Coloring of cozero-divisor graphs of commutative von Neumann regular rings[∗]

R. NIKANDISH^a, M.J. NIKMEHR^b and M. Bakhtyiari^b

^aDepartment of Basic Sciences, Jundi-Shapur University of Technology,

P.O. BOX 64615-334, Dezful, Iran

r.nikandish@jsu.ac.ir

 Δ^b Faculty of Mathematics, K.N. Toosi University of Technology, P.O. BOX 16315-1618, Tehran, Iran nikmehr@kntu.ac.ir m.bakhtyiari55@gmail.com

Abstract

Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by $\Gamma'(R)$, is a graph with vertices in $W^*(R)$, which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in $W^*(R)$ are adjacent if and only if $a \notin Rb$ and $b \notin Ra$. In this paper, we show that the cozero-divisor graph of a von Neumann regular ring with finite clique number is not only weakly perfect but also perfect. Also, an explicit formula for the clique number is given.

1 Introduction

The cozero-divisor graphs associated with commutative rings, as the dual notion of zero-divisor graphs, was first introduced by Afkhami and Khashyarmanesh in [\[2\]](#page-7-0), where they investigated some fundamental properties on the structure of this graph and the relation between cozero-divisor and zero-divisor graphs. Study of the complement of cozerodivisor graphs and characterization of commutative rings with forest, star, double-star or unicyclic cozero-divisor graphs were made bay the same authors in [\[3\]](#page-7-1). Planar, outerplanar and ring graph cozero-divisor graphs may be found in [\[4\]](#page-7-2). Akbari et al. gave

[∗]Key Words: Cozero-divisor graph; Von Neumann regular ring; Clique number; Chromatic number; Perfect graph.

²⁰¹⁰ Mathematics Subject Classification: 05C69; 13A15; 13E05; 16E50.

further results on rings with forest cozero-divisor graphs and diameter of cozero-divisor graphs associated with $R[x]$ and $R[[x]]$ (see [\[6\]](#page-8-0)). The cozero-divisor graph has also been studied in several other papers (e.g., $[5, 7, 8, 12]$ $[5, 7, 8, 12]$ $[5, 7, 8, 12]$ $[5, 7, 8, 12]$). In this paper, we deal with the coloring cozero-divisor graphs problem. Interested readers may find some methods in coloring of graphs associated with rings in $[1, 13]$ $[1, 13]$. First we recall some terminology and notation.

Throughout this paper, all rings are assumed to be commutative with identity. We denote by $\text{Max}(R)$, $U(R)$, $W(R)$ and $\text{Nil}(R)$, the set of all maximal ideals of R, the set of all invertible elements of R , the set of all non-unit elements of R and the set of all nilpotent elements of R, respectively. For a subset T of a ring R we let $T^* = T \setminus \{0\}$. The ring R is said to be *reduced* if it has no non-zero nilpotent element. The ring R is called von Neumann regular if for every $r \in R$, there exists an $s \in R$ such that $r = r^2s$. The krull dimension of R, denoted by $\dim(R)$, is the supremum of the lengths of all chains of prime ideals. For any undefined notation or terminology in ring theory, we refer the reader to [\[9\]](#page-8-5).

Let $G = (V, E)$ be a graph, where $V = V(G)$ is the set of vertices and $E = E(G)$ is the set of edges. By \overline{G} , we mean the complement graph of G. We write $u-v$, to denote an edge with ends u, v. If $U \subseteq V(G)$, then by $N(U)$ we mean the set of all neighbors of U in G. A graph $H = (V_0, E_0)$ is called a *subgraph of G* if $V_0 \subseteq V$ and $E_0 \subseteq E$. Moreover, H is called an induced subgraph by V_0 , denoted by $G[V_0]$, if $V_0 \subseteq V$ and $E_0 = \{\{u, v\} \in E \mid u, v \in V_0\}$. Also G is called a *null graph* if it has no edge. A *clique* of G is a maximal complete subgraph of G and the number of vertices in the largest clique of G, denoted by $\omega(G)$, is called the *clique number* of G. For a graph G, let $\chi(G)$ denote the vertex chromatic number of G , i.e., the minimal number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. A graph G is said to be weakly perfect if $\omega(G) = \chi(G)$. A perfect graph G is a graph in which every induced subgraph is weakly perfect. For any undefined notation or terminology in graph theory, we refer the reader to [\[14\]](#page-8-6).

