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8 EQUATIONS AND SYZYGIES OF

K3 CARPETS AND UNIONS OF SCROLLS

DAVID EISENBUD AND FRANK-OLAF SCHREYER

ABSTRACT. We describe the equations and Gröbner bases of some de-

generate K3 surfaces associated to rational normal scrolls. These K3

surfaces are members of a class of interesting singular projective vari-

eties we call correspondence scrolls. The ideals of these surfaces are

nested in a simple way that allows us to analyze them inductively. We

describe explicit Gröbner bases and syzygies for these objects over the

integers and this lets us treat them in all characteristics simultaneously.

INTRODUCTION

Let S(a, b) be the rational normal surface scroll of degree a+ b in P
a+b+1

over an arbitrary field F, that is, the embedding of the projectivised vector

bundle P(OP1(a) ⊕ OP1(b)) by the line bundle O(1) (see [EH87] for an

exposition). A striking theorem of Gallego and Purnaprajna ([GP97, The-

orem 1.3]) asserts that there is a unique K3 Carpet that is a double struc-

ture on S(a, b); that is, a unique scheme X(a, b) ⊂ P
a+b+1 whose reduced

scheme X(a, b)red is S(a, b) such that X(a, b) has degree 2(a + b) with

H1(OX(a,b)) = 0 and ωX(a,b)
∼= OX(a,b) (or, equivalently, with homogeneous

coordinate ring Gorenstein of a-invariant 0.) Gallego and Purnaprajna prove

that X(a, b) can be written as a limit of smooth K3 surfaces whose general

hyperplane sections are canonical curves of genus a + b − 1 and gonality

min(a, b) + 2.

A quick description of the homogeneous ideal of X(a, b) is that, for

a, b ≥ 2, it is is generated by the rank 3 quadrics in the ideal of S(a, b)
(Theorem 3.5). The goal of this paper is to elucidate the generators of this

ideal, and those of certain related varieties, in a much more explicit way,
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similar to the well-known description of the ideal of S(a, b) as an ideal of

2 × 2 minors. This enables us to compute explicit Gröbner bases and even

resolutions over the integers.

One of our motivations has to do with Green’s conjecture relating the

Clifford index of a smooth projective curve to the length of the linear strand

of its free resolution. Deopurkar [D15] has recently proven that all canon-

ical ribbons satisfy Green’s conjecture. Since every canonical ribbon of

genus g and Clifford index c is the hyperplane section of the K3 carpet

X(c, g − 1 − c) ([BE95, Section 8]), this implies that all K3 carpets sat-

isfy the analogue of Green’s conjecture. One can also hope that K3 carpets

could shed some light on the questions of the stability of syzygies raised

in [DFS16] .

Deopurkar’s argument relies on Voisin’s theorem [V05] that canonical

curves lying on sufficiently general K3 surfaces satisfy Green’s conjec-

ture. In very recent work, Aprodu, Farkas, Papadima, Raicu and Weyman

[AFPRW] have given a far simpler proof of Voisin’s theorem based on the

degeneration of K3 surfaces to tangent developable surfaces of rational nor-

mal curves.

It seems natural to hope that there might also be a proof based on K3

carpets, and this would have the advantage that it would automatically treat

curves of every Clifford index: indeed, the analogue of Green’s Conjecture

for X(a, a) (which corresponds to Green’s conjecture for general curves)

directly implies Green’s conjecture for all X(a, b) with b ≤ a, and thus for

some curves of each Clifford index. This is because a Gröbner basis for the

ideal of each X(a, b) with b < a is a subset of that of X(a, a).
Green’s Conjecture is known to fail in some finite characteristics ([B17],

[BS18]). Because the Gröbner bases we construct are valid over the in-

tegers, we are able to tabulate the characteristics of the fields over which

the conjecture fails for K3 carpets of sectional genus up to 15 and thus for

canonical ribbons of these genera. The data lead us to conjecture:

Conjecture 0.1. Green’s conjecture is true for general curves of genus g
over fields of characteristic p > 0 whenever p ≥ (g − 1)/2.

The evidence for this conjecture is presented in more detail in the last

section.

Three examples of K3 Carpets. 1) S(1, 1) ⊂ X(1, 1): Any quartic equa-

tion in 4 variables defines a scheme that has the characteristics of a K3

surface. The scroll S(1, 1) is a smooth quadric surface in P
3. The unique

double structure X(1, 1) is defined by the square of the form defining the

quadric.
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2) S(2, 1) ⊂ X(2, 1): In suitable coordinates S(2, 1) is defined by the 2×2
minors of the matrix

(

x0 x1 y0
x1 x2 y1

)

.

The carpet X(2, 1) supported on this scroll is the complete intersection de-

fined by the 2× 2 minor in the upper left corner, together with the determi-

nant, of the symmetric matrix





x0 x1 y0
x1 x2 y1
y0 y1 0



 .

3) S(2, 2) ⊂ X(2, 2): For a more typical example, we take S(2, 2) to be the

scroll defined by the 2× 2 minors of

(

x0 x1 y0 y1
x1 x2 y1 y2

)

then X(2, 2) is defined by the complete intersection of the three quadrics

det

(

x0 x1

x1 x2

)

, det

(

y0 y1
y1 y2

)

, det

(

x0 + y0 x1 + y1
x1 + y1 x2 + y2

)

.

We shall see other useful representations as well.

What’s in this paper. In Section 1 below we describe a family of projec-

tive schemes we call correspondence scrolls that includes the rational nor-

mal scrolls, and the degenerate K3 surfaces treated in the rest of this paper.

In Section 2, we give an informal description of the family of degenerate K3

surfaces that depend on a pair of automorphisms of P1, and describe their

degeneration to a K3 carpet.

Our main results are in Sections 3 and 4. In Section 3, we give vari-

ous descriptions of the minimal generators of the ideals of the K3 carpets

and certain reducible K3 surfaces, and prove that these generators form a

Gröbner basis for a suitable term order.

In Section 4, we study a non-minimal free resolutions of these surfaces

that have simple descriptions valid over the ring of integers. Explicit com-

putation then yields information about the characteristics in which Green’s

conjecture might fail.

Finally, in Section 5, we formulate two Conjectures about the minimal

free resolutions of these surface, and present the data which give the evi-

dence. In particular, we proof Conjecture 0.1 for curves of genus g ≤ 15.
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1. CORRESPONDENCE SCROLLS

Consider disjoint projective spaces P
ai = P(Vi), for i = 1, . . . , m, em-

bedded in

P
N = P(⊕iVi),

and a correspondence, that is a subscheme Γ ⊂
∏

i P
ai (or more generally

a multi-homogeneous subscheme of
∏

i A
1+ai). The correspondence scroll

SΓ defined byΓ may be described set-theoretically as the union of the planes

in P
N spanned by the sets of points {p1, . . . , pm} with (p1, . . . , pm) ∈ Γ. To

SΓ scheme-theoretically, we first consider the set of of planes of dimension

m − 1 in P
N that are spanned by all sets of points {p1, . . . , pm} with pi ∈

P
a
i ⊂ P

N . We consider this set as a subvariety of the Grassmannian. As

such, it is the image of the product
∏

i P
ai . We pull back the tautological

bundle of m− 1-planes on the Grassmannian to Γ ⊂
∏

i P
ai , and we define

SΓ to be the image in P
N of this bundle over Γ.

For example, the ordinary surface scroll S(a, b) is the result of taking

m = 2, a1 = a, a2 = b

and taking Γ to be the diagonal in P
1 × P

1 embedded in P
a × P

b as the

product of the rational normal curves of degrees a and b. The K3 carpet

X(a, b) described below is obtained by taking Γ to be the image of twice

the diagonal of P1 × P
1, and the other degenerate K3 surfaces we consider

correspond to other divisors of type (2, 2) on P
1 × P

1.

It is not hard to describe correspondence scrolls that have the properties

of Calabi-Yau varieties of other dimensions, and to give other interesting

singular models. This is the subject a paper in preparation by the first author

and Allessio Sammartano [EiSa]

In the next section we concentrate on the family of degenerate K3 sur-

faces.

2. DEGENERATE K3 SURFACES FROM RATIONAL NORMAL SCROLLS:

GEOMETRY

In this section we sketch the geometry of the reducible surfaces whose

equations we will study.

Fix positive integers a, b, and consider 2-dimensional rational normal

scrolls of type (a, b) in P
a+b+1. Recall that such a scroll may be described

geometrically by fixing disjoint subspaces Pa,Pb ⊂ P
a+b+1, rational normal

curves Ca ⊂ P
a and Cb ⊂ P

b of degrees a and b respectively, and a one-to-

one correspondence φ ⊂ Ca×Cb. We write S = Sφ for the correspondence

scroll, which is the union of the lines (x, y) for (x, y) ∈ φ. When a, b ≥ 1
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the surface S is a smooth rational surface of degree a + b, isomorphic to

Proj
P1(OP1(a− b)⊕OP1).

In addition to the double structure on S that is the K3 carpet X(a, b), we

will also study the equations of a family of reducible K3 surfaces, the union

of two scrolls S1 ∪ S2 that degenerates to X(a, b). We take S1 = S = Sφ

and define S2 = Sφτ as the scroll corresponding to the correspondence

φ ◦ (τ × 1) ⊂ Ca × Cb, where τ is an automorphism of Ca
∼= P

1. Finally,

we set

Xφ,τ = S1 ∪ S2.

