
ar
X

iv
:1

80
4.

08
07

2v
1 

 [
m

at
h.

N
A

] 
 2

2 
A

pr
 2

01
8 Modified Augmented Lagrangian Method for the

minimization of functions with quadratic penalty

terms

Martin Neuenhofen

November 8, 2018

Abstract

The Augmented Lagrangian Method (ALM) is an iterative method for
the solution of equality-constrained non-linear programming problems. In
contrast to the quadratic penalty method, the ALM can satisfy equality
constraints in an exact way. Further, ALM is claimed to converge in less
iterations, indicating that it is superior in approach to a quadratic penalty
method.

It is referred to as an advantage that the ALM solves equality con-
straints in an exact way, meaning that the penalty parameter does not
need to go to infinity in order to yield accurate feasibility for the con-
straints. However, we sometimes actually want to minimize an uncon-
strained problem that has large quadratic penalty terms. In these situa-
tions it is unclear how the ALM could be utilized in the correct way. This
paper presents the answer: We derive a modified version of the ALM that
is also suitable for solving functions with large quadratic penalty terms.

1 Introduction

We consider numerical methods for the minimization of three types of optimiza-
tion problems. These problems are stated below.

Merit problem We consider the unconstrained minimization of a function
with quadratic penalty terms:

min
x∈Rn

Φ(x) := f(x) +
1

2 · ω
· ‖c(x)‖2

2 , (1)

where m, n ∈ N, a very small number ω ∈ R
+ \ {0}, f : R

n → R and c : R
n →

R
m are given. Notice that the statement of this problem makes sense regardless

whether m ≤ n or m > n . This is an unconstrained optimization problem.
Under suitable assumptions on Φ one can show well-posedness.

1

http://arxiv.org/abs/1804.08072v1


Penalty problem Though redundant, it helps the presentation to define also
the following optimization problem:

min
x∈Rn

Ψ(x) := f(x) +
1

2 · ω̃
· ‖c(x)‖2

2 (2)

where ω̃ ∈ R
+ \ {0} is a small number. We think of ω̃ as a number that is

small but that is still larger than ω. E.g., it could be ω = 10−10 and ω̃ = 10−2 .
Given a suitable initial guess, penalty problems can be considered solvable with
a conventional Newton-type method whereas merit problems can be considered
intractable because ω is usually so small that their scaling is too bad.

Constrained problem We consider the following constrained problem.

min
x∈Rn

f(x) (3a)

s.t. c(x) = 0 (3b)

If a solution x of c(x) = 0 exists then again under suitable assumptions one
can show well-posedness. Further, in this case solutions of problem (1) converge
to solutions of (3) for decreasing positive values of ω . Since in practice we only
solve optimization problems up to some tolerance tol > 0 for the residual of the
Karush-Kuhn-Tucker (KKT) conditions, we can consider (3) as a sub-class of
problem (1). We do so because when choosing ω ∈ O(tol), a solution of (1) is
also a sufficiently accurate solution of (3), cf. [7].

The Lagrangian of (3) is

L(x, λ) := f(x) − λT · c(x) . (4)

Outline In this paper we consider three local solution methods:

1. The penalty method: It is an iterative method for solving (1) by solving
a sequence of (2) with decreasing values for ω̃. Since from a numerical
perspective (3) is a special case of (1), the penalty method can also be
used to solve (3).

2. The ALM: It is a method for solving (3) by solving a finite sequence of
(2) with a value for ω̃ that remains moderate, e.g. 10−2, throughout the
sequence.

3. A modified ALM: It is a method for solving (1) by solving a finite sequence
of (2) with a value for ω̃ that remains small, e.g. 10−2, throughout the
sequence.

The first and second method are well-known from the literature. The third
approach is a novelty that we propose in this paper. The motivation for using
this method is that it can solve (1) by solving a sequence of (2). But in contrast
to the penalty method it uses moderate values of ω̃, as is the case of the con-
ventional ALM. This is beneficial, as it is claimed that ALM usually converges
in less iterations than the penalty method [6].