Let R be a commutative ring with nonzero identity. The cozero-divisor graph of R, denoted by $\Gamma'(R)$, is a graph with the vertex set $W^*(R)$ and two distinct vertices a and b in $W^*(R)$ are adjacent if and only if $a \notin Rb$ and $b \notin Ra$. In this paper, it is shown that the cozero-divisor graph of a von Neumann regular ring with finite clique number is weakly perfect. Moreover, an explicit formula for the clique number is given. Finally, we strengthen this result; Indeed it is proved that this graph is perfect.

2 Clique and Chromatic Number of $\Gamma'(R)$

Let R be a von Neumann regular ring and $\omega(\Gamma'(R)) < \infty$. The main of this section is to show that $\omega(\Gamma'(R)) = \chi(\Gamma'(R)) = \binom{n}{\lfloor n/2 \rfloor}$, where $n = |\text{Min}(R)|$. First, we need a series of lemma.

Lemma 2.1 Let R be a ring. If $\omega(\Gamma'(R)) < \infty$, then R is a Noetherian ring.

Proof. It is enough to show that every ideal of R is finitely generated. Suppose to the contrary, there exists an ideal I of R which is generate by the set $(x_i)_{i\in\Lambda}$, where $|\Lambda| = \infty$ and it is not generate by the set $(x_i)_{i\in\Upsilon}$, where $\Upsilon = \Lambda \setminus \{i\}$, for every $i \in \Lambda$. Thus $x_i \notin Rx_j$ and $x_j \notin Rx_i$, for every two distinct elements $i, j \in \Lambda$. Hence the set $(x_i)_{i \in \Lambda}$ is a clique of $\Gamma'(R)$ and so $\omega(\Gamma'(R)) = \infty$, which is a contradiction. Therefore, every ideal of R is finitely generated.

Lemma 2.2 Let R be a von Neumann regular ring. If $\omega(\Gamma'(R)) < \infty$, then $R \cong$ $F_1 \times \cdots \times F_n$, where every F_i is a field and $|\text{Min}(R)| = n$.

Proof. By [\[11,](#page-8-7) Theorem 3.1], R is a reduced ring and $\dim(R) = 0$. Moreover, by Lemma [2.1,](#page-2-0) R is a Noetherian ring. Thus R is a reduced Artinian ring. The result now follows from [\[9,](#page-8-5) Theorem 8.7].

Lemma 2.3 Let R be a ring. Then the following statements are equivalent.

- (1) $a b$ is an edge of $\Gamma'(R)$.
- (2) $Ra \nsubseteq Rb$ and $Rb \nsubseteq Ra$.

Proof. It is straightforward. □

Lemma 2.4 Let R be a ring and $x, y \in V(\Gamma'(R))$ such that $Ra = Rb$. Then $N(a) =$ $N(b)$.

Proof. Suppose that $c \in N(a)$. By Lemma [2.3,](#page-2-1) $Ra \nsubseteq Rc$ and $Rc \nsubseteq Ra$. Since $Ra = Rb$, we deduce that $Rb \nsubseteq Rc$ and $Rc \nsubseteq Rb$ and thus by Lemma [2.3,](#page-2-1) $c \in N(b)$. Hence $N(a) \subseteq N(b)$. Similarly, $N(b) \subseteq N(a)$, as desired.

Lemma 2.5 Let $2 \leq n < \infty$ be an integer and $R = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ (n times). Then

$$
\omega(\Gamma'(R)) = \chi(\Gamma'(R)) = \binom{n}{[n/2]}
$$

.

Proof. Let $x = (x_1, \ldots, x_n) \in V(\Gamma'(R))$. Obviously, $x_i = 0$ for some $i \in \{1, \ldots, n\}$. Let $NZC(x)$ be the number zero x_i 's in x, for every $x = (x_1, \ldots, x_n) \in V(\Gamma'(R))$. Clearly, $1 \leq NZC(x) \leq n-1$, for every $x = (x_1, \ldots, x_n) \in V(\Gamma'(R))$. For every $1 \leq i \leq n-1$, let

