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1. INTRODUCTION

Let p be an odd prime. A famous congruence due to Wilson (according
to Waring) states that [13] p.68]:

(1) (p—1)!'=—1 (mod p).
This congruence was first formulated by Waring in 1770. The first proof

was given by Lagrange in 1771. In 1828, Dirichlet proved another related
congruence:

p—1,_
) (P = (-1 (mod p).
where 4|p — 3 and N is the number of quadratic nonresidues less than p/2.

In 1900 Glaisher [10] extended Wilson’s theorem as follow:

(3) (p—1)! =pBy_1 —p (mod p*),
where B,, is the Bernoulli number. In 2000, Sun [26] went one step further

by showing
pBoy,_o  pB,_4 1 pBp_1
(4) (p— 1! e = s
2p — 2 p—1 2'p—1
Assume that p = 1(mod 4), then by Fermat’s two square theorem, we have
p = a?+b%, where a can be uniquely determined by requiring a = 1 (mod 4).
Another famous congruence, due to Gauss(1828) states that

-2\ _y
) <<p—1>/4>‘2 (mod p)-

)* (mod p°).
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The following extension of Gauss’s congruence was first conjectured by Beuk-
ers [3] and proved by Chowla, Dwork, Evans[6]:

(6) (Ei B 3@ = (1+ %pqp(Z)) (20— 22 (mod 7).
In 1837, Jacobi proved a congruence analogous to (Bl):
(7) (if:ff/;) = —r (mod p),

where p = 1(mod 6), 4p = 7> 4+ 27s%, and r = 1(mod 3). Evans and Yeung
[33] independently extended Jacobi’ congruence to modulo p? as follow:

- V/B\__p
) (o—iyjs) =+ 5 ot s,

In 2010 Cosgrave and Dilcher further extended Gauss’ and Jacobi’ congru-
ences to modulo p? [7] as follows:

- 2
o (o)t )
<1 + %(]p(Q)p - %Qp(2)2p2 + iEp—3p2> (mod p3)
(10) <2(f__ 11>)//33> = (- r e 2 ) (1 Ga(?) Cmod )

Later, (@) and (I0) were extended to cover similar binomial coefficients by
Al-Shaghay and Dilcher[I].

In 1852, Wolstenholme proved his famous theorem[32] which states that
if p > 5 is a prime, then

p—1 1 )
(11) ;E =0 (mod p°).
In the same paper, Wolstenholme also proved the following congruence:
p—1 1
(12) > 2z =0 (mod p).
k=1

In 1900, Glaisher gave the following generalizations of Wolstenholme’s

theorem [10 [1T]:
-1 1P Bp—m-1 (mod p*) if m is even

_ km —m(m+1
k=1 2(¢E1+2))

=

(13)

P?Bp_m—a (mod p®) if m is odd

where m > 0 and p > m + 3,
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Since then, the above congruences have been extended by several authors

to modulo pF [10, 1T} I8, 26, 9], and the multiple harmonic sums|[14], 24,
23], 135, [36], 137].

Another form of Wolstenholme’s theorem, which can be easily deduced
from (I is that:

(14) <2§__11> =1 (mod p®).

Many extensions of (I4]) to modulo p* in terms of Bernoulli numbers or
harmonic sums have been obtained in [9, 0] 12l 21| 25 29]. We refer the
readers to [20] for more references about various generalizations of Wolsten-
holme’s theorem.

Another classical congruence for binomial coefficient due to Morley (1895)

[22] is:

(15) <(pp_—1)1/2> = (—1)P=D/242=1 (1mod p?).

