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DIFFERENCE TONES IN “NON-PYTHAGOREAN” SCALES

BASED ON LOGARITHMS

THOMAS MORRILL

Abstract. In order to explore tonality outside of the “Pythagorean” para-
digm of integer ratios, Robert Schneider introduced a musical scale based on
the logarithm function. We seek to refine Schneider’s scale so that the differ-
ence tones generated by different degrees of the scale are themselves octave
equivalents of notes in the scale. In doing so, we prove that a scale which con-
tains all its difference tones in this way must consist solely of integer ratios.
With this in mind, we present some methods for producing logarithmic scales
which contain many, but not all, of the difference tones they generate.

In 1754, the Italian violinist Giuseppe Tartini described a musical phenomenon
which he called terzi suoni, or third sounds [Jon35, Tar54]. He found that when two
notes were played simultaneously, a third note could be perceived, whose frequency
was the difference of the frequencies of the two played notes. When listening to two
tones of frequencies f1 < f2, more tones may be perceived in addition to Tartini’s
terzi suoni, whose frequencies are other linear combinations of the frequencies being
played [RP99]. Hence, the frequencies mf1 +nf2, are called the combination tones

of frequencies f1 and f2, where n,m ∈ Z.
Perception of combination tones in humans has been qualitatively studied [RP99],

and combination tones have been empirically measured in string instruments [LCC11].
Combination tones are thought to be physically produced by nonlinear resonance
in the recieving auditory system, such as the human eardrum [Sch05, LCC11].

Empirical evidence shows that the combination tones f2 − f1, 2f1 − f2, and
3f1−2f2 are the most commonly perceived, and the amplitude of combination tones
in general varies depending on the frequencies f1 and f2 and their intensities [RP99].
Being the most commonly perceived combination tone, we will focus exclusively on
the first order difference tone f2 − f1.

Since Tartini’s discovery, combination tones have been used to develop novel
musical scales. A particularly deep example is Wilson’s use of sum-diagonals of the
Meru Prastala, perhaps more familiar to the reader as Pascal’s triangle, of which
Wilson documented 192 recurrent sequences [Bur02]. Another example is Bohlen’s
use of the combination tone f1 + f2 in his so-called 833 cents scale [Boh05, S+16].

In 2012, Schneider [Sch12] introduced an infinite scale based over the frequency
f in order to explore tonality which does not seek to approximate integer ratios,
whose frequencies are given by

f ln(3), f ln(4), f ln(5), . . . .(1)

Here and throughout the paper, we use ln(x) to denote the natural logarithm
of x, and logb(x) = ln(x)/ ln(b) to denote the base b logarithm. As a consequence
of our methodology, we refer to (1) as the logarithmic series. As opposed to the
harmonic seres f, 2f, 3f, . . ., the frequencies of the logarithmic series grow closer
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together as one proceeds further up the series. A piece using the logarithmic series
may be heard in the audio example “Cantor.wav”.

Schneider also derived a scale which divides the octave into 12 pitches from the
logarithmic series, given by the frequencies f ln(4), f ln(5), . . ., f ln(16) = 2f log(4).

In private correspondence, Schneider raised the following question: Which scales
contain all of their difference tones up to octave equivalence? We will show that
any such scale must consist solely of integer ratios. Since the motivation of the
logarithmic scale was to explore harmony outside of integer ratios, we offer some
methods for constructing logarithmic scales which contain some, but not all of their
difference frequencies.

The rest of the paper is laid out as follows. In Section 1, we lay out the method-
ology and notation necessary to prove our main theorem in Section 2. In Sections 3
and 4 we offer constructions of frequency series and scales, respectively, which con-
tain many of their difference frequencies. Section 5 describes a chordal technique
for these scales which may be of interest to composers. Audio examples may be
found at https://github.com/tsmorrill/Non-Pythagorean-Examples. Finally,
in Section 6 we give our closing remarks.