$$
A_i = \{x = (x_1, ..., x_n) \in V(\Gamma'(R)) | \ NZC(x) = i\}.
$$

It is easily seen that $V(\Gamma'(R)) = \bigcup_{i=1}^{n-1} A_i$ and $A_i \cap A_j = \emptyset$, for every $i \neq j$ and so $\{A_1, \ldots, A_{n-1}\}\$ is a partition of $V(\Gamma'(R))$. We show that $\Gamma'(R)[A_i]$ is a complete (induced) subgraph of $\Gamma'(R)$, for every $1 \leq i \leq n-1$. Let $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in A_i$, for some $1 \leq i \leq n-1$ and $x \neq y$. Since $NZC(x) = NZC(y)$, there exist $1 \leq i \neq j \leq n$ such that $x_i = 0$, $y_i = 1$ and $x_j = 1$, $y_j = 0$. This implies that $x \notin Ry$ and $y \notin Rx$ and so x and y are adjacent. Hence $\Gamma'(R)[A_i]$ is a complete (induced) subgraph of $\Gamma'(R)$, for every $1 \leq i \leq n-1$. Furthermore, $|A_i| = {n \choose i}$ $\binom{n}{i}$, for every $1 \leq i \leq n$ and $|A_t| \geq |A_i|$, for every $1 \leq i \leq n-1$, where $t = [n/2]$. Let $i \neq j$ and $i < j < t$. Then $|A_i| \leq |A_j|$ and for every $x \in A_i$ there exists a vertex $y \in A_j$ such that $Ry \subseteq Rx$. Thus by Lemma [2.3,](#page-2-1) x is not adjacent to y (by replacing one of the zero components of $y \in A_i$ by 1, we have $x \in A_i$). Hence

$$
\omega(\Gamma'(R)[\cup_{i=1}^{t} A_i]) = \chi(\Gamma'(R)[\cup_{i=1}^{t} A_i]) = \binom{n}{t}.
$$

Similarly,

$$
\omega(\Gamma'(R)[\cup_{i=t}^{n-1}A_i]) = \chi(\Gamma'(R)[\cup_{i=t}^{n-1}A_i]) = \binom{n}{t}
$$

Indeed, there are enough colors in $\Gamma'(R)[A_t]$ to color $\Gamma'(R)$. Thus

$$
\omega(\Gamma'(R) = \chi(\Gamma'(R)) = \binom{n}{t}.
$$

.

Remark 2.1 Let G be a graph and $x \in V(G)$. If there exists a vertex $y \in V(G)$ which is not adjacent to x and $N(x) = N(y)$, then $\omega(G) = \omega(G \setminus \{x\})$ and $\chi(G) = \chi(G \setminus \{x\})$.

We are now in a position to state our main result of this section.

Theorem 2.1 Let R be a von Neumann regular ring and $|\text{Min}(R)| = n$. If $|\omega(\Gamma'(R))|$ < ∞ , then

$$
\omega(\Gamma'(R)) = \chi(\Gamma'(R)) = \binom{n}{[n/2]}.
$$

Proof. By Lemma [2.2,](#page-2-2) $R \cong F_1 \times \cdots \times F_n$, where F_i is a field, for every $1 \leq i \leq n < \infty$. Let

$$
A = \{(x_1, \dots, x_n) \in V(\Gamma'(R)) | \ x_i \in \{0, 1\} \text{ for every } 1 \le i \le n\}.
$$

Consider the following claims:

Claim 1. $\omega(\Gamma'(R)[A]) = \omega(\Gamma'(R))$ and $\chi(\Gamma'(R)[A]) = \chi(\Gamma'(R))$.

Suppose that $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ are vertices of $\Gamma'(R)$. Define the relation ~ on $V(\Gamma'(R))$ as follows: $x \sim y$, whenever " $x_i = 0$ if and only if $y_i =$ 0", for every $1 \leq i \leq n$. Obviously, \sim is an equivalence relation on $V(\Gamma'(R))$. Thus $V(\Gamma'(R)) = \bigcup_{i=1}^{2^n-2} [x]_i$, where $[x]_i$ is the equivalence class of x_i (We note that the number of equivalence classes is $2^{n} - 2$). Let [x] be a equivalence class of x. Then $||x| \cap A| = 1$ and so one may choose $a \in [x] \cap A$ and $b \in [x] \setminus \{a\}$. Since $Ra = Rb$, by Lemma [2.4,](#page-2-3) $N(a) = N(b)$. By Remark [3.1,](#page-7-5) $\omega(\Gamma'(R)) = \omega(\Gamma'(R) \setminus \{b\})$ and $\chi(\Gamma'(R)) = \chi(\Gamma'(R) \setminus \{b\})$. If we continue this procedure for $|V(\Gamma'(R)) \setminus A|$ times, then we get $\omega(\Gamma'(R)[A]) = \omega(\Gamma'(R))$ and $\chi(\Gamma'(R)[A]) = \chi(\Gamma'(R)).$