2



2 Summary of penalty method and ALM

We review the two methods from the literature. We work out their computa-
tional framework and give pseudo-code that can be used for a practical imple-
mentation.

2.1 Penalty method

The penalty method solves a sequence of (2), where ω̃ iteratively decreases until
it finally reaches ω . The solution of each problem (2) is used as initial guess to
solve the subsequent problem (2) with a decreased value of ω̃ . While decreasing
values of ω̃ make the problem (2) more difficult to solve, the initial guesses ob-
tained from the former solution yield a compensating effect. In particular, the
found minimizers become more and more accurate initial guesses for the subse-
quent penalty problem, altogether resulting in a potentially efficient approach
for solving (1).

The method can be described with the following pseudocode.
1: Given is: f , c, ω > 0, 0 < θω < 1, ω̃1 > ω, x0 ∈ R

n

2: for k = 1, 2, 3, ... do

3: Solve (2) for ω̃ = ω̃k with initial guess xk−1.
4: Write the solution of (2) into the vector xk ∈ R

n .
5: if ω̃k==ω then

6: return xk

7: else

8: Update ω̃k+1 := max{ θω · ω̃k , ω } .
9: end if

10: end for

The Newton iteration within the penalty method In order to solve (2),
typically a Newton-type method is used. In the simplest approach, the Newton
type method needs two things:

• Root function: This is a multivariate function that has as many output as
input dimensions. Its root, computed by Newton’s method, determines a
local minimizer.

• A merit-function: This is a function for which the Newton step (subject to
suitable modifications) is a descent direction. It is needed within the line
search, which in turn is needed for globalization of the Newton method.

Problem (2) has the Karush-Kuhn Tucker (KKT) [5] condition

∇Ψ(x) ≡ ∇f(x) − ∇c(x) ·
(−1

ω̃
· c(x)

)

= 0 .

As discussed in [1], for sake of well-posedness it is advantageous to rather con-
sider the following equivalent set of equations, where λ̃ = −1/ω̃ · c(x) is a

3



substituted auxiliary variable.

F (x, λ̃) :=

(
∇f(x) − ∇c(x) · λ̃

c(x) + ω̃ · λ̃

)

= 0

The Jacobian is

DF (x, λ̃) =

[
∇2

xxL(x, λ̃) −∇c(x)
∇c(x)T ω̃ · I

]

.

A symmetric indefinite system is obtained by multiplying the second column
with −1 . Further, replacing ∇2

xxL(x, λ̃) with a symmetric matrix B ∈ R
n×n

we obtain the symmetric Newton system
[

B ∇c(x)
∇c(x)T −ω̃ · I

]

︸ ︷︷ ︸

=:K

·
(

∆x

−∆λ̃

)

= −
(

∇xL(x, λ̃)
c(x) + ω̃ · λ̃

)

. (5)

We use the short-hands w := (xT, λ̃
T

)T, ∆w := (∆xT, ∆λ̃
T

)T ∈ R
n+m . The

symmetric Newton matrix we call K.
We say that B is chosen suitable when K has n strictly positive and m

strictly negative eigenvalues. For instance, B is suitable when it is positive
definite. This can be achieved in the simplest way by adding a multiple of the
identity to ∇2

xxL(x, λ̃). More sophisticated is the use of a symmetric indefinite
LDL-factorization with a subsequent modification of the diagonal matrix. For
details we refer to [4, Sec. 4.1]. We assume in the following that B is suitable.

Finally, we need the merit function. As shown in [4], ∆w is a descent
direction for the following merit function for arbitrary values of ν ∈ R

+ \ {0} :

M(w) := f(x) +
ω̃

2
· ‖c(x)‖2

2 +
ν

2 · ω̃
· ‖c(x) + ω̃ · λ̃‖2

2 . (6)

For the purpose of an overview and a concrete method, below we state the
solution procedure for (2), inherited in line 2 of the penalty method, below.