For integer a with (a,p) = 1, set gy(a) = “%T;_l. In 1938, Lembher [I§]
proved the following four congruences:

p/2]
1
(16) >3 = —20p(2) +pap(2)? (mod p);
k=1
EI . .
an > g = 5% — pn®)? (mod p);
k=1
Ip/4]
1 3 3
(18) > TS| i SPB(2)* (mod p*);
k=1
Ip/6]
(19) k; ook = 1%®) T+ 39(2) ~ gpaB)” — gre?) ) (mod p?),

and used them to derive congruences about ([ﬁ /_Ti]) for m = 2,3,4 or 6. In[5,
23, 26], 27], Morley’s and Lemher’s congruences are extended to congruences

for () and S g modulo pf.

Remark 1.1. Congruences {16) and (I8) modulo p were given by Glaisher
[11], while congruence (16) and (17) modulo p were given proved by Lerch

[a7.
There arises the following question:

Question 1.2. Can we extend the above congruences to modulo p* for ar-
bitrarily large k ¢
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The first breakthrough in this direction is due to Washington [31], who
gave an explicit p-adic expansion of the sums

np 1
(20) >
k=1
(k,np)=1

in terms of p-adic L-functions. Washington’ expansions, together with Kum-
mer’s congruences for p-adic L-functions, immediately imply mod p* evalu-
ations of Zi;i ;%m for arbitrarily large k.

In this paper, we give p-adic expansions for the sums of Lemher’s type

[np/7] 1
k=1

(kynp)=1

where (r,np) = 1. It turn outs that many binomial coefficients also admit
nice expansions in terms of p-adic L-functions. As applications, we can
extend all the congruences mentioned above to modulo p* for arbitrarily
large k.

This paper is structured as follows: In Section 2, we give preliminaries
that will be used throughout this paper. In Section 3, we give a review of
Washington’s p-adic expansion of the power sums and its applications. In
Section 4, we give a similar p-adic expansion for the sums of Lemher’s type
and derive many corollaries. Sections 5 and 6 are devoted to extensions of
Gauss’s and Jacobi’s congruences, and Wilson’s theorem respectively.

2. PRELIMINARIES

The Bernoulli numbers B,, and the Bernoulli polynomials B, (x) are de-
fined respectively by

o0
(22) : Z B,z" /n!;
n=0

62—1:

Pz 0
= n/nl
(23) 1 ngzan(a;)z /nl.

Thus By(z) =1, Bi(z) =z — %, By(z) = 2% —x+ %, Bs(z) = 2% — %:1724- %x,
By(z) = o — 22 + 2? — &, etc.
From the above definitions, we have

(24) By(z) = EZ:O <Z> B,z

In particular, B, (0) = B,,. Note that B,, = 0 whenever n > 1 is odd.
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For a Dirichlet character y modulo m, the generalized Bernoulli numbers
B, are defined by

(25) Pp Z By .

a=1

From the definitions, we have
(26) By =m"! Z x(a)Br ().

For a Dirichlet character y modulo m and a positive integer d, let ' be
the character modulo md induced by x . Then we have

(27) Bn,x’ = Bn,x H (1 - X(p)pn_l)'

pld,p prime

We need the following identity of power sums due to Szmidt, Urbanowicz
and Zagier [28]

Lemma 2.1. Let x be a Dirichlet character modulo d and N be a multiple
of d. Let m and r be positive integers, with (r,N) = 1. Then

[N/r]

mlz = vX"’_—:Zw mxw( )-

Now we recall definition and basic properties of p-adic L-functions and
refer the readers to [30] for more details.

Throughout this paper, p denotes an odd prime, and Z, and Z,, denote the
ring of p-adic integers and the group of invertible p-adic integers respectively.
The p-adic-valued Teichmiiller character w is defined as follows:

For an integer a with (a,p) = 1, w(a) € Z, is the p — 1-st root of unit
satisfying w(a) = a(mod p). Set (a) = w(a) ta