Now suppose that τ has two distinct fixed points, which we take to be 0

and∞. In this case we may identify τ as multiplication by a scalar t 6= 1.

Had we reversed the roles of 0 and ∞ (or of Ca and Cb we would replace

t by t−1. but up to these changes t is well-defined by the (abstract) surface

Xφ,τ as the ratio of the points of Ca \{0,∞} corresponding to a given point

of Cb \ {φ(0), φ(∞)}.
The intersection Sφ ∪ Sφτ is a curve of degree a + b + 2 and arithmetic

genus 1 consisting of Ca ∪ Cb ∪ L0 ∪ L∞, where L0, L∞ are the rulings of

either scroll through the points 0 and∞ on Ca.

We may let t go to 1, and when this happens the union of the two scrolls

approaches X(a, b) (Theorem 3.2).

3. EQUATIONS AND GRÖBNER BASES

3.1. Notation: Let a ≥ b ≥ 1 be integers, consider a projective space

P
a+b+1
F

over an arbitary field F, and let

P = F[x0, x1, . . . , xa, y0, y1, . . . , yb]

be its homogeneous coordinate ring. Define matrices

MX :=

(

x0 x1 . . . xa−1

x1 x1 . . . xa

)

, MYt :=

(

y0 y1 . . . yb−1

ty1 ty2 . . . tyb

)

and let

Mt =

(

x0 x1 . . . xa−1 y0 y1 . . . yb−1

x1 x1 . . . xa ty1 ty2 . . . tyb

)

be their concatenation.

We omit the subscript and write MY or M for MY1 or M1. We will use

the symbol | to denote concatenation: for example, M = MX|MY .

Let I2(MX), I2(MY ), and I2(M) be the ideals in P generated by the

2× 2 minors of these matrices. In the case b = 1 we will also use the 2× 2
matrix

MY 2 :=

(

y20 y0y1
y0y1 y21

)

.
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Write R := R(a, b) = P/I2(M) for the homogeneous coordinate ring of

the scroll St
∼= S(a, b) defined by I2(Mt). The line bundle corresponding to

the ruling of the scroll St is the cokernel of the matrix Mt, and the elements

x0, x1 may be identified with the sections of this bundle.

3.2. The K3 Carpets. Now let M = M1 = MX|MY . The minimal free

resolution of I2(M) is an Eagon-Northcott complex. From the form of this

complex [BE95] we see that the canonical module ωR of R is isomorphic

to the ideal

(x0, x1)
a+b−2R,

shifted so that the generators are in degree 2, that is,

ωR
∼= (x0, x1)

qR(q − 2).

By [GP97, Theorem 1.3] there exists a unique surjection I → ωR. We

begin by making this explicit:

Theorem 3.1. Set q = a + b − 2. The unique surjection α : I(S) → ωR

from the ideal I(S) of S to the module ωR annihilates I2(MX) + I2(MY )
and sends

det

(

xi yj
xi+1 yj+1

)

to the monomial xq−i−j
0 xi+j

1 .

Proof. The given formula for α defines a surjection from the vector space

generated by the quadrics in I(S) to the vector space generated by the forms

pℓ = xq−ℓ
0 xℓ

1 ∈ R. To see that this defines a homomorphism of P -modules,

we must show that the relations on the quadrics go to 0.

In the case a = b = 1 the ideal I(S) is principal, the canonical module is

isomorphic to R, and the result is trivial. Thus we may assume that a ≥ 2.

The exactness of the Eagon-Northcott complex shows that the relations

on the quadrics are generated by the relations on the minors of the 2 × 3
submatrices M ′ of M . Such a submatrix must involve either two columns

from MX or two columns from MY . Since the two cases are similar, we

may as well suppose that the submatrix is

M ′ =

(

0 1 2

xi xj ys
xi+1 xj+1 ys+1

)

with 0 ≤ i < j ≤ a− 1 and 0 ≤ s ≤ b− 1. The relations on the minors of

M ′ are generated by

xi∆1,2 − xj∆0,2 + ys∆0,1 = 0

xi+1∆1,2 − xj+1∆0,2 + ys+1∆0,1 = 0.
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where ∆u,v denotes the determinant of the 2× 2 submatrix of M ′ involving

the u-th and v-th columns.

The map α sends ∆0,1 to 0, so these relations go to

− xjpi+s + xipj+s

− xj+1pi+s + xi+1pj+s.

In the fraction field of R we have

x1/x0 ≡ x2/x1 ≡ · · · ≡ y1/y0 = · · · mod I(S).

In particular, for j = 0, . . . a we have

xj ≡
(x1

x0

)j
x0 mod I(S).

Thus the two binomials above are both congruent mod I(S) to

−
(x1

x0

)j
x0x

q−i−s
0 xi+s

1 +
(x1

x0

)i
x0x

q−j−s
0 xj+s

1 = 0

as required. �

Some reducible K3 surfaces. We now turn to the ideal of the K3 surfaces

Xφ,τ in the case where τ is multiplication by a scalar t. It turns out that it

is convenient to write down generators in some cases where t is not defined

over the ground field F, but is the ratio t = t1/t2 of two the roots t1, t2 6= 0
of a quadratic equation p(z) = z2 − e1z + e2 ∈ F[z]. We include the

possibility F = Z as well—this will be important in Section 4. We write e
for the pair (e1, e2). As we shall see, if (e1, e2) ∈ F then the scheme Xφ,τ

has a model Xe defined over F.

We think of the ti as being in a fixed algebraic closure F of F, and set

P := F[x0, . . . , xa, y0, . . . , yb]. If t1 = t2, so that t = 1 then, for simplicity,

we will suppose that t1 = t2 = 1.

Other than the minors of MX and MY , the forms that will enter into our

description are defined as follows:

(1) In the case a, b ≥ 2 we let Je ⊂ S generated by the bilinear forms

Qi,j := xi+2yj − e1xi+1yj+1 + e2xiyj+2 (1a).

for 0 ≤ i ≤ a − 2 and 0 ≤ j ≤ b− 2. The ideal Je can be perhaps

more conveniently specified as the ideal generated by the entries of

the (a− 1)× (b− 1) matrix








x0 x1 x2

x1 x2 x3
...

...
...

xa−2 xa−1 xa













0 0 e2
0 −e1 0
1 0 0









y0 y1 . . . yb−2

y1 y2 . . . yb−1

y2 y3 . . . yb



 (1b).
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(2) In the case a ≥ 2, b = 1 we let Je be the ideal generated by the

cubic forms

Qi,0 := xi+2y
2
0 − e1xi+1y0y1 + e2xiy

2
1

for 0 ≤ i ≤ a− 2, i.e. the entries of the (a− 1)× 1 matrix









x0 x1 x2

x1 x2 x3
...

...
...

xa−2 xa−1 xa













0 0 e2
0 −e1 0
1 0 0









y20
y0y1
y21



 .

(3) Finally, in case a=b=1 we let Je be the ideal generated by the quartic

form

Q0,0 := x2
1y

2
0 − e1x0x1y0y1 + e2x

2
0y

2
1

= (x1y0 − t1x0y1)(x1y0 − t2x0y1)

Set Ie := I2(MX) + I2(MY ) + Je. We will show that Ie is the ideal of

forms vanishing on Xφ,τ and that P/Ie is a Gorenstein ring with ωP/Ie
∼=

P/Ie as graded modules, so that, in particular, Xe is a degenerate K3 sur-

face.

Theorem 3.2. Let F be any field. Ie := I2(MX) + I2(MY ) + Je is the

saturated ideal of Xe.

(1) If t1 = t2 = 1, hence e = (2, 1), then Ie is the kernel of the map α
of Theorem 3.1, and thus Ie is the saturated ideal of Xe = X(a, b).

(2) Suppose that t1 6= t2. Define 2× (a+ b) matrices over P by

mℓ := Mtℓ =

(

x0 x1 . . . xa−1 y0 y1 . . . yb−1

x1 x2 . . . xa tℓy1 tℓy2 . . . tℓyb

)

for ℓ = 1, 2. We have

Ie = I2(m1) ∩ I2(m2) ⊂ P .

and thus Ie is the saturated ideal of a F-scheme Xe that becomes

isomorphic over F to Xφτ , which is the union of the two scrolls de-

fined by I2(m1) and I2(m2). These two scrolls meet along a reduced

curve
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Ca

Cb

L0
L∞

where the L0, L∞ are the lines in P
a+b+1

k
defined by the vanishing of

the first and second rows of the matrix mℓ, while the curves Ca and

Cb are rational normal curves of degrees a, b defined by the minors

of MX and MY in the subspaces defined by the vanishing of the yj
and the xi respectively.

(3) The Qi,j , together with the 2×2 minors of MX and the 2×2 minors

of MY , form a Gröbner basis for Ie with respect to the reverse

lexicographic order with

x0 > · · · > xa > y0 > · · · > yb.

(4) The ring P/Ie is Gorenstein, with ωP/Ie
∼= P/Ie as graded modules.

