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AN EQUIVALENCE BETWEEN PSEUDO-HOLOMORPHIC

EMBEDDINGS INTO ALMOST-COMPLEX EUCLIDEAN SPACE

AND CR REGULAR EMBEDDINGS INTO COMPLEX SPACE

RAFAEL TORRES

Abstract : We show that a pseudo-holomorphic embedding of an almost-complex
2n-manifold into almost-complex (2n + 2)-Euclidean space exists if and only if
there is a CR regular embedding of the 2n-manifold into complex (n + 1)-space.
We remark that the fundamental group does not place any restriction on the exis-
tence of either kind of embedding when n is at least three. We give necessary and
sufficient conditions in terms of characteristic classes for a closed almost-complex
6-manifold to admit a pseudo-holomorphic embedding into R8 equipped with an
almost-complex structure that need not be integrable.

1. Introduction and main results

In this paper, we study existence of pseudo-holomorphic embeddings of almost-
complex manifolds into almost-complex Euclidean space and CR regular embed-
dings into complex space. We begin with the discussion concerning the almost-
complex realm. Let M be a closed smooth manifold whose tangent bundle TM
admits a complex structure, i.e., an automorphism JM : TM → TM such that
J2
M = − id. The automorphism JM is called an almost-complex structure and the

pair (M,JM ) is called an almost-complex manifold.

Definition 1. Let (M,JM ) and (N, JN ) be almost-complex manifolds. A smooth
embedding

(1) f : (M,JM ) →֒ (N, JN )

is a pseudo-holomorphic embedding if and only if

(2) Tf ◦ JM = JN ◦ Tf.

That is, the embedding f in (1) is a pseudo-holomorphic embedding if and only if
the tangent map is complex linear at each point.

Let (R2m, Ĵ) be Euclidean space of dimension 2m equipped with an almost-

complex structure Ĵ . The maximum principle says that the canonical integrable
almost-complex structure R2m ∼= Cm does not contain compact complex submani-
folds of positive dimension. Besides being non-canonical, the almost-complex struc-
ture Ĵ need not be integrable in the study of maps as in Definition 1. Topological
obstructions for the existence of pseudo-holomorphic embeddings of almost-complex
2m-manifolds into almost-complex Euclidean (4m + 2)-space were studied by Di
Scala-Kasuya-Zuddas in [4]. The authors also studied conditions for the existence
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of a pseudo-holomorphic embedding (M,JM ) →֒ (R6, Ĵ) for an almost-complex
manifold of (real) dimension four [4, Theorem 5]. Their arguments can be modified
by allowing JM to be changed in order to show that such an embedding exists if
and only if the 4-manifold is parallelizable. The constraint on the tangent bundle
of a manifold that admits a codimension two pseudo-holomorphic embedding into
an almost-complex Euclidean space in fact holds for arbitrary dimension.

Theorem A. If there are almost-complex structures (M,JM ) and (R2n+2, Ĵ) such

that there is a pseudo-holomorphic embedding f : (M,JM ) →֒ (R2n+2, Ĵ), then the
2n-manifold M is parallelizable.

Let M be a parallelizable 2n-manifold that smoothly embeds into R2n+2. There
exist almost-complex structures (M,JM ) and (R2n+2, Ĵ) for which there is a pseudo-

holomorphic embedding f : (M,JM ) →֒ (R2n+2, Ĵ).

Necessary and sufficient conditions for the existence of a pseudo-holomorphic
embedding of 6-manifolds are as follows. The first Pontrjagin class is denoted by
p1, and the third Chern class by c3.

Theorem B. Let M be a closed smooth simply connected 6-manifold with torsion-
free homology H∗(M) and second Stiefel-Whitney class w2(M) = 0. Let (M,J) be
a given almost-complex structure and assume c1(M,J) = 0. There is a pseudo-
holomorphic embedding

(3) (M,J) →֒ (R8, Ĵ)

for some almost-complex structure Ĵ on R8 if and only if

(4) c3(M) = 0 = p1(M).

