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AN APPROXIMATION THEOREM OF RUNGE TYPE FOR

KERNELS OF CERTAIN NON-ELLIPTIC PARTIAL

DIFFERENTIAL OPERATORS
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Abstract. For a constant coefficient partial differential operator P (D) with
a single characteristic direction, such as the time-dependent free Schrödinger
operator as well as non-degenerate parabolic differential operators like the heat
operator, we characterize when open subsets X1 ⊆ X2 of Rd form a P -Runge
pair. The presented condition does not require any kind of regularity of the
boundaries of X1 nor X2. As part of our result we prove that for a large class
of non-elliptic operators P (D) there are smooth solutions u of the equation
P (D)u = 0 on Rd with support contained in an arbitarily narrow slab bounded
by two parallel characteristic hyperplanes for P (D).
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1. Introduction

From Runge’s classical theorem on rational approximation it follows that for
open subsets X1 ⊆ X2 of the complex plane C every function holomorphic in X1

can be approximated uniformly on compact subsets of X1 by functions which are
holomorphic in X2 if and only if C\X1 has no compact connected component which
is contained inX2. This approximation theorem has been generalized independently
by Lax [17] and Malgrange [18] from holomorphic functions, i.e. functions in the
kernel of the Cauchy-Riemann operator, to kernels of elliptic constant coefficient
partial differential operators P (D) and has been generalized further to kernels of
elliptic differential operators with variable coefficients by Browder [1]. Since then,
very little improvement has been achieved in generalizing these approximation re-
sults to kernels of non-elliptic linear partial differential operators. The analogue
approximation problem for the kernel of the heat operator with open subsets X1

and X2 of Rd has been investigated by Jones for the special case of X2 = R
d [10]

and by Diaz [2] for arbitrary X2. However, as noted in [5, page 359] the proof
of the result in [2] contains a gap. Recently, the sufficiency part of Jones’ result,
i.e. the case of X2 = Rd, has been generalized to parabolic differential operators
of second order with suitable variable coefficients in [3] where also a quantitative
approximation result has been obtained for the heat equation, together with some
applications.

The aim of the present paper is to give an approximation result of Runge type
for kernels of constant coefficient linear partial differential operators P (D) with a

This is a preprint version of T. Kalmes, An approximation theorem of Runge type
for kernels of certain non-elliptic partial differential operators, Bull. Sci. math. (2021),
https://doi.org/10.1016/j.bulsci.2021.103012.
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single characteristic direction, i.e. the real zeros of the principal part of the polyno-
mial P form a one dimensional subspace of Rd. This class of differential operators
includes, among others, the time dependent free Schrödinger operator as well as
non-degenerate parabolic operators like the heat operator. Since the class of consid-
ered partial differential operators does not consist only of hypoelliptic operators, we
consider the approximation problem for the kernels of the differential operator both
in the space of smooth functions as well as in the space of distributions which are
equipped with the topology of local uniform convergence of all partial derivatives
and with the strong dual topology, respectively. For P (D) with a single charac-
teristic direction, we present a sufficient condition for approximability, both in the
smooth setting as well as in the distributional setting, for open subsets X1 ⊆ X2

for which P (D) is surjective both on C∞(X1) and C∞(X2), see Theorems 1 - it
should be noted that for such operators P (D) a geometric characterization of those
open subsets X ⊆ Rd for which P (D) is surjective on C∞(X) was recently given in
[15] so that our result can be easily evaluated. Moreover, for a large class of non-
elliptic differential operators we show in Theorem 2 that the presented sufficient
condition is also necessary for approximability in the distributional setting. As a
consequence, for certain differential operators with a single characteristic direction,
we obtain on the one hand a complete geometric characterization of the open sub-
sets X ⊆ R

d for which distributional zero solutions on X can be approximated by
global zero solutions (Corollary 3) and on the other hand, for the particular case of
non-degenerate parabolic operators, we explicitly derive in Corollary 4 a character-
ization of approximability for tubular domains which are the most natural domains
with respect to concrete applications and for which the evaluation of the condition is
particularly satisfactory. Moreover, in order to prove the necessity of our condition,
we prove for a large class of non-elliptic differential operators P (D) the existence of
a non-trivial u ∈ C∞(Rd) satisfying P (D)u = 0 in Rd and with support contained
in an arbitrarily narrow slab bounded by two parallel characteristic hyperplanes,
see Theorem 5. The latter is achieved by applying an idea of Langenbruch from
[16] to the function u ∈ C∞(Rd) satisfying P (D)u = 0 with support equal to a
characteristic half space constructed by Hörmander in [8, Theorem 8.6.7].

The article is organized as follows. In section 2 we formulate our main results
after presenting the framework in which we consider the approximation problem.
Section 3 is devoted to the technical proof of a sufficient condition for approx-
imability for pairs of sets X1 and X2 for which P (D) is surjective on C∞(X1) and
C∞(X2) and when P (D) has a single characteristic direction. In section 5 we prove
under suitable hypothesis on P (D) the existence of a non-trivial smooth function
u satisfying P (D)u = 0 as well as the above stated support condition. This is done
after we have collected some results about the explicit solution to the homogeneous
Cauchy problem for P (D) on a non-characteristic hyperplane in section 4. Finally,
in section 6 we will then provide the proofs of the necessity of the condition together
with the characterization of pairs of tubular domains admitting the approximation
result for non-degenerate parabolic operators as well as the characterization of those
X allowing distributional approximability by global solutions.

Throughout, we use standard notation from the theory of partial differential
operators, see e.g. [8], [9], and functional analysis, see e.g. [19].

2. Statement of the main results

Since the proofs of our results are quite technical, we prefer to state the main
results of this article in this section which may make the reader more willing to study
their proofs. Throughout the paper, P denotes a non-constant polynomial with
complex coefficients in d ≥ 2 variables of degree m. Recall that a hyperplane H =
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{x ∈ Rd; 〈x,N〉 = c} in Rd, whereN ∈ Rd\{0} and c ∈ R, is called characteristic for
P if Pm(N) = 0. We then call span{N} a characteristic direction for P . Moreover,
we assume further that there is ξ ∈ Rd orthogonal to N which is not characteristic
for P . Without loss of generality we assume N = e1 = (δk,1)1≤k≤d ∈ R

d (Kronecker
δ) and ξ = ed and we write

P (x1, . . . , xd) =

m
∑

k=0

Qk(x1, . . . , xd−1)x
k
d

with Qk ∈ C[X1, . . . , Xd−1], 0 ≤ k ≤ m. Since P is of degree m, it follows that the
degree of Qk is bounded by m−k and since ed is supposed to be non-characteristic
we have Qm = c ∈ C\{0}.

For an open subset X ⊆ Rd we define

EP (X) := {u ∈ C∞(X); P (D)u = 0 in X}

and

D
′
P (X) := {u ∈ D

′(X); P (D)u = 0 in X},

where for P (x) =
∑

|α|≤m aαx
α we set as usual P (D)u =

∑

|α|≤m aα(−i)|α|∂αu, u ∈

D
′(X), and we denote by Pm(x) :=

∑

|α|=m aαx
α, resp. by Pm(D), the principal

part of P , resp. of P (D).
We equip C∞(X) with its usual Fréchet space topology, i.e. the topology of

uniform convergence on compact subsets of X of all partial derivatives which is
induced by the family of seminorms {‖ · ‖K,l; K ⊆ X compact, l ∈ N0}

∀K ⊆ X compact, l ∈ N0, u ∈ C∞(X) : ‖u‖K,l := max
x∈K

max
|α|≤l

|∂αu(x)|

and we denote by E (X) the space C∞(X) equipped with this Fréchet space topol-
ogy. Then P (D) is a continuous linear self mapping on E (X) and thus, as a closed
subspace of E (X), the space EP (X) is a Fréchet space. Moreover, we endow D ′

P (X)
with the relative topology of D

′(X) which is equipped with the strong dual topology
as the topological dual of D(X).