We will make use of some identities whose proofs are immediate:

Lemma 3.3. Suppose that t1, t2 are nonzero scalars, and let

e1 = t1 + t2 e2 = t1t2

be the elementary symmetric functions.

(1) If a, b ≥ 2 then:

Qi,j := xi+2yj − e1xi+1yj+1 + e2xiyj+2

= t2 det

(

xi yj+1

xi+1 t1yj+2

)

− det

(

xi+1 yj
xi+2 t1yj+1

)

= t1 det

(

xi yj+1

xi+1 t2yj+2

)

− det

(

xi+1 yj
xi+2 t2yj+1

)

≡ det

(

xi + t2yj xi+1 + yj+1

t2xi+1 + t1yj+1 t2xi+2 + yj+2

)

mod (I2(MX) + I2(MY )),
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(2) If, on the other hand, a ≥ 2 but b = 1 then:

Qi,0 := xi+2y
2
0 − e1xi+1y0y1 + e2xiy

2
1

= t2 det

(

xi y0y1
xi+1 t1y

2
1

)

− det

(

xi+1 y20
xi+2 t1y0y1

)

= t1 det

(

xi y0y1
xi+1 t2y

2
1

)

− det

(

xi+1 y0y1
xi+2 t2y

2
0

)

�

We will use also use the following result, which is a transposition of a

well-known result on multiplicity into the context of Gröbner bases:

Lemma 3.4. Let P = F[x0 . . . , xn] be a standard graded polynomial ring,

with a monomial order >, and let I ⊂ P be a homogeneous ideal of di-

mension d. If g1, . . . , gm are forms in I and ℓ1, . . . , ℓd are linear forms such

that

length(P/(in<g1, . . . , in<gm, ℓ1, . . . , ℓd)) ≤ deg P/I

then g1, . . . , gm is a Gröbner basis for I , the rings P/I and P/in<I are

Cohen-Macaulay, and ℓ1, . . . , ℓd is a regular sequence modulo in<I . More-

over, if σt, for t ∈ A
1 \ {0}, is the one-parameter family of transformations

of Pn corresponding to the Gröbner degeneration associated to the mono-

mial order < then, for general values of t, the elements ℓ1, . . . , ℓd form a

regular sequence modulo It.

Proof. For t 6= 0 we have degP/σtI = degP/I because the transformation

σt is an automorphism of P
n. Moreover, by the semi-continuity of fiber

dimension, ℓ1, . . . , ℓd is a system of parameters modulo σtI for general t.
The degree is also semi-continuous, and in<σtgi = in<gi, so for general t,
we have:

degP/I = degP/σtI

≤ lengthP/σtI + (ℓ1, . . . , ℓd)

≤ lengthP/(σtg1, . . . , σtgm, ℓ1, . . . , ℓd)

≤ lengthP/(in<g1, . . . , in<gm, ℓ1, . . . , ℓd).

Our hypothesis implies that all the inequalities are equalities, so by [AB58,

Theorem 5.10] the ringsP/I andP/in<I are Cohen-Macaulay, and ℓ1, . . . , ℓd
is a regular sequence modulo in<I . Since any proper factor ring of a

Cohen-Macaulay ring must have smaller degree, and since in any case

deg in<I = deg I , we see that in<I = (in<g1, . . . , in<gm), so g1, . . . , gm is

a Gröbner basis for I . �

Proof of Theorem 3.2. It follows at once from the identities that Ie is con-

tained in the ideal of Xe.
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We next show that the generators of Ie form a Gröbner basis. Let I ′ be

the ideal generated by the initial forms of the generators; that is, by:

(1) the initial forms of the 2 × 2 minors of MX , namely xixj for 1 ≤
i ≤ j ≤ a− 1;

(2) the initial forms of the 2 × 2 minors of MY , namely yiyj for 1 ≤
i ≤ j ≤ b− 1;

(3) the initial forms of the Qi,j , namely xi+2yj with 0 ≤ i ≤ a −
2 and 0 ≤ j ≤ b−2 if b ≥ 2, or xi+2y

2
0 with 0 ≤ i ≤ a−2 if b = 1.

Since I ′ ⊂ in<I , we see that dimS/I ′ ≥ 3. Set

P ′ = F[x1, . . . , xa, y1, . . . , yb−1] ∼= P/(x0, xa − y0, yb).

The image of I ′ in P ′ contains every monomial of degree 2 except

{x1yj | 1 ≤ j ≤ b− 1} ∪ {xiyb−1 | 1 ≤ i ≤ a},

every monomial of degree 3 except x1xayb−1, (or x1x
2
a in case b = 1),

and every monomial of degree ≥ 4. Thus x0, xa − y0, yb is a system of

parameters modulo I ′ and P ′/I ′P ′ has Hilbert function {1, a+ b− 1, a+
b− 1, 1}. In particular,

dimk(P
′/I ′) = 2a+ 2b.

By Lemma 3.4, this implies that x0, xa − y0, yb is a regular sequence

modulo I ′ and modulo I; that I ′ = in<I; and that P/I and P/I ′ are Cohen-

Macaulay rings of degree 2(a + b). In particular, Ie is the saturated homo-

geneous ideal of Xe. This completes the proof of parts (1)-(3).

To complete the proof of part (4) we must show that ωP/I
∼= P/I , and

for this we may harmlessly assume that F = F. In the case t1 = t2 this is

implied by the result of Gallego and Purnaprajna [GP97, Theorem 1.3], so

we need only treat the case t1 6= t2, where Xe = S1∪S2 is the union of two

scrolls.

From the fact thatP/I is Cohen-Macaulay, together with Hilbert function

of P/I ′, we know that the Hilbert function of ωP/Ie is equal to the Hilbert

function of P/Ie, and it suffices to show that the annihilator of the element

of degree 0 is precisely Ie = I2(m1) ∩ I2(m2). Since ωP/Ie is a Cohen-

Macaulay module, no element can have annihilator of dimension < dim Ie;
thus the annihilator of the element of degree 0 is either Ie or I2(mℓ) for

ℓ = 1 or ℓ = 2.

Now the annihilator of I2(mℓ) in ωP/Ie is equal to ωP/I2(mℓ). Since S(a, b)
is rational its canonical divisor is ineffective, so the nonzero global section

of ωXe
cannot come from either of the scrolls, and we are done. �

Theorem 3.5. The ideal I(a, b) of the K3 carpet X(a, b) contains all the

rank 3 quadrics vanishing on the scroll S(a, b), and if a, b ≥ 2 then I(a, b)
is generated by them.
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The projective variety of rank 3 quadrics in I(a, b) is the Veronese em-

bedding of

ν2 : P
(

Sym(a−2)(F
2)⊕ Sym(b−2)(F

2)
)

in the subspace of

P
(

∧2 Syma−1(F
2)⊕ ∧2 Syma−1(F

2)
)

spanned by the
(

a+b−1
2

)

rank 3 quadrics described in part (3) of Theo-

rem 3.2.

Proof. If we identify x0, . . . , xa with the dual basis to the monomial basis

of Syma(F
2) then we may regard MX as a map from Syma−1(F

2) to (F2)∗.
With this identification, writing s, t for the basis of F2, some of the rank 3

quadrics in I2(MX) correspond to the 2 × 2 submatrices of MX involving

the pair of generalized columns sf, tf for arbitrary f ∈ Syma−2(F
2). We

first prove by induction on a that these rank 3 quadrics in I2(MX) generate

all of I2(MX). This is obvious when a = 1. By induction we may assume

that the rank 3 quadrics generate all the minors in the first a− 1 columns of

MX . But for i+ 1 ≤ a− 2 we have:

det

(

xi xa−1

xi+1 xa

)

= det

(

xi + xa−2 xi+1 + xa−1

xi+1 + xa−1 xi+2 + xa

)

− det

(

xi xi+1

xi+1 xi+2

)

− det

(

xa−2 xa−1

xa−1 xa

)

+ det

(

xi+1 xa−2

xi+2 xa−1

)

.

All the terms on the right except the last have rank 3 and are of the given

form, and the last is a minor from the first a−1 columns, proving the claim.

The map from this a+1-dimensional space of matrices to the
(

a
2

)

-dimensional

space of quadrics in I2(MX) is quadratic, and since the image spans I2(MX),
the map must be the quadratic Veronese embedding.

The same consideration holds for the rank 3 quadrics of MY . As in part

(3) of Theorem 3.2, we may obtain a further rank three quadric by adding

the submatrix corresponding to f ∈ Syma−2(F
2) to one corresponding to

g ∈ Symb−2(F
2), thus giving us a vector space Syma−2(F

2)⊕ Symb−2(F
2)

of 2× 2 matrices whose determinants are rank 3 quadrics. The determinant

map from this vector space to the space of quadrics is also quadratic. Since

the dimension of the space of quadrics in I(X(a, b)) is
(

a+b−1
2

)

, and this

space is spanned by the image of the determinant map, we see that the

determinant map must be the quadratic Veronese map.

To see that I(X(a, b)) contains all rank 3 quadrics in I(S(a, b)) we do

induction on a+ b. If a = b = 1, then I(X(a, b)) contains no quadrics, and

if a = 2, b = 1 or a = 1, b = 2 there is a unique quadric, and it does have
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rank 3 (Example 2 in the introduction), so the result is trivial in these cases.

We now suppose that a, b ≥ 2.