A closed smooth orientable 6-manifold M with torsion-free homology admits an
almost-complex structure if and only if the image of w2(M) under the Bockstein
homomorphism β : H2(M ;Z/2) → H3(M ;Z) vanishes, i.e., βw2(M) = 0. The
latter is equivalent to w2(M) = c1(L) mod 2 for the first Chern class of a complex
line bundle L over M [20].

Kotschick has shown that any finitely presented group is the fundamental group
of an almost-complex manifold of dimension greater or equal to four [12]. Examples
of pseudo-holomorphic embeddings of high-dimensional manifolds with prescribed
fundamental group are given in our next result.

Theorem C. Let G be a finitely presented group and let n ≥ 3. There exists a
closed smooth almost-complex 2n-manifold (M(G, 2n), J) with fundamental group
π1(M(G, 2n)) ∼= G and for which there exists a pseudo-holomorphic embedding

(5) (M(G, 2n), J) →֒ (R2n+2, Ĵ)

for some almost-complex structure Ĵ on R2n+2.

Theorem C could be compared to the situation in dimension four, where the
possible choices of fundamental group of a parallelizable 4-manifold are heavily
restricted.

Let us now turn our attention to CR regular embeddings into complex space.
For this, we now consider a closed smooth real 2n-manifold M of real dimension
dimR(M) = 2n, a complex manifold (X, J) of complex dimension dimC(X) = n+1,
a smooth embedding

(6) f : M →֒ X,
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and the bundle

(7) f∗TpM ∩ Jf∗TpM ⊂ Tf(p)X.

A point p ∈M is said to be CR regular provided that

(8) dimC(f∗TpM ∩ Jf∗TpM) = n− 1.

The points of M whose complex tangent space has complex dimension equal to n
are called complex or CR singular (see Section 4, [15, 16] and the references there
for further details).

Definition 2. An embedding f : M →֒ X for which every point p ∈ M is CR
regular is said to be a CR regular embedding.

In [15, 16, 17], Slapar determined topological obstructions to be able to deform
a generic smooth embedding as in (6) into a CR regular embedding (see Section
4). He showed that a 4-manifold admits a CR regular embedding into C3 if and
only if the 4-manifold is parallelizable [16]. Necessary and sufficient conditions for
the existence of CR regular embeddings of 6-manifolds into C4 were studied by the
author of this note in [19]. Building on work of Kervaire [9], we extend these results
to arbitrary even dimensions.

Corollary D. Let n ∈ N and suppose M is a closed smooth real manifold of real
dimension dimR(M) = 2n that can be smoothly embedded into R2n+2. There is a
CR regular embedding

(9) f :M →֒ C
n+1

if and only if M is parallelizable.

Coupling Corollary D with Theorem A yields the following equivalence between
the two kinds of embeddings that are under study in this paper.

Corollary E. A closed smooth real manifold M of real dimension dimR(M) = 2n
admits a CR regular embedding

(10) M →֒ C
n+1

if and only if the are almost-complex structures (M,JM ) and (R2n+2, Ĵ) for which
there is a pseudo-holomorphic embedding

(11) (M,J) →֒ (R2n+2, Ĵ).

Finally, we present the following myriad of examples of CR regular embeddings
into high-dimensional complex spaces.

Corollary F. For any finitely presented group G and integer number n ≥ 3,
there exists a closed smooth real orientable manifold M(G, 2n) of real dimension
dimR(M(G, 2n)) = 2n whose fundamental group is isomorphic to G and for which
there is a CR regular embedding

(12) M(G, 2n) →֒ C
n+1.