1: Given is: f, c, ω̃ > 0, initial guess x, tol > 0 .
2: λ̃ := −1/ω̃ · c(x)
3: while ‖F (w)‖2 > tol do

4: Choose B suitable; e.g. B := ∇2
xxL(x, λ̃)+ξ·I ≻ 0 with ξ ≥ 0 sufficiently

large.
5: Solve the linear system (5).
6: Find α ∈ (0, 1] that satisfies a sufficient descent condition for the merit

function in (6).
7: Update w := w + α · ∆w .
8: end while

2.2 ALM

The ALM solves a sequence of (2), where usually ω̃ remains bounded below by
some moderate number. The actual requirements on the minimum value for ω̃
remain technical and are discussed to in [6] and the references therein.

4



In order for minimizers of (2) to solve (3), the function f in Ψ is replaced by
L(x, λ), where λ ∈ R

m is computed suitable through an outer iteration scheme.
For better reference we introduce an outer iteration index k ∈ N0 that we add
as footnote to λk .

For the k-th outer iteration we write out the particular problem of kind (2)
that is solved within ALM:

min
x∈Rn

Ψk(x) := L(x, λk) +
1

2 · ω̃
· ‖c(x)‖2

2 (7)

In this problem, λk is a fixed given vector from the outer iteration k. ω̃ is
assumed to be sufficiently small so that the problem is bounded.

As we did for the penalty problem solved within the penalty method, from
the solution of (7) we obtain a tuple (x, λ̃) ∈ R

n × R
m, where λ̃ ≈ −1/ω̃ · c(x),

where ≈ accounts for the inaccuracy in terms of the tolerance tol > 0 .
The algorithm of ALM goes as follows.

1: Given is: f , c, 0 < θω̃ < 1, 0 < θλ < 1, ω̃1 > 0, x0 ∈ R
n

2: λ̃0 := −1/ω̃1 · c(x0) , λ0 := 0

3: for k = 1, 2, 3, ... do

4: Solve (7) for ω̃ = ω̃k with initial guess (xk−1, λ̃k−1).
5: Write the solution of (7) into the tuple (xk, λ̃k) ∈ R

n × R
m .

6: if ‖∇xλL(xk, λk)‖2 ≤ tol then

7: return xk

8: else

9: // Update λ and ω̃
10: if ‖c(xk)‖2 ≤ θλ · minj=0,...,k−1{ ‖c(xj)‖2 } then

11: λk+1 := λk + λ̃k , ω̃k+1 := ω̃k/
√

θω

12: λ̃k := 0

13: else

14: λk+1 := λk , ω̃k+1 = θω · ω̃k

15: end if

16: end if

17: end for

This algorithm, apart from constant parameters θω, θλ, e.g. θω = θλ = 0.1 , is
equivalent to the ALM as presented in [6]. The increase of ω̃ in the update in
line 11 is optional.

We describe the steps of the algorithm. We start by solving problem (7).
For moderate but sufficiently small values of ω̃ the solution xk of this problem
will be bounded and yields a small norm for ‖c(xk)‖2 . In line 6 the KKT
conditions are checked. If they are satisfied up to a tolerance tol > 0 then
the problem is considered solved and the solution is returned. Otherwise, λ

and ω̃ are updated. This can happen in either of two ways, of which we first
consider the update in line 11. ALM considers λ̃k as a guess for an update of
the Lagrange multiplicator λ. This can be motivated from similarities of the
KKT conditions for the four problems (6),(2),(3) and (7). The update for λ

in line 11 however requires that λ̃ converges to zero for increasing indices k;
clearly, otherwise λ could never converge. For sufficiently small (but bounded

5



below) values of ω̃ this will eventually happen under mild assumptions, cf. [6]
and references therein. However, during earlier iterations the value of ω̃ may
be too small. Thus there is a conditional statement. If the norm of ‖c(xk)‖2

decreases monotonously then the whole iteration is considered convergent, i.e.
ω̃ is assumed to be sufficiently large. In this case the ALM update is chosen.
Otherwise the iteration resorts to a penalty method (update in line 14), which
converges under milder assumptions – until ‖c(xk)‖2 decreases again.

