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Abstract

We study the spatial-homogeneity of stable solutions of almost-periodic parabolic equa-
tions. It is shown that if the nonlinearity satisfies a concave or convex condition, then any
linearly stable almost automorphic solution is spatially-homogeneous; and moreover, the
frequency module of the solution is contained in that of the nonlinearity.

1 Introduction

We consider the semilinear parabolic equation with Neumann boundary condition

ut = ∆u+ f(t, u,∇u), t > 0, x ∈ Ω

∂u

∂n
|∂Ω= 0, t > 0

(1.1)

where Ω ⊂ R
n is a smooth bounded domain and f : R×R×R

n → R; (t, u, p) 7→ f(t, u, p) together

with its first and second derivatives are almost periodic in t uniformly for (u, p) in any compact
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subset of R×R
n. Such equation is ubiquitous throughout the modeling of population dynamics

and population ecology. The almost periodicity of the nonlinearity f captures the growth rate

influenced by external effects which are roughly but not exactly periodic, or environmental

forcing which exhibits different, non-commensurate periods.

In cases where f is independent of t (i.e., the autonomous case) or f is time-periodic with

period T > 0 (i.e., the time T -periodic case), it has been known that stable equilibria or

T -periodic solutions are not supposed to possess spatial variations on a convex domain. For

instance, in terms of an autonomous equation on a convex domain Ω with f being independent

of ∇u, Casten and Holland [2] and Matano [10] proved that any stable equilibrium is spatially-

homogeneous (i.e., without any spatial structure). In other words, any spatially-inhomogeneous

equilibrium on a convex domain must be unstable. Later, Hess [6] considered the time T -periodic

equation and showed that all stable T -periodic solutions are spatially-homogeneous on a convex

domain Ω.

When the system (1.1) is driven by a time almost periodic forcing, there usually exist almost

automorphic solutions rather than almost periodic ones. As a matter of fact, the appearance

of almost automorphic dynamics is a fundamental phenomenon in almost periodically forced

parabolic equations [16–20]. We also refer to [7–9,12–14,23] on the study of almost automorphic

dynamics in different types of almost-periodic differential systems. Among many others, Shen

and Yi [20] showed that any stable almost automorphic solution of (1.1) is spatially-homogeneous

on a convex domain Ω.

Besides the convexity of the domain, the convexity or concavity of the nonlinearity f in (1.1)

(i.e., the function f(t, ·, ·) : RN+1 → R is convex or concave for all t ∈ R) can be thought as an

alternative condition which guarantees that any spatially-inhomogeneous equilibrium and time

T -periodic solution are unstable in the autonomous case (Casten and Holland [2]) and the time

T -periodic case (Hess [6]), respectively.

The present paper is mainly focusing on the almost periodically forced equation (1.1). We

will show that, if f(t, ·, ·) : RN+1 → R is convex or concave for all t ∈ R, then any linearly stable

almost automorphic solution u(t, x) (see Definition 2.2) of (1.1) is spatially-homogeneous; and

moreover, the frequency module of u(t, x) is contained in that of f (see Theorem 3.1).

Our result can be viewed as an effective supplement of the above-mentioned result in [20];

for the concavity or convexity of f , instead of for convex domains. It also generalizes to multi-

frequency driven systems from that in the autonomous cases [2] and time-periodic cases [6].

The paper is organized as follows. In Section 2, we review the basic notations and concepts

involving skew-product semiflows, linearly stable and almost periodic (automorphic) functions

which will be useful in our discussions. In Section 3, we prove the spatial-homogeneity of linearly

stable almost automorphic solutions to (1.1) under the assumption that the nonlinearity f is

concave or convex.
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2 Notations and Preliminary Results

2.1 Skew-product Semiflows and Linearly Stable Solutions

Let Y be a compact metric space with metric dY and R be the additive group of reals. A real

flow (Y,R) (or (Y, σ)) is a continuous mapping σ : Y × R → Y, (y, t) 7→ y · t satisfying: (i)

σ(y, 0) = y; (ii) σ(σ(y, s), t) = σ(y, s+ t) for all y ∈ Y and s, t ∈ R. A subset E ⊂ Y is invariant

if σ(y, t) ∈ E for each y ∈ E and t ∈ R, and is called minimal or recurrent if it is compact and

the only non-empty compact invariant subset of it is itself. By Zorn’s Lemma, every compact

and σ-invariant set contains a minimal subset. Moreover, a subset E is minimal if and only if

every trajectory is dense in E.