We end the introduction with a blueprint of the paper. Section 2 collects the
results of Kervaire that we use through out the paper to determine when a manifold
is parallelizable, as well as the construction of the manifold used in the proofs of
Theorem C and Corollary F. Almost-complex structures on Euclidean spaces and
pseudo-holomorphic embeddings are discussed in Section 3, which includes the proof
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of Theorem A. The results on CR regular embeddings that were mentioned in the
introduction are described at further length in Section 4. This section also contains
the main ingredients for our proof of Corollary D, which is given in Section 5.2.
The proof of Corollary E follows from the results that are proven in Sections 3 and
4 as it is mentioned in Section 5.3. The proof of Theorem B is given in Section 5.1.
Proofs of Theorem C and Corollary F are given in Section 5.4.

1.1. Acknowledgements: We thank Daniele Zuddas for useful e-mail exchanges.
We thank the referee for her/his detailed report on the initial version of this note,
where he/she pointed out several inaccuracies, mistakes, and necessary revisions.
Her/his input and insightful remarks were of great value for the improvement of
the note.

2. Parallelizable closed n-manifolds with arbitrary fundamental
group and that embedded in Rn+2 for n ≥ 5

Recall that a smooth n-manifold M of real dimension n is called parallelizable if
its tangent bundle TM is trivial. If the Whitney sum with a trivial bundle TM ⊕ ǫ
is trivial, then M is said to be stably parallelizable [10, Section 3]. We begin this
section by describing the topological obstruction to trivializing the tangent bundle
of a manifold building on work of Kervaire [8, 9] (cf. [7, §1]). Associated to the

stabilization map πn−1(SO(n))
σ

−→ πn−1(SO) there are groups

(13) Kn := Ker(πn−1(SO(n))
σ

−→ πn−1(SO)),

and the obstruction for a stably parallelizable manifold M to be parallelizable is
an element

(14) ψ(M) ∈ Hn(M ;Kn) ∼= Kn.

The groups Kn were computed by Kervaire in [8]. Stably parallelizable manifolds
of dimension one, three or seven are parallelizable and K1 = K3 = K7 = 0. For all
other odd values of n, Kn = Z/2 and Kervaire showed that ψ(M) vanishes if and
only if the Kervaire semi-characteristic χ̂Z/2(M) is zero. Recall that the Kervaire
semi-characteristic of a closed smooth n-manifold M of dimension n = 2k + 1 is
defined as

(15) χ̂Z/2(M) :=

k∑

i=0

dimHi(M ;Z/2)mod2

for k ∈ N. When the dimension n is even, Kn = Z and the element ψ(M) can
be identified with the Euler characteristic χ(M). The work of Kervaire yields the
following criteria to decide when a manifold is parallelizable.

Proposition 1. Kervaire [8, 9].
(i) Let M be a closed smooth stably parallelizable n-manifold and suppose that

the dimension n is odd and n 6= 1, 3, 7. The tangent bundle TM is trivial if and
only if χ̂Z/2(M) = 0.

(ii) The tangent bundle TM of a closed smooth stably parallelizable 2n-manifold
M is trivial if and only if χ(M) = 0. In particular, a closed smooth orientable
2n-manifold that embeds into R2n+2 is parallelizable if and only if its Euler char-
acteristic is zero.
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The reader is referred to [8, 9] for the proof of Item (i). Due to its role in our
proofs of the main results and for the sake of making the paper as self-contained as
possible, we give the proof of the last claim of Item (ii) of Proposition 1 following
[9, Section 9] (cf. [4, Section 6]).

Proof. Let f be an embedding ofM into R2n+2. Since f is of codimension two, the
normal bundle νf (M) is trivial [11, Chapter VIII. Theorem 2], and a trivialization
yields the generalized Gauss map G : M → V2(R

2n+2), where V2(R
2n+2) is the

Stiefel manifold of linear injective maps R2 → R2n+2. The map G is nullhomotopic
if and only if the generalized curvatura integra G∗([M ]) ∈ H2n(V2(R

