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Abstract. In the present paper we study the existence of solutions for some
nonlocal problems involving Orlicz-Sobolev spaces. The approach is based on
sub-supersolutions.

1. Introduction

Let Ω be a bounded domain in R
N (N ≥ 3) with C2 boundary ∂Ω. In the

present paper we focus on the problems of quasilinear elliptic nonlocal equations
{

−∆Φu = f(u)|u|α
LΨ + g(u)|u|γ

LΛ in Ω,
u = 0 on ∂Ω

(P1)

and 



−∆Φ1u = f1(v)|v|
α1

LΨ1
+ g1(v)|v|

γ1

LΛ1
in Ω,

−∆Φ2v = f2(u)|u|
α2

LΨ2
+ g2(u)|u|

γ2

LΛ2
in Ω,

u = v = 0 on ∂Ω,
(P2)

where αi, γi, i = 0, 1, 2, with α0 := α and γ0 := γ, are positive constants, |.|LΨ

(resp. |.|LΛ) denotes the norm in the Orlicz space LΨ(Ω) (resp. LΛ(Ω)) and the
nonlinearities fi, gi : [0,+∞) → [0,+∞), i = 0, 1, 2, with f0 := f and g0 := g, are
continuous and nondecreasing functions. Here, ∆Φi

stands for the Φi−Laplacian
operator, that is, ∆Φi

w = div (φi(|∇w|)∇w), for i = 0, 1, 2, where Φi : R → R are
N -functions of the form

Φi(t) :=

∫ |t|

0

φi(s)sds, (1.1)

with φi : [0,+∞) → [0,+∞) being C1 functions satisfying

(φ1) (tφi(t))
′; ∀t > 0
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2 Nonlocal problems involving Orlicz spaces

(φ2) lim
t→0+

tφi(t) = 0, lim
t→+∞

tφi(t) = +∞

and that there exist li,mi ∈ (1, N), i = 0, 1, 2 such that

(φ3) li − 1 ≤
(φi(t)t)

′

Φi(t)
≤ mi − 1, ∀t > 0,

where φ0 := φ, l0 := l and m0 := m. Note that the condition (φ3) implies that

(φ3)
′ li ≤

φi(t)t
2

Φi(t)
≤ mi, ∀t > 0,

for i = 0, 1, 2. In addition, Ψi and Λi, for i = 0, 1, 2, with Ψ0 := Ψ and Λ0 = Λ, are
N -functions satisfying the ∆2 condition.

According to hypotheses (φ1)−(φ3), a wide class of operators can be incorporated
in problems (P1) and (P2), for instance:

• φ(t) = p|t|p−2, t > 0, with p > 1. The operator ∆Φ is the p-Laplacian
operator.

• φ(t) = p|t|p−2 + q|t|q−2, t > 0, 1 < p < q. Here ∆Φ is the (p, q)-Laplacian
operator applied in quantum physics (see [7]).

• φ(t) = 2γ(1 + t2)γ−1, t > 0 and γ > 1. ∆Φ appears in nonlinear elasticity
problems [23].

• φ(t) = γ
(
√
1+t2−1)γ−1

√
1+t2

, t > 0 and γ ≥ 1. The operator ∆Φ arises in minimal

surfaces theory for γ = 1 (see [19, page 128]) and nonlinear elasticity for
γ > 1 (see [22]).

• φ(t) = ptp−2(1+t) ln(1+t)+tp−1

1+t
, t > 0. The operator ∆Φ appears in plasticity

problems (see [23]).

However, the lack of properties such as homogeneity complicates handling the
nonlinear Φi−Laplacian operator which, therefore, constitutes a serious obstacle in
the study of the problems (P1) and (P2). Thereby, it requires relevant topics of
nonlinear functional analysis, especially theory of Orlicz and Orlicz-Sobolev spaces
(see, e.g. [1, 30] and their abundant reference). Another mathematical difficulty
encountered comes out from the nonlocal caracter of (P1) and (P2). It is due to the
presence of terms | · |LΨi and | · |LΛi that make the equations in (P1) and (P2) no
longer a pointwise identities. For more inquiries on nonlocal problems we refer to
[13, 6] where systems of elliptic equations are examined. With regard to the scalar
case, we quote the papers [3, 5, 11, 25, 27, 28, 36]. Such problems are important for
applications in view of the significant number of physical phenomena formulated
into nonlocal mathematical models. For instance, they appear in the study of the
flow of a fluid through a homogeneous isotropic rigid porous medium, as well as in
the study of population dynamics (see, e.g., [15, 33]).

Relevant contributions regarding nonlocal problems fit the setting of (P1) and
(P2). In particular, Alves & Covei [4] applied the sub-supersolution method to
show the existence results for problem involving Kirchhoff-type operator

{
−a
(∫

Ω
u
)
∆u = h1(x, u)f

(∫
Ω
|u|p

)
+ h2(x, u)g

(∫
Ω
|u|r
)

in Ω,
u = 0 on ∂Ω,
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where a, f, g, and hi (i = 1, 2) are given functions. The case of nonlocal problems
driven by the p-Laplacian differential operator is investigated by [12]. Combining
sub-supersolutions method with the classical theorem due to Rabinowitz [29], the
authors proved the the existence of solutions for quasilinear problem of the form

{
−∆pu = |u|

α(x)
Lq in Ω,

u = 0 on ∂Ω,
(P )

where α is a nonnegative function defined in Ω. Then, they extend the results to
the nonlocal quasilinear elliptic system






−∆p1u = |v|
α1(x)
Lq1 in Ω,

−∆p2v = |u|
α2(x)
Lq2 in Ω,

u = 0 on ∂Ω.

(S)

The semilinear case, that is when p1 = p2 = 2 is investigated by Corrêa-Lopes [13]
and Chen-Gao [6] for systems of the form






−∆um = f(x, u)|v|αLp in Ω,

−∆vn = g(x, v)|u|βLq in Ω,
u = v = 0 on ∂Ω

(1.2)

with m,n ≥ 1 and α, β > 0. The existence of solutions is obtained by means
of topological methods, namely, Galerkin method, fixed point theory as well as
sub-supersolutions techniques.

