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ABSTRACT. In the present paper we study the existence of solutions for some
nonlocal problems involving Orlicz-Sobolev spaces. The approach is based on
sub-supersolutions.

1. INTRODUCTION

Let © be a bounded domain in RN (N > 3) with C? boundary 9Q. In the
present paper we focus on the problems of quasilinear elliptic nonlocal equations

—Apu = f(u)|ul%s + g(u)|u|zA in Q, (P)
u = 0 on 0N !
and
—Ap,u = fi(v)v]Te, +g1(v)lv ZIAI in Q,
—Ag,v = fo(u)lul7i, + g2(u)lula, in Q, (P2)
u=v = 0 on 09,
where «;,7;, i = 0,1,2, with ag := « and 7 := 7, are positive constants, |.|yv

(resp. |.|pa) denotes the norm in the Orlicz space LY () (resp. L*(92)) and the
nonlinearities f;,g; : [0, +00) — [0,400), i = 0,1,2, with fy := f and go := g, are
continuous and nondecreasing functions. Here, Ag, stands for the ®;—Laplacian
operator, that is, Ag,w = div (¢;(|Vw|)Vw), for i = 0,1,2, where ®; : R — R are

N-functions of the form "
t

D,(t) := @i(s)sds, (1.1)
0
with ¢; : [0, +00) — [0, +00) being C! functions satisfying
(¢1) (tei(t)); VE>0
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2 NONLOCAL PROBLEMS INVOLVING ORLICZ SPACES
(¢2) lim ;1) =0, lim_te;(t) = +oo

and that there exist I;,m; € (1, N), i =0, 1,2 such that

(¢i()t)
li -1 < < T 17 3 ’
(¢3) S <™ vt >0
where ¢g := ¢, lp := | and mg := m. Note that the condition (¢3) implies that
¢i()t?
' < <mg, Wt
(¢3) ST S mg, YVt >0,

for ¢ = 0,1, 2. In addition, ¥; and A;, for i = 0,1, 2, with ¥y := ¥ and Ag = A, are
N-functions satisfying the Ay condition.

According to hypotheses (¢1)—(¢3), a wide class of operators can be incorporated
in problems (P;) and (Pz), for instance:
e ¢(t) = pltP=2, ¢t > 0, with p > 1. The operator Ag is the p-Laplacian
operator.
o &(t) = pl|t|P~2 + q|t|72, t > 0,1 < p < q. Here Ag is the (p, g)-Laplacian
operator applied in quantum physics (see [7]).
o o(t) =2y(1+t*)7"1 ¢t >0and v > 1. Ag appears in nonlinear elasticity

problems [23].
o p(t) = yATZDT 1ﬂ:/thtlz)w t > 0 and v > 1. The operator Ag arises in minimal

surfaces theory for v = 1 (see [19, page 128]) and nonlinear elasticity for
v > 1 (see [22]).

P2 (14¢) In(1+44)+¢P 1
o(t) =2 ( )1+§ )
problems (see [23]).

, t > 0. The operator Ag appears in plasticity

However, the lack of properties such as homogeneity complicates handling the
nonlinear ®; —Laplacian operator which, therefore, constitutes a serious obstacle in
the study of the problems (P;) and (FP»). Thereby, it requires relevant topics of
nonlinear functional analysis, especially theory of Orlicz and Orlicz-Sobolev spaces
(see, e.g. [1 B0] and their abundant reference). Another mathematical difficulty
encountered comes out from the nonlocal caracter of (P;) and (Py). It is due to the
presence of terms | - [pv, and |- |7, that make the equations in (P;) and (P;) no
longer a pointwise identities. For more inquiries on nonlocal problems we refer to
[13} 6] where systems of elliptic equations are examined. With regard to the scalar
case, we quote the papers [3] Bl 1T} 25 27] 28] [36]. Such problems are important for
applications in view of the significant number of physical phenomena formulated
into nonlocal mathematical models. For instance, they appear in the study of the
flow of a fluid through a homogeneous isotropic rigid porous medium, as well as in
the study of population dynamics (see, e.g., [15] B33]).

Relevant contributions regarding nonlocal problems fit the setting of (P;) and
(Py). In particular, Alves & Covei [4] applied the sub-supersolution method to
show the existence results for problem involving Kirchhoff-type operator

{ —a(fyu) Au ha(z,u) f (fo [ulP) + ha(z,u)g ([ [ul") in
U 0 on 09,
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where a, f, g, and h; (i = 1,2) are given functions. The case of nonlocal problems
driven by the p-Laplacian differential operator is investigated by [12]. Combining
sub-supersolutions method with the classical theorem due to Rabinowitz [29], the
authors proved the the existence of solutions for quasilinear problem of the form

{ -Apu = |u|°g§””) in Q,

u = 0 on 99, (P)

where « is a nonnegative function defined in Q. Then, they extend the results to
the nonlocal quasilinear elliptic system

-Apu = v %ng) in Q,
—Apv = |u|Lq§ “) in Q, (S)
u = 0 on 0N.