2n+2)) is zero.
Kervaire [9, Section 9] expressed G∗([M ]) in terms of the Hopf invariant of M ,
its Euler characteristic χ(M), and its semi-characteristic. Given the existence of
the codimension two embedding f , the only obstruction is then χ(M) and since
we assumed this is zero, the map G is homotopic to a constant map. Consider
the canonical identification R2n+2 ∼= Cn+1 along with standard complex coordi-
nates (z1, . . . , zn+1) on the latter. We can now take the holomorphic vector field
∂/∂zn+1 as a constant map and the tangent bundle TM is homotopic to the pullback
f∗(TR2n+2) = f∗(Cn+1) = TCn+1|M =M × Cn+1 ∼=M × R2n+2 as subbundles of
TCn+1 ∼= TR2n+2. This implies that TM is trivial. �

Remark 1. An anonymous referee kindly pointed out the following simplification
of the previous proof. Instead of considering the identification R2n+2 ∼= Cn+1 as in
our argument, the conclusion follows by taking the trace of the nullhomotopy of the
generalized Gauss map G.

A classical result of Dehn [3] states that for any group G that has a finite pre-
sentation, there exists a closed smooth stably parallelizable (n− 1)-manifold whose
fundamental group is isomorphic to G. In this section we observe that tweaks to
his construction yield the following result.

Proposition 2. Let G be a finitely presented group and suppose n ≥ 5. There
exists a closed smooth n-manifold M(G,n) such that

(i) the fundamental group is π1(M(G,n)) ∼= G,
(ii) the tangent bundle TM(G,n) is trivial, and
(iii) there is an embedding

M(G,n) →֒ Rn+1.

A closed parallelizable n-manifold with prescribed fundamental group is imme-
diately obtained by thickening a finite CW complex with fundamental group G and
zero Euler characteristic that is embedded in RN for large N . Items (i) and (ii)
of Proposition 2 have been proven by Johnson-Walton [7, Theorem A]. Our proof
relies on a simpler argument than theirs and it recovers and strengthens their main
result [7, Theorem A].

Proof. Consider the presentation

(16) G = 〈g1, . . . , gs|r1, . . . , rt〉

that consists of s generators {gj} and t relations {rj}. The first step is to construct
a closed smooth orientable (n − 1)-manifold X(s) with free fundamental group
〈g1, . . . , gs〉 = Z ∗ · · · ∗ Z as the connected sum

(17) X(s) := S1 × Sn−2# · · ·#S1 × Sn−2
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of s copies of the product of the circle with the (n − 2)-sphere. Using a general
position argument and the fact that an embedded loop in X(s) has codimension
at least three, represent the relations {r1, . . . , rt} in the presentation (16) by dis-
joint embedded loops γj ⊂ X(s). The tubular neighborhood of each loop ν(γj) is
diffeomorphic to S1 ×Dn−2 for every j. Construct the closed smooth manifold

(18) X(G,n− 1) :=
(
X(s)\

t⊔

j=1

ν(γj)
)⋃( t⊔

j=1

(D2
j × Sn−3)

)
.

The Seifert-van Kampen theorem implies that the manifold X(G,n − 1) has
fundamental group isomorphic to (16). The bundle TX(s)⊕ ǫ is trivial since the
connected sum of two stably parallelizable manifolds is stably parallelizable (cf. [10,
Lemma 3.5]). It follows that the manifold X(G,n − 1) is stably parallelizable by
[10, Lemma 5.4]. The argument up to this point is due to Dehn [3], which concludes
the proof of Item (i). As we have mentioned before, Johnson-Walton present an
argument in [7, Theorem A] to conclude that items (ii) holds. Our argument is as
follows. Use the (n− 1)-manifold of (18) to build the n-manifold

(19) X(G,n) = ((X(G,n− 1)× S1)\(Dn−1 × S1)) ∪ (Sn−2 ×D2),

and construct the manifold

(20) M(G,n) := X(G,n)#S3 × Sn−3.