Let X,Y be metric spaces and (Y, σ) be a compact flow (called the base flow). Let also

R
+ = {t ∈ R : t ≥ 0}. A skew-product semiflow Πt : X × Y → X × Y is a semiflow of the

following form

Πt(u, y) = (ϕ(t, u, y), y · t), t ≥ 0, (u, y) ∈ X × Y, (2.1)

satisfying (i) Π0 = IdX and (ii) the co-cycle property: ϕ(t + s, u, y) = ϕ(s, ϕ(t, u, y), y · t) for

each (u, y) ∈ X × Y and s, t ∈ R
+. A subset E ⊂ X × Y is positively invariant if Πt(E) ⊂ E for

all t ∈ R
+. The forward orbit of any (u, y) ∈ X × Y is defined by O+(u, y) = {Πt(u, y) : t ≥ 0},

and the ω-limit set of (u, y) is defined by ω(u, y) = {(û, ŷ) ∈ X × Y : Πtn(u, y) → (û, ŷ)(n →

∞) for some sequence tn → ∞}.

A flow extension of a skew-product semiflow Πt is a continuous skew-product flow Π̂t such

that Π̂t(u, y) = Πt(u, y) for each (u, y) ∈ X × Y and t ∈ R
+. A compact positively invariant

subset is said to admit a flow extension if the semiflow restricted to it does. Actually, a compact

positively invariant set K ⊂ X ×Y admits a flow extension if every point in K admits a unique

backward orbit which remains inside the set K (see [20, part II]). A compact positively invariant

set K ⊂ X × Y for Πt is called minimal if it does not contain any other nonempty compact

positively invariant set than itself.

Let X be a Banach space and the cocycle ϕ in (2.1) be C1 for u ∈ X, that is, ϕ is C1 in u,

and the derivative ϕu is continuous in u ∈ X, y ∈ Y, t > 0 ; and moreover, for any v ∈ X,

ϕu(t, u, y)v → v as t → 0+,

uniformly for (u, y) in compact subsets of X × Y . Let K ⊂ X × Y be a compact, positively

invariant set which admits a flow extension. Define Φ(t, u, y) = ϕu(t, u, y) for (u, y) ∈ K, t ≥ 0.

Then the operator Φ generates a linear skew-product semiflow Ψ on (X × K,R+) associated

with (2.1) over K as follows:

Ψ(t, v, (u, y)) = (Φ(t, u, y)v,Πt(u, y)), t ≥ 0, (u, y) ∈ K, v ∈ X. (2.2)

For each (u, y) ∈ K, define the Lyapunov exponent λ(u, y) = lim sup
t→∞

ln ||Φ(t,u,y)||
t

, where || · || is

the operator norm of Φ(t, u, y). We call the number λK = sup(u,y)∈Kλ(u, y) the upper Lyapunov

exponent on K.
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Definition 2.1. K is said to be linearly stable if λK ≤ 0.

To carry out our study for the non-autonomous system (1.1), we embed it into a skew-product

semiflow. Let fτ (t, u, p) = f(t+ τ, u, p)(τ ∈ R) be the time-translation of f , then the function f

generates a family {fτ |τ ∈ R} in the space of continuous functions C(R× R× R
n,R) equipped

with the compact open topology. Moreover, H(f) (the closure of {fτ |τ ∈ R} in the compact

open topology) called the hull of f is a compact metric space and every g ∈ H(f) has the

same regularity as f . Hence, the time-translation g · t ≡ gt (g ∈ H(f)) naturally defines a

compact minimal flow on H(f) and equation (1.1) induces a family of equations associated to

each g ∈ H(f),

ut = ∆u+ g(t, u,∇u), t > 0, x ∈ Ω,

∂u

∂n
= 0 on R

+ × ∂Ω.
(2.3)

It follows from the standard theory of parabolic equations (see, e.g. [3] ), for each u0 ∈ C1(Ω) sat-

isfying ∂u0

∂n
on ∂Ω, (2.3) admits a unique classical locally solution ϕ(t, ·;u0, g) with ϕ(0, ·;u0, g) =

u0.