The reason why λ̃k will eventually converge to zero is due to the values of
λk. In ALM λk is an iteratively improving guess for the solution of the local
Lagrange-dual problem [2]. λk balances the constraints against the objective.
Therefore, eventually for large indices of the outer iteration k the local minimizer
xk of

f(xk) − λT

k · c(xk)

will just satisfy c(xk) = 0. It is identical to a local minimizer of (7), regardless
whether ω̃ is small or large (which is why one can even increase it). Hence,
λ̃k = −1/ω̃ · c(xk) converges to zero.

Newton system and merit function in the ALM As discussed formerly
for the penalty method, in order to solve the penalty problem (7), we typically
use a Newton method. This requires the following two items:

• Root function

• Merit-function

Substituting again λ̃ = −ω̃·c(x), the KKT conditions of (7) can be expressed
equivalently as

F (x, λ̃) :=

(
∇f(x) − ∇c(x) · (λk + λ̃)

c(x) + ω̃ · λ̃

)

= 0 . (8)

Notice that λk, the given fixed Lagrange multiplier estimate from the outer
iteration k, appears as a constant in the root function. Using again a short-
hand w for the argument of F , a well-posed Newton system for the update
∆w = (∆xT, ∆λ

T)T is given by
[

B ∇c(x)
∇c(x)T −ω̃ · I

]

︸ ︷︷ ︸

=:K

·
(

∆x

−∆λ̃

)

= −
(

∇xL(x, λk + λ̃)
c(x) + ω̃ · λ̃

)

,

where this time B must be a suitable approximation of ∇2
xxL(x, λk +λ̃) . Again,

with suitable we mean that K must have n positive and m negative eigenvalues.
The step ∆w is a descent direction for the merit function

Mk(w) = f(x) − λT

k · c(x) +
1

2 · ω̃
· ‖c(x)‖2

2 +
ν

2 · ω̃
· ‖c(x) + ω̃ · λ̃‖2

2

6



for a fixed arbitrary ν > 0 [4, Sec. 3.1]. The algorithm for the Newton iteration
within the ALM is then analogous to the formerly discussed Newton iteration
within the penalty method: Given w, we first solve the Newton system for
∆w and then perform a line search on Mk. We repeat these two steps until
‖F (w)‖2 ≤ tol is satisfied for F from (8).

3 Modified Augmented Lagrangian Method for

the penalty problem

Motivation Both the penalty method and the ALM can be used to solve the
constrained problem (3). In reaching for this purpose, the ALM is claimed to
be more efficient than the penalty method [6]. This is for several arguments:

• In the penalty method the parameter ω̃ must be chosen very small whereas
in the ALM it often remains at a moderate size.

• A very small value of ω̃ can result in numerical problems when solving the
Newton system. Thus, penalty methods are considered less numerically
robust than ALM.

• A very small value of ω̃ can also result in steep valleys in the surface of the
merit function. Especially for non-linear functions c this valley is curved,
like the Rosenbrock ”banana” function. This leads to the problem that
the line search will make slower progress in the penalty method.

On the other hand, the penalty method can solve the more general problem
(1). We would like to adapt ALM such that it can be used for solving this
problem, too. To this end we derive a modified ALM that is suitable for solving
both problems (1) and (3).

Our modified ALM works with a method parameter ω ∈ R
+ ∩ {0}. It is a

true generalization of the conventional ALM as presented above. This is meant
in the following sense: For ω > 0 the modified ALM solves the problem (1). If
ω = 0 then the modified ALM becomes equivalent to the conventional ALM and
solves (3). Further, the modification is only a small change that can be easily
incorporated into existing implementations of ALM.

3.1 Derivation of modified ALM

To derive the modified ALM, we proceed in two steps:

1. We write the conventional ALM as a template.

2. We then fit the merit problem into this template and simplify the resulting
expressions.

7



The template of ALM The ALM can be applied to programming problems
that can be expressed as the constrained problem

min
y∈RN

f̃(y) (9a)

s.t. c̃(y) = 0 . (9b)

Then the root-function of ALM is

F (y, λ̃) :=

(
∇yf̃(y) − ∇yc̃(y) · (λk + λ̃)

c̃(y) + ω̃ · λ̃

)

= 0 .