The fundamental group of the manifolds in (19) and (20) is isomorphic to G, and
both manifolds are stably parallelizable. If n is even, then the Euler characteristic
of X(G,n) is equal to two and M(G) has zero Euler characteristic. Item (ii) of
Proposition 1 implies that M(G,n) is parallelizable. Item (i) of Proposition 1
allows us to conclude that the claim holds in odd-dimensions as well; notice that
that X(G, 7) is parallelizable. This finishes the proof of the claims in Item (i) and
Item (ii). There are embeddings

(21) M(G,n) →֒ R
n+2

and

(22) X(G,n− 1) →֒ R
n

by construction given that there exists an embedding Sm1 ×Sm2 →֒ R
m1+m2+1 for

m1,m2 ∈ N. We will abuse notation in these last lines and the hypothesis on the
dimension of the manifolds is taken to be n − 1 ≥ 5. If the dimension (n − 1) is
odd, then either X(G,n− 1) or

(23) X(G,n− 1)#(S3 × Sn−4)#(S3 × Sn−4)

has trivial tangent bundle given that

(24) χ̂Z/2(S
2 × Sn−3#S2 × Sn−3) = 1mod2

and Proposition 1 applies. In either case, the parallelizable manifold (18) or (23)
can be embedded into Rn. If the dimension (n − 1) is even and X(G,n − 1) does
not have trivial tangent bundle, there are natural numbers r1 and r2 such that the
connected sum

(25) X(G,n− 1)#(r1 − 1)(S2 × Sn−3)#(r2 − 1)(S3 × Sn−4)
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has zero Euler characteristic and trivial tangent bundle by Proposition 1. The
manifold (25) embeds into Rn. This concludes the proof of the claim of Item (iii).
Relabeling the manifolds now yields a proof of the proposition. �

3. Almost-complex structures on R2m and some pseudo-holomorphic
embeddings

A complex structure JM : TM → TM induces a preferred orientation on the
manifold M . If M is an oriented manifold and the orientations coincide, we say
that JM is positive; otherwise, we say that JM is negative. The space of positive
linear complex structures on Euclidean space R2n

(26) Γ̃(n) = GL+(R2n)/GL(Cn)

consists of matrices that are conjugate to

Jn =
⊕

n

(
0 −1
1 0

)

by an element α ∈ GL+(R2n). An almost-complex structure (R2n, Jn) is a map

(27) J : R2n → Γ̃(n).

Lemma 1. Let M be a closed smooth manifold that embeds into R
2n, and let

J :M → Γ̃(n) be a smooth map. There is a smooth extension J̃ : R2n → Γ̃(n) of J
if and only if J is homotopic to a constant map.

A proof of Lemma 1 can be found in [6, Section 2]. There is a homotopy equiv-

alence between Γ̃(n) and the homogeneous space

(28) Γ(n) = SO(2n)/U(n),

and they share the same homotopy groups. The homotopy groups πk(Γ(n)) in the
range k ≤ 2n− 2 are called stable homotopy groups, and are given by

πk(Γ(n)) ∼= πk+1(SO(2n)) =





0 if k = 1, 3, 4, 5

Z if k = 2, 6

Z/2 if k = 0, 7

mod 8

as computed by Bott in [2].
We now begin our discussion of pseudo-holomorphic embeddings. We point out

the following constraint on the tangent bundle of a smooth manifold that admits
a codimension two pseudo-holomorphic embedding into Euclidean space and prove
Theorem A.

Theorem 1. If there are almost-complex structures (M,JM ) and (R2n+2, Ĵ) such

that there is a pseudo-holomorphic embedding f : (M,JM ) →֒ (R2n+2, Ĵ), then the
2n-manifold M is parallelizable.

Let M be a parallelizable 2n-manifold that smoothly embeds into R2n+2. There
exist almost-complex structures (M,JM ) and (R2n+2, Ĵ) for which there is a pseudo-

holomorphic embedding f : (M,JM ) →֒ (R2n+2, Ĵ).