For hypoelliptic polynomials P - by definition - for every open X ⊆ Rd the
spaces EP (X) and D ′

P (X) coincide algebraically (that is, every distribution u on
X which satisfies P (D)u = 0 in X is already a smooth function). By a result of
Malgrange the spaces EP (X) and D ′

P (X) also coincide as locally convex spaces.
This implies in particular, that for hypoelliptic polynomials the topology on EP (X)
coincides with the compact-open topology, i.e. the topology of uniform convergence
on compact subsets of X . For further results about linear topological properties of
D ′

P (X) for arbitrary P we refer the reader to [22]. Moreover, for the special case of
a hypoelliptic P with a single characteristic direction, it has recently be shown in
[15, Theorem 18] that, contrary to arbitrary hypoelliptic operators [13], the kernel
of such operators over sets which are P -convex for supports automatically have
property (Ω), so that these kernels are (topologically isomorphic to) a quotient
spaces of s, the space of rapidly decreasing sequences [19, Proposition 31.6].

A pair of open subsets X1 ⊆ X2 of R
d is called a P -Runge pair if the (continuous

linear) restriction map

rE : EP (X2) → EP (X1), u 7→ u|X1

has dense range. Since elliptic polynomials (i.e. Pm(x) 6= 0 for all x ∈ Rd\{0}) are
hypoelliptic, the Lax-Malgrange Theorem mentioned in the introduction may then
be rephrased as follows: X1 ⊆ X2 are a P -Runge pair if and only if Rd\X1 has no
compact connected component which is contained in X2. Moreover, the particular
example of the Cauchy-Riemann operator P (D) = 1

2 (∂1 + i∂2) gives as EP (X) the
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space of holomorphic functions H(X) equipped with the compact open topology
over X ⊆ C open.

Recall that P (D) is surjective on E (X) if and only if X is P -convex for supports
(see [9, Section 10.6]), i.e. if and only if

∀ϕ ∈ D(X) : dist (suppϕ,Rd\X) = dist (supp P̌ (D)ϕ,Rd\X),

where P̌ (ξ) := P (−ξ) and where dist refers to the euclidean distance. It is well
known that for elliptic P every open subset X of Rd is P -convex for supports, see
e.g. [9, Corollary 10.8.2]. While in general P -convexity for supports is necessary
for surjectivity of P (D) on D ′(X) (see e.g. [9, Theorem 10.6.6]) it is not sufficient.
However, for d = 2 P -convexity for supports of X ⊆ R2 already implies surjectivity
on D ′(X), as was recently shown in [12] (see also [11]).

Our first result gives a sufficient condition for the P -Runge pairs consisting of
sets which are P -convex for supports for polynomials P with a single characteristic
direction.

Theorem 1. Let P ∈ C[X1, . . . , Xd], d ≥ 2, be of degree m such that {x ∈
Rd; Pm(x) = 0} = span{e1}. Moreover, let X1 ⊆ X2 ⊆ Rd be open and P -convex
for supports. Then, among the following, i) and ii) are equivalent and follow from

iii), where

i) X1 and X2 is a P -Runge pair.

ii) The restriction map rD′ : D ′
P (X2) → D ′

P (X1), u 7→ u|X1
has dense range.

iii) There is no characteristic hyperplane Hc = {x ∈ Rd; x1 = c}, c ∈ R, for

P (D) such that X2 contains a compact connected component of (Rd\X1)∩
Hc.

The proof of Theorem 1 is given in Section 3 below. A geometric characterization
of P -convexity for supports for polynomials with a single characteristic direction
was recently given in [15], see also Theorem 7 below.

The sufficient condition for P -Runge pairs from Theorem 1 turns out to be
necessary for the restriction map rD′ : D ′(X2) → D ′(X1) to have dense range for
arbitrary open subsets X1 ⊆ X2 ⊆ Rd and non-elliptic P of degree m under a mild
additional property. More precisely, we have the following theorem whose proof is
given in Section 6

Theorem 2. Let P ∈ C[X1, . . . , Xd], d ≥ 2, be of degree m such that e1 is charac-

teristic for P while ed is not. Moreover, assume that

∀x ∈ R
d : P (x1, . . . , xd) =

m
∑

k=0

Qk(x1, . . . , xd−1)x
k
d ,

with Qk ∈ C[X1, . . . , Xd−1] satisfying degx1
(Qk) < m− k for every 0 ≤ k ≤ m− 1,

where degx1
Qk denotes the degree of the x1-variable of Qk.

Let X1 ⊆ X2 ⊆ R
d be open such that the restriction map

rD′ : D
′
P (X2) → D

′
P (X1), u 7→ u|X1

has dense range. Then there is no characteristic hyperplane Hc = {x ∈ Rd; x1 =
c}, c ∈ R, of P (D) such that X2 contains a compact connected component of

(Rd\X1) ∩Hc.

Clearly, combining Theorems 1 and 2, for polynomials P with single character-
istic direction span{e1} which also satisfy the mild additional hypothesis of the
latter theorem, we obtain a geometric characterization of the P -Runge pairs of
subsets X1 ⊆ X2 ⊆ Rd which are both P -convex for supports. We leave it to
the reader to explicitly state this combination of Theorems 1 and 2. Instead, we
prefer to illustrate the applicability of our results for two particular cases. In the
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first case, we consider approximability by solutions defined on the whole space,
and the second application is to the time dependent free Schrödinger operator
P (D) = i ∂

∂t +∆x as well as non-degenerate parabolic operators like the heat oper-

ator P (D) = ∂
∂t −∆x on tubular domains which from the point of view of concrete

problems are the most important ones and for which the evaluation of the geomet-
ric condition stated in Theorem 1 is particularly nice. As usual, in this context we
denote elements of Rn+1 by (t, x) with t ∈ R and x ∈ Rn. (Thus, d = n + 1 with
n spatial variables and one time variable.) Recall that for an elliptic polynomial
Q ∈ C[X1, . . . , Xn] of degree m > 1 with real coefficients in its principal part, the
polynomial P (t, x) := (−it)r −Q(x), r ∈ N, r < m odd, is semi-elliptic so that the
operator P (D) = ∂rt −Q(Dx) is hypoelliptic (see e.g. [9, Theorem 11.1.11]). The
special case r = 1 yields a non-degenerate parabolic operator.

For the special case of the heat operator, the next result is Jones’ Approximation
Theorem [10] cited in the introduction. Clearly, for hypoelliptic P we obtain a
characterization of the open subsets X ⊆ Rd for which (X,Rd) is a P -Runge pair.

Corollary 3. Let P ∈ C[X1, . . . , Xd], d ≥ 2, be a polynomial of degree m such that

e1 is characteristic for P while ed is not. Moreover, assume that

∀x ∈ R
d : P (x1, . . . , xd) =

m
∑

k=0

Qk(x1, . . . , xd−1)x
k
d ,

with Qk ∈ C[X1, . . . , Xd−1] satisfying degx1
(Qk) < m− k for every 0 ≤ k ≤ m− 1.

Then, for an open subset X ⊆ Rd, the following conditions are equivalent and imply

that (X,Rd) is a P -Runge pair.

i) rD′ : D ′
P (R

d) → D ′
P (X) has dense range.

ii) There is no c ∈ R such that with Hc = {x ∈ Rd; x1 = c} the set (Rd\X)∩Hc

has a compact connected component.

The proof of the previous corollary will be given in Section 6 as will be the proof
of the next one.

