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Abstract

We consider the following Choquard equation

−∆u =

(∫

Ω

|u(y)|2
∗

µ

|x− y|µ
dy

)
|u|2

∗

µ
−2u, in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗µ = (2N − µ)/(N − 2). This

paper is concerned with the existence of a positive high-energy solution of the above

problem in an annular-type domain when the inner hole is sufficiently small.
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1 Introduction

In this paper, we study the existence of a positive solution of the Choquard equation. More

precisely, we consider the problem

(P ) −∆u =

(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN (N ≥ 3), 2∗µ = 2N−µ
N−2 , 0 < µ < N .
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The work on elliptic equations involving critical Sobolev exponent over non-contractible

domains was initiated by J.-M. Coron in 1983. Indeed, Coron [8] proved the existence of a

positive solution of the following critical elliptic problem

(Q) −∆u = u
N+2
N−2 , u > 0 in Ω, u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN and satisfies the following conditions: there

exist constants 0 < R1 < R2 <∞ such that

{x ∈ RN ; R1 < |x| < R2} ⊂ Ω, {x ∈ RN ; |x| < R1} * Ω. (1.1)

Later on, A. Bahri and J.-M. Coron [1] proved that if there exists a positive integer d such

thatHd(Ω,Z2) 6= 0 (whereHd(Ω,Z2) the homology of dimension d of Ω with Z2 coefficients),

then problem (Q) has a positive solution.

V. Benci and G. Cerami [2] considered the equation

−∆u+ λu = up−1, u > 0 in Ω, u = 0 on ∂Ω, (1.2)

where Ω ⊂ RN , N ≥ 3 is a smooth bounded domain and 2 < p < 2∗, λ ∈ R+ ∪ {0}. With

the help of Ljusternik-Schnirelmann theory, Benci and Cerami showed that there exists a

function λ : (2, 2∗) → R+∪{0} such that for all λ ≥ λ(p), problem (1.2) has at least cat (Ω)

distinct solutions. We cite [3, 4, 5, 9, 22, 25, 30, 33] and the references therein for the work

on the existence of solutions over a non-contractible domain.

We recall that the Choquard equation (1.3) was first introduced in the pioneering work of

H. Fröhlich [11] and S. Pekar [27] for the modeling of quantum polaron:

−∆u+ u =

(
1

|x|
∗ |u|2

)
u in R3. (1.3)

As pointed out by Fröhlich [11] and Pekar, this model corresponds to the study of free

electrons in an ionic lattice interact with phonons associated to deformations of the lattice

or with the polarisation that it creates on the medium (interaction of an electron with

its own hole). In the approximation to Hartree-Fock theory of one component plasma,

Choquard used equation (1.3) to describe an electron trapped in its own hole,

The Choquard equation is also known as the Schrödinger-Newton equation in models cou-

pling the Schrödinger equation of quantum physics together with nonrelativistic Newtonian

gravity. The equation can also be derived from the Einstein-Klein-Gordon and Einstein-

Dirac system. Such a model was proposed for boson stars and for the collapse of galaxy

fluctuations of scalar field dark matter. We refer for details to A. Elgart and B. Schlein [10],

D. Giulini and A. Großardt [15], K.R.W. Jones [17], and F.E. Schunck and E.W. Mielke

[31]. R. Penrose [28, 29] proposed equation (1.3) as a model of self-gravitating matter in

which quantum state reduction was understood as a gravitational phenomenon.
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As pointed out by E.H. Lieb [18], Ph. Choquard used equation (1.3) to study steady states

of the one component plasma approximation in the Hartree-Fock theory. Classification

of solutions of (1.3) was first studied by L. Ma and L. Zhao [20]. For the broad survey

of Choquard equations we refer to V. Moroz and J. Van Schaftingen [23] and references

therein.

Recently, F. Gao and M. Yang [13] studied the Brezis-Nirenberg type result for the following

problem

−∆u = λu+

(∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u in Ω, u = 0 on ∂Ω, (1.4)

where 0 < λ, 0 < µ < N , 2∗µ = 2N−µ
N−2 , Ω is a smooth bounded domain in RN and 2∗µ is critical

exponent in the sense of Hardy–Littlewood–Sobolev inequality (2.1). Authors proved the

Pohozaev identity for the equation (1.4) and used variational methods and the minimizers

of the best constant SH,L (defined in (2.3)) to show the existence, non-existence of solution

depending on the range of λ. We cite F. Gao et al. [12, 14] for the Choquard equation

with critical exponent in the sense of Hardy–Littlewood–Sobolev inequality. However, the

existence and multiplicity of solutions of nonlocal equations over non-contractible domains

is still an open question. Therefore, it is essential to study the existence of a positive solution

of elliptic equations involving convolution-type nonlinearity in non-contractible domains.

Inspiring by these results, we study in the present article the Coron problem for the problem

(P ). More precisely, we show the existence of a high-energy positive solution in a non-

contractible bounded domain particularly an annulus when the inner hole is sufficiently

small. The functional associated with (P ) is not C2 when µ > min{4, N} and this makes

the problem (P ) more challenging.

In order to achieve the desired aim we first prove the non-existence result using the Pohozaev

identity for Choquard equation on RN
+ . We also prove the global compactness lemma for

Choquard equation in bounded domains. In case of µ = 0, such a lemma has been proved

by M. Struwe [32] and later generalized to the p-Laplacian case by Mercuri and Willem [21].

In case of 0 < µ < N , the method of defining Lévy concentration function is not useful. In

the present article we gave the proof of global compactness Lemma 4.5 by introducing the

notion of Morrey spaces. Finally, by using the concentration-compactness principle together

with the deformation lemma, we prove the existence of high-energy positive solution. To

the best of our knowledge, there is no work on Coron’s problem for Choquard equation.

We now state the main result of this paper.

Theorem 1.1 Assume that Ω is a bounded domain in RN satisfying the condition (1.1).

If
R2

R1
is sufficiently large then problem (P ) admits a positive high-energy solution.

Turning to the layout of the paper, in Section 2 we assemble notations and preliminary

results. In section 3, we give the classification of all non negative solutions of Choquard
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equation. In section 4, we analyze the Palais-Smale sequences. In section 5, we prove our

main result Theorem 1.1.

2 Preliminary results

This section is devoted to the variational formulation, Pohozaev identity and non-existence

result. The outset of the variational framework starts from the following Hardy–Littlewood–

Sobolev inequality. We refer to E.H. Lieb and M. Loss [19] for more details.

Proposition 2.1 Let t, r > 1 and 0 < µ < N with 1/t + µ/N + 1/r = 2, f ∈ Lt(RN ) and

h ∈ Lr(RN ). There exists a sharp constant C(t, r, µ,N) independent of f, h, such that

∫

RN

∫

RN

f(x)h(y)

|x− y|µ
dxdy ≤ C(t, r, µ,N)‖f‖Lt‖h‖Lr . (2.1)

If t = r = 2N/(2N − µ), then

C(t, r, µ,N) = C(N,µ) = π
µ
2
Γ(N2 − µ

2 )

Γ(N − µ
2 )

{
Γ(N2 )

Γ(µ2 )

}−1+ µ
N

.

Equality holds in (2.1) if and only if f/h ≡ constant and

h(x) = A(γ2 + |x− a|2)(2N−µ)/2

for some A ∈ C, 0 6= γ ∈ R and a ∈ RN . �

We consider the following functional space

D1,2(RN ) := {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )},

endowed with the norm defined as

‖u‖ :=

(∫

RN

|∇u|2dx

) 1
2

.

The space D1,2
0 (Ω) is defined as the closure of C∞

c (Ω) in D1,2(RN ).

Definition 2.2 A function u ∈ D1,2
0 (Ω) is said to be a solution of (P ) if u satisfies

∫

Ω
∇u∇φ dx =

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ−2u(y)φ(y)

|x− y|µ
dxdy for all φ ∈ D1,2

0 (Ω).

Notation. We define u+ = max(u, 0) and u− = max(−u, 0) for all u ∈ D1,2(RN ). More-

over, we set RN
+ := {x ∈ RN | xN > 0} and we denote by ∗ the standard convolution

operator.
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Consider functionals I : D1,2
0 (Ω) → R and I∞ : D1,2(RN ) → R as

I(u) =
1

2

∫

Ω
|∇u|2 dx−

1

2.2∗µ

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy, u ∈ D1,2

0 (Ω)

I∞(u) =
1

2

∫

RN

|∇u|2 dx−
1

2.2∗µ

∫

RN

∫

RN

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy, u ∈ D1,2(RN ).

