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1. Introduction

Let p be an odd prime. A famous congruence due to Wilson (according
to Waring) states that [13, p.68]:

(1) (p − 1)! ≡ −1 (mod p).

This congruence was first formulated by Waring in 1770. The first proof
was given by Lagrange in 1771. In 1828, Dirichlet proved another related
congruence:

(2) (
p − 1

2
)! ≡ (−1)N (mod p),

where 4|p − 3 and N is the number of quadratic nonresidues less than p/2.
In 1900 Glaisher [10] extended Wilson’s theorem as follow:

(3) (p− 1)! ≡ pBp−1 − p (mod p2),

where Bn is the Bernoulli number. In 2000, Sun [26] went one step further
by showing

(4) (p− 1)! ≡
pB2p−2

2p− 2
−
pBp−1

p− 1
−

1

2
(
pBp−1

p− 1
)2 (mod p3).

Assume that p ≡ 1(mod 4), then by Fermat’s two square theorem, we have
p = a2+b2, where a can be uniquely determined by requiring a ≡ 1 (mod 4).
Another famous congruence, due to Gauss(1828) states that

(5)

(

(p− 1)/2

(p− 1)/4

)

≡ 2a (mod p).
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2 XIANZU LIN

The following extension of Gauss’s congruence was first conjectured by Beuk-
ers [3] and proved by Chowla, Dwork, Evans[6]:

(6)

(

(p − 1)/2

(p − 1)/4

)

≡
(

1 +
1

2
pqp(2)

)(

2a−
p

2a

)

(mod p2).

In 1837, Jacobi proved a congruence analogous to (5):

(7)

(

2(p − 1)/3

(p− 1)/3

)

≡ −r (mod p),

where p ≡ 1(mod 6), 4p = r2 + 27s2, and r ≡ 1(mod 3). Evans and Yeung
[33] independently extended Jacobi’ congruence to modulo p2 as follow:

(8)

(

2(p− 1)/3

(p − 1)/3

)

≡ −r +
p

r
(mod p2).

In 2010 Cosgrave and Dilcher further extended Gauss’ and Jacobi’ congru-
ences to modulo p3 [7] as follows:

(

(p− 1)/2

(p− 1)/4

)

≡
(

2a−
p

2a
−

p2

8a2

)

·(9)

(

1 +
1

2
qp(2)p −

1

8
qp(2)

2p2 +
1

4
Ep−3p

2
)

(mod p3)

(10)

(

2(p− 1)/3

(p − 1)/3

)

≡
(

− r +
p

r
+
p2

r3

)(

1 +
1

6
Bp−2(

1

3
)p2

)

(mod p3).

Later, (9) and (10) were extended to cover similar binomial coefficients by
Al-Shaghay and Dilcher[1].

In 1852, Wolstenholme proved his famous theorem[32] which states that
if p ≥ 5 is a prime, then

(11)

p−1
∑

k=1

1

k
≡ 0 (mod p2).

In the same paper, Wolstenholme also proved the following congruence:

(12)

p−1
∑

k=1

1

k2
≡ 0 (mod p).

In 1900, Glaisher gave the following generalizations of Wolstenholme’s
theorem [10, 11]:

(13)

p−1
∑

k=1

1

km
≡











m
m+1pBp−m−1 (mod p2) if m is even

−m(m+1)
2(m+2) p

2Bp−m−2 (mod p3) if m is odd

where m > 0 and p ≥ m+ 3,
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Since then, the above congruences have been extended by several authors
to modulo pk [10, 11, 18, 26, 29], and the multiple harmonic sums[14, 24,
25, 35, 36, 37].

Another form of Wolstenholme’s theorem, which can be easily deduced
from (11) is that:

(14)

(

2p − 1

p− 1

)

≡ 1 (mod p3).

Many extensions of (14) to modulo pk in terms of Bernoulli numbers or
harmonic sums have been obtained in [9, 10, 12, 21, 25, 29]. We refer the
readers to [20] for more references about various generalizations of Wolsten-
holme’s theorem.

Another classical congruence for binomial coefficient due to Morley (1895)
[22] is:

(15)

(

p− 1

(p − 1)/2

)

≡ (−1)(p−1)/24p−1 (mod p3).

For integer a with (a, p) = 1, set qp(a) = ap−1−1
p . In 1938, Lemher [18]

proved the following four congruences:

(16)

[p/2]
∑

k=1

1

k
≡ −2qp(2) + pqp(2)

2 (mod p2);

(17)

[p/3]
∑

k=1

1

p− 3k
≡

1

2
qp(3)−

1

4
pqp(3)

2 (mod p2);

(18)

[p/4]
∑

k=1

1

p− 4k
≡

3

4
q2 −

3

8
pqp(2)

2 (mod p2);

(19)

[p/6]
∑

k=1

1

p− 6k
≡

1

4
qp(3) +

1

3
qp(2) −

1

8
pqp(3)

2 −
1

6
pqp(2)

2
)

(mod p2),

and used them to derive congruences about
( p−1
[p/m]

)

for m = 2, 3, 4 or 6. In[5,

23, 26, 27], Morley’s and Lemher’s congruences are extended to congruences

for
( p−1
[p/m]

)

and
∑[p/m]

k=1
1
kn modulo pk.