Motivated by the aforementioned papers, our goal is to establish the existence
of (positive) solutions for problems (P1) and (P2) involving sublinear and concave-
convex terms. The approach relies on the method of sub-supersolution. However,
besides the nonlocal nature of the problems, this method cannot be easily imple-
mented due to the presence of Φi-Laplacian operator in the principle part of the
equations. At this point, to the best of our knowledge, it is for the first time
when nonlocal problems involving Φi-Laplacian operator are studied. A signifi-
cant feature of our result lies in the obtaining of the sub- and supersolution in the
Orlicz-Sobolev spaces setting and, involving nonlocal terms. This is achieved by
the choice of suitable explicit functions with an adjustment of adequate constants.

The rest of the paper is organized as follows: Section 2 is devoted to the needed
properties in Orlicz and Orlicz-Sobolev spaces. Section 3 (resp. Section 4) contains
existence results for problem (P1) (resp. (P2)) involving sublinear and concave-
convex structures.

2. Preliminaries

In this section we recall some results on Orlicz-Sobolev spaces. We say that a
continuous function Φ : R → [0,+∞) is a N-function if:

(i) Φ is convex,
(ii) Φ(t) = 0 ⇔ t = 0,

(iii) lim
t→0

Φ(t)

t
= 0 and lim

t→+∞
Φ(t)

t
= +∞,

(iv) Φ is even.

We say that a N-function Φ verifies the ∆2-condition, and we denote by Φ ∈ ∆2,
if

Φ(2t) ≤ KΦ(t), ∀t ≥ t0,
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for some constants K, t0 > 0. Regarding the condition ∆2 it is important to
note that such property is satisfied under the condition (φ3)

′

in the case of the
N−function is given by (1.1).

We fix an open set Ω ⊂ R
N and a N-function Φ. We define the Orlicz space

associated with Φ as follows

LΦ(Ω) =

{
u ∈ L1(Ω):

∫

Ω

Φ
( |u|
λ

)
dx < +∞ for some λ > 0

}
.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm given by

|u|LΦ = inf

{
λ > 0 :

∫

Ω

Φ
( |u|
λ

)
dx ≤ 1

}
.

Lemma 1. [24] Consider Φ a N -function of the form (1.1) and satisfying (φ1), (φ2)
and (φ3). Set

ζ0(t) = min{tℓ, tm} and ζ1(t) = max{tℓ, tm}, t ≥ 0.

Then Φ satisfies

ζ0(t)Φ(ρ) ≤ Φ(ρt) ≤ ζ1(t)Φ(ρ), ρ, t > 0,

ζ0(|u|Φ) ≤

∫

Ω

Φ(u)dx ≤ ζ1(|u|Φ), u ∈ LΦ(Ω).

For a N−function Φ, the corresponding Orlicz-Sobolev space is defined as the
Banach space

W 1,Φ(Ω) =
{
u ∈ LΦ(Ω) :

∂u

∂xi

∈ LΦ(Ω), i = 1, ..., N
}
,

endowed with the norm

‖u‖1,Φ = |∇u|LΦ + |u|LΦ .

The ∆2-condition also implies that

un → u in LΦ(Ω) ⇐⇒

∫

Ω

Φ(|un − u|) → 0

and

un → u in W 1,Φ(Ω) ⇐⇒

∫

Ω

Φ(|un − u|) → 0 and

∫

Ω

Φ(|∇un −∇u|) → 0.

Consider u, v ∈ W 1,Φ(Ω) we will say that −∆Φu ≤ −∆Φv in Ω if
∫

Ω

φ(|∇u|)∇u∇ϕ ≤

∫

Ω

φ(|∇v|)∇v∇ϕ,

for all ϕ ∈ W
1,Φ
0 (Ω) with ϕ ≥ 0.

The following results will be often used.

Lemma 2. [34, Lemma 4.1] Let u, v ∈ W 1,Φ(Ω) with −∆Φu ≤ −∆Φv in Ω and

u ≤ v in ∂Ω (i.e (u− v)+ ∈ W
1,Φ
0 (Ω)), then u(x) ≤ v(x) a.e in Ω.

Lemma 3. [34, Lemma 4.5] Let λ > 0 and consider zλ the unique solution of the
problem {

−∆Φzλ = λ in Ω,
zλ = 0 on ∂Ω, (2.1)
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where Φ is given by (1.1) and Ω ⊂ R
N is an admissible domain. Define ρ0 =

1

2|Ω|
1
N C0

. If λ ≥ ρ0, then |zλ|L∞ ≤ C∗λ
1

l−1 and |zλ|L∞ ≤ C∗λ
1

m−1 if λ < ρ0. Here

C∗ and C∗ are positive constants dependending only on l,m,N and Ω.

Regarding to the function zλ of the previous result, it follows from [26, page 320]
and [34, Lemma 4.2] that zλ ∈ C1(Ω) with zλ > 0 in Ω.

3. The scalar case

We say that u ∈ W
1,Φ
0 (Ω) ∩ L∞(Ω) is a (weak) solution of (P1) if

∫

Ω

φ(|∇u|)∇u∇ϕ =

∫

Ω

(f(u)|u|αΨ + g(u)|u|γΛ)ϕ,

for all ϕ ∈ W
1,Φ
0 (Ω).

Given u, v ∈ S(Ω) := {u : Ω → R : u is measurable}, we write u ≤ v if
u(x) ≤ v(x) a.e in Ω. We denote by [u, v] the set

[u, v] :=
{
w ∈ S(Ω) : u(x) ≤ w(x) ≤ v(x) a.e in Ω

}
.

We say that (u, u) is a sub-super solution pair for (P ) if u, u ∈ W
1,Φ
0 (Ω)∩L∞(Ω)

are nonnegative functions that satisfy the inequality 0 < u ≤ u in Ω and if for all

ϕ ∈ W
1,Φ
0 (Ω) with ϕ ≥ 0 the following inequalities hold

∫

Ω

φ(|∇u|)∇u∇ϕ ≤

∫

Ω

(f(u)|u|αLΨ + g(u)|u|γ
LΛ)ϕ

and ∫

Ω

φ(|∇u|)∇u∇ϕ ≥

∫

Ω

(f(u)|u|αLΨ + g(u)|u|γ
LΛ)ϕ.

The following result will play an important role in our arguments.

Lemma 4. Suppose that f, g : [0,+∞) → R are nondecreasing, continuous and
nonnegative functions. Consider also that α, γ ≥ 0 and that there exists a sub-
supersolution pair (u, u) for problem (P1). Then there exists a nontrivial solution u

for (P1) with u ∈ [u, u].