We use the iterate w := (yT, λ̃
T

)T. The merit function is

Mk(w) = f̃(y) − λT

k · c̃(y) +
1

2 · ω̃
· ‖c̃(y)‖2

2 +
ν

2 · ω̃
· ‖c̃(y) + ω̃ · λ̃‖2

2

for w := (y, λ̃). And the update formulas, as in the ALM algorithm lines 11
and 14, are:

λk+1 := λk + λ̃k , ω̃k+1 := ω̃k/
√

θω if ‖c̃(yk)‖2 ≤ θλ · min
0≤j<k

{ ‖c̃(yj)‖2 }

λk+1 := λk , ω̃k+1 := θω · ω̃k otherwise

Expressing Merit-Problem as Constrained Problem We can express (1)
equivalently as a constrained problem by using auxiliary variables ξ = 1/ω ·c(x):

min
x∈Rn,ξ∈Rm

f(x) +
ω

2
· ‖ξ‖2

2 (10a)

s.t. c(x) + ω · ξ = 0 (10b)

This poblem in turn fits into the template (9) by using the following definitions:

y := (xT, ξT)T ∈ R
N , N := n + m

f̃(y) := f(x) +
ω

2
· ‖ξ‖2

2

c̃(y) := c(x) + ω · ξ

From the template we obtain the root function

F (x, ξ, λ̃) :=





(
∇f(x)
ω · ξ

)

−
(

∇c(x)
ω · I

)

· (λk + λ̃)

c(x) + ω · ξ + ω̃ · λ̃



 = 0 (11)

and the merit function

Mk(x, ξ, λ̃) =f(x) +
ω

2
· ‖ξ‖2

2 − λT

k ·
(

c(x) + ω · ξ
)

+
1

2 · ω̃
· ‖c(x) + ω · ξ‖2

2 +
ν

2 · ω̃
· ‖c(x) + ω · ξ + ω̃ · λ̃‖2

2 . (12)

8



Elimination of ξ We propose to eliminate ξ. From the second row in F in
(11) we find ξ = λk + λ̃. Inserting this for (11), we arrive at

F (x, λ̃) :=

(
∇f(x) − ∇c(x) · (λk + λ̃)
c(x) + ω · λk + (ω + ω̃) · λ̃

)

= 0 . (13)

The modified symmetric Newton system is then
[

B ∇c(x)
∇c(x)T −(ω + ω̃) · I

]

︸ ︷︷ ︸

=:K

·
(

∆x

−∆λ̃

)

= −
(

∇xL(x, λk + λ̃)
c(x) + ω · λk + (ω + ω̃) · λ̃

)

, (14)

where B is a suitable approximation of ∇2
xxL(x, λk + λ̃) , i.e. so that K has n

positive and m negative eigenvalues.
We also insert the elimination of ξ into the merit function (12):

Mk(x, λ̃) =f(x) +
ω

2
· ‖λk + λ̃‖2

2 − λT

k ·
(

c(x) + ω · λk + ω · λ̃
)

1
2 · ω̃

· ‖c(x) + ω · λk + ω · λ̃‖2
2

+
ν

2 · ω̃
· ‖c(x) + ω · λk + (ω + ω̃) · λ̃‖2

2

We can use the following identity:

ω

2
· ‖λk + λ̃‖2

2 − λT ·
(

c(x) + ω · λ
︸︷︷︸

constant

+ω · λ̃
)

=
ω

2
· ‖λ̃‖2 + ω · λT

k · λ̃ − λT

k · c(x) − ω · λT

k · λ̃ + const

=
ω

2
· ‖λ̃‖2

2 − λT

k · c(x) + const

Using the identity, the merit function can be simplified to

Mk(x, λ̃) :=f(x) +
ω

2
· ‖λ̃‖2

2 − λ
T

k · c(x) +
1

2 · ω̃
· ‖c(x) + ω · λk + ω · λ̃‖2

2

+
ν

2 · ω̃
· ‖c(x) + ω · λk + (ω + ω̃) · λ̃‖2

2 . (15)

We observe the desirable property that ω > 0 forces boundedness for λ̃.