By the Hardy–Littlewood–Sobolev inequality, we have

(∫

RN

∫

RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy

) 1
2∗µ

≤ C(N,µ)
2N−µ
N−2 ‖u‖2L2∗ ,

where 2∗ = 2N
N−2 . This implies that I ∈ C1(D1,2

0 (Ω),R) and I∞ ∈ C1(D1,2(RN ),R). The

best constant for the embedding D1,2(RN ) into L2∗(RN ) is defined as

S = inf
u∈D1,2(RN )\{0}

{∫

RN

|∇u|2dx :

∫

RN

|u|2
∗

dx = 1

}
. (2.2)

Consequently, we define

SH,L = inf
u∈D1,2(RN )\{0}

{∫

RN

|∇u|2dx :

∫

RN

∫

RN

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy = 1

}
. (2.3)

It was established by G. Talenti [34] that the best constant S is achieved if and only if u is

of the form
(

t

t2 + |x− (1− t)σ|2

)N−2
2

for σ ∈ Σ := {x ∈ RN : |x| = 1} and t ∈ (0, 1].

Properties of the best constant SH,L were established by F. Gao and M. Yang [13]. We

recall the following property.

Lemma 2.3 The constant SH,L defined in (2.3) is achieved if and only if

u = C

(
b

b2 + |x− a|2

)N−2
2

,

where C > 0 is a fixed constant, a ∈ RN and b ∈ (0,∞) are parameters. Moreover,

SH,L =
S

C(N,µ)
N−2
2N−µ

,

where S is defined as in (2.2).

The following property was established in [13].

Lemma 2.4 For N ≥ 3 and 0 < µ < N . Then

‖.‖NL :=

(∫

RN

∫

RN

|.|2
∗
µ |.|2

∗
µ

|x− y|µ
dxdy

) 1
2.2∗µ

defines a norm on L2∗(RN ).
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Remark 2.5 If we define

SA = inf
u∈D1,2(RN )\{0}

{∫

RN

|∇u|2dx :

∫

RN

∫

RN

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy = 1

}

then SA = SH,L.

Proposition 2.6 Let u ∈ D1,2
0 (Ω) be an arbitrary solution of the problem

−∆u =

(∫

Ω

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1 in Ω, u = 0 on ∂Ω . (2.4)

Then

I(u) ≥
1

2

(
N − µ+ 2

2N − µ

)
S

2N−µ
N−µ+2

H,L =: β .

Moreover, the same conclusion holds for the solution u ∈ D1,2(RN ) of

−∆u =

(∫

RN

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1 in RN . (2.5)

Proof. If u is a solution of (2.4) then testing (2.4) with u+ , u− yields

∫

Ω
|∇u+|

2dx =

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy and

∫

Ω
|∇u−|

2dx = 0 a.e. on Ω.

It follows that

(SA)
2∗µ

2∗µ−1 ≤

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy =

∫

Ω
|∇u+|

2dx =

∫

Ω
|∇u|2dx.

It follows that

I(u) ≥

(
1

2
−

1

2.2∗µ

)
(SA)

2∗µ
2∗µ−1 =

1

2

(
N − µ+ 2

2N − µ

)
S

2N−µ
N−µ+2

H,L

The proof is now complete. �

Lemma 2.7 (Pohozaev identity) Let N ≥ 3 and assume that u ∈ D1,2
0 (RN

+ ) solves

−∆u =

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1 in RN
+ . (2.6)

Then the following equality holds

1

2

∫

∂RN
+

(x−x0) ·ν|∇u|
2dS+

N − 2

2

∫

RN
+

|∇u|2dx =
2N − µ

2.2∗µ

∫

RN
+

∫

RN
+

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy

where ν is the unit outward normal to ∂Ω and x0 = (0, 0, . . . , 1).
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Proof. First observe that any solution of problem (2.6) is non-negative. This implies

∇u = ∇u+ a.e. on RN
+ .

Extending u = 0 in RN \RN
+ we have u ∈W 2,2

loc (R
N ) (see Lemma 3.1). Now fix ϕ ∈ C1

c (R
N )

such that ϕ = 1 on B1. Let the function ϕλ ∈ D1,2(RN ) defined for λ ∈ (0,∞) and x ∈ RN

by ϕλ(x) = ϕ(λx). Multiplying (2.6) with ((x − x0) · ∇u)ϕλ and integrating over RN
+ , we

obtain

∫

RN
+

(−∆u)((x− x0) · ∇u)ϕλ(x)dx =

∫

RN
+

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1((x− x0) · ∇u)ϕλdx

=

∫

RN
+

∇

(
(x− x0)

∫

RN
+

(
|u+(y)|

2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)u(x)

)
dx

−

∫

RN
+

u(x)∇

(
(x− x0)

∫

RN
+

(
|u+(y)|

2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)

)
dx

(2.7)

Using the divergence theorem on the right-hand side of (2.7), we obtain

∫

RN
+

(−∆u)((x− x0) · ∇u)ϕλ(x)dx =

∫

RN
+

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1((x− x0) · ∇u)ϕλdx

=−

∫

RN
+

u(x)∇

(
(x− x0)

∫

RN
+

(
|u+(y)|

2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)

)
dx.

(2.8)

Now consider the integral

∫

RN
+

u(x)∇

(
(x− x0)

∫

RN
+

(
|u+(y)|

2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)

)
dx

=

∫

RN
+

Nu(x)

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)dx

+

∫

RN
+

(2∗µ − 1)u(x)

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−2ϕλ(x)(∇u · (x− x0))dx

− µ

∫

RN
+

u(x)ϕλ(x)

(∫

RN
+

|u+(y)|
2∗µ(x− x0) · (x− y)

|x− y|µ+2
dy

)
|u+(x)|

2∗µ−1dx

+ λ

∫

RN
+

∫

RN
+

|u+(y)|
2∗µ |u+(x)|

2∗µ

|x− y|µ
(x− x0) · ∇ϕ(λx) dxdy.

(2.9)
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Taking into account (2.8) and (2.9), we have

2∗µ

∫

RN
+

(x− x0) · ∇u(x)

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)dx

=−N

∫

RN
+

u(x)

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)dx

+ µ

∫

RN
+

u(x)ϕλ(x)

(∫

RN
+

|u+(y)|
2∗µ(x− x0).(x− y)

|x− y|µ+2
dy

)
|u+(x)|

2∗µ−1dx

− λ

∫

RN
+

∫

RN
+

|u+(y)|
2∗µ |u+(x)|

2∗µ

|x− y|µ
(x− x0) · ∇ϕ(λx) dxdy.

(2.10)

Now, interchanging the role of x and y in (2.10) and combining the resultant equation with

(2.10), we deduce that

∫

RN
+

(x− x0) · ∇u(x)

∫

RN
+

(
|u+(y)|

2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1ϕλ(x)dx

=
µ− 2N

2.2∗µ

∫

RN
+

∫

RN
+

|u+(y)|
2∗µ |u+(x)|

2∗µ

|x− y|µ
ϕλ(x)dxdy

−
λ

2∗µ

∫

RN
+

∫

RN
+

|u+(y)|
2∗µ |u+(x)|

2∗µ

|x− y|µ
(x− x0) · ∇ϕ(λx) dxdy.

(2.11)

Passing to the limit as λ → 0 and using the dominated convergence theorem, we obtain

that ∫

RN
+

(x− x0) · ∇u(x)

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+(x)|

2∗µ−1dx

=
µ− 2N

2.2∗µ

∫

RN
+

∫

RN
+

|u+(y)|
2∗µ |u+(x)|

2∗µ

|x− y|µ
dxdy.

(2.12)

It is easily seen that

∆u((x− x0) · ∇u)ϕλ

= div (∇uϕλ (x− x0) · ∇u)− ϕλ|∇u|
2 − ϕλ(x− x0) · ∇

(
|∇u|2

2

)
− λ((x− x0) · ∇u)(∇ϕ(λx) · ∇u)

= div

((
∇u(x− x0) · ∇u− (x− x0)

|∇u|2

2

)
ϕλ

)
+
N − 2

2
ϕλ|∇u|

2

+ λ
|∇u|2

2
((x− x0) · ∇ϕ(λx)) − λ((x− x0) · ∇u)(∇ϕ(λx) · ∇u).