Proof. We have that
{

−∆Φu ≤ f(u)|u|α
LΨ + g(u)|u|γ

LΛ in Ω,
u = 0 on ∂Ω.

and {
−∆Φu ≥ f(u)|u|α

LΨ + g(u)|u|γ
LΛ in Ω,

u = 0 on ∂Ω.

Denote by u1 the unique solution of the problem
{

−∆Φu1 = f(u)|u|α
LΨ + g(u)|u|γ

LΛ in Ω,
u1 = 0 on ∂Ω.

Note that the mentioned solution exist because the term f(u)|u|α
LΨ is bounded.

Since u ≤ u in Ω, f is nondecreasing and α, γ ≥ 0, we have that f(u)|u|α
LΨ ≤

f(u)|u|α
LΨ and g(u)|u|γ

LΨ ≤ g(u)|u|γ
LΛ , then it follows from Lemma 2 that u ≤ u1 ≤ u

in Ω.
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Let u2 be the solution of the problem
{

−∆Φu2 = f(u1)|u1|
α
LΨ + g(u1)|u1|

γ

LΛ in Ω,
u2 = 0 on ∂Ω.

Since u ≤ u1 ≤ u in Ω, we have that

f(u)|u|αLΨ + g(u)|u|αLΛ ≤ f(u1)|u1|
α
LΨ + g(u1)|u1|

γ

LΛ ≤ f(u)|u|αLΨ + g(u)|u|γ
LΛ in Ω.

Thus from Lemma 2 we get,

u ≤ u1 ≤ u2 ≤ u in Ω.

Note also that −∆Φui ≤ f(u)|u|α
LΨ + g(u)|u|γ

LΛ , i = 1, 2. Thus we can construct a
sequence un such that

{
−∆Φun = f(un−1)|un−1|

α
LΨ + g(un−1)|un−1|

γ

LΛ in Ω,
un = 0 on ∂Ω. (Pn)

with −∆Φun ≤ f(u)|u|α
LΨ+g(u)|u|γ

LΛ in Ω and u ≤ un ≤ u in Ω for all n ∈ N. Using

the C1,α estimates up to the boundary (see [26]), we have that un is a bounded
sequence in C1,θ(Ω) for some θ ∈ (0, 1]. Since the embedding C1,θ(Ω) →֒ C1(Ω) is
compact, we can extract a subsequence with un → u in C1(Ω) for some u ∈ C1(Ω).
Passing to the limit in (Pn), we have that u is a nontrivial solution for problem
(P1). �

3.1. A sublinear scalar problem. In this section we use Lemma 4 and a suitable
sub-supersolution pair to prove the existence of solution for a nonlocal problem of
the type {

−∆Φu = uβ|u|α
LΨ in Ω,

u = 0 on ∂Ω,
(PS)

where α, β ≥ 0 are constants saisfying certain conditions. The above problem is
considered in [12] for the p−Laplacian case and with β = 0. We complete the study
done in [12, Theorem 4.1] by considering constants exponents and a more general
operator.

Theorem 1. Suppose that α, β ≥ 0 with 0 < α + β < l − 1, where l is given in
(φ3). Then (PS) has a positive solution.

Proof. We will start by constructing u. Let λ > 0 and consider zλ ∈ W
1,Ψ
0 (Ω) ∩

L∞(Ω) the unique solution of (2.1) where λ will be chosen later.
For λ > 0 large by Lemma 3 there is a constant K > 1 that does not depend on

λ such that

0 < zλ(x) ≤ Kλ
1

l−1 in Ω. (3.1)

Since 0 < α+ β < l − 1 we can choose λ > 1 such that (3.1) occurs and

Kβλ
α+β
l−1 |K|αLΨ ≤ λ. (3.2)

By (3.1) and (3.2) we get

z
β
λ |zλ|

α
LΨ ≤ λ.

Therefore {
−∆Φzλ ≥ z

β
λ |zλ|

α
Ψ in Ω,

zλ = 0 on ∂Ω.
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Now we will construct u. Since ∂Ω is C2 there is a constant δ > 0 such that
d ∈ C2(Ω3δ) and |∇d(x)| ≡ 1 where d(x) := dist(x, ∂Ω) and Ω3δ := {x ∈ Ω; d(x) ≤
3δ}(see [20, Lemma 14.16] and its proof). Let σ ∈ (0, δ). A direct computation
implies that the function φ = φ(k, σ) defined by

η(x) =





ekd(x) − 1 if d(x) < σ,

ekσ − 1 +
∫ d(x)

σ
kekσ

(
2δ−t
2δ−σ

) m
l−1

dt if σ ≤ d(x) < 2δ,

ekσ − 1 +
∫ 2δ

σ
kekσ

(
2δ−t
2δ−σ

) m
l−1

dt if 2δ ≤ d(x)

belongs to C1
0 (Ω) where k > 0 is an arbitrary number. Direct computations implies

that

−∆Φ(µη) =





−µk2ekd(x) d
dt

(φ(t)t)

∣∣∣∣
t=µkekd(x)

− φ(µkekd(x))µkekd(x)∆d if d(x) < σ,

µkekσ
(

m
l−1

)(
2δ−d(x)
2δ−σ

) m
l−1−1 (

1
2δ−σ

)
d
dt

(φ(t)t)

∣∣∣∣
t=µkekσ( 2δ−d(x)

2δ−σ )

−φ

(
µkekσ

(
2δ−d(x)
2δ−σ

) m
l−1

)
µkekσ

(
2δ−d(x)
2δ−σ

) m
l−1

∆d if σ < d(x) < 2δ,

0 if 2δ < d(x)

for all µ > 0.
If k is large and d(x) < σ, we have that −∆Φ(µφ) ≤ 0. In fact, note that by (φ3)

we have for k large that

−∆Φ(µη) =− µk2ekd(x)
d

dt
(φ(t)t)

∣∣∣∣
t=µkekd(x)

− φ(µkekd(x))µkekd(x)∆d

≤− k2µekd(x)(l − 1)φ(µkekd(x))− φ(µkekd(x))µkekd(x)∆d

=µkekd(x)φ(µkekd(x))(−k(l − 1)−∆d)

≤0,

(3.3)

because ∆d is bounded near the boundary and l > 1.
Now we will estimate −∆Φ(µη) in the case σ < d(x) < 2δ. Note that from (φ3)

and Lemma 1 we get

µke
kσ

(

m

l − 1

)(

2δ − d(x)

2δ − σ

) m
l−1

−1(
1

2δ − σ

)

d

dt
(φ(t)t)

∣

∣

∣

∣

t=µkekσ
(

2δ−d(x)
2δ−σ

)

≤µke
kσ

(

m

l − 1

)(

2δ − d(x)

2δ − σ

) m
l−1

−1(
m− 1

2δ − σ

)

φ

(

µke
kσ

(

2δ − d(x)

2δ − σ

) m
l−1

)

≤

(

m− 1

2δ − σ

)(

m

l − 1

) Φ

(

µkekσ
(

2δ−d(x)
2δ−σ

) m
l−1

)

µkekσ
(

2δ−d(x)
2δ−σ

) m
l−1

1
(

2δ−d(x)
2δ−σ

)

≤max

{

(µkekσ)m−1

(

2δ − d(x)

2δ − σ

)m( m
l−1 )−(

m
l−1

+1)
, (µkekσ)l−1

(

2δ − d(x)

2δ − σ

)l( m
l−1 )−(

m
l−1

+1)
}

×

(

m− 1

2δ − σ

)(

m

l − 1

)

.