A parallelizable 2n-manifold M admits an almost-complex structure JM since
there is a basis for TM .
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Proof. Suppose there are almost-complex structures on M and R2n+2 such that
the pseudo-holomorphic embedding f exists. The claim follows from Kervaire’s
Proposition 1 once we have shown that χ(M) = 0. To see that the Euler character-
istic of the manifold vanishes, we make use of the property that the normal bundle
νf (M) is a trivial complex line bundle, and observe that the claim follows from
the following standard argument. The identity χ(M) = 〈cn(M), [M ]〉 suggests us
to argue that the n-th Chern class cn(M) = cn(TM) vanishes. Since the pullback
f∗(TR2n+2) = TR2n+2|M = TM ⊕ νf (M) is the trivial bundle, its Chern class
satisfies c(TR2n+2|M ) = 1 and the Whitney product formula implies cn(M) = 0,
as claimed [14].

Assume now that there is an embedding M →֒ R2n+2 and that the bundle TM

is trivial. We argue that there is a nullhomotopic map g : M → Γ̃(n + 1) and
apply Lemma 1 to conclude the proof of the claim. To construct the map g, we
equip the bundle f∗(TR2n+2) = TR2n+2|M with the following choices of complex
structures. As it was done in the proof of Proposition 1, consider M as a real
submanifold of Cn+1 ∼= R2n+2. Since χ(M) = 0, the curvature integra G∗([M ])
vanishes and the generalized Gauss map G is nullhomotopic. This implies that
there is a vector bundle monomorphism that identifies TM with M × C

n and νf
with the complementaryM×C. The tangent bundle TM is homotopy equivalent to
M×Cn ⊂ TCn+1|M =M×Cn+1, and the identification induces an almost-complex
structure JM on M (cf. [4, Section 6]). The normal bundle νf (M) is homotopic
to a trivial complex line bundle, and there is an analogous complex structure Jν
on it. This yields a complex structure (TR2n+2|M , JM ⊕ Jν), and hence a map

g : M → Γ̃(n + 1) that is nullhomotopic by our choices of complex structures.

Lemma 1 implies that there is a smooth extension g̃ : R2n+2 → Γ̃(n+1), and hence
the pseudo-holomorphic embedding f exists.

�

Di Scala-Vezzoni [5, Theorem 1.2] have shown that the torus T 2n admits a
pseudo-holomorphic embedding into R4n for certain choices of almost-complex
structures on the manifolds. Theorem 1 yields an improvement in the sense that it
minimizes the codimension of the pseudo-holomorphic embedding.

Corollary 1. For every almost-complex torus (T 2n, J) for which the tangent bundle

is trivial as a complex bundle, there is an almost-complex structure (R2n+2, Ĵ) and

a pseudo-holomorphic embedding (T 2n, J) →֒ (R2n+2, Ĵ) for n ∈ N.

4. CR regular embeddings

Let M be a closed smooth real oriented 2n-manifold. A way to obtain a CR
regular embedding into Cn+1 is to start with a generic smooth embedding

(29) f :M →֒ R
2n+2 ∼= C

n+1

that may have complex or CR singular points, and then perturb it into a CR
regular one. The complex points of a generic embedding are isolated by Thom
transversality theorem [18]; see [13, Definition 2.2] for a rigorous definition of our use
of the adjective ’generic’. Slapar [15] studied necessary and sufficient conditions for
such perturbation to exist. We describe the scenario beginning by telling complex
points p ∈ M apart as follows. If the orientation of TpM agrees with the induced
orientation of TpM ⊂ TX as a complex subspace, then p is positive. Otherwise,
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the complex point p is negative. Next consider coordinates (z, ω) ∈ Cn ×C, and n
by n matrices A,B with complex entries and such that B = BT . An appropriate
choice of coordinates (z, w) and Taylor expansion of f allows for a local expression
at p ∈M as

(30) w = zTAz +Re(zTBz) + o(|z|2).

Complex points can be then classified in terms of the sign of the determinant of
the associated matrix (

A B
B A

)
.