The p-adic exponential and logarithm functions are defined respectively
by

(28) exp(s Z s"/nl,

oo

(29) logy(1+s) =Y (=1)""'s"/n,

n=0

for s € pZ,. As usual, we have exp(log,(1+s)) = 1+ s and log,(exp(s)) = s,
and

(30) logy(1 4 s) +logy(1 +t) = logy((1 4+ s)(1 + 1)),
for s,t € pZy,.
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Let x be a primitive Dirichlet character modulo d and let D be any
multiple of p and d. The p-adic L-function y is defined by:

D 00
B L= gy 3 @Y (M) ma

a=1 n=0 n a
(a,p)=1

where s € Z;,, and

(32 (o) = exp((1 — s)logy((a)) =3 (1 - ) ({a) — 1™

n=0

From the definition, we have, for n > 1,

(33) Ly(l—n,x)=—(1- Xw_”(p)p"—l)%_

By ([B3)) it is easy to see that Ly(s,x) is identically zero if x(—1) = —1. We
note that Ly(s, x) is analytic if x # 1, and L,(s, 1) is analytic except for a
pole at s = 1 with residue (1 — 1/p).

Lemma 2.2. p(1 — s)L,(s, 1) € Zy, for 0 # s € Z,. If x is a nontrivial
primitive Dirichlet character modulo d, with p* { d, then Ly(s,x) € Zy for
S € Lyp.

Proof. The first assertion follows directly from the definition. For the second
assertion, see [30, Corollary 5.13]. O

The following congruences generalize the Kummer’s congruences for gen-
eralized Bernoulli numbers [30]:

Lemma 2.3. Let x be a nontrivial primitive character modulo d, p* 1 d.
Then for integers k, s and t, with 0 < k < p — 2, we have

(34) Lp(s,x) = Lp(s + P, x) (mod p*),
and
k
3 AL = () Lals it =0 (mod 1),
=0

where Ay is the forward difference operator with increment t.

Proof. The first congruence follows from [30, Theorem 5.12]. Thus it suffices
to prove the second. We choose D in (BI) such that p? + D. Then by
definition, Ly(s, x) is an infinite sum of the terms

stsomn) =x@g =7 (") (1) Batta) - Dy

Ds—1 m n a

where m +n > 0. If m +n > k, we have p*|g(s,m,n) for s € Zy, hence
pF|AFg(s,m,n). If m+n < k, then g(s,m,n) is a polynomial in s of degree
less than k, hence AFg(s,m,n) = 0. O
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For a primitive character y, and two positive integers m, k, with m < p—1,
set

a E\ Bip-1)+1
B kix) = —1)¢ npT T X
and set By(m, k) = By(m, k;1). Then by Lemma 23 and B3), if m + &k <
p — 1 and p? does not divide the conductor of xw!'™™, we have

Bpkfl(p—l)—l—l—m,x

L 1-m = B . = —
(36) p(m, xw ™) p(m, ks X) pPFlp—1)+1-—m

(mod p*).

3. WASHINGTON’S p-ADIC EXPANSIONS OF SUMS OF POWERS

In[31], Washington gave the following p-adic expansions of harmonic sums

Theorem 3.1. Let p be an odd prime and let d, m be positive integers.
Then

dp %)
(37) ; kim =_ Z_:l (‘f) Ly(m + n, ™) (dp)".

(k,p)=1

Theorem [B.] together with ([Bal), immediately implies the following gen-
eralization of Wolstenholme’s Theorem:

Corollary 3.2. Let p, d, and m be as before. Let j be another positive
integer, with 7 +m < p — 1. Then we have

(38) > kim =->" (2”) By(m +n,j —n)(dp)" (mod p’),

1 j_l — ijnfl _ —m—-n .
0 5 ek ()R e

Now we give p-adic expansions of (fl‘;) /() for ¢ >d > 0. Set

dp 1
Hy(d;m) = Z T
(K

Theorem 3.3. For c>d > 0, we have

o0

(40) (ff;) / <2> = exp( — k (F = (c = d)f — d¥) L (k, w'~F)p /).

