γ′(R)) =

(

n

t

)

.

�

Remark 2.1 Let G be a graph and x ∈ V (G). If there exists a vertex y ∈ V (G) which

is not adjacent to x and N(x) = N(y), then ω(G) = ω(G \ {x}) and χ(G) = χ(G \ {x}).

We are now in a position to state our main result of this section.
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Theorem 2.1 Let R be a von Neumann regular ring and |Min(R)| = n. If |ω(Γ′(R))| <

∞, then

ω(Γ′(R)) = χ(Γ′(R)) =

(

n

[n/2]

)

.

Proof. By Lemma 2.2, R ∼= F1×· · ·×Fn, where Fi is a field, for every 1 ≤ i ≤ n < ∞.

Let

A = {(x1, . . . , xn) ∈ V (Γ′(R))| xi ∈ {0, 1} for every 1 ≤ i ≤ n}.

Consider the following claims:

Claim 1. ω(Γ′(R)[A]) = ω(Γ′(R)) and χ(Γ′(R)[A]) = χ(Γ′(R)).

Suppose that x = (x1, . . . , xn) and y = (y1, . . . , yn) are vertices of Γ′(R). Define

the relation ∼ on V (Γ′(R)) as follows: x ∼ y, whenever “xi = 0 if and only if yi =

0”, for every 1 ≤ i ≤ n. Obviously, ∼ is an equivalence relation on V (Γ′(R)). Thus

V (Γ′(R)) = ∪2n−2
i=1 [x]i, where [x]i is the equivalence class of xi (We note that the number

of equivalence classes is 2n − 2). Let [x] be a equivalence class of x. Then |[x] ∩ A| = 1

and so one may choose a ∈ [x] ∩ A and b ∈ [x] \ {a}. Since Ra = Rb, by Lemma 2.4,

N(a) = N(b). By Remark 3.1, ω(Γ′(R)) = ω(Γ′(R) \ {b}) and χ(Γ′(R)) = χ(Γ′(R) \ {b}).

If we continue this procedure for |V (Γ′(R))\A| times, then we get ω(Γ′(R)[A]) = ω(Γ′(R))

and χ(Γ′(R)[A]) = χ(Γ′(R)).

Claim 2. ω(Γ′(R)[A]) = ω(Γ′(S)) and χ(Γ′(R)[A]) = χ(Γ′(S)), where S = Z2×· · ·×Z2

(n times).

Let x = (x1, . . . , xn) ∈ S \ {0, 1} and y = (y1, . . . , yn) ∈ A. Consider the map ϕ :

S \ {0, 1} −→ A defined by the rule ϕ(x) = y, whenever xi = 0 if and only if yi = 0. It

is not hard to check that ϕ is well-defined, bijective and if x, y ∈ S \ {0, 1} such that x

is adjacent y, then ϕ(x) is adjacent ϕ(y). This implies that Γ′(S) ∼= Γ′(R)[A] and thus

ω(Γ′(R)[A]) = ω(Γ′(S)) and χ(Γ′(R)[A]) = χ(Γ′(S)).

By Claims 1,2 and Lemma 2.5,

ω(Γ′(R)) = χ(Γ′(R)) = ω(Γ′(R)[A]) = χ(Γ′(R)[A]) = ω(Γ′(S)) = χ(Γ′(S)) =

(

n

[n/2]

)

.

�

We close this section with the following proposition.

Proposition 2.1 Let R be a ring which is not an integral domain. If |ω(Γ′(R))| < ∞,

then Γ′(R) is a null graph if and only if (R,m) is local ring and m is principal.
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Proof. First, suppose that Γ′(R) is a null graph. If R is not local, then one may

choose x ∈ m1 \m2 and y ∈ m2 \m1, where m1,m2 ∈ Max(R). Since x is not adjacent to

y, we find a contradiction. Thus (R,m) is local ring. Also, by a similar argument to the

proof of Lemma 2.1, one may show that m is principal.

To prove the converse, suppose that (R,m) is a local ring and m is principal. We show

that dim(R) = 0. It is enough to show that m ∈ Min(R). Assume that p ⊆ m, for some

p ∈ Min(R). Since R is not an integral domain, p 6= (0) and so we may pick 0 6= a ∈ p.

Since m is principal, m = Rx, for some x ∈ R. If x ∈ p, then p = m and thus dim(R) = 0.

So let x 6∈ p. Since p ⊆ m, a = r1x for some r1 ∈ R. Also x 6∈ p implies that r1 ∈ p

and thus r1 = r2x, for some r2 ∈ R. Hence a = r2x
2 and so a ∈ m2. If we continue

this procedure, then a ∈ mn, for every positive integer n. Therefore a ∈ ∩∞

n=1m
n. This,

together with [9, Corolary 10.19] imply that a = 0, a contradiction. Hence p = m and so

dim(R) = 0. Since R is Noetherian with dim(R) = 0, R is an Artinian local ring. Finally,

by [9, Proposition 8.8], every ideal of R is principal and hence Γ′(R) is a null graph. �

3 Perfectness of Γ′(R)

Let R be a von Neumann regular ring and ω(Γ′(R)) < ∞. In this section, we show that

Γ′(R) is a perfect graph. We begin with the following celebrate result.

Lemma 3.1 ([10] The Strong Perfect Graph Theorem) A graph G is perfect if and

only if neither G nor G contains an induced odd cycle of length at least 5.

Theorem 3.1 Let R = Z2 × · · · × Z2 (n times). Then Γ′(R) is perfect.

Proof. By Lemma 3.1, it is enough to prove the following claims.