Now, integrating by parts we obtain
∫

RN
+

(∆u)((x− x0) · ∇u)ϕλ dx =

∫

∂RN
+

(
∇u(x− x0) · ∇u− (x− x0)

|∇u|2

2

)
ϕλ · ν dS

+
N − 2

2

∫

RN
+

ϕλ|∇u|
2dx−

∫

RN
+

λ
|∇u|2

2
((x− x0) · ∇ϕ(λx))dx

−

∫

RN
+

λ((x− x0) · ∇u)(∇ϕ(λx) · ∇u)dx.
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Noticing that ∇u = (∇u · ν)ν on ∂RN
+ and employing dominated convergence theorem for

λ→ 0, we get that
∫

RN
+

(∆u)((x − x0) · ∇u) =
1

2

∫

∂RN
+

|∇u|2(x− x0) · ν dS +
N − 2

2

∫

RN
+

|∇u|2dx. (2.13)

From equation (2.7), (2.12) and (2.13) we have our desired result. �

We can now deduce the following Liouville-type theorem.

Theorem 2.8 Let N ≥ 3, u ∈ D1,2
0 (RN

+ ) be any solution of

−∆u =

(∫

RN
+

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1 in RN
+ . (2.14)

Then u ≡ 0 on RN
+ .

Proof. If u is a solution of (2.14) then

∫

RN
+

∇u · ∇φ dx−

∫

RN
+

∫

RN
+

|u+(x)|
2∗µ |u+(y)|

2∗µ−1φ(y)

|x− y|µ
dx dy for all φ ∈ D1,2

0 (RN
+ ).

Taking φ = u− we obtain u− = 0 a.e. on RN . This implies that u is a non-negative solution

of (2.14). Now, by Lemma 2.7 we have
∫

∂RN
+

|∇u|2(x− x0) · ν dS = 0.

But (x − x0) · ν > 0 for x ∈ ∂RN
+ . Since u is a non-trivial solution, we get a contradiction

from the Hopf boundary point lemma. Hence, u ≡ 0 on RN
+ . �

3 Classification of solutions

In this section we will discuss the regularity and classification of non-negative solutions of

the following equation:

−∆u =
(
|x|µ−N ∗ |u|p

)
|u|p−2u in RN , (3.1)

where p := N+µ
N−2 and 0 < µ < N . Consider the following integral system of equations:

u(x) =

∫

RN

up−1(y)v(y)

|x− y|N−2
dy, u ≥ 0 in RN

v(x) =

∫

RN

up(y)

|x− y|N−µ
dy, v ≥ 0 in RN .

(3.2)

We note that if u ∈ D1,2(RN ), then u, v defined above is in L
2N
N−2 (RN )× L

2N
N−µ (RN ). First

we will discuss the regularity of non-negative solutions of (3.1). In this regard, we will prove

the following Lemma:
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Lemma 3.1 Let u ∈ D1,2(RN ) be a non-negative solutions of (3.1) then u ∈W 2,s
loc

(RN ) for

all 1 ≤ s <∞.

Proof. Let u ∈ D1,2(RN ) be a non-negative solution of (3.1) Now following the same

approach as in proof of [16, Lemma 3.1], we have (u, v) ∈ Lr(RN ) × Ls(RN ) for all 1 <

r, s < ∞. In particular, up ∈ L
N
µ (RN ), and now using the boundedness of Riesz potential

operator, we have |x|µ−N ∗ up ∈ L∞(RN ). Thus, from (3.1), we have

| −∆u| ≤ C|u|p−1.

By classical elliptic regularity theory for subcritical problems in local bounded domains, we

have u ∈W 2,s
loc (R

N ) for any 1 ≤ s <∞. �

Next, we will discuss the classification of all positive solutions of the following system of

integral equations:

u(x) =

∫

RN

ua(y)vb(y)

|x− y|N−α
dy, u > 0 in RN ,

v(x) =

∫

RN

uc(y)vd(y)

|x− y|N−β
dy, v > 0 in RN ,

(3.3)

where a ≥ 0, b, c, d ∈ {0} ∪ [1,∞), 0 < α, β < N .

Let (u, v) ∈ Lq1(RN ) × Lq2(RN ) be a solution of (3.3). Now for all λ ∈ R, we de-

fine Tλ := {(x1, x2, · · · , xn) ∈ RN : x1 = λ} as the moving plane. Let xλ := (2λ −

x1, x2, · · · , xn), Σλ := {(x1, x2, · · · , xn) ∈ RN : x1 < λ} and Σ′
λ := {(x1, x2, · · · , xn) ∈

RN : x1 ≥ λ} be the reflection of Σλ about the plane Tλ. Moreover, define uλ(y) :=

u(yλ), vλ(y) = v(yλ). Immediately, we have the following property whose proof is just an

elementary computation.

Lemma 3.2 Assume that (u, v) is a positive pair of solution of (3.3). Then

u(yλ)− u(y) =

∫

Σλ

(
1

|y − x|N−α
−

1

|yα − x|N−α

)[
ua(xλ)vb(xλ)− ua(x)vb(x)

]
dx,

v(yλ)− v(y) =

∫

Σλ

(
1

|y − x|N−β
−

1

|yα − x|N−β

)[
uc(xλ)vd(xλ)− uc(x)vd(x)

]
dx.

Lemma 3.3 There exists η > 0 such that for all λ < −η,

u(yλ) ≥ u(y), v(yλ) ≥ v(y), for all y ∈ Σλ.

Proof. Define Σu
λ := {y ∈ Σλ : u(y) > uλ(y)}, Σ

v
λ := {y ∈ Σλ : v(y) > vλ(y)}. By Lemma

3.2, we obtain

u(yλ)− u(y) =

∫

Σλ

(
1

|y − x|N−α
−

1

|yλ − x|N−α

)[
ua(xλ)vb(xλ)− ua(x)vb(x)

]
dx

≤

∫

Σλ

(
1

|y − x|N−α
−

1

|yλ − x|N−α

)[
uaλ(v

b − vbλ)
+ + vb(ua − uaλ)

+
]
dx

≤

∫

Σλ

1

|y − x|N−α

[
uaλ(v

b − vbλ)
+ + vb(ua − uaλ)

+
]
dx.
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By the Hardy–Littlewood–Sobolev inequality, we obtain

‖u− uλ‖Lq1 (Σu
λ
) ≤ ‖u− uλ‖Lq1 (Σλ) ≤ C‖uaλ(v

b − vbλ)
+ + vb(ua − uaλ)

+‖Lr(Σλ)

≤ C‖uaλ(v
b − vbλ)‖Lr(Σv

λ
) + ‖vb(ua − uaλ)‖Lr(Σu

λ
),

where r = Nq1
N+αq1

. Now if a, b > 1 then by Hölder’s inequality, we get

‖u− uλ‖Lq1 (Σu
λ
) ≤ C‖uaλv

b−1(v − vλ)‖Lr(Σv
λ
) + C‖vbua−1(u− uλ)‖Lr(Σu

λ
)

≤ C‖uλ‖
a
Lq1 (Σv

λ
)‖v

b−1(v − vλ)‖Ls(Σv
λ
) + C‖v‖bLq2 (Σu

λ
)‖u

a−1(u− uλ)‖Lt(Σu
λ
)

≤ C‖uλ‖
a
Lq1 (Σ′

λ
)‖v‖

b−1
Lq2 (Σv

λ
)‖v − vλ‖Lq2 (Σv

λ
) + C‖v‖bLq2 (Σλ)

‖u‖a−1
Lq1 (Σu

λ
)‖u− uλ‖Lq1 (Σu

λ
),

(3.4)

and if 0 < a < 1, b > 1 then we have

‖u− uλ‖Lq1 (Σu
λ
) ≤ C‖uaλv

b−1(v − vλ)‖Lr(Σv
λ
) + C‖vb(u− uλ)

a‖Lr(Σu
λ
)

≤ C‖uλ‖
a
Lq1 (Σv

λ
)‖v

b−1(v − vλ)‖Ls(Σv
λ
) + C‖v‖bLq2 (Σu

λ
)‖u− uλ‖

a
Lq1 (Σu

λ
)

≤ C‖uλ‖
a
Lq1 (Σ′

λ
)‖v‖

b−1
Lq2 (Σv

λ
)‖v − vλ‖Lq2 (Σv

λ
) + C‖v‖bLq2 (Σλ)

‖u− uλ‖Lq1 (Σu
λ
),

(3.5)

where

s =
rq1

q1 − ar
, t =

rq2
q2 − br

=
q1
r

and
b

q2
+
a− 1

q1
=

α

N
.