The semilinear case, that is when p; = pa = 2 is investigated by Corréa-Lopes [13]
and Chen-Gao [6] for systems of the form

A = fa i, in 9,
—Av" = g(x,v)|u|Lq in €, (1.2)
u = v=0onod

with m,n > 1 and «,8 > 0. The existence of solutions is obtained by means
of topological methods, namely, Galerkin method, fixed point theory as well as
sub-supersolutions techniques.

Motivated by the aforementioned papers, our goal is to establish the existence
of (positive) solutions for problems (P;) and (P;) involving sublinear and concave-
convex terms. The approach relies on the method of sub-supersolution. However,
besides the nonlocal nature of the problems, this method cannot be easily imple-
mented due to the presence of ®;-Laplacian operator in the principle part of the
equations. At this point, to the best of our knowledge, it is for the first time
when nonlocal problems involving ®;-Laplacian operator are studied. A signifi-
cant feature of our result lies in the obtaining of the sub- and supersolution in the
Orlicz-Sobolev spaces setting and, involving nonlocal terms. This is achieved by
the choice of suitable explicit functions with an adjustment of adequate constants.

The rest of the paper is organized as follows: Section 2 is devoted to the needed
properties in Orlicz and Orlicz-Sobolev spaces. Section 3 (resp. Section 4) contains
existence results for problem (Py) (resp. (P.)) involving sublinear and concave-
convex structures.

2. PRELIMINARIES

In this section we recall some results on Orlicz-Sobolev spaces. We say that a
continuous function ® : R — [0, +00) is a N-function if:
(1) ® is convex,
(it) ®(t) =0=t=0,
‘P(t) ()

(#i1) hm ——= =0and lim —= = +4o0,
(iv) t—+oo ¢

We say that a N-function ® verifies the As-condition, and we denote by ® € Ao,

fIJ is even.

if
D(2t) < KB(t), Vit >t
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for some constants K,ty > 0. Regarding the condition As it is important to
note that such property is satisfied under the condition ((;53)/ in the case of the
N —function is given by (LIJ).

We fix an open set  C RY and a N-function ®. We define the Orlicz space
associated with ® as follows

L‘I’(Q):{uELl(Q): /@('%')d:v<+oo for some )\>O}.
Q

The space L®(2) is a Banach space endowed with the Luxemburg norm given by

. |ul }
u|re = inf )\>O:/‘I>—d:17§1 .
ulgn =int {30+ [ a(4)

Lemma 1. [24] Consider ® a N-function of the form (1) and satisfying (¢1), (¢2)
and (¢3). Set

Co(t) = min{t’, t™} and ¢ (t) = max{t’,t™}, t > 0.
Then @ satisfies
C(H)@(p) < (pt) < G(t)2(p), pit >0,
Gollulo) < [ iz < Gu(fulo). u € Lo(@).
Q

For a N—function @, the corresponding Orlicz-Sobolev space is defined as the
Banach space
ou
8171'

Wi Q) = {u e L%(Q) e L®(Q), i=1, N}

endowed with the norm
ulli,0 = [Vulps + |ulps.
The As-condition also implies that
Up, = u in Lg() <= / D(|up —ul) =0
Q
and

U, —u in WH?(Q) <= / D (|uy —u|) = 0 and / @(|Vu,, — Vu|) — 0.
Q Q
Consider u,v € WH?(Q) we will say that —Agu < —Agv in Q if
o(Vu)VuTp < [ o(vel)vovs.
Q Q

for all ¢ € W, * () with ¢ > 0.

The following results will be often used.
Lemma 2. [34) Lemma 4.1] Let u,v € WH®(Q) with —Agu < —Agv in Q and
uw<vindQ (ie (u—v)t e Wyt (), then u(z) < v(z) a.e in Q.

Lemma 3. [34] Lemma 4.5] Let A > 0 and consider z the unique solution of the
problem

—A.:pz;\ = Xin Q,
zx = 0 on 09, (2.1)
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where ® is given by (LI) and Q@ C RY is an admissible domain. Define py =
2\T1|1_?' If X > po, then |zx|p~ < C*A\TT and |2 < C*Aﬁ if A < po. Here
N Co
C* and C, are positive constants dependending only on l,m, N and €.
Regarding to the function z) of the previous result, it follows from [26] page 320]
and [34] Lemma 4.2] that zy, € C1(Q) with z) > 0 in Q.
3. THE SCALAR CASE

We say that u € Wy'®(Q) N L>=(Q) is a (weak) solution of (P;) if
[ evubvuso = [ (s +alul)e

for all o € Wy * ().
Given u,v € S(2) := {u : @ — R : u is measurable}, we write v < v if
u(z) < wv(z) a.e in Q. We denote by [u,v] the set

[u,v] := {w € S(Q) : u(z) < w(z) < v(z) a.c in Q.