Corollary 4. Let I1 ⊆ I2 ⊆ R and X1 ⊆ X2 ⊆ Rn be open. Then the following

hold.

i) Let Q ∈ C[X1, . . . , Xn] be an elliptic polynomial of degree m > 1 with real

coefficients in its principal part and let r ∈ N be odd with r < m. Every

solution u of the partial differential equation

∂rt u−Q(Dx)u = 0 in I1 ×X1

is the local uniform limit in I1 ×X1 of a sequence of solutions of the same

differential equation in I2×X2 if and only if Rn\X1 does not have a compact

connected component contained in X2.

ii) Every smooth solution, resp. distributional solution u of the time-dependent

free Schrödinger equation

i ∂tu+∆xu = 0 in I1 ×X1

is the limit in E (I1×X1), resp. in D ′(I1×X1), of a sequence of solutions in

E (I2×X2), resp. a net of solutions in D ′(I2×X2), of the same differential

equation in I2×X2 if and only if Rn\X1 does not have a compact connected

component contained in X2.

For an application of the above characterization of P -Runge pairs, see [14, Sec-
tion 4].

The proof of Theorem 2 uses the following result which is of independent interest.
As is well-known, see e.g. [8, Theorem 8.6.7], if P is a polynomial with characteristic
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vector e1, there is u ∈ EP (R
d) with suppu = {x ∈ Rd; x1 ≤ 0}. Under the mild

additional assumptions on P from Theorem 2 we show that there is u ∈ EP (R
d)\{0}

whose support is bounded with respect to x1. More precisely, the following is true.

Theorem 5. Let P ∈ C[X1, . . . , Xd], d ≥ 2, be of degree m and such that e1 is

characteristic for P while ed is not. Assume that

P (x1, . . . , xd) =
m
∑

j=0

Qj(x1, . . . , xd−1)x
j
d

with Qk ∈ C[X1, . . . , Xd−1] such that degx1
(Qk) < m − k for all 0 ≤ k ≤ m − 1.

Then, for every a > 0 and ε ∈ (0, a) there is u ∈ EP (R
d) such that

[−a,−ε]× R
d−1 ⊆ supp u ⊆ [−(a+ ε), 0]× R

d−1

and the restriction of u to (−a,−ε)× Rd−1 is real analytic.

The proof of the above theorem is given in Section 5. Our strategy of the proof
is to combine an idea due to Langenbruch from [16], where for certain partial differ-
ential operators fundamental solutions with partially bounded supports have been
constructed, with Hörmander’s construction of a function v ∈ E (Rd) which satisfies
P (D)v = 0 and supp v = {x ∈ Rd; x1 ≤ 0}. This approach uses a power series
ansatz to solve the homogeneous Cauchy problem P (D)u = 0 with Cauchy data

on the non-characteristic hyperplane {x ∈ Rd; xd = 0}, Dj
du(x1, . . . , xd−1, 0) =

g(x1)D
j
dv(x1, . . . , xd−1, 0), 0 ≤ j ≤ m− 1, for a suitable cut-off function g. We col-

lect the necessary results on the Cauchy problem we shall employ to prove Theorem
5 in section 4.

3. Proofs of Theorem 1

In this section we prove Theorem 1. The proof uses the following general ap-
proximation result for kernels of differential operators. The equivalence of ii) and
iv) is due to Trèves [21, Theorem 26.1] which should be compared to a result due to
Malgrange [18] (see also [9, Theorem 10.5.2]). A generalization of this equivalence
to the ultradifferentiable setting has been achieved by Wiechert [23, Satz 15].

Theorem 6. Let P ∈ C[X1, . . . , Xd]\{0} and let X1 ⊆ X2 ⊆ Rd be open sets such

that X2 is P -convex for supports. Then the following are equivalent.

i) X1 is P -convex for supports and the restriction map

rD′ : D
′
P (X2) → D

′
P (X1), u 7→ u|X1

has dense range.

ii) X1 is P -convex for supports and the restriction map

rE : EP (X2) → EP (X1), f 7→ f|X1

has dense range, i.e. X1 and X2 form a P -Runge pair.

iii) For every u ∈ E ′(X2) with supp P̌ (D)u ⊆ X1 it holds suppu ⊆ X1.

iv) For every ϕ ∈ D(X2) with supp P̌ (D)ϕ ⊆ X1 it holds suppϕ ⊆ X1.

As does the proof of Wiechert’s generalization to Trèves’ Theorem in [23], the
proof of one implication not covered by Trèves’ Theorem will be based on Grothendieck-
Köthe duality, see [6]. We recall some facts of this theory for the reader’s conve-
nience.

For X ⊆ Rd open and P -convex for supports, the topological dual space of
EP (X) is isomorphic to a space of certain distributional solutions u of the equation
P̌ (D)u = 0 outside a compact subset of X which may depend on u. More precisely,
recall that for a compact K ⊆ Rd an essential extension of u ∈ D ′(Rd\K) is a
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distribution U ∈ D ′(Rd) for which u|Rd\L = U|Rd\L for some compact L ⊇ K.

Multiplying u with a smooth function having support in Rd\K which is equal to
1 outside a compact superset of K shows that every u ∈ D

′(Rd\K) has essential
extensions. For u ∈ D ′

P̌
(Rd\K) and any essential extension U we have P̌ (D)U ∈

E
′(Rd) so that E ∗ P̌ (D)U is defined, where E is a fixed fundamental solution of

P̌ (D). Then u ∈ D ′
P̌
(Rd\K) is called regular at infinity (with respect to E) if for

one (and then every) of its essential extensions U it holds E ∗ P̌ (D)U = U . We set

RD
′
P̌
(Rd\K) := {u ∈ D

′
P̌
(Rd\K) : u regular at infinity with respect to E},

REP̌ (R
d\K) := RD

′
P̌
(Rd\K) ∩ E (Rd\K).

Then RD ′
P̌
(Rd\K) and REP̌ (R

d\K) are closed subspaces of D ′(Rd\K) and of

E (Rd\K), respectively. With these spaces we define

RD
′
P̌
(Xc) := ∪K⊆X compactRD

′
P̌
(Rd\K) = lim

−→
K⊆X compact

RD
′
P̌
(Rd\K),

REP̌ (X
c) := ∪K⊆X compactREP̌ (R

d\K) = lim
−→

K⊆X compact
REP̌ (R

d\K).

Then, in case X is P -convex for supports, it follows that RD ′
P̌
(Xc) equipped with

the inductive limit topology and the dual space EP (X)′ of EP (X) equipped with
the strong topology are topologically isomorphic via

(1) Φ : RD
′
P̌
(Xc) → EP (X)′, 〈Φ(u), f〉 := 〈P̌ (D)(ψu), f〉,

where the duality bracket on the right hand side denotes the usual duality between
E ′(X) and E (X). Here for u ∈ D ′

P̌
(Rd\K) the function ψ ∈ E (Rd) is arbitrary

as long as ψ vanishes in a neighborhood of K and is equal to 1 outside a compact
subset L ⊆ X . It should be noted that P̌ (D)(ψu) has compact support but usually
ψu does not.

Moreover, again in case X is P -convex for supports, equipping REP̌ (X
c) with

the inductive limit topology and the dual space D ′
P (X)′ of D ′

P (X) with the strong
topology

Ψ : REP̌ (X
c) → D

′
P (X)′, 〈Ψ(f), u〉 := 〈P̌ (D)(ψf), u〉

is a topological isomorphism, where the duality bracket on the right hand side de-
notes the usual duality between D(X) and D ′(X) and where again ψ ∈ E (Rd) is
as above.

Proof of Theorem 6. For the equivalence of ii) and iii), see [21, Theorem 26.1].
We first show that i) implies iv). Fix ϕ ∈ D(X2) with supp P̌ (D)ϕ ⊆ X1, i.e.
P̌ (D)ϕ ∈ D(X1). For every u ∈ D ′

P (X2) we have

〈P̌ (D)ϕ, rD′(u)〉 = 〈P̌ (D)ϕ, u〉 = 〈ϕ, P (D)u〉 = 0.