Remark 1.1. Congruences (16) and (18) modulo p were given by Glaisher
[11], while congruence (16) and (17) modulo p were given proved by Lerch
[17].

There arises the following question:

Question 1.2. Can we extend the above congruences to modulo pk for ar-
bitrarily large k ?
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The first breakthrough in this direction is due to Washington [31], who
gave an explicit p-adic expansion of the sums

(20)

np
∑

k=1
(k,np)=1

1

km

in terms of p-adic L-functions. Washington’ expansions, together with Kum-
mer’s congruences for p-adic L-functions, immediately imply mod pk evalu-
ations of

∑p−1
k=1

1
km for arbitrarily large k.

In this paper, we give p-adic expansions for the sums of Lemher’s type

(21)

[np/r]
∑

k=1
(k,np)=1

1

km
,

where (r, np) = 1. It turn outs that many binomial coefficients also admit
nice expansions in terms of p-adic L-functions. As applications, we can
extend all the congruences mentioned above to modulo pk for arbitrarily
large k.

This paper is structured as follows: In Section 2, we give preliminaries
that will be used throughout this paper. In Section 3, we give a review of
Washington’s p-adic expansion of the power sums and its applications. In
Section 4, we give a similar p-adic expansion for the sums of Lemher’s type
and derive many corollaries. Sections 5 and 6 are devoted to extensions of
Gauss’s and Jacobi’s congruences, and Wilson’s theorem respectively.

2. preliminaries

The Bernoulli numbers Bn and the Bernoulli polynomials Bn(x) are de-
fined respectively by

(22)
z

ez − 1
=

∞
∑

n=0

Bnz
n/n!;

(23)
zexz

ez − 1
=

∞
∑

n=0

Bn(x)z
n/n!.

Thus B0(x) = 1, B1(x) = x− 1
2 , B2(x) = x2−x+ 1

6 , B3(x) = x3− 3
2x

2+ 1
2x,

B4(x) = x4 − 2x3 + x2 − 1
30 , etc.

From the above definitions, we have

(24) Bn(x) =

n
∑

r=0

(

n

r

)

Brx
n−r.

In particular, Bn(0) = Bn. Note that Bn = 0 whenever n > 1 is odd.
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For a Dirichlet character χ modulo m, the generalized Bernoulli numbers
Bn,χ are defined by

(25)

m
∑

a=1

χ(a)zeaz

emz − 1
=

∞
∑

n=0

Bn,χz
n/n!.

From the definitions, we have

(26) Bn,χ = mn−1
m
∑

a=1

χ(a)Bn(
a
m ).

For a Dirichlet character χ modulo m and a positive integer d, let χ′ be
the character modulo md induced by χ . Then we have

(27) Bn,χ′ = Bn,χ
∏

p|d,p prime

(1− χ(p)pn−1).

We need the following identity of power sums due to Szmidt, Urbanowicz
and Zagier [28]

Lemma 2.1. Let χ be a Dirichlet character modulo d and N be a multiple
of d. Let m and r be positive integers, with (r,N) = 1. Then

mrm−1

[N/r]
∑

n=1

χ(n)nm−1 = −Bm,χ +
χ(r)

ϕ(r)

∑

ψ

ψ(−N)Bm,χψ(N).

Now we recall definition and basic properties of p-adic L-functions and
refer the readers to [30] for more details.

Throughout this paper, p denotes an odd prime, and Zp and Z∗
p denote the

ring of p-adic integers and the group of invertible p-adic integers respectively.
The p-adic-valued Teichmüller character ω is defined as follows:

For an integer a with (a, p) = 1, ω(a) ∈ Zp is the p − 1-st root of unit
satisfying ω(a) ≡ a(mod p). Set 〈a〉 = ω(a)−1a

The p-adic exponential and logarithm functions are defined respectively
by

(28) exp(s) =

∞
∑

n=0

sn/n!,

(29) logp(1 + s) =

∞
∑

n=0

(−1)n+1sn/n,

for s ∈ pZp. As usual, we have exp(logp(1+s)) = 1+s and logp(exp(s)) = s,
and

(30) logp(1 + s) + logp(1 + t) = logp((1 + s)(1 + t)),

for s, t ∈ pZp.
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Let χ be a primitive Dirichlet character modulo d and let D be any
multiple of p and d. The p-adic L-function χ is defined by:

(31) Lp(s, χ) =
1

D

1

s− 1

D
∑

a=1
(a,p)=1

χ(a)〈a〉1−s
∞
∑

n=0

(

1− s

n

)

(Bn)(
D

a
)n,

where s ∈ Zp and

(32) 〈a〉1−s = exp((1− s)logp(〈a〉)) =
∞
∑

n=0

(

1− s

n

)

(〈a〉 − 1)n.