Hereafter, we always assume that X is a fractional power space (see [5]) associated with the

operator u → −∆u, D → Lp(Ω) such that X →֒ C1(Ω) (X is compact embedded in C1(Ω)),

where D = {u|u ∈ W 2,p(Ω) and ∂u
∂n

|∂Ω = 0}, p > n. For any u ∈ X and g ∈ H(f), (2.3) defines

(locally) a unique solution ϕ(t, ·;u, g) in X is C2 in u and is continuous in g and t within its

(time) interval of existence. In the language of dynamic systems, there is a well defined (local)

skew-product semiflow Πt : X ×H(f) → X ×H(f) :

Πt(u, g) = (ϕ(t, ·;u, g), g · t), t > 0 (2.4)

associated with (2.3). By the standard a priori estimates for parabolic equations (see [3, 5]),

if ϕ(t, ·;u, g)(u ∈ X) is bounded in X in the existence interval of the solution, then it is a

globally defined classical solution. For any δ > 0, {ϕ(t, ·;u, g)} is relatively compact, hence the

ω-limit set ω(u, g) is a nonempty connected compact subset of X ×H(f). Moreover, by [4, 5],

Πt restricted to ω(u, g) is a (global) semiflow which admits a flow extension.

Let X+ =
{
u ∈ X|u(x) ≥ 0, x ∈ Ω

}
. Denote by IntX+ the interior of X+. Clearly, IntX+ 6=

∅, since {u ∈ X|u(x) > 0 for x ∈ Ω, ∂u
∂n

< 0 for x ∈ ∂Ω} ⊂ IntX+. Thus, X+ defines a strong

ordering on X as follows:

u1 ≤ u2 ⇐⇒ u2 − u1 ∈ X+,

u1 < u2 ⇐⇒ u2 − u1 ∈ X+, u2 6= u1,

u1 ≪ u2 ⇐⇒ u2 − u1 ∈ IntX+.

Immediately, we have the following lemma from [20, Lemma III. 5.1].

Lemma 2.1. The skew-product semiflow Πt in (2.4) is strongly monotone, in the sense that:

for any (u, g) ∈ X ×H(f), v ∈ X with v > 0, one has Φ(t, u, g)v ≫ 0 for t > 0.
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Definition 2.2. A bounded solution u(t, x) = ϕ(t, x;u0, g) of (2.3)(u0 ∈ X) is linearly stable if

it satisfies the following conditions:

(i) ω(u0, g) is linearly stable.

(ii) Let Φ(t, s) (t ≥ s ≥ 0) be the solution operator of the following linearized equation along

u(t, x):

vt = ∆v + gu(t, u,∇u)v + gp(t, u,∇u)∇v in R
+ × Ω,

∂v

∂n
= 0 on R

+ × ∂Ω.
(2.5)

Then supt≥0 ‖Φ(t, 0)v0‖ < ∞ for all v0 ∈ X.

2.2 Almost Periodic and Almost Automorphic Functions

In this subsection, we always assume D is a non-empty subset of Rm.

Definition 2.3. A continuous function f : R×D → R is said to be admissible if for any compact

subset K ⊂ D, f is bounded and uniformly continuous on R × K. f is Cr (r ≥ 1) admissible

if f is Cr in w ∈ D and Lipschitz in t, and f as well as its partial derivatives to order r are

admissible.

Let f ∈ C(R × D,R)(D ⊂ R
m) be admissible. Then H(f) = cl{f · τ : τ ∈ R} (called the

hull of f) is compact and metrizable under the compact open topology (see [15, 20]), where

f · τ(t, ·) = f(t+ τ, ·). Moreover, the time translation g · t of g ∈ H(f) induces a natural flow on

H(f) (cf. [15]).

Definition 2.4. A function f ∈ C(R,R) is almost automorphic if for every {t′k} ⊂ R there is

a subsequence {tk} and a function g : R → R such that f(t+ tk) → g(t) and g(t − tk) → f(t)

pointwise. f is almost periodic if for any sequence {t′n} there is a subsequence {tn} such that

{f(t + tn)} converges uniformly. A function f ∈ C(R × D,R)(D ⊂ R
m) is uniformly almost

periodic (automorphic) in t, if f is both admissible and almost periodic (automorphic) in t ∈ R.