Thus, P̌ (D)ϕ vanishes on the range of rD′ which is dense in D ′
P (X1) by hypothesis,

so that P̌ (D)ϕ|D′
P
(X1) = 0. Since X1 is P -convex for supports, a result of Floret [4,

page 232] ensures that P̌ (D)
(

D(X1)
)

is closed in D(X1). Therefore, for the polar
of D ′

P (X1) with respect to the dual pair (D(X1),D
′(X1)) we have

D
′
P (X1)

◦ = P̌ (D)
(

D(X1)
)D(X1)

= P̌ (D)
(

D(X1)
)

.

Since the dual space of D ′
P (X1) is canonically isomorphic to the quotient space

D(X1)/D
′
P (X1)

◦ = D(X1)/P̌ (D)
(

D(X1)
)

,
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P̌ (D)ϕ|D′
P
(X1) = 0 implies P̌ (D)ϕ ∈ P̌ (D)(D(X1)), i.e. there is u ∈ D(X1) with

P̌ (D)ϕ = P̌ (D)u. Since P̌ (D) is injective on D(Rd) we conclude ϕ = u and thus
suppϕ ⊆ X1.

Next, we show that iv) implies iii). Let u ∈ E ′(X2) with P̌ (D)u ⊆ X1. Let
φ ∈ D(Rd) be non-negative with support contained in the open unit ball about
the origin and

∫

φ(x)dx = 1. With φε(x) := ε−dφ(x/ε) it holds that v ∗ φε → v in

E ′(Rd) as ε→ 0 with v∗φε ∈ D
(

supp v+B(0, ε)
)

, v ∈ E ′(Rd). Since P̌ (D)
(

u∗φε
)

=

P̌ (D)u ∗ φε, iii) follows from iv). Trivially, iii) implies iv).
In order to finish the proof, it remains to show that ii) implies i). If ii) holds we

only have to show that the transposed of the restriction rD′ is injective. Since X1

and X2 are P -convex for supports, due to the Grothendieck-Köthe duality, this is
equivalent to the injectivity of the inclusion

jE : REP̌ (X
c
1) →֒ REP̌ (X

c
2), f 7→ f.

But ii) implies the injectivity of

jD′ : RD
′
P̌
(Xc

1) →֒ RD
′
P̌
(Xc

2), u 7→ u

and since jD′|REP̌ (Xc
1
) = jE , i) follows. This completes the proof. �

Apart from Theorem 6 the recent geometrical characterization of P -convexity
for supports for polynomials with a single characteristic direction obtained in [15]
will be needed to prove the sufficiency of iii) for i) and ii) in Theorem 1. Recall that
a real valued continuous function f on an open subset X of Rd is said to satisfy
the minimum principle in a closed set F of Rd if for every compact set K ⊆ F ∩X
it holds

min
x∈K

f(x) = min
x∈∂FK

f(x),

where ∂FK is the boundary of K as a subset of F . Combining [15, Corollary 5]
and [15, Lemma 4] we have the following.

Theorem 7. Let P ∈ C[X1, . . . , Xd], d ≥ 2, have a single characteristic direction.

For X ⊆ Rd open let

dX : X → R, dX(x) := inf{|x− y|; y ∈ R
d\X}.

Then the following are equivalent.

i) X is P -convex for supports.

ii) dX satisfies the minimum principle in every characteristic hyperplane for

P .
iii) For each compact subset K ⊆ X and every

x ∈ {y ∈ X ; dX(y) < dist (K,Xc)}

there is γ : [0,∞) → X a continuous and piecewise continuously differen-

tiable curve with γ(0) = x, γ′(t) ∈ {y ∈ R
d; Pm(y) = 0}⊥ whenever γ is

differentiable in t, and γ([0,∞)) ∩K = ∅ such that

lim inf
t→∞

dist (γ(t), ∂∞X) = 0,

where ∂∞X denotes the boundary of X in the one point compactification of

Rd.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. By Theorem 6, i) and ii) are equivalent. Thus, it remains to
show that iii) implies i) and ii). In order to do so, we will apply Theorem 6.

We denote by W the orthogonal complement in Rd of the one dimensional sub-
space {x ∈ Rd; Pm(x) = 0}. Then, every characteristic hyperplane for P is of the
form x +W with x ∈ Rd. For X ⊆ Rd we denote by ∂∞X the boundary of X in
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the one-point compactification of Rd, thus ∞ ∈ ∂∞X whenever X is an unbounded
subset of Rd. For y, z ∈ Rd we denote by [y, z] the convex hull of {y, z}.

In view of Theorem 6 we have to show that suppϕ ⊆ X1 for every ϕ ∈ D(X2)
with supp P̌ (D)ϕ ⊆ X1. Thus, let ϕ ∈ D(X2) be such that K := supp P̌ (D)ϕ ⊆
X1. Moreover, we fix

x ∈ {y ∈ X1; dist (y,X
c
1) < dist (K,Xc

1)}.

We shall show that there is a continuous and piecewise continuously differentiable
curve α : [0,∞) → X2 satisfying

α 1) α(0) = x,
α 2) α([0,∞)) ∩K = ∅,
α 3) limt→∞ dist (α(t), ∂∞X2) = 0,
α 4) α′(t) ∈W for every t ∈ [0,∞) where α is continuously differentiable.

Before we prove that such a curve α exists, let us show how the theorem follows
from this. Because suppϕ is a compact subset of X2 it follows from α 3) that
there is T > 0 with α(T ) /∈ suppϕ. Moreover, using α 2) we can find ε > 0 such
that the open ball B(α(T ), ε) of radius ε about α(T ) does not intersect suppϕ,
α([0, T ])+B(0, ε) ⊆ X2 andK∩(α([0, T ])+B(0, ε)) = ∅, where α([0, T ])+B(0, ε) =
{y + z; y ∈ α([0, T ]), z ∈ B(0, ε)}.

Next, we choose 0 = t0 < t1 < . . . < tk = T such that for each j = 1, . . . , k the
restriction of α to [tj−1, tj] is continuously differentiable and

∣

∣

∣

∣

∣

∫ tj

tj−1

α′(t)dt

∣

∣

∣

∣

∣

<
ε

2
.

We define

f : [0, k] → R
d, s 7→ α

(

t⌊s⌋
)

+ (s− ⌊s⌋)

∫ t⌊s⌋+1

t⌊s⌋

α′(t)dt,

where ⌊s⌋ denotes the integer part of s. Then f is a polygonal curve in x +W by
α 1) and α 4). Obviously, f([j − 1, j]) = [α(tj−1), α(tj)], j = 1, . . . , k. Moreover,
due to the choice of ε, we have f([0, k]) +B(0, ε2 ) ⊆ X2\K.

For N ∈ {y ∈ R
d; Pm(y) = 0}\{0} and c ∈ R let

HN,c = {y ∈ R
d; 〈y,N〉 = c}

be the corresponding characteristic hyperplane for P . Since [α(tk−1), α(T )] ⊆ x+W
and N ∈ W⊥ it follows that HN,c intersects B(α(T ), ε) whenever HN,c intersects
[α(tk−1), α(T )] + B(0, ε). By the choice of ε we have ϕ|B(α(T ),ε) = 0 so that by [8,
Theorem 8.6.8] ϕ vanishes in [α(tk−1), α(T )] +B(0, ε).