=3
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Proof. By Corollary B.2],

(/)= I o iemam
(=1
= e:np( i logy(1 + kd)p))
(k,p)=1
— ea;p( f: i(—l)m e ;;Q:pm)
k=1 m=1
(k,p)=1
= ea;p( i( D™ Hy(d;m)(c — d)mpm/m)
m=1
= eap( ) BD BRI <m e 1)Lp<m @ T (e = ) )
m=1n=1
= e:z:p( — i S <:1> Lp(k:,wl—k)(c _ d)mdk—mpk/k>
k=3 m=1
_ exp( S (- a)f - dk)Lp(k;,wl_k)pk/k),

where the sixth = follows from the fact that L,(k,w!™%) = 0 whenever k is
even. 0

The above expansion in terms of H,(d;m) or p-adic L-functions, together
with (B6]), covers many known congruence about binomial coefficients[2], [5,

9, 10} 12}, 15, 211 25 29, [34]. By Theorem B3, we can easily write down a

mod p® evaluation of (;Z) /(9) in terms of Bernoulli numbers:

Corollary 3.4. For p > 7, we have

(41) <6p>/<2> =1 (- cd2)Bpi_7p42_2p3

dp p*+
B
—(c*d = 283d% + 224 — cdﬁM >
p*+4
B,_
—(c8d — 3P d? + 5t d® — 5A3d + 32dP — cd®) ==L )T

7
2
24 _ d2zBp2—p—2 6 d n°
+(c"d—c )2(p+2)2p (mod p°)
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Next, we show that the mod p* evaluations of the homogeneous multiple
harmonic sums(HMHS)

1
1<k <---<kn<dp
(ki,p)=1
and
_ 1
(43) My(d,min) = Y o

kmo.. pm’
1<k <--<kp<dp "L n

can also be reduced to that of Hy(d;m). Let ¢t be an indeterminate, then
formally we have

dp dp t
(44) 1+ My(d,msn)t"= J] 1+ o)
=l (et
dp
= log(l1 + —
exp( ; og( +km)>
(k,p)=1
dp [e%) 4
:exp< Z Z(—l)]_l kﬂm)
(e ’
=eap(( 32 (~19 " Hy(d: i) )
j=1
Similarly we have
o dp " . 00 4
(45) 1+ ZMp(d,m;n)t" = H (1- k_m)_ = exp(ZHp(d; mj);)
n=1 k=1 j=1

Applying Corollary to (@) and (@3], we get the following congruences
which improve the previous results about HMHS [37].
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Corollary 3.5.

Mp(d7 m; n)

and

Mp(d7 m; n)

XIANZU LIN

Forn > 1, p>mn-+4, we have

Zn—l m? (mj+1)Bp—mj—2Bpm(n—j)—1
2(mj+2)(mn—mj+1)

Jj=1

m(mn+1)B

p2—p—mn—1

d2p2

2(p+mn+1)

(mod p)

(_1)n Zn—l mZBP*mjfl Bp—m(nfj)fl
2(mj+1)(mn—mj+1)

i=1

ntg

(-1

p+mn

—p—mn dp

(mod p?)

2
n—1 M*Bp_mj-1Bp_mn—j)-1 12 2
E p—m(n d P

Jj=1

mB_o
_ pe—p—mn
p+mn dp

_ Zn—l m2(mj+1)Bp*mj*ZBp*7n(n*j)*1

2(mjy+1)(mn—mj+1)

(mod p?)

j=1

m(mn+1)B

2(mj+2)(mn—mj+1)

p2—p—mn—1

2(p+mn+1)

d*p*  (mod p*)

Zn—l m*Bp—mj—1Bp_m(n_j)-1 d2p?

j=1

mB._o

I dp

2(mjy+1)(mn—mj+1)

(mod p?)