Similarly, for c, d > 1 we have

‖v−vλ‖Lq2 (Σv
λ
) ≤ C‖v‖dLq2 (Σ′

λ
)‖u‖

c−1
Lq1 (Σu

λ
)‖u−uλ‖Lq1 (Σu

λ
)+C‖u‖cLq1 (Σλ)

‖v‖d−1
Lq2 (Σv

λ
)‖v−vλ‖Lq2 (Σv

λ
),

(3.6)

where q1 and q2 are positive constant such that d−1
q2

+ c
q1

= β
N . Taking into account (3.4),

(3.5) and (3.6), for all λ ∈ R we have

‖u− uλ‖Lq1 (Σu
λ
) ≤

{ C‖v‖dLq2 (Σ′
λ
)‖u‖

c−1
Lq1 (Σu

λ
)

1− C‖u‖cLq1 (Σλ)
‖v‖d−1

Lq2 (Σv
λ
)

‖uλ‖
a
Lq1 (Σ′

λ
)‖v‖

b−1
Lq2 (Σv

λ
)

+ C‖v‖bLq2 (Σλ)
‖u‖a−1

Lq1 (Σu
λ
)

}
‖u− uλ‖Lq1 (Σu

λ
).

Using the fact that (u, v) ∈ Lq1(RN )×Lq2(RN ), we can choose η > 0 sufficiently large such

that for all λ < −η.

C‖v‖dLq2 (Σ′
λ
)‖u‖

c−1
Lq1 (Σu

λ
)

1− C‖u‖cLq1 (Σλ)
‖v‖d−1

Lq2 (Σv
λ
)

‖uλ‖
a
Lq1 (Σ′

λ
)‖v‖

b−1
Lq2 (Σv

λ
) + C‖v‖bLq2 (Σλ)

‖u‖a−1
Lq1 (Σu

λ
) ≤

1

2
.

It follows that ‖u − uλ‖Lq1 (Σu
λ
) = 0 and hence Σu

λ must be measure zero and empty when

λ < −η. In the similar manner, Σv
λ must be of measure zero and empty when λ < −η. For

all other cases, the proof follows analogously. This concludes the proof of Lemma. �
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Now using the same assertions and arguments as in X. Huang, D. Li and L. Wang [16] in

combination with Lemma 3.3, we have the following theorem.

Theorem 3.4 Assume that a ≥ 0, b, c, d ∈ {0} ∪ [1,∞), 0 < α, β < N and (u, v) ∈

Lq1(RN )× Lq2(RN ) is a pair of positive solutions of (3.3) with q1 and q2 satisfies

q1, q2 > 1,
b

q2
+
a− 1

q1
=
α

N
,

c

q1
+
d− 1

q2
=

β

N
.

Then (u, v) is radially symmetric and monotone decreasing about some point in RN . More-

over, if

b =
1

N − β
[(N + α)− a(N − α)], c =

1

N − α
[(N + β)− d(N − β)],

then (u, v) must be of the form

u(x) =

(
d1

e1 + |x− x1|2

)N−α
2

, v(x) =

(
d2

e2 + |x− x2|2

)N−β
2

,

for some constants d1, d2, e1, e2 > 0 and some x1, x2 ∈ RN .

As an immediate corollary, we have the following result on radial symmetry of non-negative

solutions of (3.1).

Corollary 3.5 Every non-negative solution u ∈ D1,2(RN ) of equation (3.1) is radially

symmetric, monotone decreasing and of the form

u(x) =

(
c1

c2 + |x− x0|2

)N−2
2

.

for some constants c1, c2 > 0 and some x0 ∈ RN .

Proof. Let u be any non negative solution of the equation (3.1). Then by Lemma 3.1, we

have u ∈W 2,s
loc (R

N ) for any 1 ≤ s <∞. Hence, by strong maximum principle, we have u is

a positive function in RN . It implies (u, v) ∈ L
2N
N−2 (RN )× L

2N
N−µ (RN ) is a positive solution

of the integral system (3.2).

Now employing Theorem 3.4 for α = 2, a = p − 1, b = 1, β = µ, c = p, d = 0 and using

the fact u ∈ D1,2(RN ), that is u ∈ L
2N
N−2 (RN ) and v ∈ L

2N
N−µ (RN ), we have the desired

result. �

4 Palais-Smale analysis

Lemma 4.1 Let un ⇀ u be weakly convergent in D1,2(RN ) and un → u a.e. on RN . Then

(|x|−µ ∗ |(un)+|
2∗µ)|(un)+|

2∗µ−2(un)+ − (|x|−µ ∗ |(un − u)+|
2∗µ)|(un − u)+|

2∗µ−2(un − u)+

→ (|x|−µ ∗ |u+|
2∗µ)|u+|

2∗µ−2u+ in (D1,2(RN ))′. (4.1)
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Proof. Since un ⇀ u weakly in D1,2(RN ), there exists M > 0 such that ‖un‖ <

M, for all n ∈ N. Let φ ∈ D1,2(RN ) and

I =

∫

RN

[(
|x|−µ ∗ |(un)+|

2∗µ
)
|(un)+|

2∗µ−2(un)+

−
(
|x|−µ ∗ |(un − u)+|

2∗µ
)
|(un − u)+|

2∗µ−2(un − u)+

]
φ dx,

then I = I1 + I2 + I3 − 2I4 where

I1 =

∫

RN

(
|x|−µ ∗

(
|(un)+|

2∗µ − |(un − u)+|
2∗µ
))

(
|(un)+|

2∗µ−2(un)+ − |(un − u)+|
2∗µ−2(un − u)+

)
φ dx,

I2 =

∫

RN

(
|x|−µ ∗ |(un)+|

2∗µ
)
|(un − u)+|

2∗µ−2(un − u)+φ dx,

I3 =

∫

RN

(
|x|−µ ∗ |(un − u)+|

2∗µ
)
|(un)+|

2∗µ−2(un)+φ dx,

I4 =

∫

RN

(
|x|−µ ∗ |(un − u)+|

2∗µ
)
|(un − u)+|

2∗µ−2(un − u)+φ dx.

Claim 1: lim
n→∞

I1 =

∫

RN

(
|x|−µ ∗ |u+|

2∗µ
)
|u+|

2∗µ−2u+φ dx.

Similar to the proof of the Brezis-Lieb lemma [7] we have,

|(un)+|
2∗µ − |(un − u)+|

2∗µ → |u+|
2∗µ in L

2N
2N−µ (RN ) as n→ ∞.

Since the Hardy Littlewood-Sobolev inequality implies that the Riesz potential defines a

linear continuous map from L
2N

2N−µ (RN ) to L
2N
µ (RN ), we get

|x|−µ ∗
(
|(un)+|

2∗µ − |(un − u)+|
2∗µ
)
→ |x|−µ ∗ |u+|

2∗µ strongly in L
2N
µ (RN ) as n→ ∞.

(4.2)

Since both |(un)+|
2∗µ−2(un)+φ ⇀ |u+|

2∗µ−2u+φ and |(un−u)+|
2∗µ−2(un−u)+φ ⇀ 0 converge

weakly in L
2N

2N−µ (RN ), we obtain

|(un)+|
2∗µ−2(un)+φ− |(un − u)+|

2∗µ−2(un − u)+φ ⇀ |u+|
2∗µ−2u+φ (4.3)

weakly in L
2N

2N−µ (RN ). Thus, Claim 1 follows from (4.2) and (4.3).

Claim 2: lim
n→∞

I2 = 0.