1. Methodology

We make some simplifying assumptions on the perception of combination tones.
The first is that combination tones are only generated by the fundamental frequen-
cies of tones, and not their higher partials. We also assume that only the first order
difference tone f2 − f1 is perceived. These assumptions are justified based on the
empirical evidence regarding perception of combination tones [RP99].

With this in mind, a frequency will always be taken to mean a positive real num-
ber measured in Hertz. A frequency series is an increasing sequence of frequencies
f1 < f2 < . . . , which tends to infinity. A scale is a finite increasing set of frequen-
cies S = {f1, f2, . . . , fn}. The latter definition is compatible with the restriction
that a scale consists of frequencies spanning a single octave, but we do not require
this for our work.

Transposing a frequency series or scale is accomplished by replacing the reference
f1 by some other frequency f ′

1, and replacing each fi by a f ′
i satisfying fi : f1 = f ′

i :
f ′
1. This is equivalent to multiplying each of the frequencies fi by the constant
f ′
1/f1.
We will therefore normalize frequency series and scales by dividing all of their

frequencies by f1. This has the effect that all scales and series we present satisfy
f1 = 1. When these frequencies are defined by logarithms, this also has the effect
of changing the base of the logarithm. For example, the scale S = {ln(4), ln(5)}
normalizes to {1, log4(5)}. Note that the normalization preserves ratios between
frequencies, here

ln(5)

ln(4)
=

log4(5)

1
.

From this point, normalized frequencies will be represented by a closed form
expression of fi/f1, a decimal approximation of fi/f1, and the interval fi : f1
measured in cents. All decimal expansions will be rounded to the third place. For
example, here is the normalization of Schneider’s octave-dividing scale.

https://github.com/tsmorrill/Non-Pythagorean-Examples
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Closed Form Decimal Cents
1 1 0

log4(5) 1.161 258.388
log4(6) 1.292 444.172
log4(7) 1.404 587.054
3/2 1.500 701.955

log4(9) 1.585 797.338
log4(10) 1.661 878.425
log4(11) 1.730 948.642
log4(12) 1.792 1010.35
log4(13) 1.850 1065.236
log4(14) 1.904 1114.547
log4(15) 1.953 1159.225

2 2 1200

This may be heard in the audio example “Schneider Scale.wav”.

2. Complete Difference Tone Scales

In addition to the terminology of the previous section, we will call a scale S a
complete difference tone scale if for every pair x, y ∈ S with x > y, there exists a
z ∈ S and an integer t such that

x− y = 2tz.

We now prove our main result.

Theorem 2.1. A complete difference tone scale consists solely of rational intervals.

More precisely, any complete difference scale S must be contained in the set
fQ = {fr|r ∈ Q} for some frequency f . Thus, any ratio of frequencies in the scale
is a rational number.

Proof of Theorem 2.1. Suppose that S = {f1, f2, . . . , fn} is a complete difference
tone scale. Then for each index i < n, there is an index j with 1 ≤ j ≤ n and
an integer ti so that fn − fi = 2tifj . We use these relations to define a function
h so that h(i) = j. As this would be undefined for i = n, we additionally define
h(n) = n.

We call i a periodic point under h if h(h(· · · (h(s))) = hs(i) = i for some s ≥ 1.
First, we claim that periodic points under h are the indices of rational multiples
of fn. This is trivial for the periodic point i = n. For periodic points i 6= n, we
may write

fn − fi1 = 2ti1 fi2

fn − fi2 = 2ti2 fi3

...

fn − fis−1
= 2tis fi1 ,

which implies

fn − fi1 = 2ti1 (fn − 2ti2 (fn − 2ti3 (fn − · · · 2tis fi1))).
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By rearranging, we have αfi1 = βfn, where α and β are rational numbers.
We call i a preperiodic point under h if hs(i) is a periodic point under h for some

s ≥ 1. We claim that preperiodic points under h are also the indices of rational
multiples of fn. We have

fn − fi1 = 2ti1fi2

fn − fi2 = 2ti2fi3

...

fn − fis1 = 2tis fis = 2tisαfn,

where α is some rational number. This implies that

fn − fi1 = 2ti1 (fn − 2ti2 (fn − 2ti3 (fn − · · · 2tisαfn))).