(3.4)
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Since m, l > 1, we get l
(

m
l−1

)
−m

(
m
l−1 + 1

)
,m
(

m
l−1

)
−m

(
m
l−1 + 1

)
> 0. Note

that 0 ≤
(

2δ−d(x)
2δ−σ

)
≤ 1. Thus by (3.4) we get

µkekσ
(

m

l − 1

)(
2δ − d(x)

2δ − σ

) m
l−1−1(

1

2δ − σ

)
d

dt
(φ(t)t)

∣∣∣∣
t=µkekσ( 2δ−d(x)

2δ−σ )

≤

(
m− 1

2δ − σ

)(
m

l− 1

)
max{(µkekσ)m−1, (µkekσ)l−1}

=C1

(
1

2δ − σ

)
max{(µkekσ)m−1, (µkekσ)l−1},

(3.5)

where C1 is a constant that does not depend on µ and k. On other hand, we have
by Lemma 1 that
∣

∣

∣

∣

∣

φ

(

µke
kσ

(

2δ − d(x)

2δ − σ

) m
l−1

)

µke
kσ

(

2δ − d(x)

2δ − σ

) m
l−1

∆d

∣

∣

∣

∣

∣

≤φ

(

µke
kσ

(

2δ − d(x)

2δ − σ

) m
l−1

)

µke
kσ

(

2δ − d(x)

2δ − σ

) m
l−1

sup
Ω3δ

|∆d|

≤C

Φ

(

µkekσ
(

2δ−d(x)
2δ−σ

) m
l−1

)

µkekσ
(

2δ−d(x)
2δ−σ

) m
l−1

≤Cmax

{

(µkekσ)m−1

(

2δ − d(x)

2δ − σ

)m( m
l−1 )−(

m
l−1

+1)
, (µkekσ)l−1

(

2δ − d(x)

2δ − σ

)l( m
l−1 )−(

m
l−1

+1)
}

≤C2 max{(µkekσ)m−1
, (µkekσ)l−1},

(3.6)

where C2 is a constant that does not depend on σ, k and µ. Thus from (3.5) and
(3.6) we have that

−∆Φu ≤ max

{
C1

2δ − σ
,C2

}
max{(µkekσ)m−1, (µkekσ)l−1}, (3.7)

if σ < d(x) < 2δ.
Consider the function η and the numbers µ, σ and k > 0 described before. Let

σ = ln 2
k

and µ = e−k. Then ekσ = 2.
If k > 0 is large, we have from (3.3) that

−∆Φ(µη) ≤ 0 ≤ (µη)β |µη|αLΨ (3.8)

in the case d(x) < σ.

For any k > 0 we have η(x) ≥ ekσ − 1 = 2− 1 = 1 in Ω. Thus there is a constant
C3 > 0 that does not depend on k > 0 such that

(µη)β |µη|αLΨ ≥ µα+βC3

Since 0 < α+ β < l− 1, the L’Hospital’s rule implies that

lim
k→+∞

kl−1

ek(l−1−(α+β))
= 0.
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Thus, it is possible to consider a large k0 > 0 such that

C3 ≥ max

{
C1

1

2δ − ln 2
k

, C2

}
max{2m−1, 2l−1}

kl−1

ek(l−1−(α+β))
,

for all k ≥ k0. From (3.7), we have that

−∆Φ(µη) ≤ (µη)β |µη|αLΨ (3.9)

in the region σ < d(x) < 2δ for k > 0 is large enough.
If d(x) > 2δ we have

−∆Φ(µη) = 0 ≤ (µη)β |µη|αLΨ . (3.10)

Thus from (3.8), (3.9) and (3.10) we have that µη is a subsolution for (Ps). Note
that from (3.7), (3.8) and (3.10) we have for k, λ > 0 large enough that −∆Φ(µη) ≤
−∆Φzλ. Thus from Lemma 3 we have µη ≤ zλ in Ω. From Lemma 4 we have the
result. �

Remark 1. An interesting question for problem (PS) is the existence of solution
in the case l− 1 < α+ β.

3.2. A concave-convex scalar problem: In this section we will consider a concave-
convex problem of the type

{
−∆Φu = λuβ |u|α

LΨ + θuξ|u|γ
LΛ in Ω,

u = 0 on ∂Ω,
(P )λ,θ

where α, β, ξ, γ ≥ 0 are constants satisfying certain conditions and λ, θ > 0 are posi-
tive numbers. The local version of (P )λ,θ for the Laplacian operator was considered
in the famous paper by Ambrosetti-Brezis-Cerami [2] in which a sub-supersolution
argument is used. Our result is the following one.

Theorem 2. Suppose that α, β, ξ, γ ≥ 0 and consider also that 0 < α+ β < l − 1.
The following assertions hold.

(i) If m − 1 < ξ + γ, then given θ > 0 there exists λ0 > 0 such that for each
λ ∈ (0, λ0) the problem (P )λ,θ has a positive solution uλ,θ.

(ii) If l−1 < ξ+γ, then given λ > 0 there exists θ0 > 0 such that for each θ ∈ (0, θ0)
the problem (P )λ,θ has a positive solution uλ,θ.