We say that (u, @) is a sub-super solution pair for (P) if u, @ € W,'* ()N L>®(Q)
are nonnegative functions that satisfy the inequality 0 < v < @ in 2 and if for all
pE VVO1 ’(I’(Q) with ¢ > 0 the following inequalities hold

[ 19uhuTe < [ (alue + gtwluoe
and
[ ewahvave > [ (@i, +a@ia.e.
The following result will play an important role in our arguments.

Lemma 4. Suppose that f,g : [0,400) — R are nondecreasing, continuous and
nonnegative functions. Consider also that o,y > 0 and that there exists a sub-
supersolution pair (u, @) for problem (Py). Then there exists a nontrivial solution u
for (Py) with u € [u,T].

Proof. We have that

—Agu f@)|u|®e +g(uw)|ul], in Q,
u 0 on O9.

—AgpTu
u

Denote by u; the unique solution of the problem
{ —Dour = fWlulfe +gWuljs in Q,

I IA

and

v

f@MEge +g@al], in Q
0 on 0.

uy = 0 on 90.

Note that the mentioned solution exist because the term f(u)|u|¢s is bounded.
Since u < @ in Q, f is nondecreasing and «,y > 0, we have that f(u)u|?s <
f(ﬂQ)|U|%W and g(u)[u|} v < g(@)[@|] s, then it follows from LemmaRlthat u < u; <@
in Q.
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Let us be the solution of the problem

—Aouz = f(ur)|ur|fe +g(ur)ufj, in &,
uy = 0 on 90.

Since v < uy <@ in Q, we have that
F@ul2e + g()ul2s < Flunlul2e +g(un)lully < F@ES + 9@/} in
Thus from Lemma 2] we get,

u<u; <ug <uin .

Note also that —Agu; < f(u)[u|}s + g(@)[a|]s,i = 1,2. Thus we can construct a
sequence u,, such that

_A<I>un f(un71)|unfl|%\lf +g(un71)|un71|21\ in Qa
u, = 0 on Of). (Pn)

with —Agu, < f(7)[@|?y +9(@)[T[] x in Qand v < u, <@in Q for all n € N. Using
the C1® estimates up to the boundary (see [26]), we have that w,, is a bounded
sequence in C1(Q) for some 6 € (0,1]. Since the embedding C1(Q) — C1(Q) is
compact, we can extract a subsequence with u,, — u in C1(Q) for some u € C*(Q).

Passing to the limit in (P, ), we have that w is a nontrivial solution for problem
(Pr). O

3.1. A sublinear scalar problem. In this section we use Lemmal[dland a suitable
sub-supersolution pair to prove the existence of solution for a nonlocal problem of
the type

—Agu = vPul¢y in Q,

{ u = 0 on 09, (Ps)
where «, 8 > 0 are constants saisfying certain conditions. The above problem is
considered in [I2] for the p—Laplacian case and with 5 = 0. We complete the study
done in [12] Theorem 4.1] by considering constants exponents and a more general
operator.

Theorem 1. Suppose that o, > 0 with 0 < a4+ 8 < [ — 1, where | is given in
(¢3). Then (Ps) has a positive solution.

Proof. We will start by constructing @. Let A > 0 and consider z) € W(}\P(Q) N
L*>°(2) the unique solution of ([2]) where A will be chosen later.

For A > 0 large by Lemma Bl there is a constant K > 1 that does not depend on
A such that

0 < zx(z) < KATT in Q. (3.1)
Since 0 < a+ 8 <1 — 1 we can choose A > 1 such that (B occurs and
KPATT|K[2y < A, (3.2)

By B1) and [B2]) we get
laalfe <A

Therefore

—Agpzy > zf|z,\|% in Q,
zx = 0 on 09Q.
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Now we will construct u. Since 9 is C? there is a constant § > 0 such that
d € C?(Q3s) and |Vd(x)| = 1 where d(z) := dist(z,0Q) and Q35 := {z € Q;d(x) <
30} (see 20, Lemma 14.16] and its proof). Let o € (0,40). A direct computation
implies that the function ¢ = ¢(k, o) defined by

ekd@) 1 if  d(z) <o,
T

n(z) = ekr — 14 fgd(x) kek”(;‘;—:é) dt if o <d(x) <26,

e — 1+ [Prerr(BL)Tar if 26 <d(w)

belongs to C&(Q) where k > 0 is an arbitrary number. Direct computations implies
that