Convergence of the modified ALM The modified ALM inherits all con-
vergence properties of ALM. This is because the modified ALM is algebraically
equivalent to applying the ALM to problem (10).

Modified ALM can be considered a true generalization of ALM because
modified ALM solves (13) where λk is chosen such that in the limit λ̃ = 0.
ALM on the other hand solves (8) where λk is chosen such that in the limit
λ̃ = 0. For ω = 0 the modified ALM becomes equivalent to ALM. For ω > 0 it
can also solve the problem (1), which as formerly discussed is a generalization
of (3).

9



3.2 Algorithm of modified ALM

In summary we state the algorithm of our proposed modified ALM:

1: Given is: f , c, ω > 0, 0 < θω < 1, 0 < θλ < 1, ω̃1 > ω, x0 ∈ R
n

2: λ̃0 := −1/ω̃1 · c(x0) , λ0 := 0

3: for k = 1, 2, 3, ... do

4: Solve (13) for ω̃ = ω̃k with initial guess (xk−1, λ̃k−1), using the Newton
iteration defined by system (14) and merit (15).

5: Write the solution of (13) into the tuple (xk, λ̃k) ∈ R
n × R

m .
6: if max{ ω + ω̃k , ‖∇c(xk)‖2 } · ‖λ̃‖2 ≤ tol then

7: return xk

8: else

9: // Update λ and ω̃
10: if ‖c(xk)+ω ·λk +ω ·λ̃k‖2 ≤ θλ ·min0≤j<k{ ‖c(xj)+ω ·λj +ω ·λ̃j‖2 }

then

11: λk+1 := λk + λ̃k , ω̃k+1 := ω̃k/
√

θω

12: λ̃k := 0

13: else

14: λk+1 := λk , ω̃k+1 = θω · ω̃k

15: end if

16: end if

17: end for

The steps of the algorithm are clear since it is – with the only exception in line
4 – fully identical to the algorithm of ALM discussed in Section 2.2.

We briefly discuss the termination condition in line 6. We find that (13)
coincides with the KKT condition of (2) for ω > 0 and with the KKT conditions
of (3) when ω = 0. The only differences appear in terms of λ̃. Thus, when λ̃ has
converged to zero, which it does as formerly discussed, then the KKT system
for the respective value of ω is solved up to the residual tolerance tol > 0.

4 Outlook: Sophisticated iterations for the

penalty program

We discussed three methods: Penalty method, ALM, and modified ALM. All
these methods employ a Newton iteration to solve penalty problems of some
form

min
y∈Rp

g(y) +
1

2 · ω̃
· ‖d(y)‖2

2 . (16)

The exact functions for g, d and the exact iterates for y are method-dependent
and shall not be further specified for the purpose of this section.

For sake of simplicity, in the former sections we always used a line-seearch
Newton method for solving the penalty program. However, practical methods
may use enhanced iterations for solving the penalty problem. These sophistica-

10



tions are: An adaptive choice of the penalty parameter ω̃; the use of second-order
corrections within the line search.

Adaptive choice of the penalty parameter The value of ω̃ must be just of
the right order of magnitude in order to achieve the following two antagonistic
goals:

• ω̃ must be sufficiently large so that (16) is well-scaled, in order to admit
large steps within the Newton iteration.

• ω̃ must be sufficiently small to yield boundedness of (16), otherwise a local
minimizer may not exist.

In order for the outer iteration k to converge, there is usually an upper bound
for ω̃. Let us call this bound ω̂k. Choosing ω̃ := ω̂k may not be sufficient to
guarantee boundedness of (16). Thus, it is of benefit for a practical implemen-
tation that ω̃ can be decreased within the inner iteration. Also, when ω̃ < ω̂k

and the line search makes slow progress, we may think of increasing ω̃ by using a
suitable adaptive scheme, e.g., as presented in [1]. While it is of interest for our
paper that we pointed out there is freedom in adapting ω̃, a further discussion
of how this adaption is performed is beyond the scope of this paper.