From the definition, we have, for n ≥ 1,

(33) Lp(1− n, χ) = −(1− χω−n(p)pn−1)
Bn,χω−n

n
.

By (33) it is easy to see that Lp(s, χ) is identically zero if χ(−1) = −1. We
note that Lp(s, χ) is analytic if χ 6= 1, and Lp(s,1) is analytic except for a
pole at s = 1 with residue (1− 1/p).

Lemma 2.2. p(1 − s)Lp(s,1) ∈ Zp for 0 6= s ∈ Zp. If χ is a nontrivial
primitive Dirichlet character modulo d, with p2 ∤ d, then Lp(s, χ) ∈ Zp for
s ∈ Zp.

Proof. The first assertion follows directly from the definition. For the second
assertion, see [30, Corollary 5.13]. �

The following congruences generalize the Kummer’s congruences for gen-
eralized Bernoulli numbers [30]:

Lemma 2.3. Let χ be a nontrivial primitive character modulo d, p2 ∤ d.
Then for integers k, s and t, with 0 < k < p− 2, we have

(34) Lp(s, χ) ≡ Lp(s+ pk−1t, χ) (mod pk),

and

(35) ∆k
tLp(s, χ) =

k
∑

i=0

(−1)i
(

k

i

)

Lp(s+ it, χ) ≡ 0 (mod pk),

where ∆t is the forward difference operator with increment t.

Proof. The first congruence follows from [30, Theorem 5.12]. Thus it suffices
to prove the second. We choose D in (31) such that p2 ∤ D. Then by
definition, Lp(s, χ) is an infinite sum of the terms

g(s,m, n) = χ(a)
1

D

1

s− 1

(

1− s

m

)(

1− s

n

)

(Bn)(〈a〉 − 1)m(
D

a
)n

where m + n > 0. If m + n > k, we have pk|g(s,m, n) for s ∈ Zp, hence

pk|∆k
t g(s,m, n). If m+n ≤ k, then g(s,m, n) is a polynomial in s of degree

less than k, hence ∆k
t g(s,m, n) = 0. �
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For a primitive character χ, and two positive integersm, k, withm < p−1,
set

Bp(m,k;χ) :=
k

∑

i=1

(−1)i
(

k

i

)

Bi(p−1)+1−m,χ

i(p − 1) + 1−m
,

and set Bp(m,k) = Bp(m,k;1). Then by Lemma 2.3 and (33), if m+ k ≤
p− 1 and p2 does not divide the conductor of χω1−m, we have

(36) Lp(m,χω
1−m) ≡ Bp(m,k;χ) ≡ −

Bpk−1(p−1)+1−m,χ

pk−1(p− 1) + 1−m
(mod pk).

3. Washington’s p-adic expansions of sums of powers

In[31], Washington gave the following p-adic expansions of harmonic sums

Theorem 3.1. Let p be an odd prime and let d, m be positive integers.
Then

(37)

dp
∑

k=1
(k,p)=1

1

km
= −

∞
∑

n=1

(

−m

n

)

Lp(m+ n, ω1−m−n)(dp)n.

Theorem 3.1 together with (36), immediately implies the following gen-
eralization of Wolstenholme’s Theorem:

Corollary 3.2. Let p, d, and m be as before. Let j be another positive
integer, with j +m ≤ p− 1. Then we have

(38)

dp
∑

k=1
(k,p)=1

1

km
≡ −

j−1
∑

n=1

(

−m

n

)

Bp(m+ n, j − n)(dp)n (mod pj),

and

(39)

dp
∑

k=1
(k,p)=1

1

km
≡

j−1
∑

n=1

−

(

−m

n

)

Bpj−n−1(p−1)+1−m−n

pj−n−1 +m+ n− 1
(dp)n (mod pj).

Now we give p-adic expansions of
(cp
dp

)

/
(c
d

)

for c > d > 0. Set

Hp(d;m) =

dp
∑

k=1
(k,p)=1

1

km
.

Theorem 3.3. For c > d > 0, we have

(40)

(

cp

dp

)

/

(

c

d

)

= exp
(

−
∞
∑

k=3

(ck − (c− d)k − dk)Lp(k, ω
1−k)pk/k

)

.
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Proof. By Corollary 3.2,

(

cp

dp

)

/

(

c

d

)

=

dp
∏

k=1
(k,p)=1

(1 + (c− d)p/k)

= exp
(

dp
∑

k=1
(k,p)=1

logp(1 +
(c− d)p

k
)
)

= exp
(

dp
∑

k=1
(k,p)=1

∞
∑

m=1

(−1)m−1 (c− d)mpm

mkm

)

= exp
(

∞
∑

m=1

(−1)m−1Hp(d;m)(c − d)mpm/m
)

= exp
(

∞
∑

m=1

∞
∑

n=1

(−1)m+n

(

m+ n− 1

n

)

Lp(m+ n, ω1−m−n)(c− d)mdnpm+n/m
)