—pk?ekd@) L (g(1)t) — ¢(pukeF @) ke Ad if  d(z) < o,

o m S—d(z)\ -1 1
ket (725) (35752) 7 (55 ) 4 (00 )
t=pkeke (—Qiéf(am) )

- (uke’w (%g—'@)ﬁ) pkeke (2(;;—?(:))1 "Ad if o< d(x) < 26,
0 if 26 <d(z)

—Ag(un) =

for all p > 0.
If k is large and d(z) < o, we have that —Ag (u¢) < 0. In fact, note that by (¢3)
we have for k large that

— A () = — pk?eri@ L (o)) — ¢k @) pke ) Ad
dt t=pkekd(z)
S _ k2ﬂekd(z) (l _ 1)¢(Mkekd(x)) _ ¢(Mkekd(z))ﬂkekd(z)Ad (33)
= ke ) (ke ) (—k(1 - 1) — Ad)
<0

)

because Ad is bounded near the boundary and [ > 1.
Now we will estimate —Ag(un) in the case o < d(x) < 2J. Note that from (¢3)
and Lemma [Tl we get

ko [ M 20 — d(x) =t 1 d
pke <l—1>< 20 — o ) <25—U> E(qﬁ(t)t) t:ukeka(m;gf(:))
ko [ ™M 25 —d(z)\TT ' (m—1 ko (20— d(z)\ T
Spke (l—l)( 2% —0o ) (25—a>¢<“ke ( 2 -0 ) )
o (25—d(z)) T=T
(z22) () e )
- [—1

— = 25 —d(z
e hete (2) (55

<max{(p,kek‘7)m1 (2(;5—7:1(;))7%#1)(%“) ket (M)l(%)(%ﬂ)}

<(5=0) ()
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Since m,l > 1, Wegetl(%)—m(%—l—l),m(%)—m(%—l—l) > 0. Note
that 0 < (%—d(w)) < 1. Thus by 34) we get

e (775 (%55 (a)> (35 i oo ket (25501
< (;;—:i) (%) max{ (ke )™t (ukeF) =1} (3.5)

o 1 koym—1 ko\l—1
=C (25—0) max{ (puke™ )"0 (uke ) T},

where (' is a constant that does not depend on p and k. On other hand, we have
by Lemma [ that

m
1

wo (26 —d(z)\ -1 wo (26 —d(z)\ 1
‘(b <uke < 20 — o pke 20 — o Ad
<o | pke* 20 —d(@)\ T pke®? 20 —d(z)\ 7 sup |Ad|
20 —o 20 —o TDag
0] <p,kek0 (26255:6))%>

o ((20—d(@) T
pkek (Tx)

gcmax{ bt ( o > (- i (2(;(5__(136))«%)(%“)}
(k

<Co max{ (ke )™ !

<C

(3.6)
where C5 is a constant that does not depend on o,k and p. Thus from (33]) and
BE) we have that

— Agu < max { Cg} max{ (uke? )1 (ukero) =1, (3.7)

Cy
28 —
it o < d(z) < 26.
Consider the function 7 and the numbers p, o and k > 0 described before. Let
In2

o="7=and u= e . Then ek = 2.

If k£ > 0 is large, we have from (33) that

— Ag(pn) <0< (un)?|un| % (3.8)

in the case d(z) < o.
For any k > 0 we have n(z) > ek —1=2—1=11in Q. Thus there is a constant
C5 > 0 that does not depend on k > 0 such that

(un)? || Fw = p 7 Cs
Since 0 < o+ < [ — 1, the L’Hospital’s rule implies that

klfl
W @y
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Thus, it is possible to consider a large ky > 0 such that

1 m—1 ol—1 K
CmeaX{Cﬁ@,Og}max{Q ,2 }m,

for all k > ko. From (37), we have that

— Ag(un) < (un)?|un|$e (3.9)

in the region o < d(x) < 26 for k > 0 is large enough.
If d(x) > 2§ we have

— Ao (pm) =0 < (un)”|m|Fe. (3.10)

Thus from @), (9) and BI0) we have that un is a subsolution for (Ps). Note
that from (3.7), B.8) and B.I0) we have for k, A > 0 large enough that —Ag(un) <
—Agzy. Thus from Lemma Bl we have un < zy, in Q. From Lemma @] we have the
result. (]

Remark 1. An interesting question for problem (Ps) is the existence of solution
in the case l — 1 < a+ f.