Second-order corrections within the line search Second-order correc-
tions (SOC) are often motivated as a way for avoiding the Maratos effect [5].
Throughout this paper we did only consider unconstrained minimization tech-
niques [3] that do not suffer from the Maratos effect by construction. However,
it is acknowledged that in practice the line search benefits from second-order
corrections [5].

We spend care that the SOC is formulated in a correct way with respect
to our problem. Usually, consistency is achieved by the fact that the Newton
iteration drives c(x) = 0. But in our case this equation will never be satis-
fied, making it sophisticated to construct a consistent SOC. Below we give a
consistent SOC for the modified ALM.

For the modified ALM we applied a quadratic penalty to the constraint

c̃(y) ≡ c(x) + ω · (λk + λ̃) = 0 .

This equation has a solution but the penalty method will not converge to it.
Instead, as we find from (13), the iteration will eventually solve

c(x) + ω · λk + (ω + ω̃k) · λ̃ = 0 . (17)

Therefore, at given a trial point w(α) := (x+α ·∆x, λ̃+α ·∆λ̃), it makes sense
to consider its second-order corrected trial point

w(α)SOC := w(α) + (∆xSOC, ∆λ̃
SOC

) ,

11



that we construct from the solution of the following linear system:

[
S ∇c(x)

∇c(x)T −(ω + ω̃) · I

]

·
(

∆xSOC

−∆λ̃
SOC

)

= −
(

0

c
(
x(α)

)
+ ω · λk + (ω + ω̃) · λ̃(α)

)

In [8] the authors propose to use multiple SOC steps. That is, a point wSOC is
considered as trial point w(α), and is again incremented with a correction step
following the above construction.

The matrix S ∈ R
n×n must be symmetric positive definite and should repre-

sent the problem’s scaling. The matrix determines the induced S-norm in which
∆xSOC is minimized subject to solving a linearization of (17).

5 Conclusions

The modified ALM is an iterative method that can solve programming prob-
lems with equality constraints and problems with large quadratic penalty terms.
The modified ALM is a generalization of the ALM and inherits all convergence
properties of the ALM. Like the ALM, the modified ALM solves a sequence
of subproblems whose penalty-parameters remain of moderate size under the
same suitable conditions as for the ALM. This is advantageous for the numeri-
cal solution of the Newton system and for achieving large step sizes in the line
search.

Future work is related to incorporating this method into SQP methods and
Interior-Point methods for the general non-linear programming problem.

References

[1] Paul Armand, Joël Benoist, Riadh Omheni, and Vincent Pateloup. Study
of a primal-dual algorithm for equality constrained minimization. Comput.

Optim. Appl., 59(3):405–433, December 2014.

[2] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[3] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential un-

constrained minimization techniques. John Wiley & Sons.

[4] Anders Forsgren and Philip E. Gill. Primal-dual interior methods for noncon-
vex nonlinear programming. SIAM Journal on Optimization, 8(4):1132–21,
11 1998. Copyright - Copyright] Âľ 1998 Society for Industrial and Applied
Mathematics; Last updated - 2012-07-02.

[5] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
New York, NY, USA, second edition, 2006.

[6] M. Saunders. https://web.stanford.edu/class/msande318/notes/notes09-
bcl.pdf.

12



[7] Robert J. Vanderbei. Loqo:an interior point code for quadratic program-
ming. Optimization Methods and Software, 11(1-4):451–484, 1999.

[8] Andreas Wächter and Lorenz T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, Mar 2006.

13


	1 Introduction
	2 Summary of penalty method and ALM
	2.1 Penalty method
	2.2 ALM

	3 Modified Augmented Lagrangian Method for the penalty problem
	3.1 Derivation of modified ALM
	3.2 Algorithm of modified ALM

	4 Outlook: Sophisticated iterations for the penalty program
	5 Conclusions