Repetition of this argument yields that ϕ vanishes in f([0, k]) +B(0, ε), in par-
ticular x = α(0) = f(0) does not belong to suppϕ. Since x was chosen arbitrarily
from the set

{y ∈ X1; dist (y,X
c
1) < dist (K,Xc

1)}

we conclude with the aid of the Theorem of Supports (see e.g. [8, Theorem 7.3.2]),
which states that the convex hulls of suppϕ and supp P̌ (D)ϕ = K coincide,

suppϕ ⊆
(

{y ∈ X1; dist (y,X
c
1) ≥ dist (K,Xc

1)} ∩ chK
)

∪
(

(X2\X1) ∩ suppϕ
)

,

where chK denotes the convex hull of K. Setting

L1 := {y ∈ X1; dist (y,X
c
1) ≥ dist (K,Xc

1)} ∩ chK

and L2 =: (X2\X1) ∩ suppϕ, L1 and L2 are disjoint compact subsets of X2 with
L1 ⊆ X1. Since suppϕ ⊆ L1∪L2 we can decompose ϕ = ϕ1+ϕ2 with ϕ1 ∈ D(X1)
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and ϕ2 ∈ D(X2\X1). Because P̌ (D)ϕ1, P̌ (D)ϕ ∈ D(X1) it follows

P̌ (D)ϕ2 = P̌ (D)(ϕ − ϕ1) ∈ D(X2\X1) ∩ D(X1) = {0}

which together with the injectivity of P̌ (D) on D(Rd) implies ϕ2 = 0. This finally
yields ϕ = ϕ1 ∈ D(X1) so that Theorem 6 gives the desired result once the existence
of the curve α is verified.

We denote by C the connected component of (X1\K)∩ (x+W ) which contains
x. As an open subset of the pathwise connected set x +W the set C is locally
pathwise connected (and connected) hence pathwise connected.

We precede by distinguishing two cases. First, let us assume that C is un-
bounded. Since C is pathwise connected there is a continuous piecewise continu-
ously differentiable curve α̃ : [0,∞) → C such that α̃(0) = x and limt→∞ |α̃(t)| =
∞. With this α̃ one easily constructs a curve α as desired, taking into account that
C ⊆ (x+W ) implies α̃′(t) ∈ W for every t where α̃ is differentiable.

Next, let us assume that C is bounded. Since X1 is assumed to be P -convex for
supports it follows from [15, Lemma 4, Corollary 5], see Theorem 7 above, that there
is a continuous and piecewise continuously differentiable curve γ : [0,∞) → X1

satisfying

i) γ(0) = x,
ii) γ([0,∞)) ∩K = ∅,
iii) γ′(t) ∈ W for each t where γ is differentiable,
iv) lim inft→∞ dist (γ(t), ∂∞X1) = 0.

From properties i)-iii) of γ it follows that γ([0,∞)) ⊆ (X1\K) ∩ (x+W ) implying
γ([0,∞)) ⊆ C. Since we assumed C to be bounded, property iv) of γ yields in fact

iv’) lim inft→∞ dist (γ(t), ∂X1) = 0.

Let ξ ∈ ∂X1 and (tn)n∈N be a strictly increasing sequence in [0,∞) tending to
infinity such that limn→∞ γ(tn) = ξ. From γ([0,∞)) ⊆ x +W we conclude ξ ∈
x +W . Next, let ε > 0 be such that B[ξ, ε], the closed ball in Rd about ξ with
radius ε, does not intersect K. We choose T > 0 such that γ(T ) ∈ B(ξ, ε), the
open ε-ball in R

d about ξ, and we set

I := {λ ∈ [0, 1]; (1 − λ)γ(T ) + λξ ∈ ∂X1}.

Then 1 ∈ I and

∀λ ∈ I : (1 − λ)γ(T ) + λξ ∈ B(ξ, ε) ∩ (x+W ).

From γ(T ) ∈ X1 it follows
λ0 := inf I > 0.

Moreover
ξ0 := (1− λ0)γ(T ) + λ0ξ ∈ ∂X1

as well as

∀λ ∈ [0, λ0) : (1− λ)γ(T ) + λξ ∈ X1 ∩B(ξ, ε) ∩ (x+W ) ⊆ (X1\K) ∩ (x+W ).

Then

γ̃ : [0, T + λ0] →
(

(X1\K) ∪ {ξ0}
)

∩
(

x+W
)

,

γ̃(t) :=

{

γ(t), t ≤ T,
(

1− (t− T )
)

γ(T ) + (t− T )ξ0, t > T

is a well-defined, continuous and piecewise continuously differentiable curve such
that γ̃(0) = x, γ̃(T + λ0) = ξ0 ∈ ∂X1, γ̃([0, T + λ0)) ⊆ (X1\K) ∩ (x +W ), and
γ̃′(t) ∈ W for every t where γ̃ is differentiable. In case ξ0 ∈ ∂X2 the curve

α : [0,∞) → (X2\K) ∩ (x+W ), α(t) := γ̃
( t

t+ 1
(T + λ0)

)
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is as desired. In case ξ0 /∈ ∂X2 we denote by C0 the connected component of

(Rd\X1) ∩ (x +W ) = (Rd\X1) ∩ (ξ0 +W )

which contains ξ0. It follows from the local pathwise connectedness of (Rd\K) ∩
(ξ0 +W ) that C0 is pathwise connected.

In case C0 is unbounded, there is thus a continuous and piecewise continuously
differentiable curve

β : [0,∞) → (Rd\K) ∩ (x+W )

with β(0) = x and limt→∞ |β(t)| = ∞. If the range of β does not intersect ∂X2 we

define β̃ := β otherwise we set

s := inf{t > 0; β(t) ∈ ∂X2}

so that s > 0 since ξ0 /∈ ∂X2 and

β̃ : [0,∞) → (X2\K) ∩ (x+W ), β̃(t) := β(
t

1 + t
s).

In both cases we define with γ̃ from above and β̃

α : [0,∞) → (X2\K) ∩ (x+W ), α(t) :=

{

γ̃(t), t ≤ T + λ0

β̃(t− T − λ0), t > T + λ0,

which satisfies all requirements.
Finally, in case C0 is bounded, C0 is compact. By the hypothesis on the compact

connected components of the intersection of Rd\X1 with characteristic hyperplanes
it follows that C0 intersects R

d\X2. Fix v ∈ C0 ∩ (Rd\X2). Since C0 is a path-
wise connected subset of (Rd\X1) ∩ (x +W ) there is a continuous and piecewise
continuously differentiable curve

β : [0, 1] → C0 ⊆ (Rd\K) ∩ (x+W )

with β(0) = ξ0, β(1) = v, and β′(t) ∈ W wherever β is differentiable. Again, we
set

s := inf{t > 0; β(t) ∈ ∂X2}

so that again s > 0 and again we define

β̃ : [0,∞) → (X2\K) ∩ (x+W ), β̃(t) := β(
t

1 + t
s).

Then, again

α : [0,∞) → (X2\K) ∩ (x+W ), α(t) :=

{

γ̃(t), t ≤ T + λ0

β̃(t− T − λ0), t > T + λ0,

fulfills all desired properties in the last case that remained which finally proves the
theorem. �

4. Some auxiliary results on the Cauchy problem

The purpose of this section is to collect some results on the non-characteristic
Cauchy problem which will be used in the proof of Theorem 5 in section 5 below. We
assume that these results are known but since we could not find any reference with
a correct representation of the solution of the non-characteristic Cauchy problem
given in Remark 1 below, we include its derivation here for the reader’s convenience.

Let P be such that ed ∈ Rd is not characteristic for P and we write P (x1, . . . , xd) =
∑m

k=0Qk(x1, . . . , xd−1)x
k
d with Qk ∈ C[X1, . . . , Xd−1], 0 ≤ k ≤ m, where the de-

gree of Qk is bounded by m − k. Since ed is non-characteristic for P and since P
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is of degree m, we have Qm = c ∈ C\{0} and we assume without loss of generality
that Qm = 1.1

As mentioned at the end of section 2, we will achieve our objective to construct
a zero solution for P (D) with support bounded with respect to the x1-axis by
explicitly solving a certain Cauchy problem for P (D) with Cauchy data on the
non-characteristic hyperplane {x ∈ Rd; xd = 0}. In order to formulate the solution
in a convenient way we introduce the following notion.

Definition 8. For Y ⊆ R
d−1 open we define recursively for l ∈ N0

Cl : E (Y ) → E (Y ), f 7→











0, l ∈ {0, . . . ,m− 2},

f, l = m− 1,

−
∑m−1

k=0 Qk(D)Ck+l−m(f), l ≥ m.