3.2. A concave-convex scalar problem: In this section we will consider a concave-
convex problem of the type

—Agu = MP|ul%y + utlul], in Q,
{ u=20 on 0f), (P)xe

where a, 5, &,y > 0 are constants satisfying certain conditions and A, § > 0 are posi-
tive numbers. The local version of (P)y ¢ for the Laplacian operator was considered
in the famous paper by Ambrosetti-Brezis-Cerami [2] in which a sub-supersolution
argument is used. Our result is the following one.

Theorem 2. Suppose that «, 5,&,v > 0 and consider also that 0 < a+ 8 <1 — 1.
The following assertions hold.

(@) If m — 1 < & + =, then given 0 > 0 there exists \g > 0 such that for each
A € (0, \o) the problem (P)x has a positive solution uy g.

(i) If1—1 < &+, then given X > 0 there exists 0y > 0 such that for each 6 € (0,00)
the problem (P)x,g9 has a positive solution uy g.

Proof. Suppose that (i) occurs and fix 0 > 0. Let z € Wol’{)(Q) N L>(9) be the
unique solution of ([2.1I) where A € (0,1) will be chosen before.

Lemma [3 implies that for A > 0 small enough there exists a constant K > 1 that
does not depend on A such that

0 < zx(z) < KA7T in Q. (3.11)

Let K := max { K°|K|?,, K¢|K|] ,}. For each § > 0 we can choose 0 < Ao < 1
small enough, depending on 6, such that the inequalities

a+

A> ()\ TR 4 Wx%) , for all A € (0, \o)
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and ([B.I1)) hold because a4 > 0 and m — 1 < £ 4. Thus, there is a small Ao > 0
such that
A2y 2al g + 025 2a 7)) < AEATT)P AT |5
+O(K AT )E KAt (]
<A
for all A € (0, \g). Thus for A € (0, \g) we get
A2 2% + 025 12al7 8 < N

Now consider 7,4, 0, u and as in the proof of Theorem [l Fix A € (0, \g).
Since aw + 8 < | — 1 the arguments of the proof of Theorem [l implies that if
= p(A) > 0 is small enough then

—Ag(un) < Ain Q
and

—Ag () < Mum)? | un|S o
< M) [l Fe + M) |un| ] o-

The weak comparison principle implies that un < zy for 4 = p(A) > 0 small enough.
Therefore (un, zy) is a sub-super solution pair for (P)y ¢.

Now we will prove the theorem in the second case. Consider again 7,9, and u
as in the proof of Theorem [l Let A € (0,00). Since v+ 8 < [ — 1 we can repeat
the arguments of Theorem [I] to obtain u = p(A) > 0 small depending only on A
such that

—Ag(pm) <1 and — Ag () < Apm)”|pn|Fe in Q.

Let 2y € Wy '®(Q) N L(Q) the unique solution of I) where M > 0 will be
chosen later.

For M > 1 large enough there is a constant K > 1 that does not depend on M
such that

0< zy(x) < KMTT in Q. (3.12)
We want to obtain M > 1 such that
M > (AZ]@|ZM|%\I/ + 92}5\4|2M|ZA) in Q (3.13)
occurs.

Denoting by I the right-hand side of [BI3)), we have from BI2) that I < M if

£+~
T—1 71,

1> AKEMT& ' 4 6K M (3.14)

where K := max{K”|K|%,, K¢|K|],}. Since 0 < a4+ < I—1 < £+, the function

U(t) = AKtP~ 1+ 0Kt 1t >0,

where p = 22 and 7 = i—?, belongs to Cl((O,oo),R) and attains a global

—1
minimum at
1

M)\ﬁ = ]\4(/\7 9) =L <é> o (315)

0
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where L := (i:fi)fp The inequality (BI4) is equivalent to find My ¢ > 0 such
that U(M) ) < 1. By (3I5) we have (M, ) < 1 if and only if

Pl =1
AK(1—p)5= (%) " LR - p)T (g) "<

Notice that the above inequality holds if # > 0 is small enough because a + 8 <
Il —1< &4 7. Thus for A > 0 fixed there exists 6y = 0p(\) such that for each
0 € (0,6p) there is a number M = M, g > 0 such that (B.I4) occurs. Consequently
we have ([BI3]). Therefore

—ANozy > )\zf/l|zM|%\p + 02§w|ZM|}:A in Q.

Considering if necessary a smaller 6§y > 0, we get M > 1 . Therefore —Ag(un) <
—Ag 2z in . The weak comparison principle implies that un < zps. Then (un, zar)
is a sub-supersolution pair for (P)y . The proof is finished. O

4. THE SYSTEM CASE
We say that (u1,uz) € (Wy ™ () N L=(Q)) x (W P2(2) N L>2(Q)) is a (weak)
solution of (Py) if
, P(|Vuil)Vu; Ve = /Q(fi(ug-)lug-lih + 9i(uy)lusl7a, )i,

for all ; € Wy " (Q) with 7,7 = 1,2 and i # j.