Proof. Suppose that (i) occurs and fix θ > 0. Let zλ ∈ W
1,Φ
0 (Ω) ∩ L∞(Ω) be the

unique solution of (2.1) where λ ∈ (0, 1) will be chosen before.
Lemma 3 implies that for λ > 0 small enough there exists a constant K > 1 that

does not depend on λ such that

0 < zλ(x) ≤ Kλ
1

m−1 in Ω. (3.11)

Let K := max
{
Kβ |K|α

LΨ ,K
ξ|K|γ

LΛ}. For each θ > 0 we can choose 0 < λ0 < 1
small enough, depending on θ, such that the inequalities

λ ≥
(
λ

α+β+m−1
m−1 K + θKλ

ξ+γ
m−1

)
, for all λ ∈ (0, λ0)



10 Nonlocal problems involving Orlicz spaces

and (3.11) hold because α+β > 0 and m− 1 < ξ+γ. Thus, there is a small λ0 > 0
such that

(λzβλ |zλ|
α
LΨ + θz

ξ
λ|zλ|

γ

LΛ) ≤ λ(Kλ
1

m−1 )β |Kλ
1

m−1 |αLΨ

+ θ(Kλ
1

m−1 )ξ|Kλ
1

m−1 |γ
LΛ

≤ λ.

for all λ ∈ (0, λ0). Thus for λ ∈ (0, λ0) we get

λz
β
λ |zλ|

α
LΨ + θz

ξ
λ|zλ|

γ

LΛ ≤ λ.

Now consider η, δ, σ, µ and as in the proof of Theorem 1. Fix λ ∈ (0, λ0).
Since α + β < l − 1 the arguments of the proof of Theorem 1 implies that if

µ = µ(λ) > 0 is small enough then

−∆Φ(µη) ≤ λ in Ω

and

−∆Φ(µη) ≤ λ(µη)β |µη|αLΨ

≤ λ(µη)β |µη|αLΨ + λ(µη)ξ |µη|γ
LΛ .

The weak comparison principle implies that µη ≤ zλ for µ = µ(λ) > 0 small enough.
Therefore (µη, zλ) is a sub-super solution pair for (P )λ,θ.

Now we will prove the theorem in the second case. Consider again η, δ, σ and µ

as in the proof of Theorem 1. Let λ ∈ (0,∞). Since α + β < l − 1 we can repeat
the arguments of Theorem 1 to obtain µ = µ(λ) > 0 small depending only on λ

such that

−∆Φ(µη) ≤ 1 and −∆Φ(µη) ≤ λ(µη)β |µη|αLΨ in Ω.

Let zM ∈ W
1,Φ
0 (Ω) ∩ L∞(Ω) the unique solution of (2.1) where M > 0 will be

chosen later.
For M ≥ 1 large enough there is a constant K > 1 that does not depend on M

such that

0 < zM (x) ≤ KM
1

l−1 in Ω. (3.12)

We want to obtain M > 1 such that

M ≥
(
λz

β
M |zM |αLΨ + θz

ξ
M |zM |γ

LΛ

)
in Ω (3.13)

occurs.
Denoting by I the right-hand side of (3.13), we have from (3.12) that I ≤ M if

1 ≥ λKM
α+β
l−1 −1 + θKM

ξ+γ
l−1 −1, (3.14)

whereK := max{Kβ|K|α
LΨ ,K

ξ|K|γ
LΨ}. Since 0 < α+β < l−1 < ξ+γ, the function

Ψ(t) = λKtρ−1 + θKtτ−1, t > 0,

where ρ := α+β
l−1 and τ := ξ+γ

l−1 , belongs to C1
(
(0,∞),R

)
and attains a global

minimum at

Mλ,θ := M(λ, θ) = L

(
λ

θ

) 1
τ−ρ

(3.15)
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where L := ( 1−ρ
τ−1)

1
τ−ρ . The inequality (3.14) is equivalent to find Mλ,θ > 0 such

that Ψ(Mλ,θ) ≤ 1. By (3.15) we have Ψ(Mλ,θ) ≤ 1 if and only if

λK(1− ρ)
ρ−1
τ−ρ

(
λ

θ

) ρ−1
τ−ρ

+ θK(1− ρ)
τ−1
τ−ρ

(
λ

θ

) τ−1
τ−ρ

≤ 1

Notice that the above inequality holds if θ > 0 is small enough because α + β <

l − 1 < ξ + γ. Thus for λ > 0 fixed there exists θ0 = θ0(λ) such that for each
θ ∈ (0, θ0) there is a number M = Mλ,θ > 0 such that (3.14) occurs. Consequently
we have (3.13). Therefore

−∆ΦzM ≥ λz
β
M |zM |αLΨ + θz

ξ
M |zM |γ

LΛ in Ω.

Considering if necessary a smaller θ0 > 0, we get M ≥ 1 . Therefore −∆Φ(µη) ≤
−∆ΦzM in Ω. The weak comparison principle implies that µη ≤ zM . Then (µη, zM )
is a sub-supersolution pair for (P )λ,θ. The proof is finished. �

4. The system case

We say that (u1, u2) ∈ (W 1,Φ1

0 (Ω) ∩ L∞(Ω))× (W 1,Φ2

0 (Ω) ∩ L∞(Ω)) is a (weak)
solution of (P2) if

∫

Ω

φ(|∇ui|)∇ui∇ϕ =

∫

Ω

(fi(uj)|uj |
αi

LΨi
+ gi(uj)|uj |

αi

LΛi
)ϕi,

for all ϕi ∈ W
1,Φi

0 (Ω) with i, j = 1, 2 and i 6= j.

We say that the pairs (ui, ui), i = 1, 2 are sub-supersolution pairs for (P2) if

ui, ui ∈ W
1,Φi

0 (Ω) ∩ L∞(Ω) are nonnegative functions with 0 < ui ≤ ui in Ω and if

for all ϕi ∈ W
1,Φi

0 (Ω) with ϕi ≥ 0 the following inequalities are verified





∫

Ω

φi(|∇ui|)∇ui∇ϕi ≤

∫

Ω

(
fi(uj)|uj |

αi

LΨi
+ gi(uj)|uj |

γi

LΛi

)
ϕi,

∫

Ω

φi(|∇ui|)∇ui∇ϕi ≥

∫

Ω

(
fi(uj)|uj |

αi

LΨi
+ gi(uj)|uj |

γi

LΛi

)
ϕi,

(4.1)

for all ϕi ∈ W
1,Φi

0 (Ω) with i, j = 1, 2 and i 6= j.

The following lemma is needed to obtain a solution for system (P2).

Lemma 5. Suppose that fi, gi : [0,+∞) → R, i = 1, 2 are nondecreasing, continu-
ous and nonnegative functions. Consider also that αi, γi ≥ 0, i = 1, 2 and that there
exist sub-supersolution pairs (ui, ui), i = 1, 2 for (P2). Then there exists a solution
(u, ũ) for (P2) with u ∈ [u1, u1] and ũ ∈ [u2, u2].