Thus, by definition, Cm+l(f) +
∑m−1

k=0 Qk(D)Ck+l(f) = 0 for all l ∈ N0, f ∈ E (Y ).

A straight-forward calculation yields the next result.

Proposition 9. Let Y ⊆ Rd−1 be open and h0, . . . , hm−1 ∈ E (Y ). Then

∀ 0 ≤ s ≤ m− 1 :
s
∑

j=0

m−1−j
∑

k=m−1−s

Qj+k+1(D)Ck+s(hj) = hs.

Definition 10. Let Y ⊆ Rd−1 be open. We define

Ln : E (Y ) → E (Y × R), Ln(h)(x, xd) :=

n
∑

l=0

Cl(h)(x)
(i xd)

l

l!
.

Obviously, Ln is a linear and continuous mapping.

Keeping in mind that Qm = 1 and that Cm+l(hj) +
∑m−1

r=0 Qr(D)Cr+l(hj) = 0
for all l ∈ N0, with the aid of Proposition 9 one easily derives the next proposition.

Proposition 11. Let Y ⊆ Rd−1 be open, h0, . . . , hm−1 ∈ E (Y ) be such that for

all 0 ≤ j ≤ m − 1 the sequence (Ln(hj))n converges in E (Y × R), L(hj) :=

limn→∞ Ln(hj) =
∑∞

l=0 Cl(hj)
(ixd)

l

l! .

Then, u :=
∑m−1

j=0

∑m−1−j
k=0 Qj+k+1(D)Dk

dL(hj) ∈ EP (Y × R) and Ds
du(·, 0) =

hs(·), 0 ≤ s ≤ m− 1.

In order to determine when the sequence (Ln(hj))n converges in E (Y × R) we
next give an explicit representation of the recursively defined operators Cl.

Proposition 12. Let Y ⊆ Rd−1 be open. For each l ∈ N0 and every f ∈ E (Y ) it

holds

Cm−1+l(f) =
∑

s∈Nm
0
,σ(s)=l

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)f,

where σ(s) =
∑m

j=1 jsj.

Proof. We prove the claim by induction on l. For l = 0 the claim holds true since
Cm−1(f) = f .

1Note added in proof: While in view of Theorem 5 we are interested in the non-characteristic
Cauchy problem, it should be noted that the results of the current section hold true for polynomials
P , not necessarily of degree m and for which ed need not be a non-characteristic vector, as long
as P can be written as P (x1, . . . , xd) =

∑
m

k=0
Qk(x1, . . . , xd−1)x

k

d
with Qk ∈ C[X1, . . . , Xd−1]

and Qm = c ∈ C\{0} and m ∈ N.
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Next, we assume the claim to be true for all n ≤ l. For f ∈ E (Y ) we have

Cm−1+(l+1)(f) = −
m−1
∑

k=0

Qk(D)Ck+l(f) = −
m−1+l
∑

s=l

Qs−l(D)Cs(f).

Now we have to distinguish two cases. As a first case we consider l ≤ m− 1. Since
Cr(f) = 0 whenever r < m− 1, we continue

=−
m−1+l
∑

s=l

Qs−l(D)Cs(f) = −
m−1+l
∑

s=m−1

Qs−l(D)Cs(f)

=−
l
∑

n=0

Qm−1−l+n(D)Cm−1+n(f)(2)

=−
l
∑

n=0

Qm−1−l+n(D)
(

∑

s∈N
m
0 ,

σ(s)=n

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)f

)

,

where we have used the induction hypothesis in the last step. Now, writing πj(s) :=
sj for s ∈ Nm

0 , we observe that

σ(s) =
m
∑

j=1

jsj =
m
∑

j=1

jπj(s+ el+1−n)− (l + 1− n)

so that

∀ s ∈ N
m
0 , 0 ≤ n ≤ l : σ(s) = n⇔ σ(s + el+1−n) = l + 1.

Continuing with the calculation (2) we obtain

=−
l
∑

n=0

Qm−1−l+n(D)
(

∑

s∈Nm
0
,σ(s)=n

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)f

)

=−
l
∑

n=0

∑

s∈N
m
0 ,

σ(s)=n

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Q
πk(s+el+1−n)
m−k (D)f

=
l
∑

n=0

∑

s∈N
m
0 ,

σ(s+el+1−n)=l+1

(−1)|s+el+1−n|

(

|s|

s1, . . . , sm

) m
∏

k=1

Q
πk(s+el+1−n)
m−k (D)f

=
(

l+1
∑

r=1

∑

s∈N
m
0 ,

σ(s+er)=l+1

(−1)|s+er|

(

|s|

s1, . . . , sm

)m−1
∏

k=0

Q
πk(s+er)
m−k (D)

)

f

=
(

∑

t∈N
m
0 ,

σ(t)=l+1

(−1)|t|
(

l+1
∑

r=1

(

|t| − 1

t1, . . . , tr−1, tr − 1, tr+1, . . . , tl+1, 0 . . . , 0

)

)

m
∏

k=1

Qtk
m−k(D)

)

f,

where in the last step we only rearranged the summands with respect to those
s ∈ Nm

0 for which s + er, 1 ≤ r ≤ l + 1, gives the same t ∈ Nm
0 . Summarizing, in

case of l ≤ m− 1 we obtain

Cm−1+(l+1)(f)

=
(

∑

t∈N
m
0 ,

σ(t)=l+1

(−1)|t|
(

l+1
∑

r=1

(

|t| − 1

t1, . . . , tr−1, tr − 1, tr+1, . . . , tl+1, 0 . . . , 0

)

)

m
∏

k=1

Qtk
m−k(D)

)

f.



14 THOMAS KALMES

In case of l > m− 1 we have - using the induction hypothesis in the third step

Cm−1+(l+1)(f) = −
m−1+l
∑

s=l

Qs−l(D)Cs(f)

=−
m−1
∑

n=0

Qn(D)Cl+n(f) = −
m−1
∑

n=0

Qn(D)Cm−1+(l−m+1)+n(f)

=−
m−1
∑

n=0

Qn(D)
(

∑

s∈N
m
0 ,

σ(s)=l−m+1+n

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)

)

f

=
(

m−1
∑

n=0

∑

s∈N
m
0 ,

σ(s)=l+1−(m−n)

(−1)|s+em−n|

(

|s|

s1, . . . , sm

) m
∏

k=1

Q
πk(s+em−n)
m−k (D)

)

f

=
(

m−1
∑

n=0

∑

s∈N
m
0 ,

σ(s+em−n)=l+1

(−1)|s+em−n|

(

|s|

s1, . . . , sm

) m
∏

k=1

Q
πk(s+em−n)
m−k (D)

)

f

=
(

m
∑

r=1

∑

s∈N
m
0 ,

σ(s+er)=l+1

(−1)|s+er |

(

|s|

s1, . . . , sm

) m
∏

k=1

Q
πk(s+er)
m−k (D)

)

f

=
(

∑

t∈N
m
0 ,

σ(t)=l+1

(−1)|t|
(

m
∑

r=1

(

|t| − 1

t1, . . . , tr−1, tr − 1, tr+1, . . . , tm

)

)

m
∏

k=1

Qtk
m−k(D)

)

f.

Summarizing, whether l ≤ m− 1 or l > m− 1, we obtain

Cm−1+(l+1)(f) =
∑

t∈N
m
0 ,

σ(t)=l+1

(−1)|t|α(t)

m
∏

k=1

Qtk
m−k(D)f,

where

α(t) =

{

l ≤ m− 1 :
∑l+1

r=1

(

|t|−1
t1,...,tr−1,tr−1,tr+1,...,tl+1,0...,0

)

,

l > m− 1 :
∑m

r=1

(

|t|−1
t1,...,tr−1,tr−1,tr+1,...,tm

)

.