—1 M2Bp—mj—1Bp_mn—j)—
Zn 1 p—mj—1Dp—m(n—j) 1d2p2

i=1

mB._o
_ pe—p—mn
p+mn dp

2(mjy+1)(mn—mj+1)

(mod p?)

d3 p3

d2 p2

d3 p3

if mn is odd

if m is even

if m is odd and n is even

if mn is odd

if m is even

if m is odd and n is even

4. p-ADIC EXPANSIONS OF SUMS OF LEMHER’S TYPE

This section is parallel to the previous section. First we generalize Wash-
ington’s p-adic expansions to cover the sums of Lemher’s type.
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Theorem 4.1. Let d, r, m be positive integers, with (r,dp) = 1. Then,
when m =1,

[dp/r 1
1 1 logpg”™"

; e = logprp + Z =

k,p)=1 q ;;Irzme

r G A n —n n

G > WB(=dp)(=1)"d(,r, —1 = n)Ly(1 +n, 9w ") (dp)",

n=0
Fyplr(,m)#(1,0)

and, when m > 1,

[dp/7]
472 km — p 7w1—m) _
(kyp)fl
EDIIEODY <_;”>d<¢, ,—m = n)Ly(m + n, =" (dp)",

fylr n=0

where fy, is the conductor of primitive character 1, and

d(¢,r,n) = H (1_71Z)(Q)qn)'
q\}%

q prime

Proof. Note that the term ——(logprp LSyt o M) in (6] is just

q prime

the value of
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at s = 0. Hence it suffices to prove the following identity for m > 1 and
5 € Lp:

[dp/7] 1

> P Ly(m+s(p—1),w' ™)

k=1
(k,p)=1

m+sp 1)

}:w dp§j< m_Z@_lvdWJTﬂn—ﬁp—U—”)

Lp(m+8(p—1)+n,ww1 ) (dp)™,

(1 —pmts=D=1TT ), %)
=(m+s(p—1)—1)Ly(m+s(p—1),0"™) q_prime !

(m+s(p—1)—1)

m+s(p—1) 0 . o 1
_r(”T Z T/J(—dp)< i Z(p )>d(1/), r,—m —s(p—1) —n)
FolrGhm£(1,0)

Ly(m + s(p — 1) +n,gw' =" 7")(dp)",

where ¢*®—1) = (aP~1)%. It is easy to see that both sides are analytic on
Z,. We first prove the case m+ s(p— 1) is negative integer, and the theorem
follows by continuity. We note that for n > 0,

n—1-—s(p—1) 1 1
L ) 1)l = — (1 — 2,
(b s 0k = L0 )
By Lemma 2] when m < 0,
[dp/7]

ka

(k p) 1
[dp/r] [d/r]

Z 2 i

_(1_p—m) B_ i1 + rm d(l,?”,—l)( P )(dp)_m+l

-m+1 o) -m+1
; v(=dp) Z <_:L> d(,r, —m —n)(1 ~ w@@%%f;%ﬂc
fylr
=Lyl ) Wi)d“’ D (T ) ks 0. )
Z < ) d(4p,r, —m — n) Ly(m + n,pw' =) (dp)".

Hence the theorem follows. O
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Combining Theorem Tl with (36]), implies the following generalization of
Lembher’s congruences:

Corollary 4.2. Let p, d, r and m be as before. Assume that (p(r),p) = 1.
Let j be another positive integer, with j +m < p — 1. Then, when m =1,

[dp/7] j—1
Zj f‘w o 2 YA LBy ) (—dp)
(k.p)=1 Syl (%) £(2,0)
(log rP=1 Z logpa”” 1) (mod p’)
Ir ¢—1 7
q :rzme
and when m > 1,
[dp/7] j
> = Zw ~dp) Z( Y. =) By + . i) )"
(kp) 1 -

—l—Bp(m,j; 1) (mod p).

The above congruences remain valid if we replace some Bp(m,k;x) with

_ Bpkfl(pfl)ﬂfm,x
P (p—D+1-m -

Let E,(Euler numbers) be defined by

.