By rearranging, we find that fi1 is a rational multiple of fn.
Finally, note that each i is either periodic or preperiodic under h. Thus, every

fi ∈ S is a rational multiple of fn, which is to say, S consists solely of rational
intervals. �

We pause to reflect on the consequences of Theorem 2.1. Consider its converse:

Corollary 2.2. A scale which contains an irrational interval is not a complete

difference tone scale.

Thus, while it is possible to construct a complete difference tone scale from
the logarithmic series, the normalization of such a scale would reduce to rational
freqeuncies. Consider the scale S = {ln(16), ln(32), ln(64)}. The first order
differences of this scale are

ln(64)− ln(32) = ln(2) =
1

4
ln(16)

ln(64)− ln(16) = ln(4) =
1

2
ln(16)

ln(32)− ln(16) = ln(2) =
1

4
ln(16).

We observe that S is a complete difference tone scale. However, S contains no irra-
tional intervals, which may be seen from its normalization, S′ = {1, 5/4, 3/2}. In
keeping with Schneider’s stated goal of exploring harmony outside of integer ratios,
we will now construct logarithmic series and scales which feature irrational intervals
and contain some of their difference frequencies. However, as a consequence of
Corollary 2.2, these scales cannot contain all of their difference frequencies.

3. Construction of Logarithmic Frequency Series

Consider the difference frequencies generated by a frequency series. For example,
it’s easy to check that the harmonic series f, 2f, 3f, . . . , contains all of its difference
frequencies: Any two frequencies mf < nf have a difference frequency of (n−m)f ,
which also occurs in this series. However, this is not true of Schneider’s logarithmic
series f log(3), f log(4), f log(5) . . . , as the first two frequencies have a difference of
f log(4/3). In general, the difference frequency f log(m/n) occurs in the logarithmic
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series if and only if n/m reduces to an integer. How then can we restrict the
logarithmic series such that m/n will always reduce to an integer?

One option is to take logarithms of the factorial function [Inc19], which gives
what we call the logarithmic factorial series.

Closed Form Decimal Cents
1 1 0

log2(6) 2.585 1644.172
log2(24) 4.585 2636.292
log2(120) 6.907 3345.644
log2(720) 9.492 3896.028
log2(5040) 12.299 4344.592
log2(40320) 15.299 4722.462

...
...

...

The differences of this series are of the form f log(n!/m!) = f log((m + 1)(m +
2) · · ·n), which falls in the logarithmic series.

Another method is to take logarithms of the primorial numbers, where each
entry nk is the product of the first k prime numbers p1, p2, . . . pk. Suppose that x
is a real number and pk is the largest prime no greater than x. Then we have

ln(nk) = ln
(

p1p2 · · · pk
)

=
∑

pi≤x

ln(pi).

which is the definition of the Chebyshev theta function, ϑ(x). Hence, we call the
corresponding frequency series the Chebyshev series.

Closed Form Decimal Cents
1 1 0

log2(6) 2.585 1644.172
log2(30) 4.907 2753.771
log2(210) 7.714 3537.03
log2(2310) 11.174 4178.439
log2(30030) 14.874 4673.679
log2(510510) 18.962 5094.009
log2(9699690) 23.210 5443.973

...
...

...

Similarly to the logarithmic factorial series, the difference frequencies of this series
are of the form f ln(pipi+1 · · · pj), which falls in the logarithmic series. However,
the difference frequencies of both these subseries fall in the full logarithmic series,
not in the subseries themselves.
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We could instead choose a sequence of integers d1, d2, . . . , dk and specify that
the sequence of difference frequencies is periodic:

f2 − f1 = ln d1

f3 − f2 = ln d2

...

fk−1 − fk = ln dk

fk − fk+1 = ln d1

fk+2 − fk+1 = ln d2

...