Let Q be a rank 3 quadric hypersurface containing S(a, b). The vertex of

Q, which is a codimension 3 linear space, is set-theoretically the intersec-

tion of Q with a general linear space of codimension 2 containing it, as one

can see by diagonalizing the equation of Q. Such a codimension 2 space

must intersect the 2-dimensional surface S(a, b), necessarily in a point p
lying in the vertex. Let π : P

a+b+1 → P
a+b be the projection from this

point.

We may choose variables within the spaces (x0, . . . , xa) and (y0, . . . , yb)
so that (possibly after reversing the roles of x, y) the point p has homoge-

neous coordinates (1, 0, . . . , 0), and thus lies on the rational normal curve

Ca ⊂ S(a, b). It follows that π(S(a, b)) = S(a− 1, b).
The variety π(X(a, b)) is defined by the ideal

I ′ := I(X(a, b)) ∩ F[x1, . . . , xa, y0, . . . , yb],

and (after renumbering the variables) this ideal contains all the quadrics

in the ideal I(X(a − 1, b)) described in Theorem 3.2. Thus π(X(a, b)) ⊂
X(a−1, b). Since the general codimension 2 plane through p meets X(a, b)
in a double point at p, we have deg π(X(a, b)) = deg(X(a, b)) − 2 =
degX(a − 1, b). Since π(X(a, b)) also has the same dimension as X(a −
1, b), and the latter is Cohen-Macaulay, we have π(X(a, b) = X(a− 1, b).

By induction, X(a − 1, b) lies on all the rank 3 quadric hypersurfaces

containing S(a − 1, b); in particular, it lies on π(Q). Thus X(a, b) lies on

Q. �

Proposition 3.6. Suppose that t1 6= t2. The scheme Xe = Sφ ∪ Sφτ has

a transverse A1 singularity along the intersection of the two scrolls away

from the 4 double points of the curve E = L0 ∪ L∞ ∪ Ca ∪ Cb.

Proof. We may harmlessly assume F = F and a ≥ b ≥ 1. Consider the

affine chart U ∼= A
a+b+1 of Pa+b+1 defined by {x0 = 1}. This open set

misses the curves L∞ and Cb that are defined by the vanishing of the first

row of the matrix MX|MY and the vanishing of all the variables of MX ,

respectively.

The variables x1, y0 restrict to global coordinates both on Sφ ∩ U ∼= A
2

and Sφτ ∩U ∼= A
2. Because 0 6= e2 ∈ K, we can eliminate x2, . . . , xa from

the coordinate ring of Xe ∩ A
a+b+1 using the minors of MX and, if b ≥ 2,

we can eliminate y2, . . . , yb using the equations

Q0,j |U= x2yj − e1x1yj+1 + e2yi+2 for j = 0, . . . , b− 2.

It follows that x1, y0 and y1 generate the coodinate ring of the affine scheme

Xe ∩ U .
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One remaining equation of Xe ∩ A
a+b+1 in these generators is obtained

from y21 − y0y2, which, after substitution, corresponds to the equation

e2y
2
1 − (e1x1y1 − x2

1y0)y0 = (t1y1 − x1y0)(t2y1 − x1y0).

All other generators reduce to zero modulo this one, since otherwise Xe

would have a component of dimension < 2.

Thus the intersection of the two components of Xe ∩ U in A
3 defined by

y1 −
1

t1
x1y0 and (

t2
t1
− 1)x1y0.

This set has components x1 = y1 = 0 corresponding to L∞ and y0 = y1 = 0
corresponding to Ca, and the intersection is transverse away from the point

x0 = x1 = y1 = 0.

The arguments for the three charts {xa = 1}, {y0 = 1} and {yb = 1} are

similar. �

4. SYZYGYIES OVER Z AND Z/p

In this section we investigate the question: for which prime numbers p
does the carpet X(a, b) satisfy Green’s conjecture over a field of character-

istic p? We begin by unpacking this question.

Let R denote a field or Z. If F is a graded free complex over a graded

R-algebra with R = P0
∼= P/P+ a domain, then we set

βi,j(F ) := (rankR Fi ⊗P R)j.

Following the convention used in Macaulay2, we display the βi,j in a Betti

table with whose i-th column and j-th row contains the value βi,i+j(F ). If

R is a field or Z we write XR(a, b) or XR
e (a, b) to denote the the subscheme

of P
a+b+1
R that is defined by the ideal described in Theorem 3.2, and we

write PR(a, b) for it’s homogeneous coordinate ring.

If F is the minimal free resolution of P F(a, b) as a module over

F[x0, . . . , xa, y0, . . . , yb]

where F is a field of characteristic p, we say that Green’s conjecture holds

for XF(a, b) if βi,i+1(F ) = 0 for i ≥ max(a, b), and similarly for XF

e (a, b).
Note that the presence of the ideal of the rational normal curves of degree

a and b inside the ideal of X(a, b) implies that βi,i+1(F ) 6= 0 for 0 < i <
max(a, b), so that when Green’s conjecture holds, it is sharp.

We have already shown that P F(a, b) is Cohen-Macaulay. The hyper-

plane section, which is a ribbon canonical curve, thus has minimal free

resolution with the same Betti numbers ([BH93, Proposition 1.1.5]). Since

the hyperplane is a ribbon of genus g = a + b + 1 and Clifford index b by

[BE95, p. 730] this is what Green’s conjecture predicts for ribbons [BE95,
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Corollary 7.3]. Since ribbons do satisfy Green’s conjecture in characteristic

0 ([D15]), it follows that this is true for K3 carpets as well.

Returning to the general setting of a graded free complex F over a graded

R-algebra P with R = P0
∼= P/P+, we define the k-th constant strand of

F , denoted F (k), to be the submodule of elements of internal degree k of

the complex F ⊗P R. Thus F (k) has the form:

F (k) : · · · ← Rβk−2,k(F ) ← Rβk−1,k(F ) ← Rβk,k(F ) ← · · · .

We write Hi(F
(k)) for the homology of this subcomplex at the term Rβi,k(F ).

If R is a field, F is any graded P -free resolution of a module M , and F ′ is

the minimal free resolution of M , then since the minimal free resolution is

a summand of any free resolution we have βi,k(F
′) = Hi(F

(k)).
To survey what happens for all primes p at once, we work over Z. We

have shown that the homogenous ideal of X(a, b) ⊂ P
a+b+1
Z

is minimally

generated by a Gröbner basis consisting of forms with integer coefficients,

and the coefficients of the lead terms are ±1. Thus the homogeneous coor-

dinate ring P Z(a, b) of XZ(a, b) is a free Z-algebra, and any free resolution

over P Z(a, b) reduces, modulo a prime p, to a free resolution of P Z/p(a, b)
over in characteristic p.

This means that we can deduce properties in all characteristics from prop-

erties of a free resolution over Z. We will use the (not necessarily minimal)

free resolution introduced (in a slightly different form) in [S91], called the

Schreyer resolution in Singular. See [BS15] for a mathematical exposi-

tion, and [EMSS16] for an efficient algorithm. We have implemented a

Macaulay2 package K3Carpets.m2 [ES18] for exploration of these ques-

tions.

The definition of the Schreyer resolution of an ideal I , described in [BS15],

starts with a normalized Gröbner basis

f1, . . . , fn

of I , sorted first by degree and then by the reverse lexicographic order of

the initial terms. Each minimal monomial generator of the monomial ideal

Mi = (in(f1), . . . , in(fi−1)) : in(fi) for i = 2, . . . , n

determines a syzygy. One shows that these syzygies form a Gröbner basis

for the first syzygy module of f1, . . . , fn with respect to the induced mono-

mial order. Their lead terms are mjei for generators ei of F1 mapping to

fi and mj ∈ Mi a minimal monomial generator. Continuing with the algo-

rithm, we get the finite free resolution F whose terms Fi are free modules

with chosen bases.

https://www.math.uni-sb.de/ag/schreyer/index.php/computeralgebra
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It will be useful in the proof of Theorem 4.4 to give each of the chosen

basis elements of Fp a name, which is a sequence m1, . . . , mp of monomi-

als:

Definition 4.1. The basis element ei of F1 gets as a name the monomial

in(fi). If the minimal generator ej ∈ Fp is mapped to a syzygy with lead

term mek ∈ Fp−1, then the name of a generator ej of Fp is

name(ej) = name(ek), m.

We define the name product of a generator Fp to be the product of the mono-

mials in its name. The total (internal, as opposed to homological) degree of

a generator is thus the degree of its name product.

For simplicity, when we write X(a, b), we will henceforward assume that

a ≥ b. To check whether Green’s conjecture holds, we need only check a

single homology group of a constant strand in an arbitrary free resolution:

Proposition 4.2. The K3 carpet XF(a, b) over a field F satisfies Green’s

conjecture if and only if, for any graded free resolution F of the homo-

geneous coordinate ring of P Z(a, b), the constant strand F (a+1) satisfies

Ha(F
(a+1) ⊗Z F) = 0.

Proof. We must show that in the minimal free resolution F ′ of PF(a, b), the

term F ′
k, for k ≥ a, has no generators of degree ≤ k + 1. The construction

of the Schreyer resolution F of P Z(a, b) shows that F has no generators of

degree ≤ k, and since F ′ is a summand of F ⊗Z F, the same is true for F .