We say that the pairs (u;,@;),i = 1,2 are sub-supersolution pairs for (P) if
w, @ € Wy () N L>(Q) are nonnegative functions with 0 < u; < ; in Q and if
for all ¢; € VVO1 “Pi(Q) with ¢; > 0 the following inequalities are verified

/ ¢i(|V,; )V, Vp; < / (fz(ﬂ;)mﬂ?m +gi(ﬁj)|ﬂj|zim) Pi,
2 2 (4.1)
| tvanvave > | (@i, + o @i e

for all ; € Wy (Q) with 7,7 = 1,2 and i # j.
The following lemma is needed to obtain a solution for system (P).

Lemma 5. Suppose that f;,g; : [0,+00) = R,i = 1,2 are nondecreasing, continu-
ous and nonnegative functions. Consider also that a;,~; > 0,1 = 1,2 and that there
exist sub-supersolution pairs (u;,@;),i = 1,2 for (Py). Then there exists a solution
(u, @) for (Pp) with u € [uy,T1] and U € [uy, Ua).

Proof. Consider u; the solution of the problem

Uy 0 on 0.

{ —Ag,ur = fi(ug)|ug|Th, + 91(uy)|usl )k, in Q,

Using the monotonicity of fi,¢1 and the fact that u, < U9 a.e in ) we get
—Ag, T > f1(T2)[U2| T, + 91(T2)[U2| s, > —As,ur in Q,

therefore u; < ;. Note also that

—Ap,ur = f1(us)|us| Ty, +91(ws)lus| 7y, > —As,u; in Q.
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Therefore u; < wu; <7y a.e in Q. Denote by u; the weak solution of the problem

—Ag, a1 = folug)lwy |73, +g2(wy)|wal 5, in Q,
w; = 0 on 0.

From the definition of u, and @y we have that —Ag,us < —Ag,u1 < —Ag,Us in
Q. Therefore u, < uy < Uy in Q.
Consider ug the solution of the problem
—Agup = fi(wn)|un|h, +g1(w)]u]]h, in Q,
us = 0 on Of).

Using the fact that u, < @ < e in 2 and the monotonicity of the functions fi
and g1, we have —Ag,u; < —Ag,us < —Ag, U in €. Therefore u; < up <wug <7y
in Q.
Consider uy the solution of the problem
{ —Ag,tiz = fo(ur)|w|7%, +g2(un)url 3, in Q
uy = 0 on ON.

A direct computation imply that u, < w1 < 42 < Uz in Q. Proceeding with the
previous reasonings we construct sequences u, and u,, satisfying

—A@lun
Uy,

J1(n—1)]in-17%, +gl(an71)|an71|zlz\1 in €,

= 0 on 0N.
and
—Ap,tUn = foltun—1)|un-1|73%, + g2(tn_1)|un_1]]3, in Q,
u, = 0 on O9.

where g := U and wug := U;. Arguing as in Lemma [4] we obtain the result.

A sublinear system

In this section we use Lemma [Bl and suitable sub-supersolution pairs to prove
the existence of solution for the the nonlocal system

—Ap,u = 0Polg! in Q,
—Agp,v = uP2fulg? in Q, (Pg)
u=v = 0on 0,

where «; and ;,7 = 1,2 are constants saisfying certain conditions. It is interesting
to note that the set of hipothesis of the next result is different from the system
version of (P) considered in [I2, Theorem 5.2] in the constant exponent case. [

Theorem 3. Suppose that c;,5; > 0 with 0 < a3 + 1 < l; — 1,0 < as + f2 <
li—1,9=1,2. Then (Pé) has a positive solution.

Proof. Let A > 0 and consider zy € Wy'®* (2)NL>(Q) and y\ € Wy "> (Q)NL>(Q)
the unique solutions of (Z1I) where A will be chosen later.

For A > 0 sufficiently large, by Lemma [3] there is a constant K > 0 that does
not depend on A\ such that

0<zr(z) < KA1 in Q, (4.2)

and .
0 <yx(z) <KA=T in Q. (4.3)
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Since 0 < 041 + p1 < lo — 1, we can choose A > 0 large enough satisfying
KA K|Sy AT B < A. Thus from ([@2]) we have yfl|y,\|L\I,1 < X in Q. Therefore

—Agp, 2y > 1|y>\|L\I,1 in Q,
N = O on 0f).