Claim 2. $\omega(\Gamma'(R)[A]) = \omega(\Gamma'(S))$ and $\chi(\Gamma'(R)[A]) = \chi(\Gamma'(S))$, where $S = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ $(n \times).$

Let $x = (x_1, \ldots, x_n) \in S \setminus \{0, 1\}$ and $y = (y_1, \ldots, y_n) \in A$. Consider the map φ : $S \setminus \{0,1\} \longrightarrow A$ defined by the rule $\varphi(x) = y$, whenever $x_i = 0$ if and only if $y_i = 0$. It is not hard to check that φ is well-defined, bijective and if $x, y \in S \setminus \{0, 1\}$ such that x is adjacent y, then $\varphi(x)$ is adjacent $\varphi(y)$. This implies that $\Gamma'(S) \cong \Gamma'(R)[A]$ and thus $\omega(\Gamma'(R)[A]) = \omega(\Gamma'(S))$ and $\chi(\Gamma'(R)[A]) = \chi(\Gamma'(S)).$

By Claims 1,2 and Lemma [2.5,](#page-2-4)

$$
\omega(\Gamma'(R)) = \chi(\Gamma'(R)) = \omega(\Gamma'(R)[A]) = \chi(\Gamma'(R)[A]) = \omega(\Gamma'(S)) = \chi(\Gamma'(S)) = \binom{n}{[n/2]}.
$$

We close this section with the following proposition.

Proposition 2.1 Let R be a ring which is not an integral domain. If $|\omega(\Gamma(R))| < \infty$, then $\Gamma'(R)$ is a null graph if and only if (R, \mathfrak{m}) is local ring and \mathfrak{m} is principal.

Proof. First, suppose that $\Gamma'(R)$ is a null graph. If R is not local, then one may choose $x \in \mathfrak{m}_1 \setminus \mathfrak{m}_2$ and $y \in \mathfrak{m}_2 \setminus \mathfrak{m}_1$, where $\mathfrak{m}_1, \mathfrak{m}_2 \in \text{Max}(R)$. Since x is not adjacent to y, we find a contradiction. Thus (R, \mathfrak{m}) is local ring. Also, by a similar argument to the proof of Lemma [2.1,](#page-2-0) one may show that m is principal.

To prove the converse, suppose that (R, \mathfrak{m}) is a local ring and \mathfrak{m} is principal. We show that $\dim(R) = 0$. It is enough to show that $\mathfrak{m} \in \text{Min}(R)$. Assume that $\mathfrak{p} \subseteq \mathfrak{m}$, for some $\mathfrak{p} \in \text{Min}(R)$. Since R is not an integral domain, $\mathfrak{p} \neq (0)$ and so we may pick $0 \neq a \in \mathfrak{p}$. Since m is principal, $\mathfrak{m} = Rx$, for some $x \in R$. If $x \in \mathfrak{p}$, then $\mathfrak{p} = \mathfrak{m}$ and thus $\dim(R) = 0$. So let $x \notin \mathfrak{p}$. Since $\mathfrak{p} \subseteq \mathfrak{m}$, $a = r_1x$ for some $r_1 \in R$. Also $x \notin \mathfrak{p}$ implies that $r_1 \in \mathfrak{p}$ and thus $r_1 = r_2x$, for some $r_2 \in R$. Hence $a = r_2x^2$ and so $a \in \mathfrak{m}^2$. If we continue this procedure, then $a \in \mathfrak{m}^n$, for every positive integer n. Therefore $a \in \bigcap_{n=1}^{\infty} \mathfrak{m}^n$. This, together with [\[9,](#page-8-5) Corolary 10.19] imply that $a = 0$, a contradiction. Hence $\mathfrak{p} = \mathfrak{m}$ and so $\dim(R) = 0$. Since R is Noetherian with $\dim(R) = 0$, R is an Artinian local ring. Finally, by [\[9,](#page-8-5) Proposition 8.8], every ideal of R is principal and hence $\Gamma'(R)$ is a null graph. \square

3 Perfectness of $\Gamma'(R)$

Let R be a von Neumann regular ring and $\omega(\Gamma'(R)) < \infty$. In this section, we show that $\Gamma'(R)$ is a perfect graph. We begin with the following celebrate result.

Lemma 3.1 ([\[10\]](#page-8-8) The Strong Perfect Graph Theorem) A graph G is perfect if and only if neither G nor \overline{G} contains an induced odd cycle of length at least 5.

Theorem 3.1 Let $R = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ (*n* times). Then $\Gamma'(R)$ is perfect.