= exp
(

−
∞
∑

k=3

k−1
∑

m=1

(

k

m

)

Lp(k, ω
1−k)(c− d)mdk−mpk/k

)

= exp
(

−
∞
∑

k=3

(ck − (c− d)k − dk)Lp(k, ω
1−k)pk/k

)

,

where the sixth = follows from the fact that Lp(k, ω
1−k) = 0 whenever k is

even. �

The above expansion in terms of Hp(d;m) or p-adic L-functions, together
with (36), covers many known congruence about binomial coefficients[2, 5,
9, 10, 12, 15, 21, 25, 29, 34]. By Theorem 3.3, we can easily write down a
mod p8 evaluation of

(

cp
dp

)

/
(

c
d

)

in terms of Bernoulli numbers:

Corollary 3.4. For p > 7, we have

(

cp

dp

)

/

(

c

d

)

≡ 1− (c2d− cd2)
Bp5−p4−2

p4 + 2
p3(41)

−(c4d− 2c3d2 + 2c2d3 − cd4)
Bp3−p2−4

p2 + 4
p5

−(c6d− 3c5d2 + 5c4d3 − 5c3d4 + 3c2d5 − cd6)
Bp−7

7
p7

+(c2d− cd2)2
B2
p2−p−2

2(p+ 2)2
p6 (mod p8)
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Next, we show that the mod pk evaluations of the homogeneous multiple
harmonic sums(HMHS)

(42) Mp(d,m;n) =
∑

1≤k1<···<kn<dp
(ki,p)=1

1

km1 · · · kmn
,

and

(43) Mp(d,m;n) =
∑

1≤k1≤···≤kn<dp

1

km1 · · · kmn
,

can also be reduced to that of Hp(d;m). Let t be an indeterminate, then
formally we have

1 +

dp
∑

n=1

Mp(d,m;n)tn=

dp
∏

k=1
(k,p)=1

(1 +
t

km
)(44)

=exp
(

dp
∑

k=1
(k,p)=1

log(1 +
t

km
)
)

=exp
(

dp
∑

k=1
(k,p)=1

∞
∑

j=1

(−1)j−1 tj

jkjm

)

=exp
(

∞
∑

j=1

(−1)j−1Hp(d;mj)
tj

j

)

.

Similarly we have

(45) 1 +

∞
∑

n=1

Mp(d,m;n)tn =

dp
∏

k=1
(k,p)=1

(1−
t

km
)−1 = exp

(

∞
∑

j=1

Hp(d;mj)
tj

j

)

.

Applying Corollary 3.2 to (44) and (45), we get the following congruences
which improve the previous results about HMHS [37].
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Corollary 3.5. For n > 1, p > mn+ 4, we have

Mp(d,m;n) ≡



































































































∑n−1
j=1

m2(mj+1)Bp−mj−2Bp−m(n−j)−1

2(mj+2)(mn−mj+1) d3p3

−
m(mn+1)Bp2−p−mn−1

2(p+mn+1) d2p2 (mod p4) if mn is odd

(−1)n
∑n−1

j=1
m2Bp−mj−1Bp−m(n−j)−1

2(mj+1)(mn−mj+1) d2p2

−(−1)n
mBp2−p−mn

p+mn dp (mod p3) if m is even

∑n−1
j=1

m2Bp−mj−1Bp−m(n−j)−1

2(mj+1)(mn−mj+1) d2p2

−
mBp2−p−mn

p+mn dp (mod p3) if m is odd and n is even

and

Mp(d,m;n) ≡



































































































−
∑n−1

j=1
m2(mj+1)Bp−mj−2Bp−m(n−j)−1

2(mj+2)(mn−mj+1) d3p3

−
m(mn+1)Bp2−p−mn−1

2(p+mn+1) d2p2 (mod p4) if mn is odd

∑n−1
j=1

m2Bp−mj−1Bp−m(n−j)−1

2(mj+1)(mn−mj+1) d2p2

+
mBp2−p−mn

p+mn dp (mod p3) if m is even

∑n−1
j=1

m2Bp−mj−1Bp−m(n−j)−1

2(mj+1)(mn−mj+1) d2p2

−
mBp2−p−mn

p+mn dp (mod p3) if m is odd and n is even

4. p-adic expansions of sums of Lemher’s type

This section is parallel to the previous section. First we generalize Wash-
ington’s p-adic expansions to cover the sums of Lemher’s type.
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Theorem 4.1. Let d, r, m be positive integers, with (r, dp) = 1. Then,
when m = 1,

[dp/r]
∑

k=1
(k,p)=1

1

k
= −

1

p

(

logpr
p−1 +

∑

q|r
q prime

logpq
p−1

q − 1

)

−(46)

r

ϕ(r)

∞
∑

n=0
fψ |r(ψ,n) 6=(1,0)

ψ(−dp)(−1)nd(ψ, r,−1 − n)Lp(1 + n,ψω−n)(dp)n,

and, when m > 1,

[dp/r]
∑

k=1
(k,p)=1

1

km
= Lp(m,ω

1−m)−(47)

rm

ϕ(r)

∑

fψ |r

ψ(−dp)

∞
∑

n=0

(

−m

n

)

d(ψ, r,−m − n)Lp(m+ n,ψω1−m−n)(dp)n,

where fψ is the conductor of primitive character ψ, and

d(ψ, r, n) =
∏

q| r
fψ

q prime

(1− ψ(q)qn).