From (@3] and the fact that 0 < ag + B2 < I3 — 1 we also have that

“Apyn > 250 L, n €
yx» = 0 on 09,

for A > 0 large enough. L
Since €2 is C?, there is a constant § > 0 such that d € C?(Q35) and |Vd(z)| = 1
where d(z) := dist(r,09Q) and Q35 = {z € Q;d(x) < 35}. For o € (0,0) the
function n; = n;(k,0),i = 1,2 defined by
ekd@) 1 if d(z) <o,

() = — 14 [ ket (BL) T i o < d(@) < 25,

m,

—

ko — 1 [2 per (F=L) " at

belongs to C(Q) for i = 1,2, where k > 0 is an arbitrary constant. Note that

—pk2ekd) L (Gi(1)t)
t= ukekd(z)

pikeke (l:nTZl) (gig—i)y =11 (25 U) 5 (os(t)1) = ek (212 )

—¢; (ukek" (25742) l) pkeke (%)l A i o< d(x) < 20,
0 if 26<d(x)

for all 4 > 0 and ¢ = 1,2. Arguing as in (33) we have —Ag, (un;) < 0,i = 1,2 for
k > 0 large enough when 0 < d(z) < 0.
Reasoning as in (B.7]) we get

—-

f 26 <d(z)

—Ag(un;) =

K
— A(I)l (/1/'71) < max {2(5—_10, Kg} max{(ukeka)m1—1, (/Lkeko)h_l}, (4'4)

and

K
— Ag, () < max {ﬁ K4} max{(uke*?)™2 71 (uket)2 1Y, (4.5)

for o < d(x) < 26, where K;,i = 1,2,3,4 are positive constants that does not
depend on k > 0.

Consider o = 1“—2 and p = e~*. We have n;(z) > e* —1 > 1 for all z € Q and
i =1,2. Thus there is a constant K5 > 0 such that

()P iy S, > p P K i, 5 = 1,2, # j
for o < d(z) < 26.
Since 0 < «; + B; < l; — 1, the L'Hospital’s rule implies that
kl»fl

P Gy 0= L2

— ¢ (ke @) pkek @ Ad i d(z) < o
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Thus, it is possible to consider kg > 0 large enough such that

1 mi—1 oli—1 .
K52max{K1@,Kz}max{2 1T n }m

and

1 ma—1 ola—1 K
K52max{K3@,K4}max{2 2T, 2 }m7

for all k > ko. Thus for k& > 0 large enough we have —Ag, (un;) < (un;)? ln;l T, 4,5 =

1,2,i # j.foro < d(x) < 26.1f d(x) > 20 we have —Ag, (un;) = 0 < (un;)% |un:|S%, i, 5 =
1,2 with ¢ # j. For k > 0 large enough we also have that —Ag, (um1) < —As, 2x, —As, (un2) <
—Ag,yx in . Therefore pn < zx, une <y in . The result follows. O

4.1. A concave-convex system. In this section we prove the existence of solution
for a concave-convex system of type

—Ag,u = X |gt + 005 o)k, in Q,
—Ap,v = MuPlulg? + 0us|ul 3, in Q, (P Yre0

u=v = 0 on 0%,
where oy, 35,7, &i, @ = 1,2 are constants satisfying certain conditions.

Theorem 4. Suppose that «;, B, v, &,1 = 1,2 are nonnegative constants and sup-
pose that 0 < o; + B; < l; — 1,4 =1,2. The following assertions hold

(1) If ma—1 < & +71 and my —1 < &+ 2, then for each 6 > 0 there exists \g > 0
such that for each X € (0, o) the problem (Pl)A,.g has a positive solution uy g.

(’LZ) ]fO < 041+ﬂ1 < 12—1,0 < 042"’/82 <li—-1< €1+’}/1 <lp—1 and§2—|—'yz <l;—1
then for each A > 0 there exists 0y > 0 such that for each 6 € (0,6y) the problem
(Pl)Aﬁ has a positive solution uy g.

Proof. Suppose that (i) occurs. Consider zy, € Wy () N L=(Q) and yy €
Wy ®2(Q) N L>®() the unique solutions of (1), where A € (0,1) will be cho-
sen before. Lemma [ imply that for A > 0 small enough there exists a constant
K > 0 that does not depend on A such that

0 < zx(z) < KA in Q, (4.6)
0 < yx(z) < KXm2=1 in Q. (4.7)
We will prove, for each € > 0, that there exists Ag > 0 such that
M YAl S5, + 05 yal Th, < A (4.8)
and
A2 255, + 0252 T, <A (4.9)

in . Since 0 < a; + 5,1 =1,2, mo — 1 < & + 1 and my — 1 < & + 2 there exists
Ao > 0 such that
mg—1+ayg+pB &1+

mo—1 B1 a1 m ji &1 Y1
N R K0, oa et KO KT <A (4.10)

and
mj —1+as+8 2t
)\% K52|K|z?¥2 +9)\7317§KE2|[§|22A2 <A (411)
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for all A € (0, o). From (&), (@7), @I0) and (@II) we obtain {E) and @J).