This correseponds to the frequency series

ln(d1), ln(d1d2) . . . , ln(d1d2 · · · dk), ln(d
2
1d2 · · · dk), ln(d

2
1d

2
2 · · · dk), . . . .

This series contains all of its difference frequencies, with the exception of ln(d2),
ln(d3), . . . , ln(dk). Appending the missing frequencies ln(di) may introduce addi-
tional difference frequencies depending on their divisibility properties. For example,
with k = 2 and d1 = 3, d2 = 5, we have

Closed Form Decimal Cents
1 1 0

log3(5) 1.465 661.050
log3(15) 2.465 1561.887
log3(45) 3.465 2151.413
log3(225) 4.930 2761.887
log3(675) 5.930 3081.623
log3(3375) 7.395 3463.842
log3(16875) 8.860 3776.747

...
...

...

4. Construction of Logarithmic Scales

Here we seek to produce logarithmic scales which contain many, but not all, of
their difference tones. Occasionally, these methods will produce a rational interval.
This was also true for Schneider’s original scale: note the perfect fifth between
f log(4) and f log(8). Thus, we do not consider the occasional rational interval a
flaw of our method, so long as we also produce irrational intervals. Throughout
this section we take f to be an arbitrary reference frequency.

We start with two families of scales which divide the octave. For the first family,

choose integers n and m so that for some positive integer k, n2
k

is approximately
equal to m. Then the root approximation scale is given by

{f log(m), f log(nm), f log(n2m), . . . , f log(n2
k−1

m), f log(n2
2k

), f log(m2)}.

In this scale, many of the difference frequencies take the form 2sf log(n), which is

an octave equivalent of f log(n2
k

). For example, if we approximate 17 by 24, then
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corresponding scale is given by

Closed Form Decimal Cents
1 1 0

log17(34) 1.245 378.889
log17(68) 1.489 689.563
log17(136) 1.734 952.876
log17(256) 1.957 1162.553

2 2 1200

This may be heard in the audio example “Root Approximation Scale.wav”. Note

that if n2
k

= m, then the scale reduces to

{f log(n2
k

), f log(n2
k
+1), f log(n2

k
+2), . . . , f log(n2

2k−1

), f log(n2
2k

)},

As in Section 2, we see that this scale consists exclusively of rational intervals,
which runs counter to our goal.

For the second family, we choose a composite integer N with the prime factor-
ization pa1

1 pa2

2 · · · pat

t , whose positive divisors we list as

1 = n1 < n2 < . . . < nk = N.

The factorization scale is given by

{f ln(1×N), f ln(n2N), . . . , f ln(nk−1N), f ln(N2)} ∪ {f ln(p2
bi

i )|1 ≤ i ≤ t},

where bi = ⌈log2(logpi
(N))⌉. For example, letting N = 108 = 2233 produces the

scale

Closed Form Decimal Cents
1 1 0

log108(216) 1.148 239.009
log108(256) 1.184 292.882
log108(324) 1.235 364.908
log108(432) 1.296 448.988
log108(648) 1.383 560.961
log108(972) 1.469 666.130
log108(1296) 1.531 737.054
log108(1944) 1.617 832.326
log108(2916) 1.704 922.627
log108(3888) 1.765 983.956
log108(5832) 1.852 1066.863
log108(6561) 1.877 1090.220

2 2 1200

This may be heard in the audio example “Factorization Scale.wav”. Here, the
difference frequencies take the form f ln(pb11 pb22 · · · pbtt ), where −ai ≤ bi ≤ ai. If

m = pb11 pb22 · · · pbtt reduces to an integer and satisfies m = a2
t

j for some j and t, then
the difference tone ln(m) occurs in the scale, up to octave equivalence. However,
if m does not reduce to an integer, then ln(m) will not appear in the logarithmic
series, let alone the factorization scale.