Proof. Note that the term −1
p

(

logpr
p−1 +

∑

q|r
q prime

logpqp−1

q−1

)

in (46) is just

the value of

(

1− rs(p−1)
∏

q|r
q prime

1− q−1−s(p−1)

1− 1/q

)

/(s(p − 1))
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at s = 0. Hence it suffices to prove the following identity for m ≥ 1 and
s ∈ Zp:

[dp/r]
∑

k=1
(k,p)=1

1

km+s(p−1)
= Lp(m+ s(p− 1), ω1−m)

−
rm+s(p−1)

ϕ(r)

∑

fψ|r

ψ(−dp)

∞
∑

n=0

(

−m− s(p− 1)

n

)

d(ψ, r,−m − s(p− 1)− n)

Lp(m+ s(p− 1) + n,ψω1−m−n)(dp)n,

= (m+ s(p− 1)− 1)Lp(m+ s(p− 1), ω1−m)

(

1− rm+s(p−1)−1
∏

q|r
q prime

1−q−m−s(p−1)

1−1/q

)

(m+ s(p− 1)− 1)

−
rm+s(p−1)

ϕ(r)

∞
∑

n=0
fψ|r(ψ,n) 6=(1,0)

ψ(−dp)

(

−m− s(p− 1)

n

)

d(ψ, r,−m − s(p− 1)− n)

Lp(m+ s(p− 1) + n,ψω1−m−n)(dp)n,

where as(p−1) = (ap−1)s. It is easy to see that both sides are analytic on
Zp. We first prove the case m+s(p−1) is negative integer, and the theorem
follows by continuity. We note that for n > 0,

(

n− 1− s(p− 1)

n

)

Lp(1 + s(p− 1),1)|s=0 = −
1

n
(1−

1

p
).

By Lemma 2.1, when m < 0,

[dp/r]
∑

k=1
(k,p)=1

1

km

=

[dp/r]
∑

k=1

1

km
−

[d/r]
∑

k=1

1

pmkm

=−(1− p−m)
B−m+1

−m+ 1
+

rm

ϕ(r)
d(1, r,−1)

(
1− 1

p

−m+ 1

)

(dp)−m+1

+
rm

ϕ(r)

∑

ψ 6=1

fψ |r

ψ(−dp)
−m
∑

n=0

(

−m

n

)

d(ψ, r,−m − n)(1− ψ(p)p−m−n)
B−m−n+1,ψ

−m− n+ 1
c

=Lp(m,ω
1−m)−

rm

ϕ(r)
d(1, r,−1)(dp)−m+1

(

−m− s(p− 1)

−m+ 1

)

Lp(1 + s(p− 1),1)|s=0

−
rm

ϕ(r)

∑

fψ |r

ψ(−dp)
−m
∑

n=0

(

−m

n

)

d(ψ, r,−m − n)Lp(m+ n,ψω1−m−n)(dp)n.

Hence the theorem follows. �
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Combining Theorem 4.1 with (36), implies the following generalization of
Lemher’s congruences:

Corollary 4.2. Let p, d, r and m be as before. Assume that (ϕ(r), p) = 1.
Let j be another positive integer, with j +m ≤ p− 1. Then, when m = 1,

[dp/r]
∑

k=1
(k,p)=1

1

k
≡−

r

ϕ(r)

j−1
∑

n=0,
fψ |r,(ψ,n) 6=(1,0)

ψ(−dp)d(ψ, r,−1 − n)Bp(1 + n, j − n;ψ)(−dp)n

−
1

p

(

logpr
p−1 +

∑

q|r
q prime

logpq
p−1

q − 1

)

(mod pj),

and when m > 1,

[dp/r]
∑

k=1
(k,p)=1

1

km
≡−

rm

ϕ(r)

∑

fψ |r

ψ(−dp)

j−1
∑

n=0

(

−m

n

)

d(ψ, r,−m − n)Bp(m+ n, j − n;ψ)(dp)n

+Bp(m, j;1) (mod pj).

The above congruences remain valid if we replace some Bp(m,k;χ) with

−
B
pk−1(p−1)+1−m,χ

pk−1(p−1)+1−m
.

Let En(Euler numbers) be defined by

(48)
2ez

e2z + 1
=

∞
∑

n=0

Enz
n/n!.