Proof. By Lemma [3.1,](#page-5-0) it is enough to prove the following claims.

Claim 1. $\Gamma'(R)$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
a_1-a_2-\cdots-a_n-a_1
$$

is an induced odd cycle of length at least 5 in $\Gamma'(R)$.

By Lemma [2.3,](#page-2-1) either $Ra_1 \subseteq Ra_3$ or $Ra_3 \subseteq Ra_1$. We show that these two cases lead to contradictions. First assume that the case $Ra_1 \subseteq Ra_3$ happens. We continue the proof by proving the following subclaims.

Subclaim 1. $Ra_1 \subseteq Ra_i$, for every $3 \leq i \leq n-1$.

Clearly, $Ra_1 \subseteq Ra_3$. By Lemma [2.3,](#page-2-1) $Ra_1 \subseteq Ra_4$ or $Ra_4 \subseteq Ra_1$. If $Ra_4 \subseteq Ra_1$, then $Ra_4 \subseteq Ra_3$, a contradiction, by Lemma [2.3.](#page-2-1) So $Ra_1 \subseteq Ra_4$. Again, by Lemma [2.3,](#page-2-1) $Ra_1 \subseteq Ra_5$ or $Ra_5 \subseteq Ra_1$. If $Ra_5 \subseteq Ra_1$, then since $Ra_1 \subseteq Ra_4$, $Ra_5 \subseteq Ra_4$, a contradiction. Thus $Ra_1 \subseteq Ra_5$. Similarly, $Ra_1 \subseteq Ra_i$, for every $6 \le i \le n-1$.

Subclaim 2. $Ra_2 \subseteq Ra_i$, for every $4 \leq i \leq n$. Obviously, $Ra_1 \subseteq Ra_4$, by the Subclaim 1. By Lemma [2.3,](#page-2-1) $Ra_2 \subseteq Ra_4$ or $Ra_4 \subseteq Ra_2$. If $Ra_4 \subseteq Ra_2$, then $Ra_1 \subseteq Ra_2$, a contradiction. So $Ra_2 \subseteq Ra_4$. Next, we show that $Ra_2 \subseteq Ra_5$. If $Ra_5 \subseteq Ra_2$, then since $Ra_2 \subseteq Ra_4$, we deduce that $Ra_5 \subseteq Ra_4$, a contradiction. Therefore $Ra_2 \subseteq Ra_5$. Similarly, $Ra_2 \subseteq Ra_i$, for every $6 \leq i \leq n$.

Now, using Subclaims 1 and 2, we show that $Ra_3 \subseteq Ra_1$. By Lemma [2.3,](#page-2-1) $Ra_3 \subseteq Ra_5$ or $Ra_5 \subseteq Ra_3$. If $Ra_5 \subseteq Ra_3$, then by Subclaim 2, $Ra_2 \subseteq Ra_3$, a contradiction. Thus $Ra_3 \subseteq Ra_5$. We show that $Ra_3 \subseteq Ra_6$. If $Ra_6 \subseteq Ra_3$, then by Subcase 2, $Ra_2 \subseteq Ra_3$, a contradiction. So $Ra_3 \subseteq Ra_6$. Similarly, $Ra_3 \subseteq Ra_i$, for every $7 \leq i \leq n$. Since $Ra_1 \subseteq Ra_3$, $Ra_1 \subseteq Ra_i$, for every $5 \leq i \leq n$, i.e., $Ra_1 \subseteq Ra_n$, a contradiction. Thus $Ra_3 \subseteq Ra_1$ and this contradicts Subclaim 1. Therefore, $\Gamma'(R)$ contains no induced odd cycle of length at least 5.

Claim 2. $\overline{\Gamma'(R)}$ contains no induced odd cycle of length at least 5. Assume to the contrary,

$$
a_1-a_2-\cdots-a_n-a_1
$$

is an induced odd cycle of length at least 5 in $\Gamma'(R)$. By Lemma [2.3,](#page-2-1) we may assume that $Ra_1 \subseteq Ra_2$. If $Ra_2 \subseteq Ra_3$, then $Ra_1 \subseteq Ra_3$, a contradiction. Thus

$$
Ra_1 \subseteq Ra_2,
$$

$$
Ra_3 \subseteq Ra_2.
$$

If $Ra_4 \subseteq Ra_3$, then $Ra_4 \subseteq Ra_2$, a contradiction. Hence $Ra_3 \subseteq Ra_4$. If $Ra_4 \subseteq Ra_5$, then $Ra_3 \subseteq Ra_4$ implies that $Ra_3 \subseteq Ra_5$, a contradiction. Thus

$$
Ra_3 \subseteq Ra_4,
$$

$$
Ra_5 \subseteq Ra_4.
$$

Since n is odd, by continuing this procedure, we find

$$
Ra_{n-2} \subseteq Ra_{n-1},
$$

$$
Ra_n \subseteq Ra_{n+1} = Ra_1.
$$

This implies that $Ra_n \subseteq Ra_1$ and since $Ra_1 \subseteq Ra_2$, $Ra_n \subseteq Ra_2$, a contradiction. Therefore, $\overline{\Gamma'(R)}$ contains no induced odd cycle of length at least 5.