This raises the question, can we develop scales whose difference frequencies are
the logarithms of rational numbers, rather than integers? We close with a such
a family, whose scales do not contain redundant intervals, and do not span one
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octave. Non-octave scales are not unheard of in musical practice. For example,
none of Carlos’s α, β, and γ scales contain the octave [Car].

Choose bases b1, b2, . . . , bk and heights hb1 , hb2 , . . . , hbk . Let T be the set of
rational numbers of the form t = ba1

1 ba1

1 · · · bak

k , where we require |ai| ≤ hi,
gcd(a1, a2, . . . , ak) = 1, and t > 1. The projective scale is then given by S =
{f log(t)|t ∈ T }. For example, choosing bases 2, 3 and heights h2 = 2, h3 = 1
produces the set T = {4/3, 3/2, 2, 3, 6, 12}, and the projective scale is given by

Closed Form Decimal Cents
1 1 0

log4/3(3/2) 1.409 594.123

log4/3(2) 2.409 1522.424

log4/3(3) 3.819 2319.762

log4/3(6) 6.228 3166.596

log4/3(12) 8.638 3732.773

This may be heard in the audio example “Projective Scale.wav”. In this example,
the difference frequencies take the form log4/3(2

i3j), which are octave equivalents
of frequencies in the scale with the exception of

log4/3(3/2)− log4/3(4/3) = log4/3(9/8)

log4/3(6)− log4/3(4/3) = log4/3(9/2).

5. Logarithmic Composition

It is natural to ask what benefit these scales offer to a composer. Certainly
the main appeal is a systematic method to incorporate difference frequencies while
excluding rational intervals from composition. Controlling when rational and
irrational intervals occur may be achieved using the factorization of integers into
primes. Let A be a positive integer with the unique prime factorization

A =
k
∏

i=1

pai

i .

Because of the property

ln(A) =

k
∑

i=1

ai log(pi),

each positive integer corresponds to a unique pitch set in the logarithmic series,

CA = {a1 log(p1), a2 log(p2), . . . , ak log(pk)}.

So long as A has at least three distinct prime divisors, playing the frequencies
of CA simultaneously will produce a chord of the logarithmic series. Under this
assumption, we call CA the factored chord corresponding to A. Two factored chords
CA1

and CA2
relate to each other harmonically depending on which primes occur

in both the factorizations of A1 and A2. A short piece using factored chords may
be heard in the audio example “Factored Chords.wav”. For example, the factored
chords C2016 and C4752 are given by

C2016 = {5 ln(2), 2 ln(3), ln(7)}

C4752 = {4 ln(2), 3 ln(3), ln(11)}.
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Transitioning between C2016 and C4752 involves two rational intervals:

5 ln(2) 7→ 4 ln(2), down a major third

2 ln(3) 7→ 3 ln(3), up a major fifth

and one irrational interval:

ln(7) 7→ ln(11).

This reflects the fact that 2016 and 4752 are both divisible by 2 and by 3. Record-
ings demonstrating this technique, as well as recordings of each of the constructions
in Section 4 are available online at https://github.com/tsmorrill/Non-Pythagorean-Examples.

6. Conclusion

Our main result is that complete difference tone scales consist solely of rational
intervals. Hence, a scale constructed using logarithms with the intention to feature
irrational intervals cannot be a complete difference tone scale. With this in mind, we
have given three refinements of Schneider’s logarithmic series, and several families
of scales, parameterized by one or more positive integers, which aim to contain
some of their difference frequencies, but not all.

Owing to our methodology, these scales do not account for combination tones
generated between higher partials of notes, or combination tones besides the first
order difference f2 − f1. In his experimental pieces, Schneider primarily uses sine
waves, which do not have any partials above the fundamental frequency [Sch12].
We think it would be interesting to use non-harmonic tones with these logarithmic
scales, whose partials fall in the logarithmic series, or one of the refinements given
in Section 3.
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