Then it is easy to see that

(49)
Bn+1,η

n+ 1
= −

En
2

=

{

22n+1Bn+1(1/4)
n+1 if n is even

0 if n is odd

where η is the unique quadratic character module 4. Let r = 2, or 4 in
Corollary 4.2, we get

Corollary 4.3. Assume that (2, d) = 1 and j + m ≤ p − 1. Then, when
m > 1, we have

[dp/2]
∑

k=1
(k,p)=1

1

km
≡
Bpj−1(p−1)+1−m

pj−1 +m− 1

−

j−1
∑

n=0

(2m − 2−n)

(

−m

n

)

Bpj−n−1(p−1)+1−m−n

pj−n−1 +m+ n− 1
(dp)n (mod pj),
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and

[dp/4]
∑

k=1
(k,p)=1

1

km
≡
Bpj−1(p−1)+1−m

pj−1 +m− 1

−

j−1
∑

n=0

(22m−1 − 2m−n−1)

(

−m

n

)

Bpj−n−1(p−1)+1−m−n

pj−n−1 +m+ n− 1
(dp)n

+(−1)
dp−1
2 22m−2

j−1
∑

n=0

(

−m

n

)

Epj−n−1(p−1)−m−n(dp)
n (mod pj).

When m = 1, we have

[dp/2]
∑

k=1
(k,p)=1

1

k
≡−

2logp2
p−1

p
−

j−1
∑

n=1

(2− 2−n)
Bpj−n−1(p−1)−n

pj−n−1 + n
(−dp)n

≡2

j
∑

n=1

(−1)n
qp(2)

npn−1

n

−

j−1
∑

n=1

(2− 2−n)
Bpj−n−1(p−1)−n

pj−n−1 + n
(−dp)n (mod pj),

and

[dp/4]
∑

k=1
(k,p)=1

1

k
≡−

3logp2
p−1

p
−

j−1
∑

n=1

(2− 2−n)
Bpj−n−1(p−1)−n

pj−n−1 + n
(−dp)n

−(−1)
dp−1
2

j−1
∑

n=0

Epj−n−1(p−1)−n−1(dp)
n

≡3

j
∑

n=1

(−1)n
qp(2)

npn−1

n
−

j−1
∑

n=1

(2− 2−n)
Bpj−n−1(p−1)−n

pj−n−1 + n
(−dp)n

−(−1)
dp−1
2

j−1
∑

n=0

Epj−n−1(p−1)−n−1(dp)
n (mod pj);

Let p, d, r be as before and let c be a nonzero integer. Set

Hp(d, r;m) =

[dp/r]
∑

k=1
(k,p)=1

1

km
.

As in Section 3, we have the following p-adic expansion of
(cp+[dp/r]

[dp/r]

)

/
(c+[d/r]

[d/r]

)
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Theorem 4.4.
(

cp+ [dp/r]

[dp/r]

)

/

(

c+ [d/r]

[d/r]

)

== exp
(

∞
∑

m=1

(−1)m−1Hp(d, r;m)cmpm/m
)

= exp
(

− clogpr
p−1 − c

∑

q|r
q prime

logpq
p−1

q − 1

)

·

exp
(

∞
∑

k=3

Lp(k, ω
1−k)ckpk/k

)

·

exp
( −1

ϕ(r)

∞
∑

k=3

((cr + d)k − dk)d(1, r,−k)Lp(k, ω
1−k)pk/k)

)

·

exp
( −1

ϕ(r)

∑

ψ 6=1

fψ |r

ψ(dp)

∞
∑

k=1

((cr + d)k − dk)d(ψ, r,−k)Lp(k, ψω
1−k)pk/k)

)

The above expansion, together with (36), immediately implies many known

congruence about
(p−1
[p/r]

)

(r > 1) [5, 23, 26, 27]. For example, setting c = −1,

d = 1, r = 2, or 4 in Theorem 4.4, we get:

Corollary 4.5. For p > 7,

(−1)
p−1
2 4−p+1

(

p− 1
p−1
2

)

≡ 1 +
1

4

Bp5−p4−2

p4 + 2
p3 +

3

16

Bp3−p2−4

p2 + 4
p5

+
1

16

B2
p2−p−2

2(p+ 2)2
p6 +

9

64

Bp−7

7
p7 (mod p8).

Corollary 4.6. For p > 5,

(−1)[
p
4
]2−3p+3

(

p− 1

[p4 ]

)

≡ 1− (−1)
p−1
2 Ep4−p3−2p

2 +
15

4

Bp3−p2−2

p2 + 2
p3

−(−1)
p−1
2 5Ep2−p−4p

4 +
75

16
Bp−5p

5

1

2
(2Ep−3 − E2p−4)

2p4 − (−1)
p−1
2

5

4
Ep−3Bp−3p

5 (mod p6).

Finally, we consider the mod pk evaluations of the homogeneous multiple
harmonic sums of Lemher’s type

Mp(d, r,m;n) =
∑

1≤k1<···<kn<dp/r
(ki,p)=1

1

km1 · · · kmn
,

and

Mp(d, r,m;n) =
∑

1≤k1≤···≤kn<dp/r
(ki,p)=1

1

km1 · · · kmn
.
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As before we have

(50) 1 +

[dp/r]
∑

n=1

Mp(d, r,m;n)tn = exp(

∞
∑

j=1

(−1)j−1Hp(d, r;mj)
tj

j
),

and

(51) 1 +
∞
∑

n=1

Mp(d, r,m;n)tn = exp(
∞
∑

j=1

Hp(d, r;mj)
tj

j
).