Proof. Consider u1 the solution of the problem

{
−∆Φ1u1 = f1(u2)|u2|

α1

LΨ1
+ g1(u2)|u2|

γ1

LΛ1
in Ω,

u1 = 0 on ∂Ω.

Using the monotonicity of f1, g1 and the fact that u2 ≤ u2 a.e in Ω we get

−∆Φ1u1 ≥ f1(u2)|u2|
α1

LΨ1
+ g1(u2)|u2|

γ1

LΛ1
≥ −∆Φ1u1 in Ω,

therefore u1 ≤ u1. Note also that

−∆Φ1u1 = f1(u2)|u2|
α1

LΨ1
+ g1(u2)|u2|

γ1

LΛ1
≥ −∆Φ1u1 in Ω.
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Therefore u1 ≤ u1 ≤ u1 a.e in Ω. Denote by ũ1 the weak solution of the problem
{

−∆Φ1 ũ1 = f2(u1)|u1|
α2

LΨ2
+ g2(u1)|u1|

γ2

LΛ2
in Ω,

ũ1 = 0 on ∂Ω.

From the definition of u2 and u2 we have that −∆Φ2u2 ≤ −∆Φ2 ũ1 ≤ −∆Φ2u2 in
Ω. Therefore u2 ≤ ũ1 ≤ u2 in Ω.

Consider u2 the solution of the problem
{

−∆Φ1u2 = f1(ũ1)|ũ1|
α1

LΨ1
+ g1(ũ1)|ũ1|

γ1

LΛ1
in Ω,

u2 = 0 on ∂Ω.

Using the fact that u2 ≤ ũ1 ≤ u2 in Ω and the monotonicity of the functions f1
and g1, we have −∆Φ1u1 ≤ −∆Φ1u2 ≤ −∆Φ1u1 in Ω. Therefore u1 ≤ u1 ≤ u2 ≤ u1

in Ω.
Consider ũ2 the solution of the problem

{
−∆Φ2 ũ2 = f2(u1)|u1|

α2

LΨ2
+ g2(ũ1)|u1|

γ2

LΛ2
in Ω,

ũ2 = 0 on ∂Ω.

A direct computation imply that u2 ≤ ũ1 ≤ ũ2 ≤ u2 in Ω. Proceeding with the
previous reasonings we construct sequences un and ũn satisfying

{
−∆Φ1un = f1(ũn−1)|ũn−1|

α1

LΨ1
+ g1(ũn−1)|ũn−1|

γ1

LΛ1
in Ω,

ũn = 0 on ∂Ω.

and {
−∆Φ2 ũn = f2(un−1)|un−1|

α2

LΨ2
+ g2(un−1)|un−1|

γ2

LΛ2
in Ω,

ũn = 0 on ∂Ω.

where ũ0 := u2 and u0 := u1. Arguing as in Lemma 4 we obtain the result.
A sublinear system
In this section we use Lemma 5 and suitable sub-supersolution pairs to prove

the existence of solution for the the nonlocal system




−∆Φ1u = vβ1 |v|α1

Ψ1
in Ω,

−∆Φ2v = uβ2|u|α2

Ψ2
in Ω,

u = v = 0 on ∂Ω,
(P

′

S)

where αi and βi, i = 1, 2 are constants saisfying certain conditions. It is interesting
to note that the set of hipothesis of the next result is different from the system
version of (P ) considered in [12, Theorem 5.2] in the constant exponent case. �

Theorem 3. Suppose that αi, βi ≥ 0 with 0 < α1 + β1 < li − 1, 0 < α2 + β2 <

li − 1, i = 1, 2. Then (P
′

S) has a positive solution.

Proof. Let λ > 0 and consider zλ ∈ W
1,Φ1

0 (Ω)∩L∞(Ω) and yλ ∈ W
1,Φ2

0 (Ω)∩L∞(Ω)
the unique solutions of (2.1) where λ will be chosen later.

For λ > 0 sufficiently large, by Lemma 3 there is a constant K > 0 that does
not depend on λ such that

0 < zλ(x) ≤ Kλ
1

l1−1 in Ω, (4.2)

and

0 < yλ(x) ≤ Kλ
1

l2−1 in Ω. (4.3)
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Since 0 < α1 + β1 < l2 − 1, we can choose λ > 0 large enough satisfying

Kβ1|K|α1

LΨ1
λ

α1+β1
l2−1 ≤ λ. Thus from (4.2) we have y

β1

λ |yλ|
α1

LΨ1
≤ λ in Ω. Therefore

{
−∆Φ1zλ ≥ y

β1

λ |yλ|
α1

LΨ1
in Ω,

zλ = 0 on ∂Ω.

From (4.3) and the fact that 0 < α2 + β2 < l1 − 1 we also have that
{

−∆Φ2yλ ≥ z
β2

λ |zλ|
α2

LΨ2
in Ω,

yλ = 0 on ∂Ω,

for λ > 0 large enough.
Since ∂Ω is C2, there is a constant δ > 0 such that d ∈ C2(Ω3δ) and |∇d(x)| ≡ 1,

where d(x) := dist(x, ∂Ω) and Ω3δ := {x ∈ Ω; d(x) ≤ 3δ}. For σ ∈ (0, δ) the
function ηi = ηi(k, σ), i = 1, 2 defined by

ηi(x) =






ekd(x) − 1 if d(x) < σ,

ekσ − 1 +
∫ d(x)

σ
kekσ

(
2δ−t
2δ−σ

) mi
li−1

dt if σ ≤ d(x) < 2δ,

ekσ − 1 +
∫ 2δ

σ
kekσ

(
2δ−t
2δ−σ

) mi
li−1

dt if 2δ ≤ d(x)

belongs to C1
0 (Ω) for i = 1, 2, where k > 0 is an arbitrary constant. Note that

−∆Φ(µηi) =






−µk2ekd(x) d
dt

(φi(t)t)

∣∣∣∣
t=µkekd(x)

− φi(µke
kd(x))µkekd(x)∆d if d(x) < σ,

µkekσ
(

mi

li−1

)(
2δ−d(x)
2δ−σ

) mi
li−1−1 (

1
2δ−σ

)
d
dt

(φi(t)t)

∣∣∣∣
t=µkekσ( 2δ−d(x)

2δ−σ )

−φi

(
µkekσ

(
2δ−d(x)
2δ−σ

) mi
li−1

)
µkekσ

(
2δ−d(x)
2δ−σ

) mi
li−1

∆d if σ < d(x) < 2δ,

0 if 2δ < d(x)

for all µ > 0 and i = 1, 2. Arguing as in (3.3) we have −∆Φi
(µηi) ≤ 0, i = 1, 2 for

k > 0 large enough when 0 < d(x) < σ.
Reasoning as in (3.7) we get

−∆Φ1(µη1) ≤ max

{
K1

2δ − σ
,K2

}
max{(µkekσ)m1−1, (µkekσ)l1−1}, (4.4)

and

−∆Φ2(µη2) ≤ max

{
K3

2δ − σ
,K4

}
max{(µkekσ)m2−1, (µkekσ)l2−1}, (4.5)

for σ < d(x) < 2δ, where Ki, i = 1, 2, 3, 4 are positive constants that does not
depend on k > 0.