The proof now is complete.

Remark 3.1 Let G be a graph and $x \in V(G)$. If there exists a vertex $y \in V(G)$ which is not adjacent to x and $N(x) = N(y)$, then G is perfect if and only if $G \setminus \{x\}$ is perfect.

We close this paper with the following result.

Theorem 3.2 Let R be a von Neumann regular ring and $\omega(\Gamma'(R)) < \infty$. Then $\Gamma'(R)$ is a perfect graph.

Proof. Since $|\omega(\Gamma'(R))| < \infty$, it follows from Lemma [2.2](#page-2-2) that $R \cong F_1 \times \cdots \times F_n$, where F_i is a field, for every $1 \leq i \leq n < \infty$. Let

$$
A = \{(x_1, \dots, x_n) \in V(\Gamma'(R)) | \ x_i \in \{0, 1\} \text{ for every } 1 \le i \le n\}.
$$

By Lemma [2.4](#page-2-3) and Remark [3.1,](#page-7-5) it is not hard to check that $\Gamma'(R)$ is perfect graph if and only if $\Gamma'(R)[A]$ is perfect. In fact if

$$
a_1-a_2-\cdots-a_n-a_1
$$

is an induced odd cycle of length at least 5 in $\overline{\Gamma'(R)}$ or $\Gamma'(R)$, then $Ra_i \neq Ra_j$, for every $1 \le i, j \le n, i \ne j$. By the proof of Theorem [2.1,](#page-3-0) we find that $\Gamma'(R)[A] \cong \Gamma'(S)$, where $S = \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2$ (*n* times). Thus $\Gamma'(R)$ is perfect if and only if $\Gamma'(S)$ is perfect. The result now follows from Lemma [3.1.](#page-5-1)

References

- [1] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr and F. Shaveisi. On the coloring of the annihilating-ideal graph of a commutative ring, Discrete. Math. 312 (2012) 2620–2626.
- [2] M. Afkhami, K. Khashyarmanesh, The cozero-divisor graph of a commutative ring, Southeast Asian Bull. Math. 35 (2011) 753–762.
- [3] M. Afkhami, K. Khashyarmanesh, On the cozero-divisor graphs of commutative rings and their complements, Bull. Malays. Math. Sci. Soc. 35 (2012) 935-944.
- [4] M. Afkhami, M. Farrokhi D. G., K. Khashyarmanesh, Planar, outerplanar and ring graph cozero-divisor graphs. Ars Comb. 131 (2017) 397–406.
- [5] M. Afkhami, K. Khashyarmanesh, On the cozero-divisor graphs of and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013) 1250173 [9 pages].
- [6] S. Akbari, F. Alizadeh, S. Khojasteh, Some results on Cozero-divisor graph of a commutative ring, J. Algebra Appl. 13 (2014) 1350113 [14 pages].
- [7] S. Akbari, S. Khojasteh, Commutative rings whose cozero-divisor graphs unicyclic or of bounded degree, Comm. Algebra 42 (2013) 1594–1605.
- [8] H. Ansari-Toroght, F. Farshadifar, Sh.Habibi, The cozero-divisor graph relative to finitely generated modules, Miskolc Mathematical Notes 14 (2013) 749-756.
- [9] M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
- [10] R. Diestel, Graph Theory, NY, USA: Springer-Verlag, 2000.
- [11] J. A. Huckaba, Commutative Rings With Zero Divisors, 2nd ed., Prentice Hall, Upper Saddle River (1988).
- [12] S. Kavitha, R. Kala, On the genus of graphs from commutative rings, AKCE International Journal of Graphs and Combinatorics, 14 (2017) 27–34.
- [13] H. R. Maimani, M. R. Pournaki, S. Yassemi, A class of weakly perfect graphs, Czech. Math. Journal 60 (2010) 1037-1041.
- [14] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River (2001).