Claim 1. Γ′(R) contains no induced odd cycle of length at least 5. Assume to the

contrary,

a1 − a2 − · · · − an − a1

is an induced odd cycle of length at least 5 in Γ′(R).

By Lemma 2.3, either Ra1 ⊆ Ra3 or Ra3 ⊆ Ra1. We show that these two cases lead

to contradictions. First assume that the case Ra1 ⊆ Ra3 happens. We continue the proof

by proving the following subclaims.

Subclaim 1. Ra1 ⊆ Rai, for every 3 ≤ i ≤ n− 1.

Clearly, Ra1 ⊆ Ra3. By Lemma 2.3, Ra1 ⊆ Ra4 or Ra4 ⊆ Ra1. If Ra4 ⊆ Ra1,

then Ra4 ⊆ Ra3, a contradiction, by Lemma 2.3. So Ra1 ⊆ Ra4. Again, by Lemma
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2.3, Ra1 ⊆ Ra5 or Ra5 ⊆ Ra1. If Ra5 ⊆ Ra1, then since Ra1 ⊆ Ra4, Ra5 ⊆ Ra4, a

contradiction. Thus Ra1 ⊆ Ra5. Similarly, Ra1 ⊆ Rai, for every 6 ≤ i ≤ n− 1.

Subclaim 2. Ra2 ⊆ Rai, for every 4 ≤ i ≤ n. Obviously, Ra1 ⊆ Ra4, by the

Subclaim 1. By Lemma 2.3, Ra2 ⊆ Ra4 or Ra4 ⊆ Ra2. If Ra4 ⊆ Ra2, then Ra1 ⊆ Ra2, a

contradiction. So Ra2 ⊆ Ra4. Next, we show that Ra2 ⊆ Ra5. If Ra5 ⊆ Ra2, then since

Ra2 ⊆ Ra4, we deduce that Ra5 ⊆ Ra4, a contradiction. Therefore Ra2 ⊆ Ra5. Similarly,

Ra2 ⊆ Rai, for every 6 ≤ i ≤ n.

Now, using Subclaims 1 and 2, we show that Ra3 ⊆ Ra1. By Lemma 2.3, Ra3 ⊆ Ra5
or Ra5 ⊆ Ra3. If Ra5 ⊆ Ra3, then by Subclaim 2, Ra2 ⊆ Ra3, a contradiction. Thus

Ra3 ⊆ Ra5. We show that Ra3 ⊆ Ra6. If Ra6 ⊆ Ra3, then by Subcase 2, Ra2 ⊆ Ra3,

a contradiction. So Ra3 ⊆ Ra6. Similarly, Ra3 ⊆ Rai, for every 7 ≤ i ≤ n. Since

Ra1 ⊆ Ra3, Ra1 ⊆ Rai, for every 5 ≤ i ≤ n, i.e., Ra1 ⊆ Ran, a contradiction. Thus

Ra3 ⊆ Ra1 and this contradicts Subclaim 1. Therefore, Γ′(R) contains no induced odd

cycle of length at least 5.

Claim 2. Γ′(R) contains no induced odd cycle of length at least 5. Assume to the

contrary,

a1 − a2 − · · · − an − a1

is an induced odd cycle of length at least 5 in Γ′(R). By Lemma 2.3, we may assume that

Ra1 ⊆ Ra2. If Ra2 ⊆ Ra3, then Ra1 ⊆ Ra3, a contradiction. Thus

Ra1 ⊆ Ra2,

Ra3 ⊆ Ra2.

If Ra4 ⊆ Ra3, then Ra4 ⊆ Ra2, a contradiction. Hence Ra3 ⊆ Ra4. If Ra4 ⊆ Ra5, then

Ra3 ⊆ Ra4 implies that Ra3 ⊆ Ra5, a contradiction. Thus

Ra3 ⊆ Ra4,

Ra5 ⊆ Ra4.

Since n is odd, by continuing this procedure, we find

Ran−2 ⊆ Ran−1,

Ran ⊆ Ran+1 = Ra1.

This implies that Ran ⊆ Ra1 and since Ra1 ⊆ Ra2, Ran ⊆ Ra2, a contradiction. There-

fore, Γ′(R) contains no induced odd cycle of length at least 5.
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The proof now is complete. �

Remark 3.1 Let G be a graph and x ∈ V (G). If there exists a vertex y ∈ V (G) which

is not adjacent to x and N(x) = N(y), then G is perfect if and only if G \ {x} is perfect.

We close this paper with the following result.

Theorem 3.2 Let R be a von Neumann regular ring and ω(Γ′(R)) < ∞. Then Γ′(R)

is a perfect graph.

Proof. Since |ω(Γ′(R))| < ∞, it follows from Lemma 2.2 that R ∼= F1 × · · · × Fn,

where Fi is a field, for every 1 ≤ i ≤ n < ∞. Let

A = {(x1, . . . , xn) ∈ V (Γ′(R))| xi ∈ {0, 1} for every 1 ≤ i ≤ n}.

By Lemma 2.4 and Remark 3.1, it is not hard to check that Γ′(R) is perfect graph if and

only if Γ′(R)[A] is perfect. In fact if

a1 − a2 − · · · − an − a1

is an induced odd cycle of length at least 5 in Γ′(R) or Γ′(R), then Rai 6= Raj, for every

1 ≤ i, j ≤ n, i 6= j. By the proof of Theorem 2.1, we find that Γ′(R)[A] ∼= Γ′(S), where

S = Z2 × · · · × Z2 (n times). Thus Γ′(R) is perfect if and only if Γ′(S) is perfect. The

result now follows from Lemma 3.1. �
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