Remark 2.1. If f is a uniformly almost automorphic function in t, thenH(f) is always minimal,

and there is a residual set Y ′ ⊂ H(f), such that all g ∈ Y ′ is a uniformly almost automorphic

function in t. If f is a uniformly almost periodic function in t, then H(f) is always minimal,

and every g ∈ H(f) is uniformly almost periodic function (see, e.g. [20]).

Let f ∈ C(R×D,R) be uniformly almost periodic (almost automorphic) and

f(t, w) ∼
∑

λ∈R

aλ(w)e
iλt (2.6)

be a Fourier series of f (see [20,22] for the definition and the existence of a Fourier series). Then

S = {αλ(w) 6≡ 0} is called the Fourier spectrum of f associated with Fourier series (2.6) and

M be the smallest additive subgroup of R containing S(f) is called the frequency module of f .

Moreover, M(f) is a countable subset of R (see, e.g. [20]).
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Lemma 2.2. Assume f ∈ C(R × D,R) is a uniformly almost automorphic function, then for

any uniformly almost automorphic function g ∈ H(f), M(g) = M(f).

Proof. See [20, Corollary I.3.7].

3 Spatial-homogeneity of Linearly Stable Solutions

In this section, we always assume that the function (u, p) 7→ f(t, u, p) in (1.1) is concave (resp.

convex) for each t ∈ R, that is, f(t, λu1 + (1− λ)u2, λp1 + (1− λ)p2) ≥ (resp. ≤) λf(t, u1, p1) +

(1 − λ)f(t, u2, p2) for any λ ∈ [0, 1], t ∈ R and (ui, pi) ∈ R × R
n, i = 1, 2. Clearly, g(t, u, p) is

also concave (resp. convex) for any g ∈ H(f). We further assume that f(t, ·, ·) is C2 uniformly

almost periodic. Our main result is the following theorem

Theorem 3.1. Assume that f : (t, ·, ·) 7→ f(t, ·, ·) is concave (or convex). Let ϕ(t, ·, u0, g) ∈

C1+µ

2
,2+µ(R ×Ω) (µ ∈ (0, 1]) be a linearly stable almost automorphic (almost periodic) solution

of (2.3), then ϕ(t, ·;u0, g) is spatially-homogeneous and is a solution of

u′ = g(t, u, 0). (3.1)

Moreover, M(ϕ) ⊂ M(f).

Hereafter, we only consider the case when f is concave, because by a transformation from u

to −u, the convexity of nonlinearity g can be changed into concavity.

Let ϕ(t, ·;u0, g) ∈ C1+µ

2
,2+µ(R×Ω) be an almost automorphic solution of (2.3) with u(0) = u0.

Then, ω(u0, g) is an almost automorphic minimal set; and hence, ϕ(t, x;u0, g) is well defined

for all t ∈ R. For brevity, we write u(t, x) = ϕ(t, x;u0, g) and define the following function

c : R → R by

c(t) := max
x∈Ω

u(t, x), t ∈ R.

Let M(t) = {x ∈ Ω : u(t, x) = c(t)}. Then, similar as the arguments in [6, p.327], c(t)

is a Lipchitz continuous function and hence differentiable for a.e. t ∈ R; define R̃ = {t ∈

R|c(t) is differentiable}, then R \ R̃ is a set of zero measure and c′(t) is continuous on R̃; and

moreover, c′(t) = ut(t, x) for any t ∈ R̃ and x ∈ M(t). Since u ∈ C1+µ

2
,2+µ(R× Ω) is an almost

automporhic solution of (2.3), c′(t) ∈ L∞(R). Moreover, we have the following

Lemma 3.2. c(t) is an almost automorphic function.