The hypothesis that that Ha(F
(a+1) ⊗Z F) = 0 (for any resolution F over

the integers) implies that F ′
a does not have any generators of degree a + 1,

either, proving the assertion for k = a. We complete the proof by induction

on k ≥ a.

Assuming that F ′
k has no generators of internal degree ≤ k + 1, the dif-

ferential of F ′ would map any generators of Fk+1 having internal degree

k + 2 to scalar linear combinations of generators of Fk having internal de-

gree k + 2. Because F ′ is minimal, this cannot happen. �

Example 4.3. Here is the Betti table of the Schreyer resolutionF of P Z(6, 6)
computed with Macaulay2:

j\i 0 1 2 3 4 5 6 7 8 9 10 11
0: 1 . . . . . . . . . . .

1: . 55 320 930 1688 2060 1728 987 368 81 8 .

2: . . 39 280 906 1736 2170 1832 1042 384 83 8
3: . . . 1 8 28 56 70 56 28 8 1
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In this case, Proposition 4.2 shows that Green’s conjecture over F if de-

pends only on a property of the 7-th constant strand F (a+1) = F (7). In our

example, this has the form

0← Z
8 ← Z

1736 ← Z
1728 ← 0.

It has a surjective first map, so the vanishing of Ha(F
(7)⊗Z F) is equivalent

to the divisibility by p of the determinant of a certain 1728 × 1728 matrix

M over Z. Computationally we find that

detM = 21312 372 5120.

Thus in characteristic 0 or characteristic p 6= 2, 3, 5 this carpet satisfies
Green’s conjecture with Betti table

0 1 2 3 4 5 6 7 8 9 10 11
0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 . . . . . .

2: . . . . . . 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

For the exceptional primes p we can determine the Betti tables by com-
puting the Smith normal form of M and the other matrices in the constant
strands of the non-minimal resolution. They are
p = 2 :

0: 1 . . . . . . . . . . .

1: . 55 320 900 1488 1470 720 315 80 9 . .

2: . . 9 80 315 720 1470 1488 900 320 55 .

3: . . . . . . . . . . . 1

,

p = 3 :

0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1162 48 7 . . . .

2: . . . . 7 48 1162 1408 891 320 55 .

3: . . . . . . . . . . . 1

p = 5 :

0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 120 . . . . .

2: . . . . . 120 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

.

Experimentally we have strong evidence that p = 2 and p = 5 are also
exceptional primes for the general curve of genus 13, while a general curve
of this genus in characteristic 3 satisfies Green’s Conjecture, see [B17] and
Remark 5.2 below. For characteristic p = 2 the experiments support the
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conjecture that a general smooth curve of genus 13 has the following Betti
table with much smaller numbers

0: 1 . . . . . . . . . . .

1: . 55 320 891 1408 1155 64 . . . . .

2: . . . . . 64 1155 1408 891 320 55 .

3: . . . . . . . . . . . 1

,

then the carpet, while, for p = 5, the experimental findings suggest that

the Betti table of the carpet coincides with the conjectural Betti table of a

general smooth curve of genus 13.

The Schreyer resolution is rarely minimal, even for monomial ideals.

Thus the following surprised us:

Theorem 4.4. Let a, b ≥ 2, and write I = I(2,1) for the saturated ideal

defining XZ(a, b), as exhibited in Theorem 3.2. The Schreyer resolution of

in(I) is minimal.

Proof. In our case, the minimal generators of I form a Gröbner basis (Theo-

rem 3.2), which is thus automatically normalized. Let F denote the Schreyer

resolution of J = in(I). Defining the Mi as above, we see from the con-

struction that the Schreyer resolution G of in(f1), . . . , in(fn−1) is a sub-

complex of F , and the quotient complex is the Schreyer resolution of Mn,

appropriately twisted and shifted.

There are n =
(

a+b−1
2

)

generators of J , which we sort by degree refined

by the reverse lexicographic order as follows

x2
1, x1x2, x

2
2, . . . , x

2
a−1, x2y0, x3y0, . . . , xay0, x2y1, x3y1, . . . , xay1, y

2
1, x2y2,

x3y2, . . . , xay2, y1y2, y
2
2, . . . . . . , x2yb−2, x3yb−2, . . . , xayb−2, y1yb−2, y2yb−2,

. . . , y2b−2, y1yb−1, . . . , yb−2yb−1, y
2
b−1.

Thus for 1 ≤ k ≤ n− 1 we have

in(fk) range Mk

xixj 1 ≤ i ≤ j ≤ a− 1 (x1, . . . , xj−1)
xiyj 2 ≤ i ≤ a− 1, 0 ≤ j ≤ b− 2 (x1, . . . , xa−1, y0, . . . , yj−1)
xayj 0 ≤ j ≤ b− 2 (x2, . . . , xa−1, y0, . . . , yj−1, x

2
1)

yiyj 1 ≤ i ≤ j ≤ b− 2 (x2, . . . , xa−1, y1, . . . , yj−1, x
2
1)

yiyb−1 1 ≤ i < b− 1 (x2, . . . , xa−1, y1, . . . , yb−2, x
2
1)

The monomial ideal Mn is more complicated. The initial term of fn is

in(fn) = y2b−1, and we get

Mn = (y1, . . . , yb−2, x
2
1, x1x2, . . . , x

2
a−1, x2y0, . . . , xay0)

Lemma 4.5. The Schreyer resolution G of the ideal (in(f1), . . . , in(fn−1))
is the minimal free resolution of this ideal.
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Proof. For k < n, each Mk is generated by a regular sequence of monomi-

als.The name of each generator of Gp is thus an initial monomial of an fk,

followed by an decreasing sequence of distinct elements of Mk of length

p− 1.

We must show that there are no constant terms in the differential Gp+1 →
Gp for each p > 0. The generators of Gp have degrees p + 1 and p + 2.

The Za+b+2-grading of the monomial ideal induces a Z
a+b+2-grading on G.

Again in this grading a generator of Gp has same total degree as its name

product.

Each name product of a generator of Gp of degree p + 2 is divisible by

x2
1 and some yj . However, the only name products of generators of Gp+1 of

degree p+ 2 that are divisible by x2
1 are monomials in F[x1, . . . , xa−1], and

the conclusion follows. �

To treat the case of Mn we first study a smaller resolution:

Lemma 4.6. The Schreyer resolution H of the monomial ideal

JH = (x2
1, x1x2, . . . , x

2
a−1, x2y0, . . . , xay0)

is the minimal free resolution of this ideal.

Proof. We order the monomial generators mk of JH as indicated above, and

obtain this time

mk range (m1, . . . , mk−1) : mk

xixj 1 ≤ i ≤ j ≤ a− 1 (x1, . . . , xj−1)
xiy0 2 ≤ i ≤ a− 1 (x1, . . . , xa−1)
xay0 (x2, . . . , xa−1, x

2
1)

As in the proof of Proposition 4.5, the generators of Hp for p ≥ 1 are in

degree p+1 and p+2, and only the name products of those in degree p+2
are divisible by x2

1y0, so no constant terms can occur in the differential by

the Z
a+b+2-grading. �

The resolution of Mn is the tensor product of the resolution H from

Lemma 4.6 with the Koszul complex K = K(y1, . . . , yb−2) . Thus the terms

of the complex F resolving in(I) are built from the terms of G and terms

of the tensor product complex K⊗H shifted and twisted:

Fp = Gp ⊕

min(b−2,p−1)
⊕

q=0

Kq ⊗Hp−1−q(−2).

Since G is a subcomplex of F , the only possibly non-minimal parts of the

differentials in F have source in the subquotient complex K(y1, . . . , yb−2)⊗
S[−1](−2) and target in G.
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The Schreyer resolution FY of (y1, . . . , yb−1)
2 is a subcomplex of F of

which K(y1, . . . , yb−2) ⊗ S[−1](−2) is a subquotient. Since FY has only

generators of degree p + 1 in homological degree p ≥ 1, all maps of FY
and hence F are minimal. This completes the proof of Theorem 4.4. �

Corollary 4.7. The minimal free resolution of in(I) and the Schreyer reso-
lution of I have length a+ b− 1 and their non-zero Betti numbers are

β0,0(F ) = 1,

βp,p+1(F ) = p
( a

p+ 1

)

+

b−2
∑

j=0

((a − 2)
(a+ j − 1

p− 1

)

+
(a+ j − 2

p− 1

)

)

+

b−2
∑

j=1

j
(a + j − 2

p− 1

)

+ (b − 2)
(a− 2 + b− 1

p− 1

)

+
(b− 2

p− 1

)

for 1 ≤ p ≤ a+ b− 2,

and

βp,p+2(F ) =

b−2
∑

j=0

(a+ j − 2

p− 2

)

+

b−2
∑

j=1

j
(a+ j − 2

p− 2

)

+ (b− 2)
(a − 2 + b− 1

p − 2

)

+

p−2
∑

q=0

(b− 2

q

)

(

(p − q − 1)
( a

p− q

)

+ (a− p+ q + 1)
( a

p− q − 2

)

+
( a − 2

p − q − 4

)

)

for 2 ≤ p ≤ a+ b− 1

and

βp,p+3(F ) =
(a+ b− 4

p− 3

)

for 3 ≤ p ≤ a+ b− 1.