Since |(un)+|
2∗µ ⇀ |(u)+|

2∗µ weakly in L
2N

2N−µ (RN ), by the Hardy-Littlewood-Sobolev in-

equality (2.1) we have

|x|−µ ∗ |(un)+|
2∗µ ⇀ |x|−µ ∗ |u+|

2∗µ weakly in L
2N
µ (RN ). (4.4)

We observe that

|(un − u)+|
2∗µ−2(un − u)+φ→ 0 a.e in RN
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and for any open subset U ⊂ RN , we have

∫

U

∣∣∣∣|(un − u)+|
2∗µ−2(un − u)+φ

∣∣∣∣
2N

2N−µ

dx ≤

(∫

U
|(un − u)+|

2∗ dx

)N−µ+2
2N−µ

(∫

U
|φ|2

∗

dx

) N−2
2N−µ

≤ ‖un‖
2∗(2∗µ−1)

(∫

U
|φ|2

∗

dx

) N−2
2N−µ

≤M

(∫

U
|φ|2

∗

dx

) N−2
2N−µ

.

This implies that

{∣∣∣∣|(un − u)+|
2∗µ−2(un − u)+φ

∣∣∣∣
2N

2N−µ

}

n

is equi-integrable in L1(RN ). Hence,

by the Vitali convergence theorem we get that |(un − u)+|
2∗µ−2(un − u)+φ → 0 strongly in

L
2N

2N−µ (RN ). This fact together with (4.4) complete the proof of claim 2.

Claim 3: lim
n→∞

I3 = 0.

Similar to the proof of claim 2 , we have |x|−µ ∗ |(un − u)+|
2∗µ ⇀ 0 weakly in L

2N
µ (RN ) and

|(un)+|
2∗µ−2(un)+φ→ |u+|

2∗µ−2u+φ strongly in L
2N

2N−µ (RN ). Thus, claim 3 follows.

Claim 4: lim
n→∞

I4 = 0.

Similar to the proof of claim 2 , we have |x|−µ ∗ |(un − u)+|
2∗µ ⇀ 0 weakly in L

2N
µ (RN ) and

|(un − u)+|
2∗µ−2(un − u)+φ → 0 strongly in L

2N
2N−µ (RN ). Thus, claim 4 follows. Hence

I →
∫
RN

(
|x|−µ ∗ |u+|

2∗µ
)
|u+|

2∗µ−2u+φ dx that is, (4.1) holds. �

Lemma 4.2 If un ⇀ u weakly in D1,2
0 (Ω), un → u a.e on Ω, I(un) → c, I ′(un) →

0 in (D1,2
0 (Ω))′ then I ′(u) = 0 and vn := un − u satisfies

‖vn‖
2 = ‖un‖

2 − ‖u‖2 + o(1), I∞(vn) → c− I(u), and I ′∞(vn) → 0 in (D1,2
0 (Ω))′.

Proof. Claim : I ′(u) = 0.

As un ⇀ u weakly in D1,2
0 (Ω) implies |(un)+|

2∗µ ⇀ |u+|
2∗µ weakly in L

2N
2N−µ (Ω). Since Riesz

potential is a linear continuous map from L
2N

2N−µ (Ω) to L
2N
µ (Ω), we obtain that

∫

Ω

|(un)+(y)|
2∗µ

|x− y|µ
dy ⇀

∫

Ω

|u+(y)|
2∗µ

|x− y|µ
dy weakly in L

2N
µ (Ω)

Also, |(un)+|
2∗µ−2(un)+ ⇀ |u+|

2∗µ−2u+ weakly in L
2N

N−µ+2 (Ω). Combining these facts we have
(∫

Ω

|(un)+(y)|
2∗µ

|x− y|µ
dy

)
|(un)+|

2∗µ−2(un)+ ⇀

(∫

Ω

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−2u+ weakly in L
2N
N+2 (Ω).

This implies for any φ ∈ D1,2
0 (Ω), we have

∫

Ω

∫

Ω

|(un)+(x)|
2∗µ |(un)+(y)|

2∗µ−2(un)+(y)φ(y)

|x− y|µ
dxdy

→

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ−2u+(y)φ(y)

|x− y|µ
dxdy.

(4.5)
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Now, for φ ∈ D1,2
0 (Ω) consider

〈I ′(un)− I ′(u), φ〉 =

∫

Ω
∇un.∇φdx−

∫

Ω

∫

Ω

|(un)+(x)|
2∗µ |(un)+(y)|

2∗µ−2(un)+φ(y)

|x− y|µ
dxdy

−

∫

Ω
∇u.∇φdx+

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ−2u+φ(y)

|x− y|µ
dxdy.

Using (4.5) and the fact that un ⇀ u weakly in D1,2
0 (Ω) claim follows. By the Brezis-Lieb

lemma (see [7], [13]) we have

I∞(vn) =
1

2
‖un‖

2 −
1

2
‖u‖2 −

1

2.2∗µ

∫

Ω

∫

Ω

|(un − u)+(x)|
2∗µ |(un − u)+(y)|

2∗µ

|x− y|µ
dxdy + o(1)

=
1

2
‖un‖

2 −
1

2.2∗µ

∫

Ω

∫

Ω

|(un)+(x)|
2∗µ |(un)+(y)|

2∗µ

|x− y|µ
dxdy

−
1

2
‖u‖2 +

1

2.2∗µ

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy + o(1)

= I(un)− I(u) + o(1) → c− I(u).

Now we will show that I ′∞(vn) → 0 in (D1,2
0 (Ω))′. By Lemma 4.1, for any φ ∈ D1,2

0 (Ω)

〈I ′∞(vn), φ〉 = 〈I ′(vn), φ〉 = 〈I ′(un), φ〉 − 〈I ′(u), φ〉 + o(1) → 0.

This implies I ′∞(vn) → 0 in (D1,2
0 (Ω))′. �

Lemma 4.3 Let {yn} ⊂ Ω and {λn} ⊂ (0,∞) be such that 1
λn
dist(yn, ∂Ω) → ∞. Assume

the sequence {un} and the rescaled sequence

fn(x) = λ
N−2

2
n un(λnx+ yn)

is such that fn ⇀ f weakly in D1,2(RN ), fn → f a.e on RN , I∞(un) → c, I ′∞(un) → 0 in (D1,2
0 (Ω))′

then I ′∞(f) = 0. Also, the sequence zn(x) = un(x) − λ
2−N

2
n f(x−yn

λn
) satisfies ‖zn‖

2 =

‖un‖
2 − ‖f‖2 + o(1), I∞(zn) → c− I∞(f) and I ′∞(zn) → 0 in (D1,2

0 (Ω))′.

Proof. For φ ∈ C∞
c (RN ) define φn(x) := λ

2−N
2

n φ(x−yn
λn

). If φ ∈ C∞
c (Bk) then for large n,

φn ∈ C∞
c (Ω). It implies

〈I ′∞(fn), φ〉 = 〈I ′∞(un), φn〉 ≤ ‖I ′∞(un)‖‖φn‖ = ‖I ′∞(un)‖‖φ‖ → 0.

Hence, I ′∞(fn) → 0 as n→ ∞ in (D1,2
0 (Bk))

′ for each k.

Claim : I ′∞(f) = 0 .

If φ ∈ C∞
c (RN ) implies φ ∈ C∞

c (Bk) for some k. Now, using the fact 1
λn
dist(yn, ∂Ω) → ∞

, I ′∞(fn) → 0 in (D1,2
0 (Bk))

′ and following the steps of Claim of Lemma 4.2, we have

〈I ′∞(fn)− I ′∞(f), φ〉 → 0 that is , claim holds. By the Brezis-Lieb lemma (see [7], [13]),

I∞(zn) = I∞(fn − f) = I∞(un)− I∞(f) + o(1) → c− I∞(f).
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As fn ⇀ f weakly in D1,2(RN ), we obtain

‖zn‖
2 =

∫

RN

|∇un(x)− λ
−N
2

n ∇f(
x− yn
λn

)|2dx = ‖un‖
2 − ‖f‖2 + o(1).

By Lemma 4.1 for any φ ∈ D1,2
0 (Ω), we have

〈I ′∞(zn), φ〉 =

〈
I ′∞(un)− I ′∞

(
λ

2−N
2

n f

(
.− yn
λn

))
, φ

〉
+ o(1)

=
〈
I ′∞(un), φ

〉
+ o(1) = o(1).

This implies I ′∞(zn) → 0 in (D1,2
0 (Ω))′. �

Before proving the global compactness lemma for the Choquard equation, we will define

the well-known Morrey spaces.