Consider σ = ln 2
k

and µ = e−k. We have ηi(x) ≥ ekσ − 1 ≥ 1 for all x ∈ Ω and
i = 1, 2. Thus there is a constant K5 > 0 such that

(µηj)
βi |µηj |

αi

LΨi
≥ µαi+βiK5, i, j = 1, 2, i 6= j

for σ < d(x) < 2δ.
Since 0 < αi + βi < li − 1, the L’Hospital’s rule implies that

lim
k→+∞

kli−1

ek(li−1−(αi+βi))
= 0, i = 1, 2.
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Thus, it is possible to consider k0 > 0 large enough such that

K5 ≥ max

{
K1

1

2δ − ln 2
k

,K2

}
max{2m1−1, 2l1−1}

kl1−1

ek(l1−1−(α1+β1))

and

K5 ≥ max

{
K3

1

2δ − ln 2
k

,K4

}
max{2m2−1, 2l2−1}

kl2−1

ek(l2−1−(α2+β2))
,

for all k ≥ k0. Thus for k > 0 large enough we have−∆Φi
(µηi) ≤ (µηj)

βi |µηj |
αi

LΨi
, i, j =

1, 2, i 6= j. for σ < d(x) < 2δ. If d(x) > 2δ we have−∆Φi
(µηj) = 0 ≤ (µηj)

βi |µηi|
αi

LΨi
, i, j =

1, 2 with i 6= j. For k > 0 large enough we also have that−∆Φ1(µη1) ≤ −∆Φ1zλ,−∆Φ2(µη2) ≤
−∆Φ2yλ in Ω. Therefore µη1 ≤ zλ, µη2 ≤ yλ in Ω. The result follows. �

4.1. A concave-convex system. In this section we prove the existence of solution
for a concave-convex system of type






−∆Φ1u = λvβ1 |v|α1

Ψ1
+ θvξ1 |v|γ1

LΛ1
in Ω,

−∆Φ2v = λuβ2 |u|α2

Ψ2
+ θuξ2 |u|γ2

LΛ2
in Ω,

u = v = 0 on ∂Ω,
(P

′

)λ,θ

where αi, βi, γi, ξi, i = 1, 2 are constants satisfying certain conditions.

Theorem 4. Suppose that αi, βi, γi, ξi, i = 1, 2 are nonnegative constants and sup-
pose that 0 < αi + βi < li − 1, i = 1, 2. The following assertions hold

(i) If m2−1 < ξ1+γ1 and m1−1 < ξ2+γ2, then for each θ > 0 there exists λ0 > 0

such that for each λ ∈ (0, λ0) the problem (P
′

)λ,θ has a positive solution uλ,θ.

(ii) If 0 < α1+β1 < l2−1, 0 < α2+β2 < l1−1 < ξ1+γ1 < l2−1 and ξ2+γ2 < l1−1
then for each λ > 0 there exists θ0 > 0 such that for each θ ∈ (0, θ0) the problem

(P
′

)λ,θ has a positive solution uλ,θ.

Proof. Suppose that (i) occurs. Consider zλ ∈ W
1,Φ1

0 (Ω) ∩ L∞(Ω) and yλ ∈

W
1,Φ2

0 (Ω) ∩ L∞(Ω) the unique solutions of (2.1), where λ ∈ (0, 1) will be cho-
sen before. Lemma 3 imply that for λ > 0 small enough there exists a constant
K > 0 that does not depend on λ such that

0 < zλ(x) ≤ Kλ
1

m1−1 in Ω, (4.6)

0 < yλ(x) ≤ Kλ
1

m2−1 in Ω. (4.7)

We will prove, for each θ > 0, that there exists λ0 > 0 such that

λy
β1

λ |yλ|
α1

LΨ1
+ θy

ξ1
λ |yλ|

γ1

LΛ1
≤ λ (4.8)

and

λz
β2

λ |zλ|
α2

LΨ2
+ θz

ξ2
λ |zλ|

γ2

LΛ2
≤ λ (4.9)

in Ω. Since 0 < αi +βi, i = 1, 2, m2 − 1 < ξ1 + γ1 and m1 − 1 < ξ2 + γ2 there exists
λ0 > 0 such that

λ
m2−1+α1+β1

m2−1 Kβ1|K|α1

LΨ1
+ θλ

ξ1+γ1
m2−1 Kξ1 |K|γ1

LΛ1
≤ λ (4.10)

and

λ
m1−1+α2+β2

m1−1 Kβ2|K|α2

LΨ2
+ θλ

ξ2+γ2
m1−1 Kξ2 |K|γ2

LΛ2
≤ λ (4.11)
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for all λ ∈ (0, λ0). From (4.6), (4.7), (4.10) and (4.11) we obtain (4.8) and (4.9).
Therefore

−∆Φ1zλ ≥ λy
β1

λ |yλ|
α1

LΨ1
+ θy

ξ1
λ |yλ|

γ1

LΛ1

and

−∆Φ2yλ ≥ λz
β2

λ |zλ|
α2

LΨ2
+ θz

ξ2
λ |zλ|

γ2

LΛ2

in Ω for all λ ∈ (0, λ0).
Consider ηi, δ, σ and µ as in the proof of Theorem 3. Since 0 < αi+βi < li−1, i =

1, 2 we have that exists µ > 0 with µη1 ≤ zλ, µη2 ≤ yλ and the inequalities

−∆Φ1(µη1) ≤ λ,−∆Φ1(µη1) ≤ λ(µη2)
β1 |µη2|

α1

LΨ1
+ θ(µη2)

ξ1 |µη2|
γ1

LΛ1

and

−∆Φ2(µη2) ≤ λ,−∆Φ2(µη2) ≤ λ(µη1)
β2 |µη1|

α2

LΨ2
+ θ(µη1)

ξ2 |µη1|
γ2

LΛ2

in Ω. Thus by Lemma 5 we have the first part of the result.
In order to prove the second part of the result consider ηi, δ and σi, i = 1, 2 as

in the first part of the result and let λ > 0 fixed. Since 0 < αi +βi < li− 1, i = 1, 2
there exists µ > 0 depending only on λ such that

−∆Φi
(µηi) ≤ 1 and −∆Φi

(µηi) ≤ λ(µηj)
βi |µηj |

αi

LΨi

in Ω with i, j = 1, 2 and i 6= j.