Proof. The complex H has length a and its the non-zero Betti numbers are

β0,0(H) = 1,

βp,p+1(H) = p

(

a

p+ 1

)

+ (a− p)

(

a

p− 1

)

+

(

a− 2

p− 3

)

for 1 ≤ p ≤ a

and

βp,p+2(H) =

(

a− 2

p− 2

)

for 2 ≤ p ≤ a.
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The complex G has length a+ b− 1 and its non-zero Betti numbers are

β0,0(G) = 1,

βp,p+1(G) = p

(

a

p+ 1

)

+

b−2
∑

j=0

((a− 2)

(

a + j − 1

p− 1

)

+

(

a+ j − 2

p− 1

)

)

+

b−2
∑

j=1

j

(

a− 2 + j

p− 1

)

+ (b− 2)

(

a− 2 + b− 1

p− 1

)

for 1 ≤ p ≤ a + b− 2

and

βp,p+2(G) =

b−2
∑

j=0

(

a+ j − 2

p− 2

)

+

b−2
∑

j=1

j

(

a + j − 2

p− 2

)

+ (b− 2)

(

a− 2 + b− 1

p− 2

)

for 2 ≤ p ≤ a + b− 1.

The formula now follows from

Fp = Gp ⊕

min(b−2,p−1)
⊕

q=0

Kq ⊗Hp−1−q(−2).

�

Remark 4.8. The formula for βp,p+1(F ) can be a simplified:

βp,p+1(F ) =

(

a− 2

p− 1

)

+

(

b− 2

p− 1

)

+ p

(

a+ b− 1

p + 1

)

− 2

(

a + b− 3

p− 1

)

.

Using this and βp−2,p+1(F ) =
(

a+b−4
p−1

)

we can also obtain a simplified for-

mula for the βp,p+2(F )’s by using the identities

βp,p+1(F )− βp−1,p+1(F ) + βp−2,p+1(F )

= p

(

a+ b− 3

p+ 1

)

− (a + b− 2− p)

(

a+ b− 3

a+ b− 1− p

)

=
a + b− 2− p

p+ 1

(

a+ b− 2

p− 1

)

(a+ b− 2p− 2).

Remark 4.9. Eliminating y0 from the equations of Xe(a, b) ⊂ P
a+b+1 gives

the equations of an Xe(a, b − 1) ⊂ P
a+b, and it follows that the Schreyer
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resolution of Xe(a, b − 1) is a subcomplex of the Schreyer resolution of

Xe(a, b). Indeed the generators derived from

in(fk) range M ′
k

xixj 1 ≤ i ≤ j ≤ a− 1 (x1, . . . , xj−1)
xiyj 2 ≤ i ≤ a− 1, 1 ≤ j ≤ b− 2 (x1, . . . , xa−1, y1, . . . , yj−1)
xayj 1 ≤ j ≤ b− 2 (x2, . . . , xa−1, y1, . . . , yj−1, x

2
1)

yiyj 2 ≤ i ≤ j ≤ b− 2 (x2, . . . , xa−1, y2, . . . , yj−1, x
2
1)

yiyb−1 2 ≤ i ≤ b− 2 (x2, . . . , xa−1, y2, . . . , yb−2, x
2
1)

belong to this subcomplex. For the last equation with lead term in(fn′) =
y2b−1 we get

M ′
n′ = (y2, . . . , yb−2, x

2
1, x1x2, . . . , x

2
a−1, x2y1, . . . , xay1)

which is not a subset of the corresponding Mn. Hence some generators

of the Schreyer resolution for Xe(a, b − 1) are not mapped to generators

Schreyer resolution of Xe(a, b) but rather to linear combinations.

Remark 4.10. The equations of Xe(a, b) allow a Z3-grading. The equations

and the whole resolution is homogenous for deg xi = (1, 0, i) and deg yj =
(0, 1, j). The non-minimal maps in the non-minimal resolution decompose

into blocks with respect to this fine grading.

We can also compute the Betti table for the minimal resolutions of the K3

carpets XF(a, b) over a field F of characteristic 2. Note that, because e1, e2
are elements of F, the degenerate K3 surface XF

(0,1)(a, b) coincides with the

carpet XF(a, b) = XF

(2,1)(a, b).

Theorem 4.11. Let a, b ≥ 2 and let F be an arbitrary field . The minimal

free resolution of the homogeneous coordinate ring of X := Xe(a, b) ⊂
P
a+b+1 for e = (0, 1) has Betti numbers

βi,i+1 = i

(

a + b− 2

i+ 1

)

+ (max(a− i, 0) + max(b− i, 0))

(

a+ b− 2

i− 1

)

for i ≥ 1 and βi,i+2 = βa+b−1−i,a+b−i for 1 ≤ i ≤ a + b − 2. (These Betti

numbers coincide with the Betti numbers of a 4-gonal canonical curve of

genus g = a+ b+1 with relative canonical resolution invariants a− 2 and

b− 2, see [S86, Example (6.2)].

Proof. The 2× 2 minors of the matrix

m =

(

x0 x1 . . . xa−2 y0 y1 . . . yb−2

x2 x3 . . . xa −y2 −y3 . . . −yb

)

are contained in IX . Thus X is contained in a 4-dimensional rational normal

scroll of type

Y = S(⌊a/2⌋, ⌈a/2⌉ − 1, ⌊b/2⌋, ⌈b/2⌉ − 1)
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of degree f = a−1+b−1. As a subscheme of the scroll, X is the complete

intersection of two divisors, whose classes are of class 2H − (a− 2)R and

2H − (b − 2)R, where H,R ∈ PicY denote the hyperplane class and the

ruling of Y . These are defined by the vanishing of

x2
1 − x0x2, x

2
2 − x1x3, . . . , x

2
a−1 − xa−2xa

and

y21 − y0y2, y
2
2 − y1y3, . . . , y

2
b−1 − yb−2yb,

respectively. In terms of the Cox ring F[s, t, u0, u1, v0, v1] of Y they are

given by relative quadrics
{

u2
1 − stu2

0 if a ≡ 0 mod 2

su2
1 − tu2

0 if a ≡ 1 mod 2

and
{

v21 − stv20 if b ≡ 0 mod 2

sv21 − tv20 if b ≡ 1 mod 2
.

Thus by [S86, Example (3.6) and (6.2)] the minimal free resolution of IX is

given by an iterated mapping cone

C0 ← [Ca−2(−2)⊕ Cb−2(−2)← Cf−2(−4)]

where Cj denotes the j-th Buchsbaum-Eisenbud complex associated to m.

(The complexes C0, C1 are also known as Eagon-Northcott complex and

Buchsbaum-Rim complex of m.) �

Part of Theorem 4.11 generalizes as follows:

Theorem 4.12. [Resonance] Suppose p(z) = z2 − e1z + e2 has distinct

non-zero roots t1, t2 ∈ F such that t2/t1 is a primitive k-th root of unity and

a, b ≥ k + 1, and set X := XF

e (a, b).

(1) X is contained in a rational normal scroll of type

Y = S(a0, . . . , ak−1, b0, . . . , bk−1)

with

ai = |{0 ≤ j ≤ a | j ≡ i mod k}| − 1

and

bi = |{0 ≤ j ≤ b | j ≡ i mod k}| − 1.

(2) The map Y → P
1 induces a fibration of X into 2k-gons.

(3) If a, b ≥ 2k2 then X has graded Betti numbers βℓ,ℓ+1 = 0 for ℓ >
a + b − 1 + 2 − 2k and βℓ,ℓ+2 = 0 for ℓ < 2k − 2. In particular

the range of non-zero Betti numbers coincides with range predicted

by Green’s conjecture for a general 2k-gonal curve of genus g =
a+ b+ 1.
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In characteristic 0, Green’s conjecture is known to hold for general d-

gonal curves of every genus by [A05], and it is known in every character-

istic for some d-gonal curve of genus g if g > (d − 1)(d − 2) by [S88].

However we do not know that the family of curves of genus g and gonal-

ity d is irreducible; and indeed the Hurwitz scheme could be reducible in

positive characteristics, see [F69, Example 10.3].

Proof of Parts (1) and (2). By Theorem 3.2, X is the union of the two scrolls

defined by the minors of the matrices

mℓ =

(

x0 x1 . . . xa−1 | y0 y1 . . . yb−1

x1 x2 . . . xa | tℓy1 tℓy2 . . . tℓyb

)

for ℓ = 1, 2

respectively.

Applying an automorphism of Pa+b−1 we may assume that t1 = 1 and

thus that t = t2 is a k-the root of unity. The minors of the matrix

m =

(

x0 x1 . . . xa−k | y0 y1 . . . yb−k

xk xk+1 . . . xa | yk yk+1 . . . yb

)

lie in the intersection of the ideals of minors of m1 and m2, as one sees from

the formulas

k−1
∑

ℓ=0

tk−ℓ−1

∣

∣

∣

∣

xi+ℓ yj−ℓ−1

xi+ℓ+1 tyj−ℓ

∣

∣

∣

∣

=

∣

∣

∣

∣

xi yj−k

xi+k tkyj

∣

∣

∣

∣

,

which hold for 0 ≤ i ≤ a − k and k ≤ j ≤ b. Thus the scheme X is

contained in a 2k-dimensional scroll of the type claimed (for example

(

x0 xk . . . x(a0−1)k

xk x2k . . . xa0k

)

is a submatrix of m).