Since the function

Mk : Rk → R,Mk(x) =

{

0, x /∈ Nk
0

(

|x|
x1,...,xk

)

, x ∈ Nk
0

satisfies
∑k

r=1Mk(x − er) =Mk(x) it follows

l+1
∑

r=1

(

|t| − 1

t1, . . . , tr−1, tr − 1, tr+1, . . . , tl+1, 0 . . . , 0

)

=

l+1
∑

r=1

Ml+1((t1, . . . , tl+1)− er)

=

(

|t|

t1, . . . , tl+1, 0, . . . , 0

)

as well as

m
∑

r=1

(

|t| − 1

t1, . . . , tr−1, tr − 1, tr+1, . . . , tm

)

=

m
∑

r=1

Mm((t1, . . . , tm)−er) =

(

|t|

t1, . . . , tm

)

.
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Taking into account that tl+2 = . . . = tm = 0 whenever σ(t) = l+1 ≤ m, we finally
arrive at

Cm−1+(l+1)(f) =
∑

t∈N
m
0 ,

σ(t)=l+1

(−1)|t|
(

|t|

t1, . . . , tm

) m
∏

k=1

Qtk
m−k(D)f,

which proves the claim for l+ 1. The proof is complete. �

Remark 1. Using the explicit formula for Cm−1+l, l ∈ N0, it follows for n ≥
m− 1, h ∈ E (Y ), and (x, xd) ∈ Y × R

Ln(h)(x, xd) =
n
∑

l=m−1

∑

s∈N
m
0 ,

σ(s)=l−m+1

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)h(x)

(ixd)
l

l!
,

where σ(s) =
∑m

j=1 jsj .

Thus, if h0, . . . , hm−1 ∈ E (Y ) are such that (Ln(hj))n∈N converge in E (Y ×R) the

solution to the Cauchy problem P (D)u = 0 in Y ×R, Dj
du(·, 0) = hj , 0 ≤ j ≤ m−1

is given by

u(x, xd) =
m−1
∑

j=0

∞
∑

l=m−1

∑

s∈N
m
0 ,

σ(s)=l−m+1

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)hj(x)

(ixd)
l

l!
.

5. Proof of Theorem 5

As mentioned at the end of Section 2, for the proof we combine a result of
Hörmander [8, Theorem 8.6.7] with an idea of Langenbruch from [16]. By Hörmander’s
result, for P with characteristic vector N there is u ∈ E (Rd) with P (D)u = 0 and
suppu = {x ∈ R

d; 〈x,N〉 ≤ 0}. The power series approach to the solution of the
(non-characteristic) Cauchy problem from the previous section was used by Lan-
genbruch to construct, for a certain class of polynomials P , a fundamental solution
which has a bounded support with respect to some of the variables. The proof of
Theorem 5 will be achieved by combining both results/ideas.

Proof of Theorem 5. By hypothesis on the polynomial P , there is γ ∈ (0, 1) such
that degx1

(Qk) ≤ γ(m− k) for all 0 ≤ k ≤ m− 1. We fix a, ε > 0 with a > ε. Next

we fix ρ ∈ (1, 1γ ) and we denote by Γ(ρ)(R) the Gevrey class of order ρ, i.e. Γ(ρ)(R)

consists of those smooth functions f on R for which for every compact L ⊂ R there
are constants C,R > 0 such that

∀x ∈ L, α ∈ N0 : |f (α)(x)| ≤ C Rααρα.

Since ρ > 1 there is g ∈ Γ(ρ)(R)∩D(R) such that supp g ⊆ [−(a+ε),− ε
2 ] and g = 1

in a neighborhood of [−(a+ ε
2 ),−

3ε
4 ]. The existence of g follows for example from

an application of [8, Theorem 1.4.2].
By [8, Proof of Theorem 8.6.7] for each characteristic vector N of P and each

non-characteristic vector ξ for P there is a Puiseux series t(s) = s
∑∞

j=1 cj(s
−1/p)j ,

analytic for s ∈ C, |s1/p| > M for suitable M > 0, such that for τ > (2M)p and
1− 1/p < r < 1

v(x) =

∫ iτ+∞

iτ−∞

ei〈x,sN+t(s)ξ〉e−(s/i)rds

is a smooth function on Rd with P (D)v = 0, supp v = {x ∈ Rd; 〈x,N〉 ≤ 0}, and
such that v|{x∈Rd; 〈x,N〉6=0} is real analytic, where (s/i)r is defined so that it is real
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and positive when s is on the positive imaginary axis. Moreover, the definition of
v is independent of the particular choice of τ > (2M)p and

∀α ∈ N
d
0 : ∂αv(x) =

∫ iτ+∞

iτ−∞

(sN + t(s)ξ)αei〈x,sN+t(s)ξ〉e−(s/i)rds.

Since by hypothesis e1 is characteristic for P while ed is not, in the above definition
of v we can choose N = e1 and ξ = ed yielding a smooth function v on Rd which
only depends on x1 and xd such that P (D)v = 0, supp v = {x ∈ Rd; x1 ≤ 0}, and
v|{x∈Rd;x1 6=0} is real analytic. Since real analytic functions belong to Γ(ρ) and since

Γ(ρ) is an algebra which is closed under differentiation, it follows that

∀ 0 ≤ j ≤ m− 1 : hj : R
d−1 → C, x′ 7→ g(x′1)D

j
dv(x

′, 0)

belong to Γ(ρ)(Rd−1), depend only on x′1 and satisfy

(3) supphj = {x′ ∈ R
d−1; x′1 ∈ supp g} ⊆ {x′ ∈ R

d−1;x′1 ∈ [−(a+ ε),−ε/2]}.

In particular, there are C > 0, R ≥ 1 such that

(4) ∀ 0 ≤ j ≤ m− 1 ∀x′ ∈ R
d−1, α ∈ N

d−1
0 : |Dαhj(x

′)| ≤ CRα1αρα1

1 .

For every 0 ≤ k ≤ m we have Qk(x
′) =

∑

|α′|≤m−k qk,α′x′α
′

for suitable qk,α′ ∈ C.

We fix q > 0 such that
∑

|α′|≤m−k |qk,α′ | ≤ q for all k, α′. Moreover, we observe

that for every s ∈ Nm
0 due to the hypothesis on degx1

(Qk)

degx1

(

m
∏

k=1

Qsk
m−k

)

=

m
∑

k=1

sk degx1
(Qm−k) ≤ γ

m
∑

k=1

ksk = γ σ(s).

Applying (4) it follows that for every 0 ≤ j ≤ m− 1 and each s ∈ Nm
0

∀x′ ∈ R
d−1 :

∣

∣

∣

∣

∣

(

m
∏

k=1

Qsk
m−k(D)

)

hj(x
′)

∣

∣

∣

∣

∣

≤ q|s|CRγσ(s)
(

γσ(s)
)ργ σ(s)

.

Thus, for B > 0 it follows from Remark 1 that for every n ≥ m−1, k ∈ N, and each
x′ ∈ Rd−1, xd ∈ R with |xd| ≤ B we have by an application of the Multinomial

Theorem and Stirling’s Formula for a suitable constant C̃

|Ln+k(hj)(x
′, xd)− Ln(hj)(x

′, xd)|

≤
n+k
∑

l=n+1

∑

s∈N
m
0 ,

σ(s)=l−m+1

(

|s|

s1, . . . , sm

)

q|s|CRγσ(s)
(

γσ(s)
)ργ σ(s)Bl

l!

≤ C̃

n+k
∑

l=n+1

(mq)l−m+1Rγ(l−m+1)
(

γ(l−m+ 1)
)ργ(l−m+1)Bl

ll

< C̃
∞
∑

l=n+1

(mqRB

l1−ργ

)l

<∞,

because ργ < 1. Thus (Ln(hj))n∈N, 0 ≤ j ≤ m− 1, converge uniformly on Rd−1 ×
[−B,B]. It is at this point where we need that hj ∈ Γ(ρ)(Rd−1); for this to hold,

we have chosen g ∈ Γ(ρ)(R) since for an arbitrary cut-off function in place of g it
needs not be true that hj ∈ Γ(ρ)(Rd−1).