The corresponding complex point is said to be elliptic if the determinant is
positive. If the determinant is negative, the complex point is said to be hyperbolic.
The reader is directed toward [15, 16] and the references there for details.

Denote by e±(M) the number of positive/negative elliptic complex points and
by h±(M) the number of positive/negative hyperbolic complex points on M . The
Lai indices [13] are defined as

(31) I±(M) := e±(M)− h±(M)

and can be expressed in terms of characteristic classes these indices as the formula

(32) 2I±(M) = χ(M) +
〈 n∑

k=0

(±1)k+1ek(ν(M)) ∪ cn−k(TX |M ), [M ]
〉
,

where ν(M) stands for the normal bundle of M → X , e and cn−k are the Euler
and (n - k)th Chern classes, respectively. These indices are invariant under regular
isotopies of embeddings and Slapar has shown that they are the only topological
invariants of complex points up to isotopy [15, Corollary 1.2] and [17, Theorem 1].
Their vanishing I±(M) = 0 is a necessary condition for the existence of a regular
homotopy between f and a CR regular embedding.

Proposition 3. If there is a CR regular embedding

(33) f :M →֒ C
n+1

for a closed smooth real 2n-manifold M , then the tangent bundle TM is trivial.

Proof. The existence of the CR regular embedding (33) implies that the Lai indices
(32) vanish, and in particular χ(M) = 0. The claim now follows from the second
item of Proposition 1.

�

The converse statement is the main ingredient in the proof of Corollary F and
we now state it; its proof follows immediately from the Cancellation theorem [15,
Corollary 1.2] (cf. [16, Proposition 4]).

Proposition 4. Slapar [15, 16]. Let M be a closed smooth real and oriented 2n-
manifold, and let X be a complex manifold of dimC(X) = n + 1 equipped with a
Riemannian metric h. Suppose f : M → X is a smooth generic embedding, and
ǫ > 0. If I±(M) = 0, then there is a regular isotopy

(34) ft : M → X

for t ∈ [0, 1] that satisfies

(i) f0 = f
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(ii) h(ft(p), f(p)) < ǫ for every t ∈ [0, 1] and every point p ∈M , and
(iii) f1 :M → X is a CR regular embedding.

Slapar’s result has the following consequence.

Corollary 2. Let M be a closed smooth real parallelizable 2n-manifold that admits
an embedding into R2n+2. There is a CR regular embedding M →֒ Cn+1.

Proof. Since TM and νf (M) are trivial bundles, the Lai indices (32) are zero. The
claim now follows from Proposition 4. �

Remark 2. If we require the map that f of Definition 2 to be an immersion, we
obtain the concept of a CR regular immersion f : M → Cn+1. Let M be a closed
smooth real parallelizable 2n-manifold. There is a CR regular immersion of M
into Cn+1. If M is parallelizable, then it immerses in R2n+2 [1, Corollary 3.3].
Proposition 4 can be adapted to immersions so that there is a regular homotopy
between f ′ and a CR regular immersion f provided that the Lai indices vanish [16,
Proposition and Remark 2.1].

5. Proofs

5.1. Proof Theorem B. It was shown in the proof of Theorem 1 that the existence
of a pseudo-holomorphic embedding f : (M,J) →֒ (R8, Ĵ) of a closed smooth
orientable 6-manifold implies that the tangent bundle TM is trivial and hence
c3(M,J) = 0 = p1(M). We now prove the converse using an argument found in
[4, Section 5]. The following result of C. T. C. Wall implies the existence of an
embedding f :M →֒ R8, and hence the normal bundle νf (M) is trivial.

Theorem 2. [20, Section 9]. Suppose M is a closed smooth simply connected
6-manifold with torsion-free homology and w2(M) = 0. There is an embedding

(35) M →֒ R
8

if and only if p1(M) = 0.