Applying Corollary 4.2 to (50) and (51) we can deducemod pk evaluations of
Mp(d, r,m;n) andMp(d, r,m;n) for any k. The following are two examples:

Corollary 4.7. Assume that p > mn+4, and (d, 2) = 1, then when m > 1,
we have

Mp(d, 2,m;n) ≡



























































∑n−1
j=1

(2mj−2)(2m(n−j)− 1
2
)Bp−mjBp−m(n−j)−1

j2(mn−mj+1)
dp

−
(2mn−2)Bp2−p−mn+1

n(p+mn−1) (mod p2) if mn is odd

(−1)n
∑n−1

j=1
m2(2mj− 1

2
)(2m(n−j)− 1

2
)Bp−mj−1Bp−m(n−j)−1

2(mj+1)(mn−mj+1) d2p2

−(−1)n
m(2mn− 1

2
)Bp2−p−mn

p+mn dp (mod p3) if m is even

and, when m = 1, and n > 1 is odd we have

Mp(d, 2, 1;n) ≡

n−2
∑

j=2

(2j − 2)(2n−j − 1
2)Bp−jBp−n+j−1

j2(n− j + 1)
dp

+
qp(2)(2

n − 1)Bp−n
n

dp −
(2n − 2)Bp2−p−n+1

n(p+ n− 1)
(mod p2).

5. congruences of Gauss and Jacobi

In this section, we will give p-adic expansions of
((p−1)/2
(p−1)/4

)

(when 4|p − 1)

and
(2(p−1)/3
(p−1)/3

)

(when 3|p− 1), and hence full generalizations of congruences

of Gauss and Jacobi. First we introduce Morita’s p-adic gamma function.
For a positive integer k, set

(52) Γp(k) = (−1)k
k−1
∏

j=1
(j,p)=1

j.

Then Γp extends uniquely to a continuous function from Zp to Z∗
p[16]. Let

a, b, and m be positive integers satisfying p ≡ 1 (mod m), and a + b ≤ m.
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Then we have

(

(a+ b)(p − 1)/m

a(p− 1)/m

)

=

((a+b)(pk−1)/m
a(pk−1)/m

)(a(pk−1)/m
a(p−1)/m

)(b(pk−1)/m
b(p−1)/m

)

((a+b)(pk−1)/m
(a+b)(p−1)/m

)((a+b)(pk−p)/m
a(pk−p)/m

)

(53)

=
−Γp(1−

a+b
m )

Γp(1−
a
m)Γp(1−

b
m)

lim
k→∞

(a(pk−1)/m
a(p−1)/m

)(b(pk−1)/m
b(p−1)/m

)((a+b)(pk−1−1)/m
a(pk−1−1)/m

)

((a+b)(pk−1)/m
(a+b)(p−1)/m

)((a+b)(pk−p)/m
a(pk−p)/m

)

By (41) and (50), the above limit has a p-adic expansion. Now assume that
4|p− 1 and let a be as in congruence (5).

Theorem 5.1.
(

(p − 1)/2

(p − 1)/4

)

=
(

2a− 2a

∞
∑

j=1

1

j

(

2j − 2

j − 1

)

(
p

4a2
)j
)

exp
(1

2
logp2

p−1 +
∞
∑

k=2

Lp(k, ηω
1−k)pk/k)

)

,

where η is the unique quadratic character module 4.

Proof. We need the following expansion from [7, Corollary 1]

(54)
Γp(1−

1
2 )

Γp(1−
1
4)

2
= −2a+ 2a

∞
∑

j=1

1

j

(

2j − 2

j − 1

)

(
p

4a2
)j .

By Theorem 3.3, we have

lim
k→∞

((pk−p)/2
(pk−p)/4

)

((pk−1−1)/2
(pk−1−1)/4

)

= exp
(

∞
∑

k=3

(2−k − 2−2k+1)Lp(k, ω
1−k)pk/k)

)

,(55)

and by Theorem 4.4,

lim
k→∞

((pk−1)/4
(p−1)/4

)2

((pk−1)/2
(p−1)/2

)

= exp
(1

2
logp2

p−1 +

∞
∑

k=3

(2−k − 2−2k+1)Lp(k, ω
1−k)pk/k

)

·

exp
(

∞
∑

k=2

Lp(k, ηω
1−k)pk/k)

)

Hence

lim
k→∞

((pk−1)/4
(p−1)/4

)2((pk−1−1)/2
(pk−1−p)/4

)

((pk−1)/2
(p−1)/2

)((pk−p)/2
(pk−p)/4

)

= exp
(1

2
logp2

p−1 +
∞
∑

k=2

Lp(k, ηω
1−k)pk/k)

)

,

and the theorem follows. �

Now assume that 3|p− 1 and let a be as in congruence (7). Using exactly
the same proof, we get
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Theorem 5.2.
(

2(p − 1)/3

(p− 1)/3

)

=
(

− r + r
∞
∑

j=1

1

j

(

2j − 2

j − 1

)

(
p

r2
)j
)

·

exp
(

∞
∑

k=3

(1− 2k−1)(1 − 3−k)Lp(k, ω
1−k)pk/k

)

·

exp
(

∞
∑

k=2

(1 + 2k−1)Lp(k, φω
1−k)pk/k)

)

,

where φ is the unique quadratic character module 3.