Since X = S1∪S2 is the union of two scrolls whose basic sectionsCa and

Cb coincide we find a pencil of 2k-gons (away from the ramification points

at 0 and infinity of the k-power map from P
1 to P

1) as follows by alternating

rulings from S1 and S2. Starting from a general point (1 : s : s2 : . . . : sa :
0 . . . 0) ∈ Ca we have a ruling of the first scroll S1 connecting it to the point

(0 : . . . : 0 : 1 : s : . . . : sb) ∈ Cb. The ruling of the second scroll S2 joins

this point on Cb with the point (1 : ts : . . . : (ts)a : 0 : . . . : 0).
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Ca

Cb

3-resonance

Continuing with a ruling of the first scroll and so on this process closes with

an 2k-gon, since t is a primitive k-th root of unity.

The map Y → P
1 sends a point of Y to the ratio of the two rows of m

evaluated at that point, so the 2k-gon is contained in the fiber defined by

(

sk,−1
)

(

x0 x1 . . . xa−k y0 y1 . . . yb−k

xk xk+1 . . . xa yk yk+1 . . . yb

)

= 0,

Since sk = s̃ has k distinct solutions for s̃ 6= 0, the fiber of the composition

X = S1 ∪ S2 →֒ Y → P
1 over the point (1 : s̃) contains precisely k rulings

of each of the two scrolls Sℓ. Hence the 2k-gon is the complete fiber of

X → P
1.

The last statement follows by resolving the relative resolution of X in the

2k-dimensional scroll Y by an iterated mapping cone built from Buchsbaum-

Eisenbud complexes following the strategy of [S88]. Before we discuss

details, we look at two examples.

Example 4.13. We consider cases of 3-resonance, k = 3, and take X =
X(−1,1)(a, b) ⊂ P

a+b+1
F

, since the polynomial p(z) = z2+z+1 has as zeroes

the primitive third roots of unity. Note that in characteristic 3 the union of

scrolls X(−1,1)(a, b) coincides with the carpet X(a, b) = X2,1(a, b), so in

characteristic 3 there is no 3-resonance, but the considerations of the free

resolution below are the same. By 3.2 the scheme X = X(−1,1) ⊂ P
a+b+1
F

is

defined by the ideal I(−1,1) generated by the 2×2 minors of the two matrices

(

x0 x1 . . . xa−1

x1 x2 . . . xa

) (

y0 y1 . . . yb−1

y1 y2 . . . yb

)

and the entries of the (a− 1)× (b− 1) matrix









x0 x1 x2

x1 x2 x3
...

...
...

xa−2 xa−1 xa













0 0 1
0 −1 0
1 0 0









y0 y1 . . . yb−2

y1 y2 . . . yb−1

y2 y3 . . . yb




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We suppose for concreteness that a, b ≡ 2 mod 3. Then the scheme X
is contained in a scroll Y of type

Y = S(
a− 2

3
,
a− 2

3
,
a− 2

3
,
b− 2

3
,
b− 2

3
,
b− 2

3
).

In terms of the Cox ring (≡ toric coordinate ring)F[s, t, u0, u1, u2, v0, v1, v2]
of Y the remaining equations reduce to an ideal sheaf ICox generated by 9

relative quadrics that are the 2× 2 minors of the matrices
(

u0 u1 su2

u1 u2 tu0

)

and

(

v0 v1 sv2
v1 v2 tv0

)

together with

u2v0 + u1v1 + u0v2, tu0v0 + su2v1 + su1v2, tu1v0 + tu0v1 + su2v2.

The relative resolution constructed in [S86, Section 3] can be regarded as a
complex of free modules over the Cox ring which sheafifies to a resolution
of OX by locally free OY -modules. In our specific case it has the Betti
table

0 1 2 3 4
total: 1 9 16 9 1

0: 1 . . .

1: . 3 . . .

2: . 6 16 6 .

3: . . . 3
4: . . . . 1

where we have given all the variables in the Cox ring degree 1.

We specialise further and take a = b = 8. Then

Y = S(2, 2, 2, 2, 2, 2) ⊂ P
17
F

is a rational normal scroll of degree f = 12 isomorphic to P
1
F
× P

5
F
.

The relative resolution of OX = OXe(8,8) as an OY -module has shape

OX ←OY ← OY (−2H + 3R)6 ⊕OY (−2H + 4R)3 ← OY (−3H + 5R)16 ←

OY (−4H + 6R)3 ⊕OY (−4H + 7R)3 ← OY (−6H + 10R)← 0

Here H and R denote the hyperplane class and the ruling of Y .
Each term in the relative resolution is resolved by a Buchsbaum-Eisenbud

complex Cj associated to the defining matrix m of Y regarded as a map

m : F → G between vector bundles F ∼= O(−1)f and G ∼= O2 on P
a+b+1.

0← OY (jR)← SjG ← Sj−1G ⊗ F ← . . .

. . .← ΛjF ← Λj+2F ⊗ Λ2G∗ ← . . .

. . .← ΛfF ⊗ Λ2G∗ ⊗ (Sf−j−2G)
∗ ← 0

,



EQUATIONS AND SYZYGIES OF K3 CARPETS AND UNIONS OF SCROLLS 27

for 0 ≤ j ≤ f − 2, see [S86] and [E97, Theorem A2.10 and Exercise

A2.22]. Two further facts are important to us:

(1) The complexes Cj remain exact under the global section functor

E 7→ Γ∗(F) = ⊕n∈ZH
0(Pa+b+1, E(n)),

i.e. we obtain projective resolutions of Γ∗(OY (jR)) over the poly-

nomial ring F[x0, . . . , xa, y0, . . . , yb] = Γ∗(OPa+b+1). (This holds

because the complexes Cj have length f − 1 < dimP
a+b+1.)

(2) The complex Cj has j linear maps followed by a quadratic map and

further linear maps.

By (1) we can resolve the relative resolution by the iterated mapping cone
of complex Cj(−d)’s. In our specific example this is the iterated mapping
cone

⊕6C3(−2) ⊕3C7(−4)
C0 ← [ ⊕ ← [ ⊕16C5(−3) ← [ ⊕ ← C10(−6) ] ] ]

⊕3C4(−2) ⊕6C6(−4)

The iterated mapping cone F is not minimal. However, the complex

Cj(−d) for d ≥ 2 does not contribute to the linear strand in a range outside

the contribution of the Eagon-Northcott complex C0, which proves assertion

(3) of Theorem 4.12 in this specific case. Indeed, the additional contribution

of maximal homological degree comes from the complex ⊕3C7(−4)[−3].
It is a contribution to β10,11(F ) = dim(F10 ⊗S F)11 to which also C0 con-

tributes since

10 < length C0 = f − 1 = 11.

The presence of C0 and its dual inside the minimal resolution gives a

lower bound on the Betti numbers, which is realized for example in the case

of X(−1,1)(6, 6) in characteristic 3 computed in Example 4.3, and therefore

in characteristic 0 and all but finitely many other primes. Further compu-

tation shows that the only exceptional primes for X(−1,1)(6, 6) are 2 and

5.

Proof of Theorem 4.12 (3). We continue with the proof of Theorem 4.12

keeping the notation of the first part of the proof.

The Cox ring F[s, t, u0, . . . , uk, v0, . . . , vk] is Z
2-graded with s, t of de-

gree (0, 1) and deg ui = (1,−ai) and deg vi = (1,−bi). The ideal ICox of

X = Xe(a, b) in the Cox ring is obtained by substituting

xj = sai−ℓtℓui if j = ℓk + i with 0 ≤ i < k

and

yj = sbi−ℓsℓvi if j = ℓk + i with 0 ≤ i < k

into the generators of the ideal Ie and saturating with the ideal (s, t).
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We can alter and refine this grading to a Z
3-grading by setting deg s =

deg t = (0, 0, 1), deg ui = (1, 0, a0 − ai) and deg vi = (0, 1, b0 − bi), since

the substituted equations are homogeneous with respect to this grading. The

last component of the degree of each variable of the Cox ring is now 0 or 1.

For the description of the generators of ICox the residues 0 ≤ α, β < k
with α ≡ a, β ≡ b mod k will play a role. Writing j = ℓk + i as above

the j-th column of the matrix MX after substitution becomes
(

xj

xj+1

)

=

(

sai−ℓtℓui

sai+1−ℓtℓui+1

)

or

(

sak−1−ℓtℓuk−1

sa0−ℓ−1tℓ+1u0

)

in case j + 1 ≡ 0 mod k. Thus the minors of the 2× k matrix

A =

(

u0 u1 . . . suα . . . uk−1

u1 u2 . . . uα+1 . . . tu0

)

lie in ICox, where the factor s occurs only once in the first row, more pre-

cisely in front of uα, and the factor t occurs once in the second row in front

of u0. Likewise we get a 2× k matrix B involving the v’s.