Proof. Note that u(t, x) is a uniformly almost automorphic function on R × Ω. Then, for any

sequence tn → ∞, there are v(t, x) ∈ H(u) (the hull of u) and a subsequence {tnk
} ⊂ {tn}, such

that u(t + tnk
, x) → v(t, x) and v(t − tnk

, x) → u(t, x), uniformly for (t, x) ∈ I × Ω, where I is

any compact set contained in R. In other words, for any ǫ > 0, there exists some N ∈ N such

that {
u(t+ tnk

, x)− ǫ < v(t, x) < u(t+ tnk
, x) + ǫ

v(t− tnk
, x)− ǫ < u(t, x) < v(t− tnk

, x) + ǫ,
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for any k > N and (t, x) ∈ I ×Ω. Therefore,





max
x∈Ω

u(t+ tnk
, x)− ǫ < max

x∈Ω
v(t, x) < max

x∈Ω
u(t+ tnk

, x) + ǫ

max
x∈Ω

v(t− tnk
, x)− ǫ < max

x∈Ω
u(t, x) < max

x∈Ω
v(t− tnk

, x) + ǫ,

that is,

|c(t+ tnk
)−max

Ω
v(t, x)| < ǫ and |c(t)−max

Ω
v(t− tnk

, x)| < ǫ,

for any k > N and t ∈ R. This implies that c(t) is an almost automorphic function.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let w(t, x) = c(t) − u(t, x). Then, it is clear that w(t, x) is a uniformly

almost automorphic function and w(t, x) ≥ 0 on R × Ω. Since u(t, x) is a solution of (2.3),

denote −∆ by A, we have

wt +Aw = c′(t)− ut +∆u = c′(t)− g(t, u,∇u) (3.2)

for all t ∈ R̃. Since g is concave,

g(t, c, 0) ≤ g(t, u,∇u) +
∂g

∂u
(t, u,∇u)w +

n∑

i=1

∂g

∂pi
(t, u,∇u)wxj

. (3.3)

Let

A(t) = A−
n∑

i=1

∂g

∂pi
(t, u,∇u)

∂

∂xi
−

∂g

∂u
(t, u,∇u).

Together with (3.2)-(3.3), one has

wt +A(t)w ≤ c′(t)− g(t, c, 0) := q(t)

for all t ∈ R̃.

Since c′(t) ∈ L∞(R), one has q ∈ L∞(R). We now divide our proof into the following two

cases: (i) q(t) ≤ 0 for a.e. t ∈ R; (ii) q(t) > 0 on a set of positive measure.

Case (i). q(t) ≤ 0 for a.e. t ∈ R. Let h ∈ L∞(R, Lp(Ω)) be defined from (3.2) by

wt +A(t)w =: h(t) (3.4)

and Φ(t, s) be the fundamental solution associated with (3.4)(see Definition 2.2). If h ∈

C(R, Lp(Ω)), one can use the method of variation of constant to obtain

w(t) = Φ(t, 0)w(0) +

∫ t

0
Φ(t, τ)h(τ)dτ (3.5)

7



in Lp(Ω) (see, e.g. [21, Theorem 5.2.2]). For general h ∈ L∞(R, Lp(Ω)) in (3.4), similarly as the

argument in [6, p.328-329], by using the strong continuity of Φ(t, s) in s and [21, p.125, (5.33)],

the following equation:

∂

∂s
(Φ(t, s)w(s)) = Φ(t, s)wt(s) + Φ(t, s)A(s)w(s) = Φ(t, s)h(s) (3.6)

can be established for any t ∈ R̃. Furthermore, Φ(t, s)w(s) is in fact a Lipschitz continuous

function of s from R to Lp(Ω) (hence, Φ(t, s)w(s) is an absolutely continuous function of s in

Lp(Ω)). By using [1, Corollary A] and integrating s in (3.6) from 0 to t, one can obtain (3.5).

Since h(τ) ≤ 0 for a.e τ ∈ R, by strong positivity of Φ, one has Φ(t, τ)h(τ) ≤ 0 for a.e.

τ ∈ [0, t] (t > 0); and hence ∫ t

0
Φ(t, τ)h(τ)dτ ≤ 0, ∀t > 0.