Let M > 0 which will be chosen before and consider zM ∈ W
1,Φ1

0 (Ω) ∩ L∞(Ω)

and yM ∈ W
1,Φ2

0 (Ω) ∩ L∞(Ω) solutions of
{

−∆Φ1zM = M in Ω,
zM = 0 on ∂Ω.

{
−∆Φ2yM = M in Ω,

yM = 0 on ∂Ω.

If M > 0 is large enough, then by Lemma 3 there exists a constant K > 0 that
does not depend on M such that

0 < zM (x) ≤ KM
1

l1−1 in Ω, (4.12)

0 < yM (x) ≤ KM
1

l2−1 in Ω. (4.13)

In order to construct ui, ui, i = 1, 2 we will show that exist θ0 > 0 depending
on λ with the following property: if we consider θ ∈ (0, θ0) then there will be a
constant M depending only on λ and θ satisfying

M ≥ λyM
β1 |yM |α1

LΨ1
+ θyM

ξ1 |yM |γ1

LΛ1
(4.14)

and

M ≥ λzM
β2 |zM |α2

LΨ2
+ θzM

ξ2 |zM |γ2

LΛ2
(4.15)

in Ω. From (4.12) and (4.13) we have that (4.14) and (4.15) occur if M ≥ 1 and

λKMρ−1 + θKM τ−1 ≤ 1 (4.16)

where K := max{Kβ1 |K|α1

LΨ1
,Kβ2 |K|α2

LΨ2
,Kξ1 |K|γ1

LΛ1
,Kξ2 |K|γ2

LΛ2
},

ρ := max

{
α1 + β1

l2 − 1
,
α2 + β2

l1 − 1

}
and τ := max

{
γ1 + ξ1

l2 − 1
,
γ2 + ξ2

l1 − 1

}
.

Since 0 < ρ < 1 and τ > 1 the function

Ψ(t) = λKtρ−1 + θKtτ−1, t > 0,
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belongs to C1
(
(0,∞),R

)
and attains a global minimum at

Mλ,θ := M(λ, θ) = L

(
λ

θ

) 1
τ−ρ

(4.17)

where L := ( 1−ρ
τ−1)

1
τ−ρ . The inequality (4.16) is equivalent to find Mλ,θ > 0 such

that Ψ(Mλ,θ) ≤ 1. By (4.17) we have Ψ(Mλ,θ) ≤ 1 if and only if

λK(1− ρ)
ρ−1
τ−ρ

(
λ

θ

) ρ−1
τ−ρ

+ θK(1− ρ)
τ−1
τ−ρ

(
λ

θ

) τ−1
τ−ρ

≤ 1

Notice that the above inequality holds if θ > 0 is small enough because 0 < ρ < 1
and τ > 1. Thus for λ > 0 fixed there exists θ0 = θ0(λ) such that for each θ ∈ (0, θ0)
there is a number M = Mλ,θ > 0 such that (4.16) occurs. Thus we can consider
Mλ,θ large enough such that (4.14) and (4.15) occur. Therefore

−∆Φ1zM ≥ λy
β1

M |yM |α1

LΨ1
+ θy

ξ1
M |yM |γ1

LΛ1

and
−∆Φ2yM ≥ λz

β2

M |zM |α2

LΨ2
+ θz

ξ2
M |zM |γ2

LΛ2

Considering if necessary a smaller θ0 > 0, we get

−∆Φ1(µη1) ≤ 1 ≤ Mλ,θ0 ≤ Mλ,θ

and
−∆Φ2(µη2) ≤ 1 ≤ Mλ,θ0 ≤ Mλ,θ

in Ω for all θ ∈ (0, θ0) because Mλ,θ → +∞ as θ → 0+ and θ 7−→ Mλ,θ is non-
increasing. Therefore −∆Φ1(µη1) ≤ −∆Φ1zM , −∆Φ2(µη2) ≤ −∆Φ2yM in Ω. The
weak comparison principle implies that µη1 ≤ zM and µη2 ≤ yM in Ω. The proof
is finished. �

5. Final comments

A slightly modification in the arguments of Lemma 5 allow us to study a more
general class of systems given by





−∆Φ1u = f1(u, v)|v|
α1

LΨ1
+ g1(u, v)|v|

γ1

LΛ1
in Ω,

−∆Φ2v = f2(u, v)|u|
α2

LΨ2
+ g2(u, v)|u|

γ2

LΛ2
in Ω,

u = v = 0 on ∂Ω,
(P̃ )

with fi, gi : [0,+∞) × 0,+∞) → 0,+∞), i = 1, 2 nondecreasing continuous func-
tions in the variables u and v. The arguments used in this work allow us to consider
results in the case for example when the functions fi and gi are power functions
with convenient exponents. In order to avoid of a more technical exposition we
choose to not prove results related with the case mentioned before, that is, systems

involving the variables u and v in the local the terms of each equation of (P̃ ).
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[34] Z. Tan and F. Fang, Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for

quasilinear elliptic equations, J. Math. Anal. Appl., 402 (2013), 348-370.
[35] B. Yan, D. Wang, The multiplicity of positive solutions for a class of nonlocal elliptic problem.

J.Math. Anal. Appl. 442(1) (2016), 72-102.

[36] Z. Zhang and K. Perera, Sign changing solutions of Kirchhoff type problems via invariant
sets of descent flows, J. Math. Anal. Appl., 317 (2006), 456-463.


	1. Introduction
	2. Preliminaries
	3. The scalar case
	3.1. A sublinear scalar problem
	3.2. A concave-convex scalar problem:

	4. The system case
	4.1. A concave-convex system

	5. Final comments
	References