Definition 4.4 A measurable function u : RN → R belongs to Morrey space Lr,γ(RN ), with

r ∈ [1,∞) and γ ∈ [0, N ], if and only if

‖u‖rLr,γ (RN ) := sup
R>0, x∈RN

Rγ−N

∫

B(x,R)
|u|r dy <∞.

Note that with the help of Hölder’s inequality, we have L2∗(RN ) →֒ L2,N−2(RN ).

Lemma 4.5 (Global compactness lemma) Let {un}n∈N ⊂ D1,2
0 (Ω) be such that I(un) →

c, I ′(un) → 0. Then passing if necessary to a subsequence, there exists a solution v0 ∈

D1,2
0 (Ω) of

−∆u =

(∫

Ω

|u+(y)|
2∗µ

|x− y|µ
dy

)
|u+|

2∗µ−1 in Ω (4.6)

and (possibly) k ∈ N ∪ {0}, non-trivial solutions {v1, v2, ..., vk} of

−∆u = (|x|−µ ∗ |u+|
2∗µ)|u+|

2∗µ−1 in RN (4.7)

with vi ∈ D1,2(RN ) and k sequences {yin}n∈N ⊂ RN and {λin}n∈N ⊂ R+ i = 1, 2, · · · k,

satisfying

1

λin
dist(yin, ∂Ω) → ∞, and ‖un − v0 −

k∑

i=1

(λin)
2−N

2 vi((.− yin)/λ
i
n)‖ → 0, n→ ∞,

‖un‖
2 →

k∑

i=0

‖vi‖
2, n→ ∞, I(v0) +

k∑

i=1

I∞(vi) = c. (4.8)

Proof. We divide the proof into several steps:

Step 1: By coercivity of the functional I, we get {un} is a bounded sequence in D1,2
0 (Ω).
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It implies that there exists a v0 ∈ D1,2
0 (Ω) such that un ⇀ v0 weakly in D1,2

0 (Ω), un → v0

a.e on Ω. By Lemma 4.2, I ′(v0) = 0 and u1n = un − v0 such that

‖u1n‖
2 = ‖un‖

2 − ‖v0‖
2 + o(1), I∞(u1n) → c− I(v0) and I

′
∞(u1n) → 0 in (D1,2

0 (Ω))′. (4.9)

Moreover, there exists a constant M1 > 0 such that ‖u1n‖ < M1 for all n ∈ N.

Step 2: If

∫

Ω

∫

Ω

|(u1n)+(x)|
2∗µ |(u1n)+(y)|

2∗µ

|x− y|µ
dxdy → 0, then using the fact that I ′(un) → 0,

it follows that u1n → 0 in D1,2
0 (Ω) and we are done.

If

∫

Ω

∫

Ω

|(u1n)+(x)|
2∗µ |(u1n)+(y)|

2∗µ

|x− y|µ
dxdy 9 0 then we may assume that

∫

Ω

∫

Ω

|(u1n)+(x)|
2∗µ |(u1n)+(y)|

2∗µ

|x− y|µ
dxdy > δ, for some δ > 0.

This on using Hardy–Littlewood-Sobolev inequality gives ‖u1n‖L2∗ > δ1 for all n and for

an appropriate positive constant δ1. Taking into account that u1n is a bounded sequence in

L2∗(RN ), L2∗(RN ) →֒ L2,N−2(RN ), and Theorem 2 of G. Palatucci and A. Pisante [26], we

obtain

c2 < ‖u1n‖L2,N−2(RN ) < c1, for all n.

Thus, there exists a positive constant C0 such that for all n , we have

C0 < ‖u1n‖L2,N−2(RN ) < C−1
0 . (4.10)

Now employing the definition of Morrey spaces and (4.10), for each n ∈ N there exists

{y1n, λ
1
n} ∈ RN × R+ such that

0 < Ĉ0 < ‖u1n‖
2
Lr,γ(RN ) −

C2
0

2n
< (λ1n)

−2

∫

B(y1n,λ
1
n)
|u1n|

2 dy,

for some suitable positive constant Ĉ0. Now, define f1n(x) := (λ1n)
N−2

2 u1n(λ
1
nx+ y1n). Since

‖f1n‖ = ‖u1n‖ thus ‖f1n‖ < M1 for all n ∈ N and we can assume that f1n ⇀ v1 weakly in

D1,2(RN ), f1n → v1 a.e on RN . Moreover,
∫

B(0,1)
|f1n|

2 dx = (λ1n)
N−2

∫

B(0,1)
|u1n(λ

1
nx+ y1n)|

2 dx = (λ1n)
−2

∫

B(y1n,λ
1
n)
|u1n(y)|

2 dy > Ĉ0 > 0.

Since, D1,2(RN ) →֒ L2
loc(R

N ) is compact, we have
∫
B(0,1) |v1|

2 dx > Ĉ0 > 0. It implies that

v1 6= 0.

Step 3: We claim that λn → 0 and y1n → y0 ∈ Ω.

Let if possible λn → ∞. As {u1n} is a bounded sequence in D1,2
0 (Ω), it implies {u1n} is a

bounded sequence in L2(Ω). Thus, if we define Ωn =
Ω− y1n
λ1n

then

∫

Ωn

|f1n|
2 dx =

1

(λ1n)
2

∫

Ω
|u1n|

2 dx ≤
C

λ2n
→ 0.
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Contrary to this, using Fatou’s lemma, we have

0 = lim inf
n→∞

∫

Ωn

|f1n|
2 dx ≥

∫

Ωn

|v1|
2 dx.

This means that v ≡ 0, which is not possible by step 2. Hence {λ1n} is bounded in R,

that is, there exists 0 ≤ λ10 ∈ R such that λ1n → λ10 as n → ∞. If |y1n| → ∞ then for

any x ∈ Ω and large n, λnx + yn 6∈ Ω. Since un ∈ D1,2
0 (Ω) then u1n(λnx + yn) = 0 for

all x ∈ Ω, it yields a contradiction to the assumption ‖un‖
2.2∗µ
NL > δ > 0. Therefore, y1n

is bounded, it implies that y1n → y10 ∈ RN . Now let if possible then λ1n → λ10 > 0 then

Ωn →
Ω− y10
λ10

= Ω0 6= RN . Hence using the fact that u1n ⇀ 0 weakly in D1,2
0 (Ω) we have

f1n ⇀ 0 weakly in D1,2(RN ) which is not possible since by step 2, v1 6= 0. This implies

λ1n → 0. Arguing by contradiction, we assume that

y10 6∈ Ω. (4.11)

In view of the fact that λ1nx+ y1n → y10 for all x ∈ Ω as n → ∞. Now using (4.11) we have

λ1nx+ y1n 6∈ Ω for all x ∈ Ω and n large enough. It implies that u1n(λ
1
nx+ y1n) = 0 for n large

enough, which is not possible. Therefore, y10 ∈ Ω. This completes the proof of claim and

step 3.

Step 4: Assume that

lim
n→∞

1

λ1n
dist (y1n, ∂Ω) → α <∞.

Then v1 is a solution of (2.14) and by Theorem 2.8 we have v1 ≡ 0, which is not possible.

Therefore,

1

λ1n
dist (y1n, ∂Ω) → ∞ as n→ ∞.

Thus by (4.9) and Lemma 4.3, we have I ′∞(v1) = 0 and the sequence

u2n(x) = u1n(x)− λ
2−N

2
n v1

(
x− yn
λn

)

satisfies

I∞(u2n) → c− I∞(v0)− I∞(v1), and I
′
∞(u2n) → 0 in (D1,2

0 (Ω))′.

By Proposition 2.6, we have I∞(v1) ≥ β. So, iterating the above procedure we can construct

sequences {vi}, {λ
i
n}, {f

i
n} and after k iterations we obtain

I∞(uk+1
n ) < I(un)− I(v0)−

k∑

i=1

I∞(vi) ≤ I(un)− I(v0)− kβ.

As the later will be negative for large k, the induction process terminates after some index

k ≥ 0. Consequently, we get k sequences {yin}n ⊂ Ω and {λin}n ⊂ R+, satisfying (4.8). �
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Definition 4.6 We say that I satisfies the Palais-Smale condition at c if for any sequence

uk ∈ D1,2
0 (Ω) such that I(uk) → c and I ′(uk) → 0, then there exists a subsequence that

converges strongly in D1,2
0 (Ω).