(48) 5 =Y E.2"/nl.
e** +1 e

Then it is easy to see that

(49) __n _ ntl

By E, 92n+1 But1i(l/4) 46 0 s epen
n+1 2 0 if n is odd

where 7 is the unique quadratic character module 4. Let r = 2, or 4 in
Corollary [1.2] we get

Corollary 4.3. Assume that (2,d) = 1 and j + m < p — 1. Then, when
m > 1, we have

dp/2
1 Byrip-niiom
~ fm pit4m—1
(k,p)=1

j—1
m —n —m B j-—na “1D+l—m—n n .
Yo () SR ) (mod )

n=0
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and
dp/4
[dp/4] i:Bpffl(p—l)Jrl—m
e~ fm pit4m—1
(k,p)=1

— m\ Bpi-n-1p-1)+1
. 92m—1 _ gm-—n—1 Pl " (p MR ()T
ngo( () )

+(=1 22m 22( ) i—1-1(p—1)—m—n(dp)" (mod p’).

When m =1, we have

[dp/2] 1 j—1 )
1 2log,2P o Bpimn=1(p—1)—n
—=_Z"p7 227" ——— L " (—dp)"
Z p . g ) )
(k,p)=1
J n,n—1
=2 -1
nz_:l( )1
j—1
B jfnfl( —1)—7L .
— 92— L__ PR (_gp)n d
D22 = )" (mod )
and
[dp/4] -1 J-1
1 3log,2P Bpj-n-1(p-1)
= 2—-2 dp)"
> P X )
(k,p)=1
dp—1 1
_(_1) 2 Epﬂfnfl(p—l)—n—l(dp)
n=0
J n,n—1 J—1 )
— nqp(Z) p —n Bpjfnfl(p—l)—” n
= -)yr-—— 2—-2 _ (-
dp—1 1L .
_(_1) 2 ZEpjfnfl(p—l)—n—l(dp)n (mOdp])v
n=0

Let p, d, r be as before and let ¢ be a nonzero integer. Set

[dp/r]

drm ka

(kp) 1

As in Section 3, we have the following p-adic expansion of (¥ ﬁ;‘j’; ]/ T]) / (CL%T])
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Theorem 4.4.
(T )/ (uf) == e S st

l P
= exp< — clogprl’—l —c Z oY 1 > .
q [e—

qlr
q prime

exp( Z L, (k, wl_k)ckpk/k‘) .
k=3

ea:p(_—l Z((CT + d)k — dk)d(I, T, —k)Lp(k;,wl_k)pk/k)) .
p(r) =

e:np( Z Z (cr +d)¥ — d¥)d(yp,r, —k) Ly (k, v’ F)p* /k))
LAy k=1

3

fw\
The above expansion, together with (36]), immediately implies many known

congruence about ([p/r}) (r > 1) [5, 23, 26, 27]. For example, setting ¢ = —1,
d=1,r =2, or 4 in Theorem 4] we get:

Corollary 4.5. Forp>17,

(-1 4”“<p 11>:1+L vz 3 Doy s
) =
2 p
+i B;?)?—p—2 6+ﬂBp—7 7
162(p+ 22" T 64 7

Corollary 4.6. For p > 5,

P p—1 p—1 15 B3_,2_
(—1)lil2 3P+3< - > =1-(-1)"7 Bp_ps_op® + X#”;pg
1
7
_( ) 5E —p— 4]74 + —
p=1H
5(2Ep—3 — Eypg)*p* — (-1)2 ZEp—3Bp—3p5 (mod p°).