Let J ′ be a complex structure on νf (M) that is compatible with the normal
orientation induced by the embedding f . We obtain a complex structure

(36) (TR8|M , J ⊕ J ′) ∼= (TM ⊕ νf (M), J ⊕ J ′).

and a map g : M → Γ̃(4) as it was discussed in Section 3. To be able to invoke
Lemma 1 and hence prove the existence of the required almost-complex structure,
we claim that g is nullhomotopic. Denote by M (i) the i-skeleton ofM and consider
its cell-decomposition

(37) M (0) ⊂M (1) ⊂M (2) ⊂M (3) ⊂M (4) ⊂M (5) ⊂M (6) ⊂M.

The only nontrivial homotopy groups πk(Γ̃(4)) in the range k ∈ {0, 1, 2, 3, 4, 5, 6}
are k = 2, 6 by (3), and they both are infinite cyclic. Hence, there are two obstruc-
tions

(38) Ω2(g) ∈ H2(M ;π2(Γ(4))) = H2(M ;Z)

and

(39) Ω6(g) ∈ H6(M ;π6(Γ(4))) = H6(M ;Z)

for g to be nullhomotopic. The map g is nullhomotopic over the 2-skeleton M (2)

if and only if Ω2(g) = 0. If this holds, the homotopy to a constant map can
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be extended over M (i) for i ∈ {3, 4, 5} since πi(Γ̃(4)) = 0. The extension of the
homotopy can be further extended over the 6-skeletonM (6) if and only if Ω6(g) = 0.
We now show that both obstructions vanish and we start with the argument for
Ω2(g), which appears in [4, Proof of Theorem 5]. There is a fibration of classifying
spaces [1, Chapter 1§2.J], [21, Appendix A.2]

(40) Γ(4)
ı
→֒ BU(4) → BSO(8)

arising from the inclusion U(4) → SO(8) and the classifying map of the bundle
TM ⊕ νf (M) is

(41) ı ◦ g :M → BU(4).

The part of the homotopy exact sequence of (40) to be considered is

(42) π3(BSO(8)) → π2(Γ(4)) → π2(BU(4)) → π2(BSO(8)) → π1(Γ(4)),

which is 0 → Z → Z → Z/2 → 0 since πk(BG) = πk−1(G). This implies that the
induced map ı∗ : π2(Γ(4)) → π2(BU(4)) is the double map in Z. The restriction
(ı◦g)|M(2) pins down a class (ı◦g)∗c1 where c1 ∈ H2(BU(4)) = Z is a generator. In
particular, 2Ω2(g) = c1(TM⊕νf(M)) = c1((M,J⊕J ′)) = c1(M,J) (cf. [4, Lemma
15]). The absence of torsion and the hypothesis c1(M,J) = 0 imply Ω2(g) = 0.

We now adapt the previous argument to prove Ω6(g) = 0 as follows. Consider
the part of homotopy exact sequence of (40) given by

(43) π7(BSO(8)) → π6(Γ(4)) → π6(BU(4)) → π6(BSO(8)) → π5(Γ(4)).

This sequence reduces to 0 → Z → Z → 0. The restriction (ı ◦ g)|M(6) pins down
a class (ı ◦ g)∗c3 where c3 ∈ H6(BU(4)) = Z is a generator. In particular, the
obstruction Ω6(g) vanishes given that the Euler characteristic of M is zero. This

implies that the map g : M → Γ̃(4) is homotopic to a constant map, and hence

there is an extension J̃ : R8 → Γ̃(4) by Lemma 1. �

5.2. Proof of Corollary D. Corollary 2 and Proposition 3 imply the claim. �

5.3. Proof of Corollary E. The result follows from Theorem 1, Corollary 2, and
Proposition 3. �

5.4. Proofs of Theorem C and Corollary F. Proposition 2 says that there is
an embedding f : M(G, 2n) →֒ R2n+2, where the tangent bundle TM(G, 2n) is
trivial and the fundamental group π1(M(G, 2n)) is isomorphic to G. Theorem C
follows from Theorem 1. Considering the identification R2n+2 ∼= Cn+1, Corollary
F follows from Corollary D.

�
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