Lemma 4.7 The functional I satisfies Palais-Smale condition for any c ∈ (β, 2β), where

β =
1

2

(
N − µ+ 2

2N − µ

)
S

2N−µ
N−µ+2

H,L .

Proof. For some c ∈ (β, 2β), we assume that there exists {un},∈ D1,2
0 (Ω) such that

I(un) → c, I ′(un) → 0 in (D1,2
0 (Ω))′.

By Lemma 4.5, passing to a subsequence (if necessary), there exists a solution v0 ∈ D1,2
0 (Ω)

of (4.6) and k ∈ N ∪ {0}, non-trivial solutions {v1, v2, ..., vk} of (4.7) with vi ∈ D1,2(RN )

and k sequences {yin}n ⊂ RN and {λin}n ⊂ R+ satisfying (4.8). Now, by equation (4.8) and

Proposition 2.6 we have, kβ ≤ c < 2β. This implies k ≤ 1.

If k = 0 compactness holds and we are done.

If k = 1 then we have two possibilities: either v0 6≡ 0 or v0 ≡ 0. If v0 6≡ 0, since I(v0) ≥ β

and by Lemma 1.3 of [13], β is never achieved on bounded domain we have I(v0) > β and

this is not possible. If v0 ≡ 0 then by Theorem 2.8, I∞(v1) = c and v1 is a nonnegative

solution of (4.7).

Next, by Corollary 3.5, we deduce that v1 is radially symmetric, monotonically decreasing

and of the form v1(x) =
(

a
b+|x−x0|2

)N−2
2

, for some constants a, b > 0 and some x0 ∈ RN .

Therefore by Lemma 2.3, we conclude that SH,L is achieved by v1. It follows that I∞(v1) =

β, which is a contradiction since I∞(v1) = c > β.

5 Proof of Theorem 1.1

To prove Theorem 1.1, we shall first establish some auxiliary results.

Let R1, R2 be the radii of the annulus as in Theorem 1.1. Without loss of generality, we can

assume x0 = 0, R1 = 1
4R , R2 = 4R where R > 0 will be chosen sufficiently large. Consider

the family of functions

uσt (x) := S
(N−µ)(2−N)
4(N−µ+2) C(N,µ)

2−N
2(N−µ+2)

(
1− t

(1− t)2 + |x− tσ|2

)N−2
2

∈ D1,2(RN ),

where σ ∈ Σ := {x ∈ RN : |x| = 1}, t ∈ [0, 1). Note that if t→ 1 then uσt concentrates at σ.

Also, if t→ 0 then

uσt → u0 := S
(N−µ)(2−N)
4(N−µ+2) C(N,µ)

2−N
2(N−µ+2)

(
1

1 + |x|2

)N−2
2

.
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Now, define υ ∈ C∞
c (Ω) such that 0 ≤ υ ≤ 1 on Ω and

υ(x) =

{
1 1

2 < |x| < 2

0 |x| > 4, |x| < 1
4 .

Subsequently, we can define

υR(x) =





υ(Rx) 0 < |x| < 1
2R

1 1
2R ≤ |x| ≤ R

υ(x/R) |x| ≥ R.

We now define

gσt (x) = uσt (x)υR(x) ∈ D1,2
0 (Ω), g0(x) = u0(x)υR(x).

We establish the following auxiliary result.

Lemma 5.1 Let σ ∈ Σ and t ∈ (0, 1], then the following holds:

1. ‖uσt ‖ = ‖u0‖.

2. ‖(uσt )+‖NL = ‖(u0)+‖NL.

3. ‖uσt ‖
2 = SH,L‖(u

σ
t )+‖

2
NL.

4. lim
R→∞

sup
σ∈Σ,t∈[0,1)

‖gσt − uσt ‖ = 0.

5. lim
R→∞

sup
σ∈Σ,t∈[0,1)

‖gσt ‖
2.2∗µ
NL = ‖uσt ‖

2.2∗µ
NL .

Proof. By trivial transformations, we can get first two properties uσt and since uσt is a

minimizer of SH,L therefore, third ones holds.

We have
∫

RN

|∇gσt −∇uσt |
2dx ≤ 2

∫

RN

|uσt (x)∇υR(x)|
2 dx+ 2

∫

RN

|∇uσt (x)υR(x)−∇uσt (x)|
2 dx

≤ C


R2

∫

B 1
2R

|uσt (x)|
2 dx+

∫

B 1
2R

|∇uσt (x)|
2 dx




+ C

(
1

R2

∫

B4R\B2R

|uσt (x)|
2 dx+

∫

RN\B2R

|∇uσt (x)|
2 dx

)
,

(5.1)

where Bα is a ball of radius α and center 0.

From the definition of uσt , we have

R2

∫

B 1
2R

|uσt (x)|
2 dx ≤ CR2

∫

B 1
2R

dx ≤
C

RN−2
,
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∫

B 1
2R

|∇uσt (x)|
2 dx ≤ C

∫

B 1
2R

|x− tσ| dx ≤ C

∫

B 1
2R

dx ≤
C

RN
,

1

R2

∫

B4R\B2R

|uσt (x)|
2 dx ≤

C

R2

∫

B4R\B2R

1

|x|2N−4
dx ≤

C

RN−2
,

∫

RN\B2R

|∇uσt (x)|
2 dx ≤ C

∫

RN\B2R

1

|x|2N−2
dx ≤

C

RN−2
.

Therefore, from (5.1) if R→ ∞ we get sup
σ∈Σ,t∈(0,1]

‖gσt − uσt ‖ → 0.

Next, we shall prove that

lim
R→∞

sup
σ∈Σ,t∈(0,1]

‖gσt ‖
2.2∗µ
NL = ‖uσt ‖

2.2∗µ
NL .

Consider

‖gσt ‖
2.2∗µ
NL − ‖uσt ‖

2.2∗µ
NL =

∫

RN

∫

RN

(υ
2∗µ
R (x)υ

2∗µ
R (y)− 1)|uσt (x)|

2∗µ |uσt (y)|
2∗µ

|x− y|µ
dxdy

≤ C

5∑

i=1

Ji,

where

J1 =

∫

B2R\B 1
2R

∫

B 1
2R

|uσt (x)|
2∗µ |uσt (y)|

2∗µ

|x− y|µ
dxdy,

J2 =

∫

B2R\B 1
2R

∫

RN\B2R

|uσt (x)|
2∗µ |uσt (y)|

2∗µ

|x− y|µ
dxdy,

J3 =

∫

B 1
2R

∫

B 1
2R

|uσt (x)|
2∗µ |uσt (y)|

2∗µ

|x− y|µ
dxdy,

J4 =

∫

B 1
2R

∫

RN\B2R

|uσt (x)|
2∗µ |uσt (y)|

2∗µ

|x− y|µ
dxdy,

J5 =

∫

RN\B2R

∫

RN\B2R

|uσt (x)|
2∗µ |uσt (y)|

2∗µ

|x− y|µ
dxdy.

By the Hardy–Littlewood–Sobolev inequality, we have the following estimates:

J1 ≤ C(N,µ)



∫

B 1
2R

(1− t)Ndx

((1− t)2 + |x− tσ|2)N




2N−µ
2N



∫

B2R\B 1
2R

(1− t)Ndx

((1− t)2 + |x− tσ|2)N




2N−µ
2N

≤ C



∫

B 1
2R

(1− t)N−2dx




2N−µ
2N

≤ C

(
1

2R

) 2N−µ
2

,
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J2 ≤ C(N,µ)



∫

B2R\B 1
2R

(1 − t)Ndx

((1− t)2 + |x− tσ|2)N




2N−µ
2N (∫

RN\B2R

(1− t)Ndx

((1 − t)2 + |x− tσ|2)N

) 2N−µ
2N

≤ C

(∫

RN\B2R

dx

|x− tσ|2N

)2N−µ
2N

≤ C

(∫

|y+tσ|≥2R

dy

|y|2N

) 2N−µ
2N

≤ C

(∫

|y|≥2R−1

dy

|y|2N

) 2N−µ
2N

≤ C

(
1

2R− 1

)2N−µ
2

,

J3 ≤ C(N,µ)



∫

B 1
2R

(1− t)Ndx

((1− t)2 + |x− tσ|2)N




2N−µ
N

≤ C



∫

B 1
2R

(1− t)N−2dx




2N−µ
N

≤ C

(
1

2R

)2N−µ

.