Finally, we consider the mod p* evaluations of the homogeneous multiple
harmonic sums of Lemher’s type

1
Mp(d,r,m;n) = Z o m
1<ky <-<kn<dp/r 1 n
(ki,p)=1
and
_ 1
Mp(d,r,m;n) = Z W

1<ky<--<kn<dp/r 1
(ki,p)=1
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As before we have

[dp/7] o0
+
(50) 1+ Z M, (d,r,m;n)t" = exp Z DI Hy(d, vy myg)— 7 ),
n=1 j=1
and
(51) 1—|—ZM (d,r,m;n)t _eiﬂpZdeT‘TTij)
n=1 7j=1

Applying Corollary B2 to (50) and (BII) we can deduce mod p* evaluations of
My(d,r,m;n) and M,(d,r,m;n) for any k. The following are two examples:

Corollary 4.7. Assume that p > mn+4, and (d,2) = 1, then when m > 1,
we have

=1 @M@ =) By miByming 1 g

j:l 52 (mn—mj+1) P
@™ =2)B2 , nta 2

B e (mod p?)

My(d,2,m;n) =

(_1) Zn 1 m2(2m - §)(2m(n J)_’)Bp mj—1Bp_m(n—j)- 1d2 2
j=1 2(mj+1)(mn—mj+1)

m mn __ 1
()R g (mod p°)

and, when m =1, and n > 1 is odd we have

2] —2)(2"~ 7~ ‘)Bp jBp—n+j—1

My(d,2,1;n) EZ:; =+ 1) dp
4p(2)(2" —1)Byn _ (2" —2)Bp_ppy1 2
+ " d PET— (mod p*).

5. CONGRUENCES OF (GAUSS AND JACOBI
In this section, we will give p-adic expansions of (g :Bﬁ) (when 4[p — 1)

and (2(27__11))/33) (when 3|p — 1), and hence full generalizations of congruences

of Gauss and Jacobi. First we introduce Morita’s p-adic gamma function.
For a positive integer k, set

(52) Tp(k) = (~1)" J-

j=1

Then I', extends uniquely to a continuous function from Z, to Z;[16]. Let
a, b, and m be positive integers satisfying p = 1 (mod m), and a + b < m.

if mn is odd

if m is even
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Then we have

(a+b)(p*—1)/my ra(pF—1)/my (b(pF—1)/m
(53)<(a + b)(p — 1)/m> _ ( a(pk—1)/m ) (a(p—l)/m ) ( b(p—l)/m)

-1 (a+b)(p*—1)/my ((a+b)(p* —p)/m

alp=1)/m (aror—1y/m ) (oot py/m )
a a(pF—1)/my (b(pF—1)/my ((a+b)(pF~1 —1)/m
—Fp(l—%b) . (a(gj—l))/rn)(b(f)p—l))/m)( a(pklil—l)/m )

= — IR e (a+b)(pF—1)/my ((a+b)(pF—p)/m
Fp(l m)rp(l m) k= ( (a—l—b)énp—l)/m ) ( a(pk—p)/m )

By (41)) and (50), the above limit has a p-adic expansion. Now assume that
4|p — 1 and let a be as in congruence (H).

Theorem 5.1.
(- e) = (o2 () )

-1 1-k\, k
e$p<§logp2p —I-kz_sz(k:,nw )p /k‘)),

where 1 is the unique quadratic character module 4.

Proof. We need the following expansion from [7, Corollary 1]

Fp(l ) ] —2 P
By Theorem B3] we have
((p’“—p)/Z)

Nk

: (pk—p)/4/
(55)  lim, (n2) “rp (
(vh-1-1)/4

and by Theorem 4],
(@*-D/ay?

(27F = 27 L (k'R ) )

=
Il

3

(p=1)/47  _ 1 p—1 " _ 9—2k+1 1—ky, K )
Jim ((pk—1)/2) = exp(zlogp2 + 2(2 2 )Ly (k,w ™")p /k;)
v-1)/? k=3

con((3 Lylk. o)t /0))

k=2
Hence
A e ) R O N
s ((p’“—l)/2) ((plf—p)/2) - ea:p(ilogp2 + Z_:Lp(k;,nw p /k))’
(p—1)/2/ \(pF~p)/4 k=2
and the theorem follows. O

Now assume that 3|p — 1 and let a be as in congruence (7). Using exactly
the same proof, we get
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Theorem 5.2.
2p —1)/3 —2 ;
(- nis) = (- ”Z (o))
e:np(i(l = 2PN (1= 37 Ly (k'R k) -
k=3

ea:p( > (4 2F YLk, ¢w1_k)pk/k))’

k=2
where ¢ is the unique quadratic character module 3.