A similar pattern arises from the (a − 1) × 3 and 3 × (b − 1) Hankel

matrices entering the definition of the bilinear equations (1) of Xe(a, b).
The Hankel matrix involving the x’s becomes the (k − 1) × 3 matrix A′

which is the transpose of




u0 u1 . . . suα−1 suα . . . uk−2

u1 u2 . . . suα uα+1 . . . uk−1

u2 u3 . . . uα+1 uα+2 . . . tu0





There are all together at most three factors s and one factor t. Similarly we

get a 3 × (k − 1) matrix B′ involving the v’s. The generators of ICox of

degree (1, 1, ∗) are obtained from the entries of the (k−1)× (k−1) matrix

C = A′DB′

with D the 3× 3 anti-diagonal matrix with entries 1,−e1, e2 from (1). The

ideal generated by entries of C might be not saturated with respect to st.
For example, the form

suα+1vβ−1 − e1s
2uαvβ + e2suα−1vβ+1

is divisible by s.

By [S86] there are exactly
(

2k−1
2

)

− 1 relative quadrics. From the cal-

culation above we see
(

k
2

)

relative quadrics of each of types (2, 0, ∗) and

(0, 2, ∗), and (k − 1)2 relative quadrics of type (1, 1, ∗). Since

2

(

k

2

)

+ (k − 1)2 =

(

2k − 1

2

)
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we see that there is one superfluous relative quadric, and since the ones of

type (2, 0, ∗) and (0, 2, ∗) are independent, it is of type (1, 1, ∗). In sum-

mary, the ideal sheaf ICox depends only on the residue classes α, β of a and

b mod k and is generated by

2

(

k

2

)

+ (k − 1)2 − 1 =

(

2k − 1

2

)

− 1

relative quadratics of degrees (2, 0, ∗), (0, 2, ∗), (1, 1, ∗) where ∗ represents

values between 0 and 4.

The ℓ-th free module in our relative resolution Eℓ has generators of de-

gree (d1, d2, d3) with d1+d2 = ℓ+1 for 1 ≤ ℓ ≤ 2k−3. The last module is

cyclic with a generator of degree (k, k, 2k−α− β). Indeed, this is the sum

of the degree of all variables of the Cox ring, which equals the degree of

the generator of its canonical module. By adjunction the relative resolution

has to end with this term, since Xe(a, b) has a trivial canonical bundle. The

resolution is self-dual.

The sequences

dℓ = min{d3|∃ a generator of Eℓ of degree (d1, d2, d3) with d1+d2 = ℓ+1}

and

dℓ = max{d3|∃ a generator of Eℓ of degree (d1, d2, d3) with d1+d2 = ℓ+1}

are weakly increasing, because for each generator of the Cox ring the third

component of its degree is non-negative.

We write Pic(Y ) = ZH ⊕ ZR, where H denotes a hyperplane section

and R a fiber of Y → P
1. In terms of the Pic(Y )-grading a generator of

degree (d1, d2, d3) corresponds to a summand

OY (−(d1 + d2)H + (d1a0 + d2b0 − d3)R).

To establish assertion (3) of Theorem 4.12 we must show that the multi-

degree (d1, d2, d3) of every generator of Eℓ for 1 ≤ ℓ ≤ 2k − 3 satisfies

d1 + d2 − 1 + d1a0 + d2b0 − d3 ≤ deg Y − 1 = f − 1.

Indeed, the left hand side is the length of the contribution of

Cd1a0+d2b0−d3(−d1 − d2)

to the linear part of the iterated mapping cone, while the right hand side is

the length of the C0.

Note that −d3 ≤ −dℓ = −(2k − α − β) + d(2k−2−ℓ) holds by the self-

duality of the relative resolution. Because ωX
∼= OX the last term in the

relative resolution has to be OY (−2kH + (f − 2)R) ∼= ωY so f − 2 =
ka0 + kb0 − (2k − α− β).
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Thus utilizing a0 ≥ b0, we see that the conditions

ℓ− (2k − 1− ℓ)b0 + d2k−2−ℓ ≤ 1

suffice. We use the rough estimate d2k−2−ℓ ≤ 2k, which holds since the

maximal d3 in the relative resolution is 2k − α − β ≤ 2k. The desired

inequality holds for all ℓ with 1 ≤ ℓ ≤ 2k − 3 if

b0 ≥ 2k − 2 = max{
2k + ℓ− 1

2k − 1− ℓ
| ℓ = 1, . . . , 2k − 3}

Since b + 1 = kb0 − (k − 1 − β) ≤ kb0 this follows from our assumption

a ≥ b ≥ 2k2. �

Remark 4.14. A proof of Theorem 4.12 (3) for a, b ≫ k can be deduced

by substantially easier arguments, which do not rely on the description of

ICox but only on the existence of a relative resolution proved in [S86] and

an analysis of how the numerical data change when we re-embed Y by

H ′ = H + jR. Since

• (a, b) will be replaced by (a+ jk, b+ jk) and thus f by f +2jk and

• OY (−dH + cR) = OY (−dH
′ + (c + dj)R)

the conclusion of (3) is obvious for j sufficiently large. Based on experi-

ments we conjecture that the optimal bound is a ≥ b ≥ k2 − k. This is true

for k ≤ 5.

For further information and conjectures about relative resolutions of canon-

ical curves see [BH15],[BH17].

5. CONJECTURES AND COMPUTATIONAL RESULTS

Remark 5.1. It follows from Proposition 4.2 that Green’s Conjecture is true

for the balanced carpet X(a, a) if and only if a certain f(a)× f(a) integer

matrix has a non-zero determinant, where

f(a) = a

(

2a− 1

a+ 1

)

− 2

(

2a− 3

a− 1

)

by Remark 4.8. By Theorem 4.11 we know that βa,a+1(X(a, a)) = a
(

2a−2
a+1

)

over fields of characteristic 2. Hence

2a(
2a−2

a+1 )

is a factor of this determinant. For small a the relevant values are:

a 2 3 4 5 6 7

| det | 1 24 23236 2266315 213123725120 26774310205315

f(a) 0 9 64 350 1728 8085

a
(

2a−2
a+1

)

0 3 24 140 720 3465



EQUATIONS AND SYZYGIES OF K3 CARPETS AND UNIONS OF SCROLLS 31

One step in achieving a proof of Green’s conjecture using K3 carpets might

be to give an explanation of the prime power factorizations of the determi-

nants in the table above.

The data in this table was produced by our Macaulay2 [M2] package

K3Carpets.m2 version 0.5 [ES18]. Here is, how these determinants are ac-

tually computed. The first step is the computation of the Schreyer resolution

of an carpet X(a, a) over F[x0, . . . , xa, y0, . . . , ya] for a large finite prime

field F = Z/(p). In practise we take p = 32003. The second step is to lift

the matrices in the resolution to P = Z[x0, . . . , xa, y0, . . . , ya] by using the

bijection of Z/32003 with the integers in the interval [−16001, 16001]. The

resulting matrices define the Schreyer resolution over P if and only if the

lifted matrices form a complex. After checking this, we use the fine grading

to find the blocks in the crucial constant strand. For the computation of the

determinants of the blocks we use their Smith normal forms. The final step

is the factorisation of the product of all determinants of all blocks.

Remark 5.2. The enormous size ot the determinants in Remark 5.1 must

correspond to a combination of the resonance phenomenon with the excep-

tional behaviour of Green’s conjecture in positive characteristic.

Experimental data of [B17], see also [BS18], suggests that a general

canonical curve of odd genus g = 2a + 1 violates Green’s conjecture in

small characteristic in the following cases:

a g = 2a+ 1 primes βa−1,a+1 = βa,a+1

3 7 2 1

4 9 3 6

5 11 2, 3 28, 10

6 13 2, 5 64, 120

7 15 2, 3, 5 299, 390, 315

For genus g = 7, 9 this is rigorously proven by [S86] and [M95]. For genus

g = 11, 13, 15 we know that the examples found in [B17] violate the full

Green conjecture, however we do not know whether their Betti numbers

coincide with the Betti numbers of the general curve of the given genus in

these characteristics.

Computing a non-minimal resolution of the K3 union of scrolls Xe(a, a)
over the coefficient ring Z[e1, e2] we find the following values of the deter-

minant of the crucial non-minimal part

a ± det
3 2e31e

3
2

4 36e321 e322
5 246310e2201 e2352 (e21 − e2)

5

6 2645120e12481 e14642 (e21 − e2)
72

7 239033905315e63771 e83022 (e21 − e2)
630(e21 − 2e2)

7

https://www.math.uni-sb.de/ag/schreyer/index.php/computeralgebra
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Based on these values we propose two conjectures:

Conjecture 5.3. For e = (e1, e2) ∈ F
2 with e2 6= 0 the union of scrolls

Xe(a, a) has a pure resolution over an field F of characteristic 0 unless the

polynomial p(z) = z2 − e1z + e2 = (z − t1)(z − t2) has roots such that

t2/t1 6= 1 is a k-th root of unity for some k ≤ a+1
2

.

Conjecture 5.4. For general e = (e1, e2) ∈ F
2

the union of scrolls Xe(a, a)
over an algebraically closed field F of characteristic p has a pure resolution

if p ≥ a. In particular, Green’s conjecture holds for the general curve over

a field of characteristic p of genus g if p ≥ g−1
2

.

By the table above and Remark 4.9 both Conjectures hold for g ≤ 15.
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