Remark 5.3. Using the p-adic expansions of
−Γp(1−

a+b
m

)

Γp(1−
a
m
)Γp(1−

b
m
)
(m=4,6,8)

obtained in [1], we can give similar expansions for
((a+b)(p−1)/m

a(p−1)/m

)

(m=4,6,8).

6. Wilson’s theorem and related congruences

In this section, we show how to get the mod pk evaluations of (p − 1)!,

and (p−1
2 )! (when 4|p − 3) and (p−1

4 )!4 (when 4|p − 1), and hence full gen-
eralizations of Wilson’s theorem and related congruences. By (30), we have
for m < p,

logp(−(p − 1)!) =
1

p− 1
logp(p− 1)!p−1(56)

=
1

p− 1

p−1
∑

k=1

logp(1 + (kp−1 − 1))

=
1

p− 1

p−1
∑

k=1

∞
∑

n=1

(−1)n−1(kp−1 − 1)n/n

≡
1

p− 1

m−1
∑

n=1

−1

n

n
∑

j=0

(−1)j
(

n

j

) p−1
∑

k=1

kj(p−1)

≡
1

p− 1

m−1
∑

n=1

1

n

(

n
∑

j=1

(−1)j−1
(n
j

)

j(p − 1) + 1

j(p−1)
∑

k=0

(

j(p − 1) + 1

k + 1

)

Bj(p−1)−kp
k+1

)

+
m−1
∑

n=1

−1

n
(mod pm)

From the above expansion, we can deduce mod pm evaluations of (p− 1)!
for any m > 0. But when m > 4, the congruence would be too complicated
to be written down. Thus we will only work out the case m = 4. Set

Vp,i =
pBi(p−1)

p−1 − 1.
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Lemma 6.1.

(57) Vp,i ≡ 0 (mod p),

(58) 2Vp,1 − Vp,2 ≡ 3Vp,2 − 2Vp,3 ≡ 0 (mod p2),

and

(59) 3Vp,1 − 3Vp,2 + Vp,3 ≡ 0 (mod p3).

Proof. The first congruence follows from the von Staudt-Clausen theorem.
The second and third follow by evaluating

∑p−1
k=1(k

p−1− 1)2 modulo p2, and
∑p−1

k=1(k
p−1 − 1)3 modulo p3. �

Theorem 6.2. For p > 3,

(p − 1)!≡−1− 3Vp,1 +
3

2
Vp,2 −

1

3
Vp,3 −

1

2
(2Vp,1 −

1

2
Vp,2)

2 −
1

6
V 3
p,1

+(Bp−3 −
3

2
B2p−4 +

2

3
B3p−5)p

3 (mod p4),

(−1)
p−1
2 4p−1(

p − 1

2
)!2≡−1− 3Vp,1 +

3

2
Vp,2 −

1

3
Vp,3 −

1

2
(2Vp,1 −

1

2
Vp,2)

2 −
1

6
V 3
p,1

+(
13

12
Bp−3 −

3

2
B2p−4 +

2

3
B3p−5)p

3 (mod p4),

Proof. by (56) we have

(p− 1)!≡−exp(3Vp,1 −
3

2
Vp,2 +

1

3
Vp,3) ·

exp
(

(
p− 2

2
Bp−3 −

2p − 3

2
B2p−4 +

3p− 4

6
B3p−5)p

3
)

(mod p4).

By (58) and (59),

(60) (3Vp,1 −
3

2
Vp,2 +

1

3
Vp,3)

2 ≡ (2Vp,1 −
1

2
Vp,2)

2 (mod p4),

and

(61) (3Vp,1 −
3

2
Vp,2 +

1

3
Vp,3)

3 ≡ V 3
p,1 (mod p4).

Hence the first assertion follows. The second follows from the first and
Corollary 4.5. �

Corollary 6.3. If 4|p− 3,

2p−1(
p− 1

2
)!≡(−1)N

(

1 +
3

2
Vp,1 −

3

4
Vp,2 +

1

6
Vp,3 +

1

8
(2Vp,1 −

1

2
Vp,2)

2 +
1

48
V 3
p,1

−(
13

24
Bp−3 −

3

4
B2p−4 +

1

3
B3p−5)p

3
)

(mod p4)

where N is the number of quadratic nonresidues less than p/2.

We close the paper by noting that, when 4|p − 1, we can deduce a con-

gruence for (p−1
4 )!4 from Theorems 5.1 and 6.2.
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