Therefore

—Ap,zx = AN yalSh, + 05t Al T,
and

—Ag,yx > /\zf2|z)\|L\,,2 + 92>\2|2A|LA2
in Q for all A € (0, \o).

Consider 7;, d, o and p as in the proof of Theorem[Bl Since 0 < ay;+35; < l;—1,i =
1,2 we have that exists p > 0 with pun; < 2y, une <y, and the inequalities

—Ag, () < A, —Ag, () < Munz)™ (|5, + 0(un2)s |unz|)s,

and

— A, (1m2) < A, —Aa, (un2) < M )™ | |53, + 0(um) & [pm | 1A,

in . Thus by Lemma [l we have the first part of the result.

In order to prove the second part of the result consider 7;,6 and o;,i = 1,2 as
in the first part of the result and let A > 0 fixed. Since 0 < o; + 8; < l; — 1,9 =1,2
there exists ¢ > 0 depending only on A such that

—Ag, (pmi) < 1and — Ag, (un;) < Aun;)™
in Q with 4,7 = 1,2 and i # J.
Let M > 0 which will be chosen before and consider zy, € W, **(Q) N L>® ()
and ypr € W, () N L>=(Q) solutions of

—A@le = M in Q, —Aq>2yM = M in Q,
M 0 on 0N. YM 0 on 0N.

If M > 0 is large enough, then by Lemma [3] there exists a constant K > 0 that
does not depend on M such that

0 < zp(z) < KMTT in Q, (4.12)

0<yn(z) < KM= in Q. (4.13)

In order to construct @;,w;,7 = 1,2 we will show that exist 8y > 0 depending
on A with the following property: if we consider § € (0,6y) then there will be a
constant M depending only on A and 0 satisfying

M > Myne™ lyne |, + Oyn® lym| s, (4.14)

and
M > Nane™|2m 5%, + 020 20| A, (4.15)

in . From ({12) and (II3) we have that (£I4) and (@I5) occur if M > 1 and
AMEMP™ 4+ 0KM™ ! < 1 (4.16)
where K := max{ K" |K|%% , K7 |K|%3,, K& K[, K2|K|%, 1

_ a;+ 51 as+ B - m+& 2+
p := max , and 7 := maxq ——~, ———= 3.
lb—1"71;-1 lb—1"11—-1
Since 0 < p < 1 and 7 > 1 the function

U(t) = AKtP~ 1+ 0Kt 1t >0,
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belongs to C*((0,00),R) and attains a global minimum at

1

Myg:=M(\0) =L (%) o (4.17)

where L : (71_7’1’) . The inequality ([@I6) is equivalent to find My s > 0 such

that ¥(M)g) < 1. By (£I1) we have U(M, ) < 1 if and only if

T—1

1 AN\ 7Tr
- <1
(3) =

Notice that the above inequality holds if # > 0 is small enough because 0 < p < 1
and 7 > 1. Thus for A > 0 fixed there exists 6y = p(\) such that for each 6 € (0, 6y)
there is a number M = My ¢ > 0 such that ([@I0) occurs. Thus we can consider
M, ¢ large enough such that ({.14) and (I3 occur. Therefore

_ b (AT .
AK(1—p)=> (5) +0K(1—p)=—>

—Aa,zar = Myatlyal S, + 0yt lyar i,
and
—Ag,yYm > AP |ZM|L\I,2 + 0252 |ZM|LA2
Considering if necessary a smaller 6y > 0, we get
—Ag, (um) <1< Myg, < Mg
and
—Ag, (un2) <1< My, < Myg
in Q for all § € (0,6y) because My p — +oo as § — 07 and § — M) ¢ is non-
increasing. Therefore —Ag, (un1) < —As, 20, —Aa, (un2) < —Ag,ynr in Q. The

weak comparison principle implies that un; < zpr and une < ypr in Q. The proof
is finished. [l

5. FINAL COMMENTS

A slightly modification in the arguments of Lemma [l allow us to study a more
general class of systems given by

—Ap,u = fi(u,v)[v|Th, +g1(u, )|U|L1Al in €, _
—Ap,v = folu,v)u|3, + g2(u,v)|ul %, in Q, (P)
u=v = 0 on 09,

with f;, g; : [0,400) X 0,400) = 0,+00),7 = 1,2 nondecreasing continuous func-
tions in the variables v and v. The arguments used in this work allow us to consider
results in the case for example when the functions f; and g; are power functions
with convenient exponents. In order to avoid of a more technical exposition we
choose to not prove results related with the case mentioned before, that is, systems
involving the variables u and v in the local the terms of each equation of (16)
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