Therefore,

w(t) ≤ Φ(t, 0)w(0). (3.7)

Suppose that u(t, x) is not spatially-homogeneous. Then, w(0) > 0 in C(Ω) (i.e. w(0, x) ≥ 0

for all x ∈ Ω, and w(0, ·) 6= 0). Noticing that the skew-product semiflow Πt on X × H(f) is

strongly monotone (see Lemma 2.1), ω(u0, g) admits a continuous separation (see [20, Theorem

II.4.4] or [11, Sec 3.5]) as follows: There exists continuous invariant splitting X = X1(v, g̃) ⊕

X2(v, g̃) ((v, g̃) ∈ ω(u0, g)) with X1(v, g̃) = span{φ(v, g̃)}, φ(v, g̃) ∈ IntX+ and X2(v, g̃)∩X+ =

{0} such that

Φ(t, v, g̃)X1(v, g̃) = X1(Π
t(v, g̃)), Φ(t, v, g̃)X2(v, g̃) ⊂ X2(Π

t(v, g̃)). (3.8)

Moreover, there are K, γ > 0 satisfying

‖Φ(t, v, g̃)|X2(v,g̃)‖ ≤ Ke−γt‖Φ(t, v, g̃)|X1(v,g̃)‖ (3.9)

for any t ≥ 0 and (v, g̃) ∈ ω(u0, g). Write w(0) = av1 + v2 with v1 ∈ X1(u0, g), ‖v1‖ = 1 and

v2 ∈ X2(u0, g). Since u(t, x) is linearly stable, supt≥0 ‖Φ(t, 0)v1‖ is bounded by Definition 2.2.

Case (ia): ‖Φ(t, 0)v1‖ is bounded away from zero. In this case, there exist M ≥ m >

0 such that m ≤ inft≥0 ‖Φ(t, 0)v1‖ ≤ supt≥0 ‖Φ(t, 0)v1‖ ≤ M . Let Γ = {v|Φ(tn, 0)v1 →

v in X for some tn → ∞}. Since supt≥0 ‖Φ(t, 0)v1‖ ≤ M , by the regularity of Φ(t, 0), one has

Γ 6= ∅. We further claim that Γ ⊂ IntX+ and Γ is a closed subset of X. In fact, for any v ∈ Γ,

one can find a sequence τn → ∞, such that Φ(τn, 0)v1 → v. By virtue of (3.8), Φ(τn, 0)v1 ∈

X1(Π
τn(u0, g)). Without loss of generality, one may assume that Πτn(u0, g) → (u, g) ∈ ω(u0, g).

This implies that v ∈ X1(u, g) ⊂ IntX+ ∪ {0}. Note also that ‖v‖ ≥ m > 0. Then v ∈ IntX+.

Next, we prove that Γ is closed in X. It suffices to prove that: if the sequence vn ∈ Γ converges

to some v∗ ∈ X, then v∗ ∈ Γ. Indeed, for any positive integer k ∈ N, there is nk > 0 such that

‖vn− v∗‖ < 1
2k for any n ≥ nk, particularly, ‖vnk

− v∗‖ < 1
2k . Noticing that vnk

∈ Γ, there exists

tnk
∈ R

+ such that ‖Φ(tnk
, 0)v1 − vnk

‖ < 1
2k ; and hence, ‖Φ(tnk

, 0)v1 − v∗‖ < 1
k
. Without loss

8



of generality, one may assume tnk
→ ∞ as k → ∞, by letting k → ∞, one has Φ(tnk

, 0)v1 → v∗

as tnk
→ ∞, which means v∗ ∈ Γ. Thus we have proved the claim.

Recall that ω(u0, g) is an almost automorphic minimal set, there is a sequence tn → ∞

such that Πtn(u0, g) → (u0, g). By choosing a subsequence, still denoted by tn, one has that

Φ(tn, 0)v1 → v∗ ∈ X1(u0, g) ∩ IntX+; in other words, there is a positive constant a∗ such that

v∗ = a∗v1. Moreover, Φ(t, 0)a∗v1 ∈ Γ for any fixed t ∈ R
+. Therefore, Φ(tn, 0)a

∗v1 ∈ Γ.

Observing that Φ(t, 0) is a linear operator and Γ is a closed set, Φ(tn, 0)a
∗v1 = a∗Φ(tn, 0)v1 →

(a∗)2v1 ∈ Γ. Similarly, by repeating this argument, we have (a∗)nv1 ∈ Γ for any n ∈ N.

Furthermore, by virtue of the boundedness of Γ, a∗ ≤ 1. If 0 < a∗ < 1, then it is not hard to

see 0 ∈ Γ, a contradiction to Γ ⊂ IntX+. Therefore, a∗ = 1. Note that supt≥0 ‖Φ(t, 0)v1‖ ≤ M ,

by (3.9), ‖Φ(t, 0)v2‖ → 0 as t → ∞. By letting t = tn and n → ∞ in (3.7), one has

w(0) ≤ av1.