Using the same estimates as above we can easily obtain

J4 ≤ C

(
1

2R

) 2N−µ
2

and J5 ≤ C

(
1

2R− 1

)2N−µ

.

This implies that sup
σ∈Σ,t∈[0,1)

(
‖gσt ‖

2.2∗µ
NL − ‖uσt ‖

2.2∗µ
NL

)
→ 0 as R→ ∞ and completes the proof.

�

In order to proceed further we define the manifold M and the functions G : M → RN as

follows:

M =

{
u ∈ D1,2

0 (Ω)

∣∣∣∣
∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy = 1

}
, and G(u) =

∫

Ω
x|∇u|2 dx.

We also define SH,L(u,Ω) : D
1,2
0 (Ω)\{0} → R, SH,L : D1,2(RN )\{0} → R and τ : D1,2

0 (Ω) →

R as

SH,L(u,Ω) =

∫

Ω
|∇u|2dx

(∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy

) 1
2∗µ

, SH,L(u) =

∫

RN

|∇u|2dx

‖u+‖
2
NL

,

and τ(u) =

(∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy

) 1
2∗µ

.

Proposition 5.2 If SH,L(. ,Ω) ∈ C1(D1,2
0 (Ω) \ {0}) and S′

H,L(u,Ω) = 0 for u ∈ D1,2
0 (Ω)

then I ′(λu) = 0 for some λ > 0.
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Proof. Let w ∈ D1,2
0 (Ω) then

〈SH,L
′(u,Ω), w〉

=

2τ(u)

∫

Ω
∇u.∇w dx− 2‖u‖2τ(u)1−2∗µ

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ−2u+(y)w(y)

|x− y|µ
dxdy

τ(u)2
.

As S′
H,L(u,Ω)(w) = 0, it implies

τ(u)

∫

Ω
∇u.∇w dx = ‖u‖2τ(u)1−2∗µ

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ−2u+(y)w(y)

|x− y|µ
dxdy,

that is,

∫

Ω
∇u.∇w dx =

‖u‖2
∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ−2u+(y)w(y)

|x− y|µ
dxdy

∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy

.

Therefore, if we choose

λ2(2
∗
µ−1) =

‖u‖2
∫

Ω

∫

Ω

|u+(x)|
2∗µ |u+(y)|

2∗µ

|x− y|µ
dxdy

then we get I ′(λu) = 0. �

Proposition 5.3 Let {vn} ⊂ M be a Palais-Smale sequence for SH,L(. ,Ω) at level c.

Then un = λnvn, λn = (SH,L(vn,Ω))
N−2

2(N−µ+2) is a Palais-Smale sequence for I at level
N−µ+2
2(2N−µ)c

2N−µ
N−µ+2 .

Proof. By the calculations of Proposition 5.2 for any w ∈ D1,2
0 (Ω), we have

1

2
〈S′

H,L(vn,Ω), w〉 =

∫

Ω
∇vn.∇w dx

− λ
2(2∗µ−1)
n

∫

Ω

∫

Ω

|(vn)+(x)|
2∗µ |(vn)+(y)|

2∗µ−2(vn)+(y)w(y)

|x− y|µ
dxdy.

Now by multiplying the above equation by λn for any w ∈ D1,2
0 (Ω) we obtain

〈I ′(un), w〉 =

∫

Ω
∇un.∇w dx−

∫

Ω

∫

Ω

|(un)+(x)|
2∗µ |(un)+(y)|

2∗µ−2(un)+(y)w(y)

|x− y|µ
dxdy.

Since vn ∈ M, therefore λ2(2
∗
µ−1) = ‖vn‖

2 = SH,L(vn,Ω) that is, λn = SH,L(vn,Ω)
N−2

2(N−µ+2) .

From SH,L(vn,Ω) = c+o(1) we get λn is bounded. In particular, it follows that 〈I ′(λnvn), w〉 →

0 as n→ ∞. Also, we have un is bounded yields,

o(1) = 〈I ′(un), un〉 = ‖un‖
2 −

∫

Ω

∫

Ω

|(un)+(x)|
2∗µ |(un)+(y)|

2∗µ

|x− y|µ
dxdy.

All the above facts imply that

lim
n→∞

I(un) =
N − µ+ 2

2(2N − µ)
lim
n→∞

λ
2.2∗µ
n =

N − µ+ 2

2(2N − µ)
c

2N−µ
N−µ+2 .



Coron problem for Choquard equation 24

Remark 5.4 Since we proved I satisfies Palais-Smale condition in (β, 2β). Then SH,L(. ,Ω)

satisfies satisfies Palais-Smale condition in
(
SH,L, 2

N−µ+2
2N−µ SH,L

)
by using Proposition 5.2.

Lemma 5.5 If fσt (x) :=
gσt (x)

‖gσt ‖NL
and f0(x) :=

g0(x)

‖g0‖NL
then

lim
R→∞

SH,L(f
σ
t ,Ω) = SH,L(u

σ
t ) = SH,L,

uniformly with respect to σ ∈ Σ and t ∈ [0, 1).

Proof. This is a trivial consequence of Lemma 5.1. �

In particular, if R > 1 sufficiently large then we can achieve that

sup
σ,t

(fσt ,Ω) < S1 < 2
N−µ+2
2N−µ SH,L for some S1 ∈ R.

Proof of Theorem 1.1 completed. As we have established, SH,L(. ,Ω) satisfies Palais-

Smale at level α on M for α ∈
(
SH,L, 2

N−µ+2
2N−µ SH,L

)
. We will argue by contradiction.

If SH,L(. ,Ω) does not admit a critical value in this range. By the deformation lemma

(see A. Bonnet [6, Theorem 2.5]) for any α ∈
(
SH,L, 2

N−µ+2
2N−µ SH,L

)
there exist δ > 0

and an onto homeomorphism function ψ : M → M such that ψ(Mα+δ) ⊂ Mα−δ where

Mα = {u ∈ M ; SH,L(u,Ω) < α}. For a given fixed ε > 0 we can cover the interval

[SH,L + ε, S1] by finitely many such δ− intervals and composing the deformation maps we

get an onto homeomorphism function ψ : M → M such that ψ(MS1) ⊂ MSH,L+ε. Also,

we can assume ψ(u) = u for all u whenever SH,L(u,Ω) ≤ SH,L + ε/2.

By the concentration-compactness lemma (see [14]) and Lemma 1.2 of [13], for any sequence

{um} ∈ MSH,L+
1
m

there exists a subsequence and x(0) ∈ Ω such that

(∫

Ω

|(um)+(y)|
2∗µ

|x− y|µ
dy

)
|(um)+|

2∗µdx ⇁ δx(0) , |∇um|2dx ⇁ SH,Lδx(0)

weakly in the sense of measure. This implies given any neighbourhood V of Ω, there exists

a ε > 0 such that G(MSH,L+ε) ⊂ V .

Since Ω is a smooth bounded domain, therefore we can find a neighbourhood V of Ω

such that for any q ∈ V there exits a unique nearest neighbour r = π(q) ∈ Ω such that the

projection π is continuous. Let ε be chosen for such a neighbourhood V , and let ψ : M → M

be the corresponding onto homeomorphism. Define the map D : Σ× [0, 1] → Ω given by

D(σ, t) = π (G(ψ(fσt ))

It is easy to see that D is well-defined, continuous and satisfies

D(σ, 0) = π (G(ψ(f0))) =: y0 ∈ Ω and D(σ, 1) = σ for all σ ∈ Σ.
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This implies that D is a contraction of Σ in Ω contradicting the hypothesis of Ω. Hence, our

assumption is wrong implies that SH,L(. ,Ω) has a critical value that means there exits a u ∈

D1,2
0 (Ω) such that u is a solution to problem (P ). Now, using same arguments and assertions

as in [24, Proposition 3.1], we have u ∈ L∞(Ω). It implies that | − ∆u| ≤ C(1 + |u|2
∗−1)

and from standard elliptic regularity we have u ∈ C2(Ω). Thus, by the maximum principle,

u is a positive solution of the problem (P ). Hence the proof of Theorem 1.1 is complete. �
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