Remark 5.3. Using the p-adic expansions of (lfzfl) (m =4,6,8)

obtained in [1], we can give similar expansions for ((a+(12(p1 /17){7”) (m=4,6,8).

6. WILSON’S THEOREM AND RELATED CONGRUENCES

In this section, we show how to get the mod p* evaluations of (p — 1)!,
and (&= U)! (when 4|p — 3) and (B~ 2=y (when 4|p — 1), and hence full gen-
erahzatlons of Wilson’s theorem and related congruences. By (B0), we have
for m < p,

(560og,(—(p — 1)!) = i 1logp(p _ 1)!;0—1

p—1
= -1
e Zlogp(l + (kP - 1))
p—1 oo
- Y = 1)
k=1n=1
m—1 n p—l
1 -1 n
=—— 3 =3y ( ) S D
P 1 n=1 j=0 J =1
m— n 1 /n 1
=51 11( G R (i -1+ 1 B )
-l et " =1 jp—1)+1 = k41 j(p—1)—k
m—1 1 N
+ — (mod p™)
n=1 n

From the above expansion, we can deduce mod p" evaluations of (p —1)!
for any m > 0. But when m > 4, the congruence would be too complicated
to be written down. Thus we will only work out the case m = 4. Set

sz(p 1)
‘/;77 p— 1 1.
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Lemma 6.1.

(57) Vp,i =0 (mod p),

(58) 2V,1 — Vo = 3Vpo — 2V, 3 = 0 (mod p?),
and

(59) 3Vy1 —3Vy2 + Vp3 =0 (mod p?).

Proof. The first congruence follows from the von Staudt-Clausen theorem.
The second and third follow by evaluating > 7 _ 1(/<;p 1 —1)2 modulo p?, and

szl (kP~! — 1)3 modulo p3. O

Theorem 6.2. For p > 3,
1 1 1

_ 3 9o 1.3
(p=D=-1=3Vo1 4 5Vo2 = 5Vos — 5(2Vp1 = 5V02)" — 5 Vo
3 2
+(Bp—3 — §B2p—4 + §B3p—5)P3 (mod p*),

(—1)"z 47 (T)' =—1-3V,1+ §V72 3Vp7 (2‘/;,, 5‘/;,,2) — EVP

13 3 2

+(EBP—3 - §B2p—4 + §B3p—5)p (mod p*),

Proof. by (B0 we have

3 1

(p = DI==expVp1 — Vo2 + 3Vp3) -
-2 2 3 3p—4
emp((p 5 Pp=3 7 p —5—Bop-a+ & Bsp—5)p*) (mod p*).
By (E5) and (&),
3 1 1

60) (V1 — SV + 3Vha)* = 2V — 5Vp2)? (mod p),
and

3
(61) (3Vp1 = 5Vp2 + 3Vp, 3)* =V}, (mod p*).
Hence the first assertion follows. The second follows from the first and
Corollary [4.51 O
Corollary 6.3. If 4|p — 3,
2P—1(’:)1=(—1)N( = 2Vt Vst 22V — 2Va) + =V

2 T Tyt 4”’ tores T g9 48 P!
13 3 4
—(ﬂBp—i’» — 1 Bw-at ngp—S)P ) (mod p”)

where N is the number of quadratic nonresidues less than p/2.

We close the paper by noting that, when 4|p — 1, we can deduce a con-
gruence for (%)!4 from Theorems 5.1l and
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