Therefore, v2 ≤ 0. Observing that X2(u0, g)∩X+ = {0}, v2 = 0. Hence, w(0) = av1 with a ≥ 0.

If a > 0, then w(0) = av1 ∈ IntX+, a contradiction to that w(0) /∈ IntX+. Thus, a = 0 and

u(t, x) is spatially-homogeneous.

Case (ib): inft≥0 ‖Φ(t, 0)v1‖ = 0. There is a sequence {tn} ⊂ R
+ such that ‖Φ(tn, 0)v1‖ < 1

n
.

When the sequence {tn} is bounded, there exist t∗ ∈ R
+ and a subsequence tnk

such that

tnk
→ t∗ as k → ∞. Due to Φ(t, 0)v1 is continuous with respect to t, Φ(t∗, 0)v1 = 0, which

contradicts to the strong positivity of Φ(t, 0). Thus, {tn} is unbounded. For simplicity, we

assume tn → ∞ as n → ∞. Again by (3.7), we have

0 ≤ w(tn) ≤ aΦ(tn, 0)v1 +Φ(tn, 0)v2. (3.10)

For such tn, by choosing a subsequence if necessary, one may assume that Πtn(u0, g) → (u∗, g∗) ∈

ω(u0, g) and c(tn) → c∗. Let tn → ∞ in (3.10), one has 0 ≤ w∗ ≤ 0 where w∗ = c∗ − u∗. So,

w∗
0 = 0, that is, u∗(x) ≡ c∗ on Ω is spatially-homogeneous. By the minimality of ω(u0, g), every

point in ω(u0, g) is spatially-homogeneous, thus, u0(x) = c(0) on Ω, a contradiction.

Thus, we have proved that u(t, x) is spatially-homogeneous when q(t) ≤ 0 a.e. in R.

Case (ii). There is a positive measure subset E in R such that q(t) > 0 for all t ∈ E. In the

following, we will show that this case cannot occur. Actually, this can be proved by the same

arguments in [6, p.329-330]. For the sake of completeness, we give a detailed proof below.

Suppose that there exists such subset E ⊂ R. Then one can find some t0 ∈ R̃ such that

q(t0) > 0. Recall that c′(t) is continuous on R̃, there are nontrivial interval [t1, t2] ⊂ R and

ǫ0 > 0 satisfying q(t) ≥ ǫ0 for a.e. t ∈ [t1, t2]. By the concavity of g(t, ·, ·), we have

g(t, u,∇u) ≤ g(t, c, 0) −
∂g

∂u
(t, c, 0)(c − u)−

n∑

i=1

∂g

∂pi
(t, c, 0)(c − u)xi

. (3.11)

Let

A(t) = A−
n∑

i=1

∂g

∂pi
(t, c, 0)

∂

∂xi
−

∂g

∂u
(t, c, 0)
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and

h(t) =
d

dt
(c− u)(t) +A(t)(c− u)(t).

Combing with (3.2) and (3.11), one can obtain h(t) ≥ q(t) ≥ ǫ0 for a.e. t in [t1, t2]. On the

other hand, similarly as in (3.5), we have

(c− u)(t2) = Φ(t2, t1)(c− u)(t1) +

∫ t2

t1

Φ(t2, s)h(s)ds,

where Φ(·, ·) is the fundamental solution of ut = A(t)u. Note that

∫ t2

t1

Φ(t2, s)h(s)ds ≥ ǫ0

∫ t2

t1

Φ(t2, s)1ds ≫ 0 in C(Ω),

where 1 is the unit constant-function. Together with Φ(t2, t1)(c − u)(t1) ≥ 0, it follows that

(c− u)(t2) ≫ 0 in C(Ω), a contradiction to the definition of c. So, Case (ii) cannot happen.

Therefore, we have proved that u(t, x) ≡ ϕ(t) is a spatially-homogeneous solution of (2.3);

and moreover, it is an almost automorphic solution of (3.1). Finally, it follows from Lemma

2.2 and [20, Theorem III.3.4(c)] that M(ϕ) ⊂ M(g) = M(f). Thus, we have completed the

proof.
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