The explicit formula for Ln(hj) in Remark 1 shows that for all α ∈ Nd
0 and each

(x′, xd) ∈ Rd we have for n ≥ m− 1

∂αLn(hj)(x, xd)
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=

n
∑

l=max{m−1,αd}

∑

s∈N
m
0 ,

σ(s)=l−m+1

(−1)|s|
(

|s|

s1, . . . , sm

) m
∏

k=1

Qsk
m−k(D)∂α

′

hj(x
′)
(ixd)

l−αd

(l − αd)!
.

Since Γ(ρ)(Rd−1) is closed under differentiation, similar estimates to the ones elab-
orated above show that (∂αLn(hj))n∈N converges uniformly in Rd−1 × [−B,B] for
every B > 0 so that (Ln(hj))n∈N converges in E (Rd), 0 ≤ j ≤ m − 1. Denoting
the respective limits by L(hj), 0 ≤ j ≤ m − 1, it follows from (3) and the explicit
formula for Ln(hj) in Remark 1 that for each 0 ≤ j ≤ m− 1

(5) suppL(hj) ⊆ {x ∈ R
d; x1 ∈ [−(a+ ε),−ε/2]}.

Proposition 11 implies that the smooth function u on Rd defined as

u :=
m−1
∑

j=0

m−1−j
∑

k=0

Qj+k+1(D)Dk
dL(hj)

satisfies P (D)u = 0 and Dj
du(x

′, 0) = g(x′1)D
j
dv(x

′, 0) for every 0 ≤ j ≤ m − 1.
Moreover, by (5)

suppu ⊆ {x ∈ R
d; x1 ∈ [−(a+ ε),−ε/2]}.

Since g = 1 in a neighborhood of [−(a + ε/2),−3ε/4] and since Dj
dv(·, 0) are real

analytic it follows from Holmgren’s Uniqueness Theorem (see e.g. [7, Section V.5.3]
or [20]) and the fact that {x ∈ Rd; xd = 0} is a non-characteristic hyperplane for
P that u and v coincide on the set {x ∈ Rd; −a ≤ x1 ≤ −ε}. Since the latter set
is contained in the support of v, the theorem is proved. �

6. Proofs of Theorem 2 and Corollaries 3 and 4

In this section we finally prove Theorem 2 and Corollaries 3 and 4.

Proof of Theorem 2. The proof will be done by contradiction. Thus, we assume
that there is c ∈ R such that X2 contains a compact connected component C of
(Rd\X1) ∩Hc.

Let V ⊆ U ⊆ Rd−1 be open and bounded such that

C ⊆ {c} × V ⊆ {c} × V ⊆ {c} × U ⊆ {c} × U ⊆ (X1 ∪ C) ∩Hc.

Then, {c} × (U\V ) is a compact subset of X1 ∩Hc and therefore

δ := dist ({c} × (U\V ),Rd\X1) > 0.

By compactness and X1 ∪ C ⊆ X2 there is ε > 0 such that

i) [c− ε, c+ ε]× (U\V ) ⊆ X1,
ii) [c− ε, c+ ε]× U ⊆ X2.

Applying Theorem 5 to the polynomial P̌ (x) := P (−x) there is u ∈ EP̌ (R
d) with

{

x ∈ R
d;−

3ε

2
≤ x1 ≤ −

ε

2

}

⊆ suppu ⊆ {−2ε ≤ x1 ≤ 0}

such that u is real analytic in (−3ε/2,−ε/2) × Rd−1. Thus, v(x) := u(x1 − c −
ε, x2, . . . , xd) defines a smooth function on Rd satisfying P̌ (D)v = 0 and

{

x ∈ R
d; c−

ε

2
≤ x1 ≤ c+

ε

2

}

⊆ supp v ⊆ {x ∈ R
d; c− ε ≤ x1 ≤ c+ ε}.

Moreover, the restriction of v to (c− ε/2, c+ ε/2)× Rd−1 is real analytic.
Next, we choose ψ ∈ D(Rd−1) with suppψ ⊆ U and ψ = 1 in a neighborhood of

V , and set w(x) := v(x)ψ(x2, . . . , xd). Then

suppw ⊆ supp v ∩ (R× suppψ) ⊆ [c− ε, c+ ε]× U
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as well as

supp P̌ (D)w ⊆ supp v ∩ (R× supp (dψ)) ⊆ [c− ε, c+ ε]× (U\V ).

In particular, w ∈ D(X2) and P̌ (D)w ∈ D(X1). For each f ∈ D
′
P (X2) we have

〈f, P̌ (D)w〉 = 〈P (D)f, w〉 = 0.

On the other hand, for arbitrary fixed x0 ∈ C ⊆ {c}× V , since v is real analytic in
(c− ε/2, c+ ε/2)×Rd−1 and the latter set is contained in the support of v, there is
α0 ∈ Nd

0 such that ∂α0v(x0) 6= 0. Let E be a fundamental solution for P (D) then
∂α0τx0

E|X1
∈ D ′

P (X1), where τx0
denotes translation by x0. Since P̌ (D)w ∈ D(X1)

we conclude

〈P̌ (D)w, ∂α0τx0
E|X1

〉 = 〈w, ∂α0δx0
〉 = (−1)|α0|∂α0v(x0) 6= 0.

Thus P̌ (D)w is a non-trivial continuous linear functional on D ′
P (X1) which vanishes

on rD′

(

D ′
P (X2)

)

so by the Hahn-Banach Theorem the latter subspace of D ′
P (X1)

is not dense giving the desired contradiction. �

Proof of Corollary 3. By Theorem 2, i) implies ii). To prove the converse impli-
cation as well as the statement that (X,Rd) is a P -Runge pair, we first note that
Rd is P -convex for supports. Thus, in view of Theorem 1, it remains to show that
X is P -convex for supports, whenever ii) holds. Assuming that X is not P -convex
for supports, it follows from Theorem 7 that there are c ∈ R and a compact subset
K ⊆ Hc ∩X with

(6) min
x∈K

dist (x,Xc) < min
x∈∂HcK

dist (x,Xc),

where as usual Hc = {x ∈ Rd; x1 = c}. Let x0 ∈ K and y0 ∈ Xc be such that

|x0 − y0| = min
x∈K

dist (x,Xc).

Since x0 ∈ K ⊆ Hc ∩X we have Hc = Hx0
1
,

Hy0
1
= (y0 − x0) +Hx0

1
⊇ (y0 − x0) +K,

and by (6)

Hy0
1
∩X ⊇ (y0 − x0) + ∂H

x0
1

K = ∂H
y0
1

(

y0 − x0 +K
)

.

The latter implies that the connected component of (Rd\X) ∩Hy0
1
which contains

y0 is bounded, hence compact which gives a contradiction. �

It remains to prove Corollary 4.

Proof of Corollary 4. The set of zeros of the principal part of each of the polyno-
mials P (t, x) = (−it)r + Q(x) and P (t, x) = −t − |x|2 is the time axis, i.e. t-axis,
and thus the characteristic hyperplanes are the hyperplanes orthogonal to the time
axis. Thus, by Theorem 7, I1 ×X2 and I2 ×X2 are both P -convex for supports.
Moreover, P satisfies the additional hypothesis of Theorem 1. Thus, I1 ×X1 and
I2 ×X2 form a P -Runge pair if and only if for every t0 ∈ R no compact connected
component of

(

R
n+1\(I1 ×X1)

)

∩ {(t0, x); x ∈ R
n}

is contained in I2 ×X2. The latter condition is obviously equivalent to R
n\X1 not

having a compact connected component in X2. Thus ii) follows from Theorem 1
while i) follows from Theorem 1 once it has been taken into account that P (t, x) =
(−it)r +Q(x) is hypoelliptic (cf. [9, Theorem 11.1.11]). �
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